0s autopkgtest [18:41:55]: starting date and time: 2025-05-01 18:41:55+0000 0s autopkgtest [18:41:55]: git checkout: 9986aa8c Merge branch 'skia/fix_network_interface' into 'ubuntu/production' 0s autopkgtest [18:41:55]: host juju-7f2275-prod-proposed-migration-environment-23; command line: /home/ubuntu/autopkgtest/runner/autopkgtest --output-dir /tmp/autopkgtest-work.k_8grp1_/out --timeout-copy=6000 --setup-commands /home/ubuntu/autopkgtest-cloud/worker-config-production/setup-canonical.sh --apt-pocket=proposed=src:ca-certificates --apt-upgrade xgboost --timeout-short=300 --timeout-copy=20000 --timeout-build=20000 --env=ADT_TEST_TRIGGERS=ca-certificates/20250419 -- ssh -s /home/ubuntu/autopkgtest/ssh-setup/nova -- --flavor autopkgtest-cpu2-ram4-disk20-s390x --security-groups autopkgtest-juju-7f2275-prod-proposed-migration-environment-23@sto01-s390x-9.secgroup --name adt-questing-s390x-xgboost-20250501-184155-juju-7f2275-prod-proposed-migration-environment-23-4154552c-b107-4303-afab-dc3b8e4abf6d --image adt/ubuntu-questing-s390x-server --keyname testbed-juju-7f2275-prod-proposed-migration-environment-23 --net-id=net_prod-autopkgtest-workers-s390x -e TERM=linux --mirror=http://ftpmaster.internal/ubuntu/ 115s autopkgtest [18:43:50]: testbed dpkg architecture: s390x 116s autopkgtest [18:43:51]: testbed apt version: 3.0.0 116s autopkgtest [18:43:51]: @@@@@@@@@@@@@@@@@@@@ test bed setup 116s autopkgtest [18:43:51]: testbed release detected to be: None 117s autopkgtest [18:43:52]: updating testbed package index (apt update) 117s Get:1 http://ftpmaster.internal/ubuntu questing-proposed InRelease [110 kB] 117s Hit:2 http://ftpmaster.internal/ubuntu questing InRelease 117s Hit:3 http://ftpmaster.internal/ubuntu questing-updates InRelease 117s Hit:4 http://ftpmaster.internal/ubuntu questing-security InRelease 117s Get:5 http://ftpmaster.internal/ubuntu questing-proposed/universe Sources [1149 kB] 118s Get:6 http://ftpmaster.internal/ubuntu questing-proposed/main Sources [126 kB] 118s Get:7 http://ftpmaster.internal/ubuntu questing-proposed/multiverse Sources [27.6 kB] 119s Get:8 http://ftpmaster.internal/ubuntu questing-proposed/main s390x Packages [49.5 kB] 119s Get:9 http://ftpmaster.internal/ubuntu questing-proposed/universe s390x Packages [243 kB] 119s Get:10 http://ftpmaster.internal/ubuntu questing-proposed/multiverse s390x Packages [1804 B] 119s Fetched 1707 kB in 2s (888 kB/s) 122s Reading package lists... 124s autopkgtest [18:43:59]: upgrading testbed (apt dist-upgrade and autopurge) 124s Reading package lists... 125s Building dependency tree... 125s Reading state information... 126s Calculating upgrade...Starting pkgProblemResolver with broken count: 0 127s Starting 2 pkgProblemResolver with broken count: 0 127s Done 129s Entering ResolveByKeep 129s 130s Calculating upgrade... 131s The following packages will be upgraded: 131s ca-certificates libperl5.40 perl perl-base perl-modules-5.40 131s 5 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 131s Need to get 10.6 MB of archives. 131s After this operation, 11.3 kB disk space will be freed. 131s Get:1 http://ftpmaster.internal/ubuntu questing-proposed/main s390x libperl5.40 s390x 5.40.1-3 [4972 kB] 137s Get:2 http://ftpmaster.internal/ubuntu questing-proposed/main s390x perl s390x 5.40.1-3 [262 kB] 137s Get:3 http://ftpmaster.internal/ubuntu questing-proposed/main s390x perl-base s390x 5.40.1-3 [1954 kB] 139s Get:4 http://ftpmaster.internal/ubuntu questing-proposed/main s390x perl-modules-5.40 all 5.40.1-3 [3217 kB] 143s Get:5 http://ftpmaster.internal/ubuntu questing-proposed/main s390x ca-certificates all 20250419 [163 kB] 143s Preconfiguring packages ... 143s Fetched 10.6 MB in 12s (913 kB/s) 144s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 59826 files and directories currently installed.) 144s Preparing to unpack .../libperl5.40_5.40.1-3_s390x.deb ... 144s Unpacking libperl5.40:s390x (5.40.1-3) over (5.40.1-2ubuntu0.1) ... 144s Preparing to unpack .../perl_5.40.1-3_s390x.deb ... 144s Unpacking perl (5.40.1-3) over (5.40.1-2ubuntu0.1) ... 144s Preparing to unpack .../perl-base_5.40.1-3_s390x.deb ... 144s Unpacking perl-base (5.40.1-3) over (5.40.1-2ubuntu0.1) ... 144s Setting up perl-base (5.40.1-3) ... 144s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 59826 files and directories currently installed.) 144s Preparing to unpack .../perl-modules-5.40_5.40.1-3_all.deb ... 144s Unpacking perl-modules-5.40 (5.40.1-3) over (5.40.1-2ubuntu0.1) ... 145s Preparing to unpack .../ca-certificates_20250419_all.deb ... 145s Unpacking ca-certificates (20250419) over (20241223) ... 145s Setting up ca-certificates (20250419) ... 153s Updating certificates in /etc/ssl/certs... 156s rehash: warning: skipping ca-certificates.crt, it does not contain exactly one certificate or CRL 156s 2 added, 4 removed; done. 156s Setting up perl-modules-5.40 (5.40.1-3) ... 156s Setting up libperl5.40:s390x (5.40.1-3) ... 156s Setting up perl (5.40.1-3) ... 156s Processing triggers for man-db (2.13.0-1) ... 162s Processing triggers for libc-bin (2.41-6ubuntu1) ... 162s Processing triggers for ca-certificates (20250419) ... 162s Updating certificates in /etc/ssl/certs... 165s 0 added, 0 removed; done. 165s Running hooks in /etc/ca-certificates/update.d... 165s done. 167s Reading package lists... 168s Building dependency tree... 168s Reading state information... 169s Starting pkgProblemResolver with broken count: 0 170s Starting 2 pkgProblemResolver with broken count: 0 170s Done 170s Solving dependencies... 171s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 174s autopkgtest [18:44:49]: testbed running kernel: Linux 6.14.0-15-generic #15-Ubuntu SMP Sun Apr 6 13:39:00 UTC 2025 175s autopkgtest [18:44:50]: @@@@@@@@@@@@@@@@@@@@ apt-source xgboost 180s Get:1 http://ftpmaster.internal/ubuntu questing/universe xgboost 2.1.4-1build1 (dsc) [2340 B] 180s Get:2 http://ftpmaster.internal/ubuntu questing/universe xgboost 2.1.4-1build1 (tar) [2138 kB] 180s Get:3 http://ftpmaster.internal/ubuntu questing/universe xgboost 2.1.4-1build1 (diff) [23.2 kB] 180s gpgv: Signature made Wed Mar 5 01:20:21 2025 UTC 180s gpgv: using RSA key 25E3FF2D7F469DBE7D0D4E50AFCFEC8E669CE1C2 180s gpgv: Can't check signature: No public key 180s dpkg-source: warning: cannot verify inline signature for ./xgboost_2.1.4-1build1.dsc: no acceptable signature found 180s autopkgtest [18:44:55]: testing package xgboost version 2.1.4-1build1 181s autopkgtest [18:44:56]: build not needed 182s autopkgtest [18:44:57]: test run-demos: preparing testbed 182s Reading package lists... 183s Building dependency tree... 183s Reading state information... 184s Starting pkgProblemResolver with broken count: 0 185s Starting 2 pkgProblemResolver with broken count: 0 185s Done 186s The following NEW packages will be installed: 186s blt fontconfig-config fonts-dejavu-core fonts-dejavu-mono fonts-lyx libblas3 186s libdeflate0 libdmlc0t64 libfontconfig1 libfreetype6 libgfortran5 libgomp1 186s libgraphite2-3 libharfbuzz0b libimagequant0 libjbig0 libjpeg-turbo8 libjpeg8 186s libjs-jquery libjs-jquery-ui liblapack3 liblbfgsb0 liblcms2-2 libopenjp2-7 186s libqhull-r8.0 libraqm0 libsharpyuv0 libtcl8.6 libtiff6 libtk8.6 libwebp7 186s libwebpdemux2 libwebpmux3 libxft2 libxgboost-dev libxgboost0 libxrender1 186s libxslt1.1 libxss1 python-matplotlib-data python3-brotli python3-contourpy 186s python3-cycler python3-decorator python3-fonttools python3-fs python3-joblib 186s python3-kiwisolver python3-lxml python3-lz4 python3-matplotlib 186s python3-mpmath python3-numpy python3-numpy-dev python3-pandas 186s python3-pandas-lib python3-pil python3-pil.imagetk python3-platformdirs 186s python3-pytz python3-scipy python3-sklearn python3-sklearn-lib python3-sympy 186s python3-threadpoolctl python3-tk python3-tz python3-ufolib2 186s python3-unicodedata2 python3-xgboost python3.13-tk tk8.6-blt2.5 unicode-data 186s x11-common 186s 0 upgraded, 74 newly installed, 0 to remove and 0 not upgraded. 186s Need to get 89.7 MB of archives. 186s After this operation, 373 MB of additional disk space will be used. 186s Get:1 http://ftpmaster.internal/ubuntu questing/main s390x python3-numpy-dev s390x 1:2.2.3+ds-5 [147 kB] 186s Get:2 http://ftpmaster.internal/ubuntu questing/main s390x libblas3 s390x 3.12.1-2 [252 kB] 186s Get:3 http://ftpmaster.internal/ubuntu questing/main s390x libgfortran5 s390x 15-20250404-0ubuntu1 [621 kB] 187s Get:4 http://ftpmaster.internal/ubuntu questing/main s390x liblapack3 s390x 3.12.1-2 [2971 kB] 190s Get:5 http://ftpmaster.internal/ubuntu questing/main s390x python3-numpy s390x 1:2.2.3+ds-5 [4396 kB] 195s Get:6 http://ftpmaster.internal/ubuntu questing/main s390x libtcl8.6 s390x 8.6.16+dfsg-1 [1034 kB] 196s Get:7 http://ftpmaster.internal/ubuntu questing/main s390x libfreetype6 s390x 2.13.3+dfsg-1 [431 kB] 196s Get:8 http://ftpmaster.internal/ubuntu questing/main s390x fonts-dejavu-mono all 2.37-8 [502 kB] 196s Get:9 http://ftpmaster.internal/ubuntu questing/main s390x fonts-dejavu-core all 2.37-8 [835 kB] 197s Get:10 http://ftpmaster.internal/ubuntu questing/main s390x fontconfig-config s390x 2.15.0-2.2ubuntu1 [37.9 kB] 197s Get:11 http://ftpmaster.internal/ubuntu questing/main s390x libfontconfig1 s390x 2.15.0-2.2ubuntu1 [150 kB] 197s Get:12 http://ftpmaster.internal/ubuntu questing/main s390x libxrender1 s390x 1:0.9.10-1.1build1 [20.4 kB] 197s Get:13 http://ftpmaster.internal/ubuntu questing/main s390x libxft2 s390x 2.3.6-1build1 [49.6 kB] 197s Get:14 http://ftpmaster.internal/ubuntu questing/main s390x x11-common all 1:7.7+23ubuntu4 [21.8 kB] 197s Get:15 http://ftpmaster.internal/ubuntu questing/main s390x libxss1 s390x 1:1.2.3-1build3 [7396 B] 197s Get:16 http://ftpmaster.internal/ubuntu questing/main s390x libtk8.6 s390x 8.6.16-1 [830 kB] 198s Get:17 http://ftpmaster.internal/ubuntu questing/main s390x tk8.6-blt2.5 s390x 2.5.3+dfsg-8 [657 kB] 199s Get:18 http://ftpmaster.internal/ubuntu questing/main s390x blt s390x 2.5.3+dfsg-8 [4826 B] 199s Get:19 http://ftpmaster.internal/ubuntu questing/universe s390x fonts-lyx all 2.4.3-1 [171 kB] 199s Get:20 http://ftpmaster.internal/ubuntu questing/main s390x libdeflate0 s390x 1.23-1 [46.1 kB] 199s Get:21 http://ftpmaster.internal/ubuntu questing/main s390x libgomp1 s390x 15-20250404-0ubuntu1 [152 kB] 199s Get:22 http://ftpmaster.internal/ubuntu questing/universe s390x libdmlc0t64 s390x 0.5+git20240614.1334185-1 [195 kB] 199s Get:23 http://ftpmaster.internal/ubuntu questing/main s390x libgraphite2-3 s390x 1.3.14-2ubuntu1 [79.8 kB] 199s Get:24 http://ftpmaster.internal/ubuntu questing/main s390x libharfbuzz0b s390x 10.2.0-1 [538 kB] 200s Get:25 http://ftpmaster.internal/ubuntu questing/main s390x libimagequant0 s390x 2.18.0-1build1 [43.3 kB] 200s Get:26 http://ftpmaster.internal/ubuntu questing/main s390x libjpeg-turbo8 s390x 2.1.5-3ubuntu2 [147 kB] 200s Get:27 http://ftpmaster.internal/ubuntu questing/main s390x libjpeg8 s390x 8c-2ubuntu11 [2146 B] 200s Get:28 http://ftpmaster.internal/ubuntu questing/main s390x libjs-jquery all 3.6.1+dfsg+~3.5.14-1 [328 kB] 200s Get:29 http://ftpmaster.internal/ubuntu questing/universe s390x libjs-jquery-ui all 1.13.2+dfsg-1 [252 kB] 200s Get:30 http://ftpmaster.internal/ubuntu questing/universe s390x liblbfgsb0 s390x 3.0+dfsg.4-1build1 [32.4 kB] 200s Get:31 http://ftpmaster.internal/ubuntu questing/main s390x liblcms2-2 s390x 2.16-2 [175 kB] 200s Get:32 http://ftpmaster.internal/ubuntu questing/universe s390x libqhull-r8.0 s390x 2020.2-6build1 [199 kB] 200s Get:33 http://ftpmaster.internal/ubuntu questing/main s390x libraqm0 s390x 0.10.2-1 [15.8 kB] 200s Get:34 http://ftpmaster.internal/ubuntu questing/main s390x libsharpyuv0 s390x 1.5.0-0.1 [16.7 kB] 200s Get:35 http://ftpmaster.internal/ubuntu questing/main s390x libjbig0 s390x 2.1-6.1ubuntu2 [33.1 kB] 200s Get:36 http://ftpmaster.internal/ubuntu questing/main s390x libwebp7 s390x 1.5.0-0.1 [210 kB] 200s Get:37 http://ftpmaster.internal/ubuntu questing/main s390x libtiff6 s390x 4.5.1+git230720-4ubuntu4 [217 kB] 200s Get:38 http://ftpmaster.internal/ubuntu questing/main s390x libwebpdemux2 s390x 1.5.0-0.1 [12.6 kB] 200s Get:39 http://ftpmaster.internal/ubuntu questing/main s390x libwebpmux3 s390x 1.5.0-0.1 [25.8 kB] 200s Get:40 http://ftpmaster.internal/ubuntu questing/universe s390x libxgboost0 s390x 2.1.4-1build1 [1816 kB] 202s Get:41 http://ftpmaster.internal/ubuntu questing/universe s390x libxgboost-dev s390x 2.1.4-1build1 [74.3 kB] 202s Get:42 http://ftpmaster.internal/ubuntu questing/main s390x libxslt1.1 s390x 1.1.39-0exp1ubuntu4 [170 kB] 202s Get:43 http://ftpmaster.internal/ubuntu questing/universe s390x python-matplotlib-data all 3.8.3-7build1 [2934 kB] 205s Get:44 http://ftpmaster.internal/ubuntu questing/universe s390x python3-brotli s390x 1.1.0-2build4 [380 kB] 205s Get:45 http://ftpmaster.internal/ubuntu questing/universe s390x python3-contourpy s390x 1.3.1-1build1 [197 kB] 205s Get:46 http://ftpmaster.internal/ubuntu questing/universe s390x python3-cycler all 0.12.1-1 [9716 B] 205s Get:47 http://ftpmaster.internal/ubuntu questing/main s390x python3-decorator all 5.1.1-5 [10.1 kB] 205s Get:48 http://ftpmaster.internal/ubuntu questing/main s390x python3-platformdirs all 4.3.6-1 [16.8 kB] 205s Get:49 http://ftpmaster.internal/ubuntu questing/universe s390x python3-fs all 2.4.16-7 [90.8 kB] 205s Get:50 http://ftpmaster.internal/ubuntu questing/main s390x python3-lxml s390x 5.3.2-1 [1370 kB] 207s Get:51 http://ftpmaster.internal/ubuntu questing/universe s390x python3-lz4 s390x 4.4.0+dfsg-1build1 [26.6 kB] 207s Get:52 http://ftpmaster.internal/ubuntu questing/universe s390x python3-scipy s390x 1.14.1-4ubuntu2 [18.0 MB] 227s Get:53 http://ftpmaster.internal/ubuntu questing/universe s390x python3-mpmath all 1.3.0-1 [425 kB] 227s Get:54 http://ftpmaster.internal/ubuntu questing/universe s390x python3-sympy all 1.13.3-5 [4229 kB] 231s Get:55 http://ftpmaster.internal/ubuntu questing/universe s390x python3-ufolib2 all 0.17.0+dfsg1-1 [33.5 kB] 231s Get:56 http://ftpmaster.internal/ubuntu questing/universe s390x python3-unicodedata2 s390x 15.1.0+ds-1build3 [361 kB] 231s Get:57 http://ftpmaster.internal/ubuntu questing/universe s390x unicode-data all 15.1.0-1 [8878 kB] 241s Get:58 http://ftpmaster.internal/ubuntu questing/universe s390x python3-fonttools s390x 4.55.3-2build1 [1496 kB] 242s Get:59 http://ftpmaster.internal/ubuntu questing/universe s390x python3-joblib all 1.4.2-3 [205 kB] 242s Get:60 http://ftpmaster.internal/ubuntu questing/universe s390x python3-kiwisolver s390x 1.4.7-3build1 [55.0 kB] 242s Get:61 http://ftpmaster.internal/ubuntu questing/main s390x libopenjp2-7 s390x 2.5.3-2 [207 kB] 242s Get:62 http://ftpmaster.internal/ubuntu questing/main s390x python3-pil s390x 11.1.0-5build1 [498 kB] 242s Get:63 http://ftpmaster.internal/ubuntu questing/main s390x python3.13-tk s390x 3.13.3-1 [108 kB] 242s Get:64 http://ftpmaster.internal/ubuntu questing/main s390x python3-tk s390x 3.13.3-1 [9854 B] 242s Get:65 http://ftpmaster.internal/ubuntu questing/universe s390x python3-pil.imagetk s390x 11.1.0-5build1 [9668 B] 242s Get:66 http://ftpmaster.internal/ubuntu questing/universe s390x python3-matplotlib s390x 3.8.3-7build1 [17.3 MB] 261s Get:67 http://ftpmaster.internal/ubuntu questing/main s390x python3-pytz all 2025.1-3 [162 kB] 261s Get:68 http://ftpmaster.internal/ubuntu questing/main s390x python3-tz all 2025.1-3 [1866 B] 261s Get:69 http://ftpmaster.internal/ubuntu questing/universe s390x python3-pandas-lib s390x 2.2.3+dfsg-8build1 [4995 kB] 267s Get:70 http://ftpmaster.internal/ubuntu questing/universe s390x python3-pandas all 2.2.3+dfsg-8build1 [3112 kB] 270s Get:71 http://ftpmaster.internal/ubuntu questing/universe s390x python3-threadpoolctl all 3.1.0-1 [21.3 kB] 270s Get:72 http://ftpmaster.internal/ubuntu questing/universe s390x python3-sklearn-lib s390x 1.4.2+dfsg-8 [4262 kB] 275s Get:73 http://ftpmaster.internal/ubuntu questing/universe s390x python3-sklearn all 1.4.2+dfsg-8 [2258 kB] 277s Get:74 http://ftpmaster.internal/ubuntu questing/universe s390x python3-xgboost s390x 2.1.4-1build1 [119 kB] 281s Fetched 89.7 MB in 1min 31s (981 kB/s) 281s Selecting previously unselected package python3-numpy-dev:s390x. 281s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 59824 files and directories currently installed.) 281s Preparing to unpack .../00-python3-numpy-dev_1%3a2.2.3+ds-5_s390x.deb ... 281s Unpacking python3-numpy-dev:s390x (1:2.2.3+ds-5) ... 281s Selecting previously unselected package libblas3:s390x. 281s Preparing to unpack .../01-libblas3_3.12.1-2_s390x.deb ... 281s Unpacking libblas3:s390x (3.12.1-2) ... 281s Selecting previously unselected package libgfortran5:s390x. 281s Preparing to unpack .../02-libgfortran5_15-20250404-0ubuntu1_s390x.deb ... 281s Unpacking libgfortran5:s390x (15-20250404-0ubuntu1) ... 282s Selecting previously unselected package liblapack3:s390x. 282s Preparing to unpack .../03-liblapack3_3.12.1-2_s390x.deb ... 282s Unpacking liblapack3:s390x (3.12.1-2) ... 283s Selecting previously unselected package python3-numpy. 283s Preparing to unpack .../04-python3-numpy_1%3a2.2.3+ds-5_s390x.deb ... 283s Unpacking python3-numpy (1:2.2.3+ds-5) ... 286s Selecting previously unselected package libtcl8.6:s390x. 286s Preparing to unpack .../05-libtcl8.6_8.6.16+dfsg-1_s390x.deb ... 286s Unpacking libtcl8.6:s390x (8.6.16+dfsg-1) ... 286s Selecting previously unselected package libfreetype6:s390x. 286s Preparing to unpack .../06-libfreetype6_2.13.3+dfsg-1_s390x.deb ... 286s Unpacking libfreetype6:s390x (2.13.3+dfsg-1) ... 286s Selecting previously unselected package fonts-dejavu-mono. 286s Preparing to unpack .../07-fonts-dejavu-mono_2.37-8_all.deb ... 286s Unpacking fonts-dejavu-mono (2.37-8) ... 286s Selecting previously unselected package fonts-dejavu-core. 286s Preparing to unpack .../08-fonts-dejavu-core_2.37-8_all.deb ... 286s Unpacking fonts-dejavu-core (2.37-8) ... 286s Selecting previously unselected package fontconfig-config. 286s Preparing to unpack .../09-fontconfig-config_2.15.0-2.2ubuntu1_s390x.deb ... 287s Unpacking fontconfig-config (2.15.0-2.2ubuntu1) ... 288s Selecting previously unselected package libfontconfig1:s390x. 288s Preparing to unpack .../10-libfontconfig1_2.15.0-2.2ubuntu1_s390x.deb ... 288s Unpacking libfontconfig1:s390x (2.15.0-2.2ubuntu1) ... 288s Selecting previously unselected package libxrender1:s390x. 288s Preparing to unpack .../11-libxrender1_1%3a0.9.10-1.1build1_s390x.deb ... 288s Unpacking libxrender1:s390x (1:0.9.10-1.1build1) ... 288s Selecting previously unselected package libxft2:s390x. 288s Preparing to unpack .../12-libxft2_2.3.6-1build1_s390x.deb ... 288s Unpacking libxft2:s390x (2.3.6-1build1) ... 288s Selecting previously unselected package x11-common. 288s Preparing to unpack .../13-x11-common_1%3a7.7+23ubuntu4_all.deb ... 288s Unpacking x11-common (1:7.7+23ubuntu4) ... 288s Selecting previously unselected package libxss1:s390x. 288s Preparing to unpack .../14-libxss1_1%3a1.2.3-1build3_s390x.deb ... 288s Unpacking libxss1:s390x (1:1.2.3-1build3) ... 288s Selecting previously unselected package libtk8.6:s390x. 288s Preparing to unpack .../15-libtk8.6_8.6.16-1_s390x.deb ... 288s Unpacking libtk8.6:s390x (8.6.16-1) ... 288s Selecting previously unselected package tk8.6-blt2.5. 288s Preparing to unpack .../16-tk8.6-blt2.5_2.5.3+dfsg-8_s390x.deb ... 288s Unpacking tk8.6-blt2.5 (2.5.3+dfsg-8) ... 289s Selecting previously unselected package blt. 289s Preparing to unpack .../17-blt_2.5.3+dfsg-8_s390x.deb ... 289s Unpacking blt (2.5.3+dfsg-8) ... 289s Selecting previously unselected package fonts-lyx. 289s Preparing to unpack .../18-fonts-lyx_2.4.3-1_all.deb ... 289s Unpacking fonts-lyx (2.4.3-1) ... 289s Selecting previously unselected package libdeflate0:s390x. 289s Preparing to unpack .../19-libdeflate0_1.23-1_s390x.deb ... 289s Unpacking libdeflate0:s390x (1.23-1) ... 289s Selecting previously unselected package libgomp1:s390x. 289s Preparing to unpack .../20-libgomp1_15-20250404-0ubuntu1_s390x.deb ... 289s Unpacking libgomp1:s390x (15-20250404-0ubuntu1) ... 289s Selecting previously unselected package libdmlc0t64:s390x. 289s Preparing to unpack .../21-libdmlc0t64_0.5+git20240614.1334185-1_s390x.deb ... 289s Unpacking libdmlc0t64:s390x (0.5+git20240614.1334185-1) ... 289s Selecting previously unselected package libgraphite2-3:s390x. 289s Preparing to unpack .../22-libgraphite2-3_1.3.14-2ubuntu1_s390x.deb ... 289s Unpacking libgraphite2-3:s390x (1.3.14-2ubuntu1) ... 289s Selecting previously unselected package libharfbuzz0b:s390x. 289s Preparing to unpack .../23-libharfbuzz0b_10.2.0-1_s390x.deb ... 289s Unpacking libharfbuzz0b:s390x (10.2.0-1) ... 289s Selecting previously unselected package libimagequant0:s390x. 289s Preparing to unpack .../24-libimagequant0_2.18.0-1build1_s390x.deb ... 289s Unpacking libimagequant0:s390x (2.18.0-1build1) ... 290s Selecting previously unselected package libjpeg-turbo8:s390x. 290s Preparing to unpack .../25-libjpeg-turbo8_2.1.5-3ubuntu2_s390x.deb ... 290s Unpacking libjpeg-turbo8:s390x (2.1.5-3ubuntu2) ... 290s Selecting previously unselected package libjpeg8:s390x. 290s Preparing to unpack .../26-libjpeg8_8c-2ubuntu11_s390x.deb ... 290s Unpacking libjpeg8:s390x (8c-2ubuntu11) ... 290s Selecting previously unselected package libjs-jquery. 290s Preparing to unpack .../27-libjs-jquery_3.6.1+dfsg+~3.5.14-1_all.deb ... 290s Unpacking libjs-jquery (3.6.1+dfsg+~3.5.14-1) ... 290s Selecting previously unselected package libjs-jquery-ui. 290s Preparing to unpack .../28-libjs-jquery-ui_1.13.2+dfsg-1_all.deb ... 290s Unpacking libjs-jquery-ui (1.13.2+dfsg-1) ... 291s Selecting previously unselected package liblbfgsb0:s390x. 291s Preparing to unpack .../29-liblbfgsb0_3.0+dfsg.4-1build1_s390x.deb ... 291s Unpacking liblbfgsb0:s390x (3.0+dfsg.4-1build1) ... 291s Selecting previously unselected package liblcms2-2:s390x. 291s Preparing to unpack .../30-liblcms2-2_2.16-2_s390x.deb ... 291s Unpacking liblcms2-2:s390x (2.16-2) ... 291s Selecting previously unselected package libqhull-r8.0:s390x. 291s Preparing to unpack .../31-libqhull-r8.0_2020.2-6build1_s390x.deb ... 291s Unpacking libqhull-r8.0:s390x (2020.2-6build1) ... 291s Selecting previously unselected package libraqm0:s390x. 291s Preparing to unpack .../32-libraqm0_0.10.2-1_s390x.deb ... 291s Unpacking libraqm0:s390x (0.10.2-1) ... 291s Selecting previously unselected package libsharpyuv0:s390x. 291s Preparing to unpack .../33-libsharpyuv0_1.5.0-0.1_s390x.deb ... 291s Unpacking libsharpyuv0:s390x (1.5.0-0.1) ... 291s Selecting previously unselected package libjbig0:s390x. 291s Preparing to unpack .../34-libjbig0_2.1-6.1ubuntu2_s390x.deb ... 291s Unpacking libjbig0:s390x (2.1-6.1ubuntu2) ... 291s Selecting previously unselected package libwebp7:s390x. 291s Preparing to unpack .../35-libwebp7_1.5.0-0.1_s390x.deb ... 291s Unpacking libwebp7:s390x (1.5.0-0.1) ... 291s Selecting previously unselected package libtiff6:s390x. 291s Preparing to unpack .../36-libtiff6_4.5.1+git230720-4ubuntu4_s390x.deb ... 291s Unpacking libtiff6:s390x (4.5.1+git230720-4ubuntu4) ... 291s Selecting previously unselected package libwebpdemux2:s390x. 291s Preparing to unpack .../37-libwebpdemux2_1.5.0-0.1_s390x.deb ... 291s Unpacking libwebpdemux2:s390x (1.5.0-0.1) ... 291s Selecting previously unselected package libwebpmux3:s390x. 292s Preparing to unpack .../38-libwebpmux3_1.5.0-0.1_s390x.deb ... 292s Unpacking libwebpmux3:s390x (1.5.0-0.1) ... 292s Selecting previously unselected package libxgboost0. 292s Preparing to unpack .../39-libxgboost0_2.1.4-1build1_s390x.deb ... 292s Unpacking libxgboost0 (2.1.4-1build1) ... 293s Selecting previously unselected package libxgboost-dev. 293s Preparing to unpack .../40-libxgboost-dev_2.1.4-1build1_s390x.deb ... 293s Unpacking libxgboost-dev (2.1.4-1build1) ... 293s Selecting previously unselected package libxslt1.1:s390x. 293s Preparing to unpack .../41-libxslt1.1_1.1.39-0exp1ubuntu4_s390x.deb ... 293s Unpacking libxslt1.1:s390x (1.1.39-0exp1ubuntu4) ... 293s Selecting previously unselected package python-matplotlib-data. 293s Preparing to unpack .../42-python-matplotlib-data_3.8.3-7build1_all.deb ... 293s Unpacking python-matplotlib-data (3.8.3-7build1) ... 293s Selecting previously unselected package python3-brotli. 293s Preparing to unpack .../43-python3-brotli_1.1.0-2build4_s390x.deb ... 293s Unpacking python3-brotli (1.1.0-2build4) ... 293s Selecting previously unselected package python3-contourpy. 293s Preparing to unpack .../44-python3-contourpy_1.3.1-1build1_s390x.deb ... 293s Unpacking python3-contourpy (1.3.1-1build1) ... 294s Selecting previously unselected package python3-cycler. 294s Preparing to unpack .../45-python3-cycler_0.12.1-1_all.deb ... 294s Unpacking python3-cycler (0.12.1-1) ... 294s Selecting previously unselected package python3-decorator. 294s Preparing to unpack .../46-python3-decorator_5.1.1-5_all.deb ... 294s Unpacking python3-decorator (5.1.1-5) ... 294s Selecting previously unselected package python3-platformdirs. 294s Preparing to unpack .../47-python3-platformdirs_4.3.6-1_all.deb ... 294s Unpacking python3-platformdirs (4.3.6-1) ... 294s Selecting previously unselected package python3-fs. 294s Preparing to unpack .../48-python3-fs_2.4.16-7_all.deb ... 294s Unpacking python3-fs (2.4.16-7) ... 294s Selecting previously unselected package python3-lxml:s390x. 294s Preparing to unpack .../49-python3-lxml_5.3.2-1_s390x.deb ... 294s Unpacking python3-lxml:s390x (5.3.2-1) ... 294s Selecting previously unselected package python3-lz4. 294s Preparing to unpack .../50-python3-lz4_4.4.0+dfsg-1build1_s390x.deb ... 294s Unpacking python3-lz4 (4.4.0+dfsg-1build1) ... 295s Selecting previously unselected package python3-scipy. 295s Preparing to unpack .../51-python3-scipy_1.14.1-4ubuntu2_s390x.deb ... 295s Unpacking python3-scipy (1.14.1-4ubuntu2) ... 297s Selecting previously unselected package python3-mpmath. 297s Preparing to unpack .../52-python3-mpmath_1.3.0-1_all.deb ... 297s Unpacking python3-mpmath (1.3.0-1) ... 297s Selecting previously unselected package python3-sympy. 297s Preparing to unpack .../53-python3-sympy_1.13.3-5_all.deb ... 297s Unpacking python3-sympy (1.13.3-5) ... 299s Selecting previously unselected package python3-ufolib2. 299s Preparing to unpack .../54-python3-ufolib2_0.17.0+dfsg1-1_all.deb ... 299s Unpacking python3-ufolib2 (0.17.0+dfsg1-1) ... 299s Selecting previously unselected package python3-unicodedata2. 299s Preparing to unpack .../55-python3-unicodedata2_15.1.0+ds-1build3_s390x.deb ... 299s Unpacking python3-unicodedata2 (15.1.0+ds-1build3) ... 299s Selecting previously unselected package unicode-data. 299s Preparing to unpack .../56-unicode-data_15.1.0-1_all.deb ... 299s Unpacking unicode-data (15.1.0-1) ... 301s Selecting previously unselected package python3-fonttools. 301s Preparing to unpack .../57-python3-fonttools_4.55.3-2build1_s390x.deb ... 301s Unpacking python3-fonttools (4.55.3-2build1) ... 301s Selecting previously unselected package python3-joblib. 301s Preparing to unpack .../58-python3-joblib_1.4.2-3_all.deb ... 302s Unpacking python3-joblib (1.4.2-3) ... 302s Selecting previously unselected package python3-kiwisolver. 302s Preparing to unpack .../59-python3-kiwisolver_1.4.7-3build1_s390x.deb ... 302s Unpacking python3-kiwisolver (1.4.7-3build1) ... 302s Selecting previously unselected package libopenjp2-7:s390x. 302s Preparing to unpack .../60-libopenjp2-7_2.5.3-2_s390x.deb ... 302s Unpacking libopenjp2-7:s390x (2.5.3-2) ... 302s Selecting previously unselected package python3-pil:s390x. 302s Preparing to unpack .../61-python3-pil_11.1.0-5build1_s390x.deb ... 302s Unpacking python3-pil:s390x (11.1.0-5build1) ... 302s Selecting previously unselected package python3.13-tk. 303s Preparing to unpack .../62-python3.13-tk_3.13.3-1_s390x.deb ... 303s Unpacking python3.13-tk (3.13.3-1) ... 303s Selecting previously unselected package python3-tk:s390x. 303s Preparing to unpack .../63-python3-tk_3.13.3-1_s390x.deb ... 303s Unpacking python3-tk:s390x (3.13.3-1) ... 303s Selecting previously unselected package python3-pil.imagetk:s390x. 303s Preparing to unpack .../64-python3-pil.imagetk_11.1.0-5build1_s390x.deb ... 303s Unpacking python3-pil.imagetk:s390x (11.1.0-5build1) ... 303s Selecting previously unselected package python3-matplotlib. 303s Preparing to unpack .../65-python3-matplotlib_3.8.3-7build1_s390x.deb ... 303s Unpacking python3-matplotlib (3.8.3-7build1) ... 307s Selecting previously unselected package python3-pytz. 307s Preparing to unpack .../66-python3-pytz_2025.1-3_all.deb ... 307s Unpacking python3-pytz (2025.1-3) ... 307s Selecting previously unselected package python3-tz. 307s Preparing to unpack .../67-python3-tz_2025.1-3_all.deb ... 307s Unpacking python3-tz (2025.1-3) ... 308s Selecting previously unselected package python3-pandas-lib:s390x. 308s Preparing to unpack .../68-python3-pandas-lib_2.2.3+dfsg-8build1_s390x.deb ... 308s Unpacking python3-pandas-lib:s390x (2.2.3+dfsg-8build1) ... 308s Selecting previously unselected package python3-pandas. 308s Preparing to unpack .../69-python3-pandas_2.2.3+dfsg-8build1_all.deb ... 308s Unpacking python3-pandas (2.2.3+dfsg-8build1) ... 311s Selecting previously unselected package python3-threadpoolctl. 311s Preparing to unpack .../70-python3-threadpoolctl_3.1.0-1_all.deb ... 311s Unpacking python3-threadpoolctl (3.1.0-1) ... 311s Selecting previously unselected package python3-sklearn-lib:s390x. 311s Preparing to unpack .../71-python3-sklearn-lib_1.4.2+dfsg-8_s390x.deb ... 311s Unpacking python3-sklearn-lib:s390x (1.4.2+dfsg-8) ... 311s Selecting previously unselected package python3-sklearn. 311s Preparing to unpack .../72-python3-sklearn_1.4.2+dfsg-8_all.deb ... 311s Unpacking python3-sklearn (1.4.2+dfsg-8) ... 313s Selecting previously unselected package python3-xgboost. 313s Preparing to unpack .../73-python3-xgboost_2.1.4-1build1_s390x.deb ... 313s Unpacking python3-xgboost (2.1.4-1build1) ... 313s Setting up libgraphite2-3:s390x (1.3.14-2ubuntu1) ... 313s Setting up liblcms2-2:s390x (2.16-2) ... 313s Setting up libsharpyuv0:s390x (1.5.0-0.1) ... 313s Setting up libxrender1:s390x (1:0.9.10-1.1build1) ... 313s Setting up python3-joblib (1.4.2-3) ... 314s Setting up python3-lz4 (4.4.0+dfsg-1build1) ... 314s Setting up python3-unicodedata2 (15.1.0+ds-1build3) ... 314s Setting up fonts-lyx (2.4.3-1) ... 314s Setting up python3-threadpoolctl (3.1.0-1) ... 315s Setting up x11-common (1:7.7+23ubuntu4) ... 316s Setting up libdeflate0:s390x (1.23-1) ... 316s Setting up libqhull-r8.0:s390x (2020.2-6build1) ... 316s Setting up python3-pytz (2025.1-3) ... 316s Setting up libgomp1:s390x (15-20250404-0ubuntu1) ... 316s Setting up libjbig0:s390x (2.1-6.1ubuntu2) ... 316s Setting up python3-platformdirs (4.3.6-1) ... 316s Setting up python3-tz (2025.1-3) ... 316s Setting up python3-fs (2.4.16-7) ... 318s Setting up unicode-data (15.1.0-1) ... 318s Setting up python3-decorator (5.1.1-5) ... 319s Setting up libblas3:s390x (3.12.1-2) ... 319s update-alternatives: using /usr/lib/s390x-linux-gnu/blas/libblas.so.3 to provide /usr/lib/s390x-linux-gnu/libblas.so.3 (libblas.so.3-s390x-linux-gnu) in auto mode 319s Setting up libfreetype6:s390x (2.13.3+dfsg-1) ... 319s Setting up python3-brotli (1.1.0-2build4) ... 320s Setting up python3-cycler (0.12.1-1) ... 321s Setting up libimagequant0:s390x (2.18.0-1build1) ... 321s Setting up fonts-dejavu-mono (2.37-8) ... 321s Setting up python3-kiwisolver (1.4.7-3build1) ... 321s Setting up python3-numpy-dev:s390x (1:2.2.3+ds-5) ... 322s Setting up libtcl8.6:s390x (8.6.16+dfsg-1) ... 322s Setting up fonts-dejavu-core (2.37-8) ... 322s Setting up libjpeg-turbo8:s390x (2.1.5-3ubuntu2) ... 322s Setting up libgfortran5:s390x (15-20250404-0ubuntu1) ... 322s Setting up libwebp7:s390x (1.5.0-0.1) ... 322s Setting up libxslt1.1:s390x (1.1.39-0exp1ubuntu4) ... 322s Setting up libopenjp2-7:s390x (2.5.3-2) ... 322s Setting up libharfbuzz0b:s390x (10.2.0-1) ... 322s Setting up libxss1:s390x (1:1.2.3-1build3) ... 322s Setting up libjs-jquery (3.6.1+dfsg+~3.5.14-1) ... 322s Setting up python3-mpmath (1.3.0-1) ... 325s Setting up python-matplotlib-data (3.8.3-7build1) ... 325s Setting up libwebpmux3:s390x (1.5.0-0.1) ... 325s Setting up libjpeg8:s390x (8c-2ubuntu11) ... 325s Setting up python3-sympy (1.13.3-5) ... 361s Setting up liblapack3:s390x (3.12.1-2) ... 361s update-alternatives: using /usr/lib/s390x-linux-gnu/lapack/liblapack.so.3 to provide /usr/lib/s390x-linux-gnu/liblapack.so.3 (liblapack.so.3-s390x-linux-gnu) in auto mode 361s Setting up libdmlc0t64:s390x (0.5+git20240614.1334185-1) ... 361s Setting up fontconfig-config (2.15.0-2.2ubuntu1) ... 362s Setting up libwebpdemux2:s390x (1.5.0-0.1) ... 362s Setting up libjs-jquery-ui (1.13.2+dfsg-1) ... 362s Setting up libraqm0:s390x (0.10.2-1) ... 362s Setting up python3-numpy (1:2.2.3+ds-5) ... 374s Setting up python3-lxml:s390x (5.3.2-1) ... 375s Setting up libtiff6:s390x (4.5.1+git230720-4ubuntu4) ... 375s Setting up libxgboost0 (2.1.4-1build1) ... 375s Setting up python3-contourpy (1.3.1-1build1) ... 375s Setting up libfontconfig1:s390x (2.15.0-2.2ubuntu1) ... 375s Setting up liblbfgsb0:s390x (3.0+dfsg.4-1build1) ... 375s Setting up libxft2:s390x (2.3.6-1build1) ... 375s Setting up python3-scipy (1.14.1-4ubuntu2) ... 388s Setting up libtk8.6:s390x (8.6.16-1) ... 388s Setting up python3-pandas-lib:s390x (2.2.3+dfsg-8build1) ... 388s Setting up python3-sklearn-lib:s390x (1.4.2+dfsg-8) ... 388s Setting up python3.13-tk (3.13.3-1) ... 388s Setting up python3-pil:s390x (11.1.0-5build1) ... 389s Setting up python3-xgboost (2.1.4-1build1) ... 389s Setting up python3-pandas (2.2.3+dfsg-8build1) ... 415s Setting up libxgboost-dev (2.1.4-1build1) ... 415s Setting up python3-sklearn (1.4.2+dfsg-8) ... 426s Setting up tk8.6-blt2.5 (2.5.3+dfsg-8) ... 426s Setting up blt (2.5.3+dfsg-8) ... 426s Setting up python3-tk:s390x (3.13.3-1) ... 426s Setting up python3-pil.imagetk:s390x (11.1.0-5build1) ... 426s Setting up python3-fonttools (4.55.3-2build1) ... 431s Setting up python3-ufolib2 (0.17.0+dfsg1-1) ... 432s Setting up python3-matplotlib (3.8.3-7build1) ... 439s Processing triggers for libc-bin (2.41-6ubuntu1) ... 440s Processing triggers for man-db (2.13.0-1) ... 452s autopkgtest [18:49:27]: test run-demos: [----------------------- 454s ========================================== 454s Running case basic_walkthrough.py... 459s [0] eval-logloss:0.22646 train-logloss:0.23316 459s [1] eval-logloss:0.13776 train-logloss:0.13654 459s error=0.021726 460s ========================================== 460s Running case boost_from_prediction.py... 464s /usr/lib/python3/dist-packages/xgboost/core.py:723: FutureWarning: Pass `evals` as keyword args. 464s warnings.warn(msg, FutureWarning) 464s start running example to start from a initial prediction 464s [0] eval-logloss:0.22646 train-logloss:0.23316 464s this is result of running from initial prediction 464s [0] eval-logloss:0.13776 train-logloss:0.13654 465s ========================================== 465s Running case callbacks.py... 470s /usr/lib/python3/dist-packages/xgboost/core.py:158: UserWarning: [18:51:05] WARNING: ./src/context.cc:196: XGBoost is not compiled with CUDA support. 470s warnings.warn(smsg, UserWarning) 470s [0] Train-error:0.03052 Train-rmse:0.35870 Valid-error:0.06993 Valid-rmse:0.37215 470s [1] Train-error:0.01174 Train-rmse:0.27804 Valid-error:0.04895 Valid-rmse:0.29761 470s [2] Train-error:0.01174 Train-rmse:0.21911 Valid-error:0.04895 Valid-rmse:0.25064 470s [3] Train-error:0.00939 Train-rmse:0.17913 Valid-error:0.02797 Valid-rmse:0.21447 470s [4] Train-error:0.00939 Train-rmse:0.14893 Valid-error:0.02797 Valid-rmse:0.19740 470s [5] Train-error:0.00939 Train-rmse:0.12816 Valid-error:0.03497 Valid-rmse:0.18098 470s [6] Train-error:0.00704 Train-rmse:0.11060 Valid-error:0.03497 Valid-rmse:0.17131 470s [7] Train-error:0.00704 Train-rmse:0.09947 Valid-error:0.03497 Valid-rmse:0.16077 470s [8] Train-error:0.00469 Train-rmse:0.08816 Valid-error:0.02797 Valid-rmse:0.14865 470s [9] Train-error:0.00469 Train-rmse:0.07863 Valid-error:0.03497 Valid-rmse:0.15073 470s [10] Train-error:0.00469 Train-rmse:0.07164 Valid-error:0.02098 Valid-rmse:0.14161 470s [11] Train-error:0.00469 Train-rmse:0.06692 Valid-error:0.01399 Valid-rmse:0.14028 471s [12] Train-error:0.00235 Train-rmse:0.06216 Valid-error:0.01399 Valid-rmse:0.13727 471s [13] Train-error:0.00235 Train-rmse:0.05811 Valid-error:0.01399 Valid-rmse:0.13495 471s [14] Train-error:0.00000 Train-rmse:0.05532 Valid-error:0.02098 Valid-rmse:0.13500 471s [15] Train-error:0.00000 Train-rmse:0.05178 Valid-error:0.02098 Valid-rmse:0.13226 471s [16] Train-error:0.00000 Train-rmse:0.04924 Valid-error:0.02098 Valid-rmse:0.13329 471s [17] Train-error:0.00000 Train-rmse:0.04656 Valid-error:0.01399 Valid-rmse:0.13183 471s [18] Train-error:0.00000 Train-rmse:0.04437 Valid-error:0.01399 Valid-rmse:0.13353 471s [19] Train-error:0.00000 Train-rmse:0.04272 Valid-error:0.02098 Valid-rmse:0.13468 471s [20] Train-error:0.00000 Train-rmse:0.04030 Valid-error:0.02098 Valid-rmse:0.13419 471s [21] Train-error:0.00000 Train-rmse:0.03869 Valid-error:0.02797 Valid-rmse:0.13543 471s [22] Train-error:0.00000 Train-rmse:0.03548 Valid-error:0.03497 Valid-rmse:0.13316 471s [23] Train-error:0.00000 Train-rmse:0.03444 Valid-error:0.03497 Valid-rmse:0.13637 471s [24] Train-error:0.00000 Train-rmse:0.03369 Valid-error:0.04196 Valid-rmse:0.13663 471s [25] Train-error:0.00000 Train-rmse:0.03213 Valid-error:0.03497 Valid-rmse:0.13386 472s [26] Train-error:0.00000 Train-rmse:0.03100 Valid-error:0.03497 Valid-rmse:0.13180 472s [27] Train-error:0.00000 Train-rmse:0.03036 Valid-error:0.03497 Valid-rmse:0.13263 472s [28] Train-error:0.00000 Train-rmse:0.02957 Valid-error:0.04196 Valid-rmse:0.13493 472s [29] Train-error:0.00000 Train-rmse:0.02866 Valid-error:0.03497 Valid-rmse:0.13487 472s [30] Train-error:0.00000 Train-rmse:0.02851 Valid-error:0.04196 Valid-rmse:0.13384 472s [31] Train-error:0.00000 Train-rmse:0.02721 Valid-error:0.02797 Valid-rmse:0.13117 472s [32] Train-error:0.00000 Train-rmse:0.02615 Valid-error:0.03497 Valid-rmse:0.13188 472s [33] Train-error:0.00000 Train-rmse:0.02559 Valid-error:0.03497 Valid-rmse:0.13096 473s [34] Train-error:0.00000 Train-rmse:0.02520 Valid-error:0.04196 Valid-rmse:0.13283 473s [35] Train-error:0.00000 Train-rmse:0.02438 Valid-error:0.03497 Valid-rmse:0.13220 473s [36] Train-error:0.00000 Train-rmse:0.02356 Valid-error:0.03497 Valid-rmse:0.13030 473s [37] Train-error:0.00000 Train-rmse:0.02348 Valid-error:0.03497 Valid-rmse:0.12942 473s [38] Train-error:0.00000 Train-rmse:0.02337 Valid-error:0.03497 Valid-rmse:0.12955 473s [39] Train-error:0.00000 Train-rmse:0.02265 Valid-error:0.02797 Valid-rmse:0.12785 473s [40] Train-error:0.00000 Train-rmse:0.02283 Valid-error:0.03497 Valid-rmse:0.12889 473s [41] Train-error:0.00000 Train-rmse:0.02255 Valid-error:0.03497 Valid-rmse:0.13066 474s [42] Train-error:0.00000 Train-rmse:0.02190 Valid-error:0.03497 Valid-rmse:0.12905 474s [43] Train-error:0.00000 Train-rmse:0.02173 Valid-error:0.03497 Valid-rmse:0.12833 474s [44] Train-error:0.00000 Train-rmse:0.02180 Valid-error:0.03497 Valid-rmse:0.12884 474s [45] Train-error:0.00000 Train-rmse:0.02153 Valid-error:0.03497 Valid-rmse:0.13050 474s [46] Train-error:0.00000 Train-rmse:0.02149 Valid-error:0.03497 Valid-rmse:0.12927 474s [47] Train-error:0.00000 Train-rmse:0.02134 Valid-error:0.02797 Valid-rmse:0.13012 474s [48] Train-error:0.00000 Train-rmse:0.02119 Valid-error:0.03497 Valid-rmse:0.12936 474s [49] Train-error:0.00000 Train-rmse:0.02124 Valid-error:0.02797 Valid-rmse:0.12989 474s [50] Train-error:0.00000 Train-rmse:0.02116 Valid-error:0.02797 Valid-rmse:0.13014 474s [51] Train-error:0.00000 Train-rmse:0.02107 Valid-error:0.02797 Valid-rmse:0.12953 474s [52] Train-error:0.00000 Train-rmse:0.02121 Valid-error:0.02797 Valid-rmse:0.12976 474s [53] Train-error:0.00000 Train-rmse:0.02080 Valid-error:0.02797 Valid-rmse:0.12903 474s [54] Train-error:0.00000 Train-rmse:0.02060 Valid-error:0.02797 Valid-rmse:0.13032 474s [55] Train-error:0.00000 Train-rmse:0.02069 Valid-error:0.02797 Valid-rmse:0.13027 474s [56] Train-error:0.00000 Train-rmse:0.02039 Valid-error:0.02797 Valid-rmse:0.12900 474s [57] Train-error:0.00000 Train-rmse:0.02031 Valid-error:0.02797 Valid-rmse:0.12845 474s [58] Train-error:0.00000 Train-rmse:0.02047 Valid-error:0.02797 Valid-rmse:0.12928 475s [59] Train-error:0.00000 Train-rmse:0.02013 Valid-error:0.02797 Valid-rmse:0.12865 475s [60] Train-error:0.00000 Train-rmse:0.02027 Valid-error:0.02797 Valid-rmse:0.12884 475s [61] Train-error:0.00000 Train-rmse:0.02023 Valid-error:0.02797 Valid-rmse:0.12917 475s [62] Train-error:0.00000 Train-rmse:0.02013 Valid-error:0.02797 Valid-rmse:0.12947 475s [63] Train-error:0.00000 Train-rmse:0.01986 Valid-error:0.02797 Valid-rmse:0.12827 475s [64] Train-error:0.00000 Train-rmse:0.01980 Valid-error:0.02797 Valid-rmse:0.12780 475s [65] Train-error:0.00000 Train-rmse:0.01971 Valid-error:0.02797 Valid-rmse:0.12888 476s [66] Train-error:0.00000 Train-rmse:0.01980 Valid-error:0.02797 Valid-rmse:0.12928 476s [67] Train-error:0.00000 Train-rmse:0.01977 Valid-error:0.02797 Valid-rmse:0.12962 476s [68] Train-error:0.00000 Train-rmse:0.01969 Valid-error:0.02797 Valid-rmse:0.12991 476s [69] Train-error:0.00000 Train-rmse:0.01940 Valid-error:0.02797 Valid-rmse:0.12920 476s [70] Train-error:0.00000 Train-rmse:0.01941 Valid-error:0.02797 Valid-rmse:0.12825 476s [71] Train-error:0.00000 Train-rmse:0.01936 Valid-error:0.02797 Valid-rmse:0.12785 476s [72] Train-error:0.00000 Train-rmse:0.01950 Valid-error:0.02797 Valid-rmse:0.12858 476s [73] Train-error:0.00000 Train-rmse:0.01921 Valid-error:0.02797 Valid-rmse:0.12791 476s [74] Train-error:0.00000 Train-rmse:0.01914 Valid-error:0.02797 Valid-rmse:0.12832 476s [75] Train-error:0.00000 Train-rmse:0.01912 Valid-error:0.02797 Valid-rmse:0.12821 477s [76] Train-error:0.00000 Train-rmse:0.01906 Valid-error:0.02797 Valid-rmse:0.12814 477s [77] Train-error:0.00000 Train-rmse:0.01897 Valid-error:0.02797 Valid-rmse:0.12845 477s [78] Train-error:0.00000 Train-rmse:0.01875 Valid-error:0.02797 Valid-rmse:0.12734 477s [79] Train-error:0.00000 Train-rmse:0.01873 Valid-error:0.02797 Valid-rmse:0.12765 477s [80] Train-error:0.00000 Train-rmse:0.01866 Valid-error:0.02797 Valid-rmse:0.12793 477s [81] Train-error:0.00000 Train-rmse:0.01869 Valid-error:0.02797 Valid-rmse:0.12708 477s [82] Train-error:0.00000 Train-rmse:0.01844 Valid-error:0.02797 Valid-rmse:0.12642 477s [83] Train-error:0.00000 Train-rmse:0.01857 Valid-error:0.02797 Valid-rmse:0.12709 477s [84] Train-error:0.00000 Train-rmse:0.01853 Valid-error:0.02797 Valid-rmse:0.12674 477s [85] Train-error:0.00000 Train-rmse:0.01862 Valid-error:0.02797 Valid-rmse:0.12712 477s [86] Train-error:0.00000 Train-rmse:0.01853 Valid-error:0.02797 Valid-rmse:0.12754 478s [87] Train-error:0.00000 Train-rmse:0.01829 Valid-error:0.02797 Valid-rmse:0.12693 478s [88] Train-error:0.00000 Train-rmse:0.01821 Valid-error:0.02797 Valid-rmse:0.12788 478s [89] Train-error:0.00000 Train-rmse:0.01816 Valid-error:0.02797 Valid-rmse:0.12782 478s [90] Train-error:0.00000 Train-rmse:0.01816 Valid-error:0.02797 Valid-rmse:0.12768 478s [91] Train-error:0.00000 Train-rmse:0.01809 Valid-error:0.02797 Valid-rmse:0.12797 478s [92] Train-error:0.00000 Train-rmse:0.01807 Valid-error:0.02797 Valid-rmse:0.12768 478s [93] Train-error:0.00000 Train-rmse:0.01798 Valid-error:0.02797 Valid-rmse:0.12858 478s [94] Train-error:0.00000 Train-rmse:0.01776 Valid-error:0.02797 Valid-rmse:0.12801 478s [95] Train-error:0.00000 Train-rmse:0.01786 Valid-error:0.02797 Valid-rmse:0.12804 478s [96] Train-error:0.00000 Train-rmse:0.01779 Valid-error:0.02797 Valid-rmse:0.12844 478s [97] Train-error:0.00000 Train-rmse:0.01778 Valid-error:0.02797 Valid-rmse:0.12875 478s [98] Train-error:0.00000 Train-rmse:0.01759 Valid-error:0.02797 Valid-rmse:0.12806 479s [99] Train-error:0.00000 Train-rmse:0.01771 Valid-error:0.02797 Valid-rmse:0.12865 479s ========================================== 479s Skip case cat_in_the_dat.py... 479s ========================================== 479s Running case cat_pipeline.py... 482s ========================================== 482s Running case categorical.py... 484s /usr/lib/python3/dist-packages/xgboost/core.py:158: UserWarning: [18:51:20] WARNING: ./src/context.cc:196: XGBoost is not compiled with CUDA support. 484s warnings.warn(smsg, UserWarning) 484s [0] validation_0-rmse:2.94171 484s [1] validation_0-rmse:2.40095 484s [2] validation_0-rmse:1.96121 484s [3] validation_0-rmse:1.61285 484s [4] validation_0-rmse:1.35854 484s [5] validation_0-rmse:1.12286 484s [6] validation_0-rmse:0.96789 484s [7] validation_0-rmse:0.79707 484s [8] validation_0-rmse:0.66201 484s [9] validation_0-rmse:0.55282 484s [10] validation_0-rmse:0.46038 484s [11] validation_0-rmse:0.38278 484s [12] validation_0-rmse:0.32840 484s [13] validation_0-rmse:0.27462 484s [14] validation_0-rmse:0.23398 484s [15] validation_0-rmse:0.19823 484s [16] validation_0-rmse:0.16984 484s [17] validation_0-rmse:0.14636 484s [18] validation_0-rmse:0.12447 484s [19] validation_0-rmse:0.10444 484s [20] validation_0-rmse:0.08984 484s [21] validation_0-rmse:0.07610 484s [22] validation_0-rmse:0.06622 484s [23] validation_0-rmse:0.05653 484s [24] validation_0-rmse:0.04906 484s [25] validation_0-rmse:0.04173 484s [26] validation_0-rmse:0.03550 484s [27] validation_0-rmse:0.03046 484s [28] validation_0-rmse:0.02585 484s [29] validation_0-rmse:0.02187 484s [30] validation_0-rmse:0.01863 484s [31] validation_0-rmse:0.01597 484s [32] validation_0-rmse:0.01361 484s [33] validation_0-rmse:0.01166 484s [34] validation_0-rmse:0.01041 484s [35] validation_0-rmse:0.00909 484s [36] validation_0-rmse:0.00780 484s [37] validation_0-rmse:0.00666 484s [38] validation_0-rmse:0.00569 484s [39] validation_0-rmse:0.00493 484s [40] validation_0-rmse:0.00426 484s [41] validation_0-rmse:0.00365 484s [42] validation_0-rmse:0.00314 484s [43] validation_0-rmse:0.00268 484s [44] validation_0-rmse:0.00233 484s [45] validation_0-rmse:0.00200 484s [46] validation_0-rmse:0.00170 484s [47] validation_0-rmse:0.00148 484s [48] validation_0-rmse:0.00130 484s [49] validation_0-rmse:0.00116 484s [50] validation_0-rmse:0.00100 484s [51] validation_0-rmse:0.00090 484s [52] validation_0-rmse:0.00082 484s [53] validation_0-rmse:0.00075 484s [54] validation_0-rmse:0.00075 484s [55] validation_0-rmse:0.00075 484s [56] validation_0-rmse:0.00075 484s [57] validation_0-rmse:0.00075 484s [58] validation_0-rmse:0.00075 484s [59] validation_0-rmse:0.00075 484s [60] validation_0-rmse:0.00075 484s [61] validation_0-rmse:0.00075 484s [62] validation_0-rmse:0.00075 484s [63] validation_0-rmse:0.00075 484s [64] validation_0-rmse:0.00075 484s [65] validation_0-rmse:0.00075 484s [66] validation_0-rmse:0.00075 484s [67] validation_0-rmse:0.00075 484s [68] validation_0-rmse:0.00075 484s [69] validation_0-rmse:0.00075 484s /usr/lib/python3/dist-packages/xgboost/core.py:158: UserWarning: [18:51:20] WARNING: ./src/context.cc:196: XGBoost is not compiled with CUDA support. 484s warnings.warn(smsg, UserWarning) 484s [70] validation_0-rmse:0.00075 484s [71] validation_0-rmse:0.00075 484s [72] validation_0-rmse:0.00075 484s [73] validation_0-rmse:0.00075 484s [74] validation_0-rmse:0.00075 484s [75] validation_0-rmse:0.00075 484s [76] validation_0-rmse:0.00075 484s [77] validation_0-rmse:0.00075 484s [78] validation_0-rmse:0.00075 484s [79] validation_0-rmse:0.00075 484s [80] validation_0-rmse:0.00075 484s [81] validation_0-rmse:0.00075 484s [82] validation_0-rmse:0.00075 484s [83] validation_0-rmse:0.00075 484s [84] validation_0-rmse:0.00075 484s [85] validation_0-rmse:0.00075 484s [86] validation_0-rmse:0.00075 484s [87] validation_0-rmse:0.00075 484s [88] validation_0-rmse:0.00075 484s [89] validation_0-rmse:0.00075 484s [90] validation_0-rmse:0.00075 484s [91] validation_0-rmse:0.00075 484s [92] validation_0-rmse:0.00075 484s [93] validation_0-rmse:0.00075 484s [94] validation_0-rmse:0.00075 484s [95] validation_0-rmse:0.00075 484s [96] validation_0-rmse:0.00075 484s [97] validation_0-rmse:0.00075 484s [98] validation_0-rmse:0.00075 484s [99] validation_0-rmse:0.00075 484s [0] validation_0-rmse:2.94171 484s [1] validation_0-rmse:2.40095 484s [2] validation_0-rmse:1.96121 484s [3] validation_0-rmse:1.61285 484s [4] validation_0-rmse:1.35854 484s [5] validation_0-rmse:1.12286 484s [6] validation_0-rmse:0.96789 484s [7] validation_0-rmse:0.79707 484s [8] validation_0-rmse:0.66201 484s [9] validation_0-rmse:0.55282 484s [10] validation_0-rmse:0.46038 484s [11] validation_0-rmse:0.38278 484s [12] validation_0-rmse:0.32840 484s [13] validation_0-rmse:0.27462 484s [14] validation_0-rmse:0.23398 484s [15] validation_0-rmse:0.19823 484s [16] validation_0-rmse:0.16984 484s [17] validation_0-rmse:0.14636 484s [18] validation_0-rmse:0.12447 484s [19] validation_0-rmse:0.10444 484s [20] validation_0-rmse:0.08984 484s [21] validation_0-rmse:0.07610 484s [22] validation_0-rmse:0.06622 484s [23] validation_0-rmse:0.05653 484s [24] validation_0-rmse:0.04906 484s [25] validation_0-rmse:0.04173 484s [26] validation_0-rmse:0.03550 484s [27] validation_0-rmse:0.03046 484s [28] validation_0-rmse:0.02585 484s [29] validation_0-rmse:0.02187 484s [30] validation_0-rmse:0.01863 484s [31] validation_0-rmse:0.01597 484s [32] validation_0-rmse:0.01361 484s [33] validation_0-rmse:0.01166 484s [34] validation_0-rmse:0.01041 484s [35] validation_0-rmse:0.00909 484s [36] validation_0-rmse:0.00780 484s [37] validation_0-rmse:0.00666 484s [38] validation_0-rmse:0.00569 484s [39] validation_0-rmse:0.00493 484s [40] validation_0-rmse:0.00426 484s [41] validation_0-rmse:0.00365 484s [42] validation_0-rmse:0.00314 484s [43] validation_0-rmse:0.00268 484s [44] validation_0-rmse:0.00233 484s [45] validation_0-rmse:0.00200 484s [46] validation_0-rmse:0.00170 484s [47] validation_0-rmse:0.00148 484s [48] validation_0-rmse:0.00130 484s [49] validation_0-rmse:0.00116 484s [50] validation_0-rmse:0.00100 484s [51] validation_0-rmse:0.00090 484s [52] validation_0-rmse:0.00082 484s [53] validation_0-rmse:0.00075 484s [54] validation_0-rmse:0.00075 484s [55] validation_0-rmse:0.00075 484s [56] validation_0-rmse:0.00075 484s [57] validation_0-rmse:0.00075 484s [58] validation_0-rmse:0.00075 484s [59] validation_0-rmse:0.00075 484s [60] validation_0-rmse:0.00075 484s [61] validation_0-rmse:0.00075 484s [62] validation_0-rmse:0.00075 484s [63] validation_0-rmse:0.00075 484s [64] validation_0-rmse:0.00075 484s [65] validation_0-rmse:0.00075 484s [66] validation_0-rmse:0.00075 484s [67] validation_0-rmse:0.00075 484s [68] validation_0-rmse:0.00075 484s [69] validation_0-rmse:0.00075 484s [70] validation_0-rmse:0.00075 484s [71] validation_0-rmse:0.00075 484s [72] validation_0-rmse:0.00075 484s [73] validation_0-rmse:0.00075 484s [74] validation_0-rmse:0.00075 484s [75] validation_0-rmse:0.00075 484s [76] validation_0-rmse:0.00075 484s [77] validation_0-rmse:0.00075 484s [78] validation_0-rmse:0.00075 484s [79] validation_0-rmse:0.00075 484s [80] validation_0-rmse:0.00075 484s [81] validation_0-rmse:0.00075 484s [82] validation_0-rmse:0.00075 484s [83] validation_0-rmse:0.00075 484s [84] validation_0-rmse:0.00075 484s [85] validation_0-rmse:0.00075 484s [86] validation_0-rmse:0.00075 484s [87] validation_0-rmse:0.00075 484s [88] validation_0-rmse:0.00075 484s [89] validation_0-rmse:0.00075 484s [90] validation_0-rmse:0.00075 484s [91] validation_0-rmse:0.00075 484s [92] validation_0-rmse:0.00075 484s [93] validation_0-rmse:0.00075 484s [94] validation_0-rmse:0.00075 484s [95] validation_0-rmse:0.00075 484s [96] validation_0-rmse:0.00075 484s [97] validation_0-rmse:0.00075 484s [98] validation_0-rmse:0.00075 484s [99] validation_0-rmse:0.00075 485s ========================================== 485s Running case continuation.py... 490s [0] validation_0-logloss:0.43281 490s [1] validation_0-logloss:0.30816 490s [2] validation_0-logloss:0.22816 490s [3] validation_0-logloss:0.17470 490s [4] validation_0-logloss:0.13438 490s [5] validation_0-logloss:0.10538 490s [6] validation_0-logloss:0.08467 490s [7] validation_0-logloss:0.06909 490s [8] validation_0-logloss:0.05766 490s [9] validation_0-logloss:0.04842 490s [10] validation_0-logloss:0.04121 490s [11] validation_0-logloss:0.03545 490s [12] validation_0-logloss:0.03077 490s [13] validation_0-logloss:0.02742 490s [14] validation_0-logloss:0.02444 490s [15] validation_0-logloss:0.02208 491s [16] validation_0-logloss:0.01993 491s [17] validation_0-logloss:0.01819 491s [18] validation_0-logloss:0.01676 491s [19] validation_0-logloss:0.01575 491s [20] validation_0-logloss:0.01461 491s [21] validation_0-logloss:0.01383 491s [22] validation_0-logloss:0.01304 491s [23] validation_0-logloss:0.01243 491s [24] validation_0-logloss:0.01179 491s [25] validation_0-logloss:0.01142 491s [26] validation_0-logloss:0.01103 491s [27] validation_0-logloss:0.01066 491s [28] validation_0-logloss:0.01037 491s [29] validation_0-logloss:0.00993 491s [30] validation_0-logloss:0.00966 491s [31] validation_0-logloss:0.00920 491s [32] validation_0-logloss:0.00900 491s [33] validation_0-logloss:0.00876 491s [34] validation_0-logloss:0.00852 491s [35] validation_0-logloss:0.00835 491s [36] validation_0-logloss:0.00810 491s [37] validation_0-logloss:0.00791 491s [38] validation_0-logloss:0.00764 491s [39] validation_0-logloss:0.00753 491s [40] validation_0-logloss:0.00739 491s [41] validation_0-logloss:0.00723 491s [42] validation_0-logloss:0.00706 491s [43] validation_0-logloss:0.00695 491s [44] validation_0-logloss:0.00688 491s [45] validation_0-logloss:0.00671 491s [46] validation_0-logloss:0.00662 491s [47] validation_0-logloss:0.00650 491s [48] validation_0-logloss:0.00637 491s [49] validation_0-logloss:0.00628 491s [50] validation_0-logloss:0.00623 491s [51] validation_0-logloss:0.00618 491s [52] validation_0-logloss:0.00614 491s [53] validation_0-logloss:0.00609 491s [54] validation_0-logloss:0.00600 491s [55] validation_0-logloss:0.00590 491s [56] validation_0-logloss:0.00582 491s [57] validation_0-logloss:0.00578 491s [58] validation_0-logloss:0.00570 491s [59] validation_0-logloss:0.00566 491s [60] validation_0-logloss:0.00563 491s [61] validation_0-logloss:0.00559 491s [62] validation_0-logloss:0.00556 491s [63] validation_0-logloss:0.00553 491s [64] validation_0-logloss:0.00549 491s [65] validation_0-logloss:0.00546 491s [66] validation_0-logloss:0.00543 491s [67] validation_0-logloss:0.00540 491s [68] validation_0-logloss:0.00537 491s [69] validation_0-logloss:0.00534 491s [70] validation_0-logloss:0.00531 491s [71] validation_0-logloss:0.00528 491s [72] validation_0-logloss:0.00525 491s [73] validation_0-logloss:0.00523 491s [74] validation_0-logloss:0.00520 491s [75] validation_0-logloss:0.00517 491s [76] validation_0-logloss:0.00515 491s [77] validation_0-logloss:0.00512 491s [78] validation_0-logloss:0.00510 491s [79] validation_0-logloss:0.00507 491s [80] validation_0-logloss:0.00505 491s [81] validation_0-logloss:0.00502 491s [82] validation_0-logloss:0.00500 491s [83] validation_0-logloss:0.00498 491s [84] validation_0-logloss:0.00496 491s [85] validation_0-logloss:0.00493 491s [86] validation_0-logloss:0.00491 491s [87] validation_0-logloss:0.00489 491s [88] validation_0-logloss:0.00486 491s [89] validation_0-logloss:0.00484 491s [90] validation_0-logloss:0.00482 491s [91] validation_0-logloss:0.00480 491s [92] validation_0-logloss:0.00478 491s [93] validation_0-logloss:0.00476 491s [94] validation_0-logloss:0.00474 491s [95] validation_0-logloss:0.00472 491s [96] validation_0-logloss:0.00470 491s [97] validation_0-logloss:0.00468 491s [98] validation_0-logloss:0.00466 491s [99] validation_0-logloss:0.00464 491s [100] validation_0-logloss:0.00463 491s [101] validation_0-logloss:0.00461 491s [102] validation_0-logloss:0.00459 491s [103] validation_0-logloss:0.00457 491s [104] validation_0-logloss:0.00456 491s [105] validation_0-logloss:0.00454 491s [106] validation_0-logloss:0.00452 491s [107] validation_0-logloss:0.00451 491s [108] validation_0-logloss:0.00449 491s [109] validation_0-logloss:0.00448 491s [110] validation_0-logloss:0.00446 491s [111] validation_0-logloss:0.00444 491s [112] validation_0-logloss:0.00443 491s [113] validation_0-logloss:0.00441 491s [114] validation_0-logloss:0.00440 491s [115] validation_0-logloss:0.00438 491s [116] validation_0-logloss:0.00437 491s [117] validation_0-logloss:0.00435 491s [118] validation_0-logloss:0.00434 491s [119] validation_0-logloss:0.00433 491s [120] validation_0-logloss:0.00431 491s [121] validation_0-logloss:0.00430 491s [122] validation_0-logloss:0.00429 491s [123] validation_0-logloss:0.00427 491s [124] validation_0-logloss:0.00426 491s [125] validation_0-logloss:0.00425 491s [126] validation_0-logloss:0.00423 491s [127] validation_0-logloss:0.00422 491s [128] validation_0-logloss:0.00421 491s [129] validation_0-logloss:0.00420 491s [130] validation_0-logloss:0.00419 491s [131] validation_0-logloss:0.00417 491s [132] validation_0-logloss:0.00416 491s [133] validation_0-logloss:0.00415 491s [134] validation_0-logloss:0.00414 491s [135] validation_0-logloss:0.00413 491s [136] validation_0-logloss:0.00412 491s [137] validation_0-logloss:0.00411 491s [138] validation_0-logloss:0.00410 491s [139] validation_0-logloss:0.00409 491s [140] validation_0-logloss:0.00408 491s [141] validation_0-logloss:0.00407 491s [142] validation_0-logloss:0.00406 491s [143] validation_0-logloss:0.00405 491s [144] validation_0-logloss:0.00404 491s [145] validation_0-logloss:0.00403 491s [146] validation_0-logloss:0.00402 491s [147] validation_0-logloss:0.00401 491s [148] validation_0-logloss:0.00400 491s [149] validation_0-logloss:0.00399 491s [150] validation_0-logloss:0.00398 491s [151] validation_0-logloss:0.00397 491s [152] validation_0-logloss:0.00396 491s [153] validation_0-logloss:0.00396 491s [154] validation_0-logloss:0.00395 491s [155] validation_0-logloss:0.00394 491s [156] validation_0-logloss:0.00393 491s [157] validation_0-logloss:0.00392 491s [158] validation_0-logloss:0.00391 491s [159] validation_0-logloss:0.00391 491s [160] validation_0-logloss:0.00390 491s [161] validation_0-logloss:0.00389 491s [162] validation_0-logloss:0.00388 491s [163] validation_0-logloss:0.00388 491s [164] validation_0-logloss:0.00387 491s [165] validation_0-logloss:0.00386 491s [166] validation_0-logloss:0.00385 491s [167] validation_0-logloss:0.00385 491s [168] validation_0-logloss:0.00384 491s [169] validation_0-logloss:0.00383 491s [170] validation_0-logloss:0.00383 491s [171] validation_0-logloss:0.00382 491s [172] validation_0-logloss:0.00381 491s [173] validation_0-logloss:0.00381 491s [174] validation_0-logloss:0.00380 491s [175] validation_0-logloss:0.00380 491s [176] validation_0-logloss:0.00379 491s [177] validation_0-logloss:0.00379 491s [178] validation_0-logloss:0.00378 491s [179] validation_0-logloss:0.00378 491s [180] validation_0-logloss:0.00377 491s [181] validation_0-logloss:0.00377 491s [182] validation_0-logloss:0.00376 491s [183] validation_0-logloss:0.00376 491s [184] validation_0-logloss:0.00375 491s [185] validation_0-logloss:0.00375 491s [186] validation_0-logloss:0.00374 491s [187] validation_0-logloss:0.00374 491s [188] validation_0-logloss:0.00373 491s [189] validation_0-logloss:0.00373 491s [190] validation_0-logloss:0.00373 491s [191] validation_0-logloss:0.00372 491s [192] validation_0-logloss:0.00372 491s [193] validation_0-logloss:0.00372 491s [194] validation_0-logloss:0.00371 491s [195] validation_0-logloss:0.00371 491s [196] validation_0-logloss:0.00371 491s [197] validation_0-logloss:0.00371 491s [198] validation_0-logloss:0.00371 491s Total boosted rounds: 195 491s [0] validation_0-logloss:0.43281 491s [1] validation_0-logloss:0.30816 491s [2] validation_0-logloss:0.22816 491s [3] validation_0-logloss:0.17470 491s [4] validation_0-logloss:0.13438 491s [5] validation_0-logloss:0.10538 491s [6] validation_0-logloss:0.08467 491s [7] validation_0-logloss:0.06909 491s [8] validation_0-logloss:0.05766 491s [9] validation_0-logloss:0.04842 491s [10] validation_0-logloss:0.04121 491s [11] validation_0-logloss:0.03545 491s [12] validation_0-logloss:0.03077 491s [13] validation_0-logloss:0.02742 491s [14] validation_0-logloss:0.02444 491s [15] validation_0-logloss:0.02208 491s [16] validation_0-logloss:0.01993 491s [17] validation_0-logloss:0.01819 491s [18] validation_0-logloss:0.01676 491s [19] validation_0-logloss:0.01575 491s [20] validation_0-logloss:0.01461 491s [21] validation_0-logloss:0.01383 491s [22] validation_0-logloss:0.01304 491s [23] validation_0-logloss:0.01243 491s [24] validation_0-logloss:0.01179 491s [25] validation_0-logloss:0.01142 491s [26] validation_0-logloss:0.01103 491s [27] validation_0-logloss:0.01066 491s [28] validation_0-logloss:0.01037 491s [29] validation_0-logloss:0.00993 491s [30] validation_0-logloss:0.00966 491s [31] validation_0-logloss:0.00920 491s [32] validation_0-logloss:0.00900 491s [33] validation_0-logloss:0.00876 491s [34] validation_0-logloss:0.00852 491s [35] validation_0-logloss:0.00835 491s [36] validation_0-logloss:0.00810 491s [37] validation_0-logloss:0.00791 491s [38] validation_0-logloss:0.00764 491s [39] validation_0-logloss:0.00753 491s [40] validation_0-logloss:0.00739 491s [41] validation_0-logloss:0.00723 491s [42] validation_0-logloss:0.00706 491s [43] validation_0-logloss:0.00695 491s [44] validation_0-logloss:0.00688 491s [45] validation_0-logloss:0.00671 491s [46] validation_0-logloss:0.00662 491s [47] validation_0-logloss:0.00650 491s [48] validation_0-logloss:0.00637 491s [49] validation_0-logloss:0.00628 491s [50] validation_0-logloss:0.00623 491s [51] validation_0-logloss:0.00618 491s [52] validation_0-logloss:0.00614 491s [53] validation_0-logloss:0.00609 491s [54] validation_0-logloss:0.00600 491s [55] validation_0-logloss:0.00590 491s [56] validation_0-logloss:0.00582 491s [57] validation_0-logloss:0.00578 491s [58] validation_0-logloss:0.00570 491s [59] validation_0-logloss:0.00566 491s [60] validation_0-logloss:0.00563 491s [61] validation_0-logloss:0.00559 491s [62] validation_0-logloss:0.00556 491s [63] validation_0-logloss:0.00553 491s [64] validation_0-logloss:0.00549 491s [65] validation_0-logloss:0.00546 491s [66] validation_0-logloss:0.00543 491s [67] validation_0-logloss:0.00540 491s [68] validation_0-logloss:0.00537 491s [69] validation_0-logloss:0.00534 491s [70] validation_0-logloss:0.00531 491s [71] validation_0-logloss:0.00528 491s [72] validation_0-logloss:0.00525 491s [73] validation_0-logloss:0.00523 491s [74] validation_0-logloss:0.00520 491s [75] validation_0-logloss:0.00517 491s [76] validation_0-logloss:0.00515 491s [77] validation_0-logloss:0.00512 491s [78] validation_0-logloss:0.00510 491s [79] validation_0-logloss:0.00507 491s [80] validation_0-logloss:0.00505 491s [81] validation_0-logloss:0.00502 491s [82] validation_0-logloss:0.00500 491s [83] validation_0-logloss:0.00498 491s [84] validation_0-logloss:0.00496 491s [85] validation_0-logloss:0.00493 491s [86] validation_0-logloss:0.00491 491s [87] validation_0-logloss:0.00489 491s [88] validation_0-logloss:0.00486 491s [89] validation_0-logloss:0.00484 491s [90] validation_0-logloss:0.00482 491s [91] validation_0-logloss:0.00480 491s [92] validation_0-logloss:0.00478 491s [93] validation_0-logloss:0.00476 491s [94] validation_0-logloss:0.00474 491s [95] validation_0-logloss:0.00472 491s [96] validation_0-logloss:0.00470 491s [97] validation_0-logloss:0.00468 491s [98] validation_0-logloss:0.00466 491s [99] validation_0-logloss:0.00464 491s [100] validation_0-logloss:0.00463 491s [101] validation_0-logloss:0.00461 491s [102] validation_0-logloss:0.00459 491s [103] validation_0-logloss:0.00457 491s [104] validation_0-logloss:0.00456 491s [105] validation_0-logloss:0.00454 491s [106] validation_0-logloss:0.00452 491s [107] validation_0-logloss:0.00451 491s [108] validation_0-logloss:0.00449 491s [109] validation_0-logloss:0.00448 491s [110] validation_0-logloss:0.00446 491s [111] validation_0-logloss:0.00444 491s [112] validation_0-logloss:0.00443 491s [113] validation_0-logloss:0.00441 491s [114] validation_0-logloss:0.00440 491s [115] validation_0-logloss:0.00438 491s [116] validation_0-logloss:0.00437 491s [117] validation_0-logloss:0.00435 491s [118] validation_0-logloss:0.00434 491s [119] validation_0-logloss:0.00433 491s [120] validation_0-logloss:0.00431 491s [121] validation_0-logloss:0.00430 491s [122] validation_0-logloss:0.00429 491s [123] validation_0-logloss:0.00427 491s [124] validation_0-logloss:0.00426 491s [125] validation_0-logloss:0.00425 491s [126] validation_0-logloss:0.00423 491s [127] validation_0-logloss:0.00422 492s [0] validation_0-logloss:0.00421 492s [1] validation_0-logloss:0.00420 492s [2] validation_0-logloss:0.00419 492s [3] validation_0-logloss:0.00417 492s [4] validation_0-logloss:0.00416 492s [5] validation_0-logloss:0.00415 492s [6] validation_0-logloss:0.00414 492s [7] validation_0-logloss:0.00413 492s [8] validation_0-logloss:0.00412 492s [9] validation_0-logloss:0.00411 492s [10] validation_0-logloss:0.00410 492s [11] validation_0-logloss:0.00409 492s [12] validation_0-logloss:0.00408 492s [13] validation_0-logloss:0.00407 492s [14] validation_0-logloss:0.00406 492s [15] validation_0-logloss:0.00405 492s [16] validation_0-logloss:0.00404 492s [17] validation_0-logloss:0.00403 492s [18] validation_0-logloss:0.00402 492s [19] validation_0-logloss:0.00401 492s [20] validation_0-logloss:0.00400 492s [21] validation_0-logloss:0.00399 492s [22] validation_0-logloss:0.00398 492s [23] validation_0-logloss:0.00397 492s [24] validation_0-logloss:0.00396 492s [25] validation_0-logloss:0.00396 492s [26] validation_0-logloss:0.00395 492s [27] validation_0-logloss:0.00394 492s [28] validation_0-logloss:0.00393 492s [29] validation_0-logloss:0.00392 492s [30] validation_0-logloss:0.00391 492s [31] validation_0-logloss:0.00391 492s [32] validation_0-logloss:0.00390 492s [33] validation_0-logloss:0.00389 492s [34] validation_0-logloss:0.00388 492s [35] validation_0-logloss:0.00388 492s [36] validation_0-logloss:0.00387 492s [37] validation_0-logloss:0.00386 492s [38] validation_0-logloss:0.00385 492s [39] validation_0-logloss:0.00385 492s [40] validation_0-logloss:0.00384 492s [41] validation_0-logloss:0.00383 492s [42] validation_0-logloss:0.00383 492s [43] validation_0-logloss:0.00382 492s [44] validation_0-logloss:0.00381 492s [45] validation_0-logloss:0.00381 492s [46] validation_0-logloss:0.00380 492s [47] validation_0-logloss:0.00380 492s [48] validation_0-logloss:0.00379 492s [49] validation_0-logloss:0.00379 492s [50] validation_0-logloss:0.00378 492s [51] validation_0-logloss:0.00378 492s [52] validation_0-logloss:0.00377 492s [53] validation_0-logloss:0.00377 492s [54] validation_0-logloss:0.00376 492s [55] validation_0-logloss:0.00376 492s [56] validation_0-logloss:0.00375 492s [57] validation_0-logloss:0.00375 492s [58] validation_0-logloss:0.00374 492s [59] validation_0-logloss:0.00374 492s [60] validation_0-logloss:0.00373 492s [61] validation_0-logloss:0.00373 492s [62] validation_0-logloss:0.00373 492s [63] validation_0-logloss:0.00372 492s [64] validation_0-logloss:0.00372 492s [65] validation_0-logloss:0.00372 492s [66] validation_0-logloss:0.00371 492s [67] validation_0-logloss:0.00371 492s [68] validation_0-logloss:0.00371 492s [69] validation_0-logloss:0.00371 492s [70] validation_0-logloss:0.00371 492s [71] validation_0-logloss:0.00371 492s Total boosted rounds: 195 492s [0] validation_0-logloss:0.43281 492s [1] validation_0-logloss:0.30816 493s [2] validation_0-logloss:0.22816 493s [3] validation_0-logloss:0.17470 493s [4] validation_0-logloss:0.13438 493s [5] validation_0-logloss:0.10538 493s [6] validation_0-logloss:0.08467 493s [7] validation_0-logloss:0.06909 493s [8] validation_0-logloss:0.05766 493s [9] validation_0-logloss:0.04842 493s [10] validation_0-logloss:0.04121 493s [11] validation_0-logloss:0.03545 493s [12] validation_0-logloss:0.03077 493s [13] validation_0-logloss:0.02742 493s [14] validation_0-logloss:0.02444 493s [15] validation_0-logloss:0.02208 493s [16] validation_0-logloss:0.01993 493s [17] validation_0-logloss:0.01819 493s [18] validation_0-logloss:0.01676 493s [19] validation_0-logloss:0.01575 493s [20] validation_0-logloss:0.01461 493s [21] validation_0-logloss:0.01383 493s [22] validation_0-logloss:0.01304 493s [23] validation_0-logloss:0.01243 493s [24] validation_0-logloss:0.01179 493s [25] validation_0-logloss:0.01142 493s [26] validation_0-logloss:0.01103 493s [27] validation_0-logloss:0.01066 493s [28] validation_0-logloss:0.01037 493s [29] validation_0-logloss:0.00993 493s [30] validation_0-logloss:0.00966 493s [31] validation_0-logloss:0.00920 493s [32] validation_0-logloss:0.00900 493s [33] validation_0-logloss:0.00876 493s [34] validation_0-logloss:0.00852 493s [35] validation_0-logloss:0.00835 493s [36] validation_0-logloss:0.00810 493s [37] validation_0-logloss:0.00791 493s [38] validation_0-logloss:0.00764 493s [39] validation_0-logloss:0.00753 493s [40] validation_0-logloss:0.00739 493s [41] validation_0-logloss:0.00723 493s [42] validation_0-logloss:0.00706 493s [43] validation_0-logloss:0.00695 493s [44] validation_0-logloss:0.00688 493s [45] validation_0-logloss:0.00671 493s [46] validation_0-logloss:0.00662 493s [47] validation_0-logloss:0.00650 493s [48] validation_0-logloss:0.00637 493s [49] validation_0-logloss:0.00628 493s [50] validation_0-logloss:0.00623 493s [51] validation_0-logloss:0.00618 493s [52] validation_0-logloss:0.00614 493s [53] validation_0-logloss:0.00609 493s [54] validation_0-logloss:0.00600 493s [55] validation_0-logloss:0.00590 493s [56] validation_0-logloss:0.00582 493s [57] validation_0-logloss:0.00578 493s [58] validation_0-logloss:0.00570 493s [59] validation_0-logloss:0.00566 493s [60] validation_0-logloss:0.00563 493s [61] validation_0-logloss:0.00559 493s [62] validation_0-logloss:0.00556 493s [63] validation_0-logloss:0.00553 493s [64] validation_0-logloss:0.00549 493s [65] validation_0-logloss:0.00546 493s [66] validation_0-logloss:0.00543 493s [67] validation_0-logloss:0.00540 493s [68] validation_0-logloss:0.00537 493s [69] validation_0-logloss:0.00534 493s [70] validation_0-logloss:0.00531 493s [71] validation_0-logloss:0.00528 493s [72] validation_0-logloss:0.00525 493s [73] validation_0-logloss:0.00523 493s [74] validation_0-logloss:0.00520 493s [75] validation_0-logloss:0.00517 493s [76] validation_0-logloss:0.00515 493s [77] validation_0-logloss:0.00512 493s [78] validation_0-logloss:0.00510 493s [79] validation_0-logloss:0.00507 493s [80] validation_0-logloss:0.00505 493s [81] validation_0-logloss:0.00502 493s [82] validation_0-logloss:0.00500 493s [83] validation_0-logloss:0.00498 493s [84] validation_0-logloss:0.00496 493s [85] validation_0-logloss:0.00493 493s [86] validation_0-logloss:0.00491 493s [87] validation_0-logloss:0.00489 493s [88] validation_0-logloss:0.00486 493s [89] validation_0-logloss:0.00484 493s [90] validation_0-logloss:0.00482 493s [91] validation_0-logloss:0.00480 493s [92] validation_0-logloss:0.00478 493s [93] validation_0-logloss:0.00476 493s [94] validation_0-logloss:0.00474 493s [95] validation_0-logloss:0.00472 493s [96] validation_0-logloss:0.00470 493s [97] validation_0-logloss:0.00468 493s [98] validation_0-logloss:0.00466 493s [99] validation_0-logloss:0.00464 493s [100] validation_0-logloss:0.00463 493s [101] validation_0-logloss:0.00461 493s [102] validation_0-logloss:0.00459 493s [103] validation_0-logloss:0.00457 493s [104] validation_0-logloss:0.00456 493s [105] validation_0-logloss:0.00454 493s [106] validation_0-logloss:0.00452 493s [107] validation_0-logloss:0.00451 493s [108] validation_0-logloss:0.00449 493s [109] validation_0-logloss:0.00448 493s [110] validation_0-logloss:0.00446 493s [111] validation_0-logloss:0.00444 493s [112] validation_0-logloss:0.00443 493s [113] validation_0-logloss:0.00441 493s [114] validation_0-logloss:0.00440 493s [115] validation_0-logloss:0.00438 493s [116] validation_0-logloss:0.00437 493s [117] validation_0-logloss:0.00435 493s [118] validation_0-logloss:0.00434 493s [119] validation_0-logloss:0.00433 493s [120] validation_0-logloss:0.00431 493s [121] validation_0-logloss:0.00430 493s [122] validation_0-logloss:0.00429 493s [123] validation_0-logloss:0.00427 493s [124] validation_0-logloss:0.00426 493s [125] validation_0-logloss:0.00425 493s [126] validation_0-logloss:0.00423 493s [127] validation_0-logloss:0.00422 493s [128] validation_0-logloss:0.00421 493s [129] validation_0-logloss:0.00420 493s [130] validation_0-logloss:0.00419 493s [131] validation_0-logloss:0.00417 493s [132] validation_0-logloss:0.00416 493s [133] validation_0-logloss:0.00415 493s [134] validation_0-logloss:0.00414 493s [135] validation_0-logloss:0.00413 493s [136] validation_0-logloss:0.00412 493s [137] validation_0-logloss:0.00411 493s [138] validation_0-logloss:0.00410 493s [139] validation_0-logloss:0.00409 493s [140] validation_0-logloss:0.00408 493s [141] validation_0-logloss:0.00407 493s [142] validation_0-logloss:0.00406 493s [143] validation_0-logloss:0.00405 493s [144] validation_0-logloss:0.00404 493s [145] validation_0-logloss:0.00403 493s [146] validation_0-logloss:0.00402 493s [147] validation_0-logloss:0.00401 493s [148] validation_0-logloss:0.00400 493s [149] validation_0-logloss:0.00399 493s [150] validation_0-logloss:0.00398 493s [151] validation_0-logloss:0.00397 493s [152] validation_0-logloss:0.00396 493s [153] validation_0-logloss:0.00396 493s [154] validation_0-logloss:0.00395 493s [155] validation_0-logloss:0.00394 493s [156] validation_0-logloss:0.00393 493s [157] validation_0-logloss:0.00392 493s [158] validation_0-logloss:0.00391 493s [159] validation_0-logloss:0.00391 493s [160] validation_0-logloss:0.00390 493s [161] validation_0-logloss:0.00389 493s [162] validation_0-logloss:0.00388 493s [163] validation_0-logloss:0.00388 493s [164] validation_0-logloss:0.00387 493s [165] validation_0-logloss:0.00386 493s [166] validation_0-logloss:0.00385 493s [167] validation_0-logloss:0.00385 493s [168] validation_0-logloss:0.00384 493s [169] validation_0-logloss:0.00383 493s [170] validation_0-logloss:0.00383 493s [171] validation_0-logloss:0.00382 493s [172] validation_0-logloss:0.00381 493s [173] validation_0-logloss:0.00381 493s [174] validation_0-logloss:0.00380 493s [175] validation_0-logloss:0.00380 493s [176] validation_0-logloss:0.00379 493s [177] validation_0-logloss:0.00379 493s [178] validation_0-logloss:0.00378 493s [179] validation_0-logloss:0.00378 493s [180] validation_0-logloss:0.00377 493s [181] validation_0-logloss:0.00377 493s [182] validation_0-logloss:0.00376 493s [183] validation_0-logloss:0.00376 493s [184] validation_0-logloss:0.00375 493s [185] validation_0-logloss:0.00375 493s [186] validation_0-logloss:0.00374 493s [187] validation_0-logloss:0.00374 493s [188] validation_0-logloss:0.00373 493s [189] validation_0-logloss:0.00373 493s [190] validation_0-logloss:0.00373 493s [191] validation_0-logloss:0.00372 493s [192] validation_0-logloss:0.00372 493s [193] validation_0-logloss:0.00372 493s [194] validation_0-logloss:0.00371 493s [195] validation_0-logloss:0.00371 493s [196] validation_0-logloss:0.00371 493s [197] validation_0-logloss:0.00371 493s [198] validation_0-logloss:0.00371 493s [199] validation_0-logloss:0.00371 493s Total boosted rounds: 195 493s [0] validation_0-logloss:0.43281 493s [1] validation_0-logloss:0.30816 493s [2] validation_0-logloss:0.22816 493s [3] validation_0-logloss:0.17470 493s [4] validation_0-logloss:0.13438 493s [5] validation_0-logloss:0.10538 493s [6] validation_0-logloss:0.08467 493s [7] validation_0-logloss:0.06909 493s [8] validation_0-logloss:0.05766 493s [9] validation_0-logloss:0.04842 493s [10] validation_0-logloss:0.04121 493s [11] validation_0-logloss:0.03545 493s [12] validation_0-logloss:0.03077 493s [13] validation_0-logloss:0.02742 493s [14] validation_0-logloss:0.02444 493s [15] validation_0-logloss:0.02208 493s [16] validation_0-logloss:0.01993 493s [17] validation_0-logloss:0.01819 493s [18] validation_0-logloss:0.01676 493s [19] validation_0-logloss:0.01575 493s [20] validation_0-logloss:0.01461 493s [21] validation_0-logloss:0.01383 493s [22] validation_0-logloss:0.01304 493s [23] validation_0-logloss:0.01243 493s [24] validation_0-logloss:0.01179 493s [25] validation_0-logloss:0.01142 493s [26] validation_0-logloss:0.01103 493s [27] validation_0-logloss:0.01066 493s [28] validation_0-logloss:0.01037 493s [29] validation_0-logloss:0.00993 493s [30] validation_0-logloss:0.00966 493s [31] validation_0-logloss:0.00920 493s [32] validation_0-logloss:0.00900 493s [33] validation_0-logloss:0.00876 493s [34] validation_0-logloss:0.00852 493s [35] validation_0-logloss:0.00835 493s [36] validation_0-logloss:0.00810 493s [37] validation_0-logloss:0.00791 493s [38] validation_0-logloss:0.00764 493s [39] validation_0-logloss:0.00753 493s [40] validation_0-logloss:0.00739 493s [41] validation_0-logloss:0.00723 493s [42] validation_0-logloss:0.00706 493s [43] validation_0-logloss:0.00695 493s [44] validation_0-logloss:0.00688 493s [45] validation_0-logloss:0.00671 493s [46] validation_0-logloss:0.00662 493s [47] validation_0-logloss:0.00650 493s [48] validation_0-logloss:0.00637 493s [49] validation_0-logloss:0.00628 493s [50] validation_0-logloss:0.00623 493s [51] validation_0-logloss:0.00618 493s [52] validation_0-logloss:0.00614 493s [53] validation_0-logloss:0.00609 493s [54] validation_0-logloss:0.00600 493s [55] validation_0-logloss:0.00590 493s [56] validation_0-logloss:0.00582 493s [57] validation_0-logloss:0.00578 493s [58] validation_0-logloss:0.00570 493s [59] validation_0-logloss:0.00566 493s [60] validation_0-logloss:0.00563 493s [61] validation_0-logloss:0.00559 493s [62] validation_0-logloss:0.00556 493s [63] validation_0-logloss:0.00553 493s [64] validation_0-logloss:0.00549 493s [65] validation_0-logloss:0.00546 493s [66] validation_0-logloss:0.00543 493s [67] validation_0-logloss:0.00540 493s [68] validation_0-logloss:0.00537 493s [69] validation_0-logloss:0.00534 493s [70] validation_0-logloss:0.00531 493s [71] validation_0-logloss:0.00528 493s [72] validation_0-logloss:0.00525 493s [73] validation_0-logloss:0.00523 493s [74] validation_0-logloss:0.00520 493s [75] validation_0-logloss:0.00517 493s [76] validation_0-logloss:0.00515 493s [77] validation_0-logloss:0.00512 493s [78] validation_0-logloss:0.00510 493s [79] validation_0-logloss:0.00507 493s [80] validation_0-logloss:0.00505 493s [81] validation_0-logloss:0.00502 493s [82] validation_0-logloss:0.00500 493s [83] validation_0-logloss:0.00498 493s [84] validation_0-logloss:0.00496 493s [85] validation_0-logloss:0.00493 493s [86] validation_0-logloss:0.00491 493s [87] validation_0-logloss:0.00489 493s [88] validation_0-logloss:0.00486 493s [89] validation_0-logloss:0.00484 493s [90] validation_0-logloss:0.00482 493s [91] validation_0-logloss:0.00480 493s [92] validation_0-logloss:0.00478 493s [93] validation_0-logloss:0.00476 493s [94] validation_0-logloss:0.00474 493s [95] validation_0-logloss:0.00472 493s [96] validation_0-logloss:0.00470 493s [97] validation_0-logloss:0.00468 493s [98] validation_0-logloss:0.00466 493s [99] validation_0-logloss:0.00464 493s [100] validation_0-logloss:0.00463 493s [101] validation_0-logloss:0.00461 493s [102] validation_0-logloss:0.00459 493s [103] validation_0-logloss:0.00457 493s [104] validation_0-logloss:0.00456 493s [105] validation_0-logloss:0.00454 493s [106] validation_0-logloss:0.00452 493s [107] validation_0-logloss:0.00451 493s [108] validation_0-logloss:0.00449 493s [109] validation_0-logloss:0.00448 493s [110] validation_0-logloss:0.00446 493s [111] validation_0-logloss:0.00444 493s [112] validation_0-logloss:0.00443 493s [113] validation_0-logloss:0.00441 493s [114] validation_0-logloss:0.00440 493s [115] validation_0-logloss:0.00438 493s [116] validation_0-logloss:0.00437 493s [117] validation_0-logloss:0.00435 493s [118] validation_0-logloss:0.00434 493s [119] validation_0-logloss:0.00433 493s [120] validation_0-logloss:0.00431 493s [121] validation_0-logloss:0.00430 493s [122] validation_0-logloss:0.00429 493s [123] validation_0-logloss:0.00427 493s [124] validation_0-logloss:0.00426 493s [125] validation_0-logloss:0.00425 493s [126] validation_0-logloss:0.00423 493s [127] validation_0-logloss:0.00422 494s [0] validation_0-logloss:0.00421 494s [1] validation_0-logloss:0.00420 494s [2] validation_0-logloss:0.00419 494s [3] validation_0-logloss:0.00417 494s [4] validation_0-logloss:0.00416 494s [5] validation_0-logloss:0.00415 494s [6] validation_0-logloss:0.00414 494s [7] validation_0-logloss:0.00413 494s [8] validation_0-logloss:0.00412 494s [9] validation_0-logloss:0.00411 494s [10] validation_0-logloss:0.00410 494s [11] validation_0-logloss:0.00409 494s [12] validation_0-logloss:0.00408 494s [13] validation_0-logloss:0.00407 494s [14] validation_0-logloss:0.00406 494s [15] validation_0-logloss:0.00405 494s [16] validation_0-logloss:0.00404 494s [17] validation_0-logloss:0.00403 494s [18] validation_0-logloss:0.00402 494s [19] validation_0-logloss:0.00401 494s [20] validation_0-logloss:0.00400 494s [21] validation_0-logloss:0.00399 494s [22] validation_0-logloss:0.00398 494s [23] validation_0-logloss:0.00397 494s [24] validation_0-logloss:0.00396 494s [25] validation_0-logloss:0.00396 494s [26] validation_0-logloss:0.00395 494s [27] validation_0-logloss:0.00394 494s [28] validation_0-logloss:0.00393 494s [29] validation_0-logloss:0.00392 494s [30] validation_0-logloss:0.00391 494s [31] validation_0-logloss:0.00391 494s [32] validation_0-logloss:0.00390 494s [33] validation_0-logloss:0.00389 494s [34] validation_0-logloss:0.00388 494s [35] validation_0-logloss:0.00388 494s [36] validation_0-logloss:0.00387 494s [37] validation_0-logloss:0.00386 494s [38] validation_0-logloss:0.00385 494s [39] validation_0-logloss:0.00385 494s [40] validation_0-logloss:0.00384 494s [41] validation_0-logloss:0.00383 494s [42] validation_0-logloss:0.00383 494s [43] validation_0-logloss:0.00382 494s [44] validation_0-logloss:0.00381 494s [45] validation_0-logloss:0.00381 494s [46] validation_0-logloss:0.00380 494s [47] validation_0-logloss:0.00380 494s [48] validation_0-logloss:0.00379 494s [49] validation_0-logloss:0.00379 494s [50] validation_0-logloss:0.00378 494s [51] validation_0-logloss:0.00378 494s [52] validation_0-logloss:0.00377 494s [53] validation_0-logloss:0.00377 494s [54] validation_0-logloss:0.00376 494s [55] validation_0-logloss:0.00376 494s [56] validation_0-logloss:0.00375 494s [57] validation_0-logloss:0.00375 494s [58] validation_0-logloss:0.00374 494s [59] validation_0-logloss:0.00374 494s [60] validation_0-logloss:0.00373 494s [61] validation_0-logloss:0.00373 494s [62] validation_0-logloss:0.00373 494s [63] validation_0-logloss:0.00372 494s [64] validation_0-logloss:0.00372 494s [65] validation_0-logloss:0.00372 494s [66] validation_0-logloss:0.00371 494s [67] validation_0-logloss:0.00371 494s [68] validation_0-logloss:0.00371 494s [69] validation_0-logloss:0.00371 494s [70] validation_0-logloss:0.00371 494s [71] validation_0-logloss:0.00371 494s Total boosted rounds: 195 494s [0] validation_0-logloss:0.43281 494s [1] validation_0-logloss:0.30816 494s [2] validation_0-logloss:0.22816 494s [3] validation_0-logloss:0.17470 494s [4] validation_0-logloss:0.13438 494s [5] validation_0-logloss:0.10538 494s [6] validation_0-logloss:0.08467 494s [7] validation_0-logloss:0.06909 494s [8] validation_0-logloss:0.05766 494s [9] validation_0-logloss:0.04842 494s [10] validation_0-logloss:0.04121 494s [11] validation_0-logloss:0.03545 494s [12] validation_0-logloss:0.03077 494s [13] validation_0-logloss:0.02742 494s [14] validation_0-logloss:0.02444 494s [15] validation_0-logloss:0.02208 494s [16] validation_0-logloss:0.01993 494s [17] validation_0-logloss:0.01819 494s [18] validation_0-logloss:0.01676 494s [19] validation_0-logloss:0.01575 494s [20] validation_0-logloss:0.01461 494s [21] validation_0-logloss:0.01383 494s [22] validation_0-logloss:0.01304 494s [23] validation_0-logloss:0.01243 494s [24] validation_0-logloss:0.01179 494s [25] validation_0-logloss:0.01142 494s [26] validation_0-logloss:0.01103 494s [27] validation_0-logloss:0.01066 494s [28] validation_0-logloss:0.01037 494s [29] validation_0-logloss:0.00993 494s [30] validation_0-logloss:0.00966 494s [31] validation_0-logloss:0.00920 494s [32] validation_0-logloss:0.00900 494s [33] validation_0-logloss:0.00876 494s [34] validation_0-logloss:0.00852 494s [35] validation_0-logloss:0.00835 494s [36] validation_0-logloss:0.00810 494s [37] validation_0-logloss:0.00791 494s [38] validation_0-logloss:0.00764 494s [39] validation_0-logloss:0.00753 494s [40] validation_0-logloss:0.00739 494s [41] validation_0-logloss:0.00723 494s [42] validation_0-logloss:0.00706 494s [43] validation_0-logloss:0.00695 494s [44] validation_0-logloss:0.00688 494s [45] validation_0-logloss:0.00671 494s [46] validation_0-logloss:0.00662 494s [47] validation_0-logloss:0.00650 494s [48] validation_0-logloss:0.00637 494s [49] validation_0-logloss:0.00628 494s [50] validation_0-logloss:0.00623 494s [51] validation_0-logloss:0.00618 494s [52] validation_0-logloss:0.00614 494s [53] validation_0-logloss:0.00609 494s [54] validation_0-logloss:0.00600 494s [55] validation_0-logloss:0.00590 494s [56] validation_0-logloss:0.00582 494s [57] validation_0-logloss:0.00578 494s [58] validation_0-logloss:0.00570 494s [59] validation_0-logloss:0.00566 494s [60] validation_0-logloss:0.00563 494s [61] validation_0-logloss:0.00559 494s [62] validation_0-logloss:0.00556 494s [63] validation_0-logloss:0.00553 494s [64] validation_0-logloss:0.00549 494s [65] validation_0-logloss:0.00546 494s [66] validation_0-logloss:0.00543 494s [67] validation_0-logloss:0.00540 494s [68] validation_0-logloss:0.00537 494s [69] validation_0-logloss:0.00534 494s [70] validation_0-logloss:0.00531 494s [71] validation_0-logloss:0.00528 494s [72] validation_0-logloss:0.00525 494s [73] validation_0-logloss:0.00523 494s [74] validation_0-logloss:0.00520 494s [75] validation_0-logloss:0.00517 494s [76] validation_0-logloss:0.00515 494s [77] validation_0-logloss:0.00512 494s [78] validation_0-logloss:0.00510 494s [79] validation_0-logloss:0.00507 494s [80] validation_0-logloss:0.00505 494s [81] validation_0-logloss:0.00502 494s [82] validation_0-logloss:0.00500 494s [83] validation_0-logloss:0.00498 494s [84] validation_0-logloss:0.00496 494s [85] validation_0-logloss:0.00493 494s [86] validation_0-logloss:0.00491 494s [87] validation_0-logloss:0.00489 494s [88] validation_0-logloss:0.00486 494s [89] validation_0-logloss:0.00484 494s [90] validation_0-logloss:0.00482 494s [91] validation_0-logloss:0.00480 494s [92] validation_0-logloss:0.00478 494s [93] validation_0-logloss:0.00476 494s [94] validation_0-logloss:0.00474 494s [95] validation_0-logloss:0.00472 494s [96] validation_0-logloss:0.00470 494s [97] validation_0-logloss:0.00468 494s [98] validation_0-logloss:0.00466 494s [99] validation_0-logloss:0.00464 494s [100] validation_0-logloss:0.00463 494s [101] validation_0-logloss:0.00461 494s [102] validation_0-logloss:0.00459 494s [103] validation_0-logloss:0.00457 494s [104] validation_0-logloss:0.00456 494s [105] validation_0-logloss:0.00454 494s [106] validation_0-logloss:0.00452 494s [107] validation_0-logloss:0.00451 494s [108] validation_0-logloss:0.00449 494s [109] validation_0-logloss:0.00448 494s [110] validation_0-logloss:0.00446 494s [111] validation_0-logloss:0.00444 494s [112] validation_0-logloss:0.00443 494s [113] validation_0-logloss:0.00441 494s [114] validation_0-logloss:0.00440 494s [115] validation_0-logloss:0.00438 494s [116] validation_0-logloss:0.00437 494s [117] validation_0-logloss:0.00435 494s [118] validation_0-logloss:0.00434 494s [119] validation_0-logloss:0.00433 494s [120] validation_0-logloss:0.00431 494s [121] validation_0-logloss:0.00430 494s [122] validation_0-logloss:0.00429 494s [123] validation_0-logloss:0.00427 494s [124] validation_0-logloss:0.00426 494s [125] validation_0-logloss:0.00425 494s [126] validation_0-logloss:0.00423 494s [127] validation_0-logloss:0.00422 494s Total boosted rounds: 128 494s [0] validation_0-logloss:0.43281 494s [1] validation_0-logloss:0.30816 494s [2] validation_0-logloss:0.22816 494s [3] validation_0-logloss:0.17470 494s [4] validation_0-logloss:0.13438 494s [5] validation_0-logloss:0.10538 494s [6] validation_0-logloss:0.08467 494s [7] validation_0-logloss:0.06909 494s [8] validation_0-logloss:0.05766 494s [9] validation_0-logloss:0.04842 494s [10] validation_0-logloss:0.04121 494s [11] validation_0-logloss:0.03545 494s [12] validation_0-logloss:0.03077 494s [13] validation_0-logloss:0.02742 494s [14] validation_0-logloss:0.02444 494s [15] validation_0-logloss:0.02208 494s [16] validation_0-logloss:0.01993 494s [17] validation_0-logloss:0.01819 494s [18] validation_0-logloss:0.01676 494s [19] validation_0-logloss:0.01575 494s [20] validation_0-logloss:0.01461 494s [21] validation_0-logloss:0.01383 494s [22] validation_0-logloss:0.01304 494s [23] validation_0-logloss:0.01243 494s [24] validation_0-logloss:0.01179 494s [25] validation_0-logloss:0.01142 494s [26] validation_0-logloss:0.01103 494s [27] validation_0-logloss:0.01066 494s [28] validation_0-logloss:0.01037 494s [29] validation_0-logloss:0.00993 494s [30] validation_0-logloss:0.00966 494s [31] validation_0-logloss:0.00920 494s [0] validation_0-logloss:0.00900 494s [1] validation_0-logloss:0.00876 494s [2] validation_0-logloss:0.00852 494s [3] validation_0-logloss:0.00835 494s [4] validation_0-logloss:0.00810 494s [5] validation_0-logloss:0.00791 494s [6] validation_0-logloss:0.00764 494s [7] validation_0-logloss:0.00753 494s [8] validation_0-logloss:0.00739 494s [9] validation_0-logloss:0.00723 494s [10] validation_0-logloss:0.00706 494s [11] validation_0-logloss:0.00695 494s [12] validation_0-logloss:0.00688 494s [13] validation_0-logloss:0.00671 494s [14] validation_0-logloss:0.00662 494s [15] validation_0-logloss:0.00650 494s [16] validation_0-logloss:0.00637 494s [17] validation_0-logloss:0.00628 494s [18] validation_0-logloss:0.00623 494s [19] validation_0-logloss:0.00618 494s [20] validation_0-logloss:0.00614 494s [21] validation_0-logloss:0.00609 494s [22] validation_0-logloss:0.00600 494s [23] validation_0-logloss:0.00590 494s [24] validation_0-logloss:0.00582 494s [25] validation_0-logloss:0.00578 494s [26] validation_0-logloss:0.00570 494s [27] validation_0-logloss:0.00566 494s [28] validation_0-logloss:0.00563 494s [29] validation_0-logloss:0.00559 494s [30] validation_0-logloss:0.00556 494s [31] validation_0-logloss:0.00553 494s [32] validation_0-logloss:0.00549 494s [33] validation_0-logloss:0.00546 494s [34] validation_0-logloss:0.00543 494s [35] validation_0-logloss:0.00540 494s [36] validation_0-logloss:0.00537 494s [37] validation_0-logloss:0.00534 494s [38] validation_0-logloss:0.00531 494s [39] validation_0-logloss:0.00528 494s [40] validation_0-logloss:0.00525 494s [41] validation_0-logloss:0.00523 494s [42] validation_0-logloss:0.00520 494s [43] validation_0-logloss:0.00517 494s [44] validation_0-logloss:0.00515 495s [45] validation_0-logloss:0.00512 495s [46] validation_0-logloss:0.00510 495s [47] validation_0-logloss:0.00507 495s [48] validation_0-logloss:0.00505 495s [49] validation_0-logloss:0.00502 495s [50] validation_0-logloss:0.00500 495s [51] validation_0-logloss:0.00498 495s [52] validation_0-logloss:0.00496 495s [53] validation_0-logloss:0.00493 495s [54] validation_0-logloss:0.00491 495s [55] validation_0-logloss:0.00489 495s [56] validation_0-logloss:0.00486 495s [57] validation_0-logloss:0.00484 495s [58] validation_0-logloss:0.00482 495s [59] validation_0-logloss:0.00480 495s [60] validation_0-logloss:0.00478 495s [61] validation_0-logloss:0.00476 495s [62] validation_0-logloss:0.00474 495s [63] validation_0-logloss:0.00472 495s [64] validation_0-logloss:0.00470 495s [65] validation_0-logloss:0.00468 495s [66] validation_0-logloss:0.00466 495s [67] validation_0-logloss:0.00464 495s [68] validation_0-logloss:0.00463 495s [69] validation_0-logloss:0.00461 495s [70] validation_0-logloss:0.00459 495s [71] validation_0-logloss:0.00457 495s [72] validation_0-logloss:0.00456 495s [73] validation_0-logloss:0.00454 495s [74] validation_0-logloss:0.00452 495s [75] validation_0-logloss:0.00451 495s [76] validation_0-logloss:0.00449 495s [77] validation_0-logloss:0.00448 495s [78] validation_0-logloss:0.00446 495s [79] validation_0-logloss:0.00444 495s [80] validation_0-logloss:0.00443 495s [81] validation_0-logloss:0.00441 495s [82] validation_0-logloss:0.00440 495s [83] validation_0-logloss:0.00438 495s [84] validation_0-logloss:0.00437 495s [85] validation_0-logloss:0.00435 495s [86] validation_0-logloss:0.00434 495s [87] validation_0-logloss:0.00433 495s [88] validation_0-logloss:0.00431 495s [89] validation_0-logloss:0.00430 495s [90] validation_0-logloss:0.00429 495s [91] validation_0-logloss:0.00427 495s [92] validation_0-logloss:0.00426 495s [93] validation_0-logloss:0.00425 495s [94] validation_0-logloss:0.00423 495s [95] validation_0-logloss:0.00422 495s Total boosted rounds: 128 495s [0] validation_0-logloss:0.43281 495s [1] validation_0-logloss:0.30816 495s [2] validation_0-logloss:0.22816 495s [3] validation_0-logloss:0.17470 495s [4] validation_0-logloss:0.13438 495s [5] validation_0-logloss:0.10538 495s [6] validation_0-logloss:0.08467 495s [7] validation_0-logloss:0.06909 495s [8] validation_0-logloss:0.05766 495s [9] validation_0-logloss:0.04842 495s [10] validation_0-logloss:0.04121 495s [11] validation_0-logloss:0.03545 495s [12] validation_0-logloss:0.03077 495s [13] validation_0-logloss:0.02742 495s [14] validation_0-logloss:0.02444 495s [15] validation_0-logloss:0.02208 495s [16] validation_0-logloss:0.01993 495s [17] validation_0-logloss:0.01819 495s [18] validation_0-logloss:0.01676 495s [19] validation_0-logloss:0.01575 495s [20] validation_0-logloss:0.01461 495s [21] validation_0-logloss:0.01383 495s [22] validation_0-logloss:0.01304 495s [23] validation_0-logloss:0.01243 495s [24] validation_0-logloss:0.01179 495s [25] validation_0-logloss:0.01142 495s [26] validation_0-logloss:0.01103 495s [27] validation_0-logloss:0.01066 495s [28] validation_0-logloss:0.01037 495s [29] validation_0-logloss:0.00993 495s [30] validation_0-logloss:0.00966 495s [31] validation_0-logloss:0.00920 495s [32] validation_0-logloss:0.00900 495s [33] validation_0-logloss:0.00876 495s [34] validation_0-logloss:0.00852 495s [35] validation_0-logloss:0.00835 495s [36] validation_0-logloss:0.00810 495s [37] validation_0-logloss:0.00791 495s [38] validation_0-logloss:0.00764 495s [39] validation_0-logloss:0.00753 495s [40] validation_0-logloss:0.00739 495s [41] validation_0-logloss:0.00723 495s [42] validation_0-logloss:0.00706 495s [43] validation_0-logloss:0.00695 495s [44] validation_0-logloss:0.00688 495s [45] validation_0-logloss:0.00671 495s [46] validation_0-logloss:0.00662 495s [47] validation_0-logloss:0.00650 495s [48] validation_0-logloss:0.00637 495s [49] validation_0-logloss:0.00628 495s [50] validation_0-logloss:0.00623 495s [51] validation_0-logloss:0.00618 495s [52] validation_0-logloss:0.00614 495s [53] validation_0-logloss:0.00609 495s [54] validation_0-logloss:0.00600 495s [55] validation_0-logloss:0.00590 495s [56] validation_0-logloss:0.00582 495s [57] validation_0-logloss:0.00578 495s [58] validation_0-logloss:0.00570 495s [59] validation_0-logloss:0.00566 495s [60] validation_0-logloss:0.00563 495s [61] validation_0-logloss:0.00559 495s [62] validation_0-logloss:0.00556 495s [63] validation_0-logloss:0.00553 495s [64] validation_0-logloss:0.00549 495s [65] validation_0-logloss:0.00546 495s [66] validation_0-logloss:0.00543 495s [67] validation_0-logloss:0.00540 495s [68] validation_0-logloss:0.00537 495s [69] validation_0-logloss:0.00534 495s [70] validation_0-logloss:0.00531 495s [71] validation_0-logloss:0.00528 495s [72] validation_0-logloss:0.00525 495s [73] validation_0-logloss:0.00523 495s [74] validation_0-logloss:0.00520 495s [75] validation_0-logloss:0.00517 495s [76] validation_0-logloss:0.00515 495s [77] validation_0-logloss:0.00512 495s [78] validation_0-logloss:0.00510 495s [79] validation_0-logloss:0.00507 495s [80] validation_0-logloss:0.00505 495s [81] validation_0-logloss:0.00502 495s [82] validation_0-logloss:0.00500 495s [83] validation_0-logloss:0.00498 495s [84] validation_0-logloss:0.00496 495s [85] validation_0-logloss:0.00493 495s [86] validation_0-logloss:0.00491 495s [87] validation_0-logloss:0.00489 495s [88] validation_0-logloss:0.00486 495s [89] validation_0-logloss:0.00484 495s [90] validation_0-logloss:0.00482 495s [91] validation_0-logloss:0.00480 495s [92] validation_0-logloss:0.00478 495s [93] validation_0-logloss:0.00476 495s [94] validation_0-logloss:0.00474 495s [95] validation_0-logloss:0.00472 495s [96] validation_0-logloss:0.00470 495s [97] validation_0-logloss:0.00468 495s [98] validation_0-logloss:0.00466 495s [99] validation_0-logloss:0.00464 495s [100] validation_0-logloss:0.00463 495s [101] validation_0-logloss:0.00461 495s [102] validation_0-logloss:0.00459 495s [103] validation_0-logloss:0.00457 495s [104] validation_0-logloss:0.00456 495s [105] validation_0-logloss:0.00454 495s [106] validation_0-logloss:0.00452 495s [107] validation_0-logloss:0.00451 495s [108] validation_0-logloss:0.00449 495s [109] validation_0-logloss:0.00448 495s [110] validation_0-logloss:0.00446 495s [111] validation_0-logloss:0.00444 495s [112] validation_0-logloss:0.00443 495s [113] validation_0-logloss:0.00441 495s [114] validation_0-logloss:0.00440 495s [115] validation_0-logloss:0.00438 495s [116] validation_0-logloss:0.00437 495s [117] validation_0-logloss:0.00435 495s [118] validation_0-logloss:0.00434 495s [119] validation_0-logloss:0.00433 495s [120] validation_0-logloss:0.00431 495s [121] validation_0-logloss:0.00430 495s [122] validation_0-logloss:0.00429 495s [123] validation_0-logloss:0.00427 495s [124] validation_0-logloss:0.00426 495s [125] validation_0-logloss:0.00425 495s [126] validation_0-logloss:0.00423 495s [127] validation_0-logloss:0.00422 495s Total boosted rounds: 128 495s [0] validation_0-logloss:0.43281 495s [1] validation_0-logloss:0.30816 495s [2] validation_0-logloss:0.22816 495s [3] validation_0-logloss:0.17470 495s [4] validation_0-logloss:0.13438 495s [5] validation_0-logloss:0.10538 495s [6] validation_0-logloss:0.08467 495s [7] validation_0-logloss:0.06909 495s [8] validation_0-logloss:0.05766 496s [9] validation_0-logloss:0.04842 496s [10] validation_0-logloss:0.04121 496s [11] validation_0-logloss:0.03545 496s [12] validation_0-logloss:0.03077 496s [13] validation_0-logloss:0.02742 496s [14] validation_0-logloss:0.02444 496s [15] validation_0-logloss:0.02208 496s [16] validation_0-logloss:0.01993 496s [17] validation_0-logloss:0.01819 496s [18] validation_0-logloss:0.01676 496s [19] validation_0-logloss:0.01575 496s [20] validation_0-logloss:0.01461 496s [21] validation_0-logloss:0.01383 496s [22] validation_0-logloss:0.01304 496s [23] validation_0-logloss:0.01243 496s [24] validation_0-logloss:0.01179 496s [25] validation_0-logloss:0.01142 496s [26] validation_0-logloss:0.01103 496s [27] validation_0-logloss:0.01066 496s [28] validation_0-logloss:0.01037 496s [29] validation_0-logloss:0.00993 496s [30] validation_0-logloss:0.00966 496s [31] validation_0-logloss:0.00920 496s [0] validation_0-logloss:0.00900 496s [1] validation_0-logloss:0.00876 496s [2] validation_0-logloss:0.00852 496s [3] validation_0-logloss:0.00835 496s [4] validation_0-logloss:0.00810 496s [5] validation_0-logloss:0.00791 496s [6] validation_0-logloss:0.00764 496s [7] validation_0-logloss:0.00753 496s [8] validation_0-logloss:0.00739 496s [9] validation_0-logloss:0.00723 496s [10] validation_0-logloss:0.00706 496s [11] validation_0-logloss:0.00695 496s [12] validation_0-logloss:0.00688 496s [13] validation_0-logloss:0.00671 496s [14] validation_0-logloss:0.00662 496s [15] validation_0-logloss:0.00650 496s [16] validation_0-logloss:0.00637 496s [17] validation_0-logloss:0.00628 496s [18] validation_0-logloss:0.00623 496s [19] validation_0-logloss:0.00618 496s [20] validation_0-logloss:0.00614 496s [21] validation_0-logloss:0.00609 496s [22] validation_0-logloss:0.00600 496s [23] validation_0-logloss:0.00590 496s [24] validation_0-logloss:0.00582 496s [25] validation_0-logloss:0.00578 496s [26] validation_0-logloss:0.00570 496s [27] validation_0-logloss:0.00566 496s [28] validation_0-logloss:0.00563 496s [29] validation_0-logloss:0.00559 496s [30] validation_0-logloss:0.00556 496s [31] validation_0-logloss:0.00553 496s [32] validation_0-logloss:0.00549 496s [33] validation_0-logloss:0.00546 496s [34] validation_0-logloss:0.00543 496s [35] validation_0-logloss:0.00540 496s [36] validation_0-logloss:0.00537 496s [37] validation_0-logloss:0.00534 496s [38] validation_0-logloss:0.00531 496s [39] validation_0-logloss:0.00528 496s [40] validation_0-logloss:0.00525 496s [41] validation_0-logloss:0.00523 496s [42] validation_0-logloss:0.00520 496s [43] validation_0-logloss:0.00517 496s [44] validation_0-logloss:0.00515 496s [45] validation_0-logloss:0.00512 496s [46] validation_0-logloss:0.00510 496s [47] validation_0-logloss:0.00507 496s [48] validation_0-logloss:0.00505 496s [49] validation_0-logloss:0.00502 496s [50] validation_0-logloss:0.00500 496s [51] validation_0-logloss:0.00498 496s [52] validation_0-logloss:0.00496 496s [53] validation_0-logloss:0.00493 496s [54] validation_0-logloss:0.00491 496s [55] validation_0-logloss:0.00489 496s [56] validation_0-logloss:0.00486 496s [57] validation_0-logloss:0.00484 496s [58] validation_0-logloss:0.00482 496s [59] validation_0-logloss:0.00480 496s [60] validation_0-logloss:0.00478 496s [61] validation_0-logloss:0.00476 496s [62] validation_0-logloss:0.00474 496s [63] validation_0-logloss:0.00472 496s [64] validation_0-logloss:0.00470 496s [65] validation_0-logloss:0.00468 496s [66] validation_0-logloss:0.00466 496s [67] validation_0-logloss:0.00464 496s [68] validation_0-logloss:0.00463 496s [69] validation_0-logloss:0.00461 496s [70] validation_0-logloss:0.00459 496s [71] validation_0-logloss:0.00457 496s [72] validation_0-logloss:0.00456 496s [73] validation_0-logloss:0.00454 496s [74] validation_0-logloss:0.00452 496s [75] validation_0-logloss:0.00451 496s [76] validation_0-logloss:0.00449 496s [77] validation_0-logloss:0.00448 496s [78] validation_0-logloss:0.00446 496s [79] validation_0-logloss:0.00444 496s [80] validation_0-logloss:0.00443 496s [81] validation_0-logloss:0.00441 496s [82] validation_0-logloss:0.00440 496s [83] validation_0-logloss:0.00438 496s [84] validation_0-logloss:0.00437 496s [85] validation_0-logloss:0.00435 496s [86] validation_0-logloss:0.00434 496s [87] validation_0-logloss:0.00433 496s [88] validation_0-logloss:0.00431 496s [89] validation_0-logloss:0.00430 496s [90] validation_0-logloss:0.00429 496s [91] validation_0-logloss:0.00427 496s [92] validation_0-logloss:0.00426 496s [93] validation_0-logloss:0.00425 496s [94] validation_0-logloss:0.00423 496s [95] validation_0-logloss:0.00422 497s Total boosted rounds: 128 497s ========================================== 498s Running case cross_validation.py... 501s running cross validation 501s [0] train-error:0.05067+0.00920 test-error:0.05573+0.01589 501s [1] train-error:0.02130+0.00206 test-error:0.02119+0.00365 502s running cross validation, disable standard deviation display 502s [0] train-error:0.05067 test-error:0.05573 502s [1] train-error:0.02130 test-error:0.02119 502s [2] train-error:0.00994 test-error:0.00998 502s [3] train-error:0.01413 test-error:0.01443 502s [4] train-error:0.00599 test-error:0.00630 502s [5] train-error:0.00203 test-error:0.00169 502s [6] train-error:0.00123 test-error:0.00123 502s [7] train-error:0.00123 test-error:0.00123 502s [8] train-error:0.00092 test-error:0.00123 502s /usr/lib/python3/dist-packages/xgboost/training.py:38: UserWarning: `feval` is deprecated, use `custom_metric` instead. They have different behavior when custom objective is also used.See https://xgboost.readthedocs.io/en/latest/tutorials/custom_metric_obj.html for details on the `custom_metric`. 502s warnings.warn( 503s train-error-mean train-error-std test-error-mean test-error-std 503s 0 0.050668 0.009201 0.055732 0.015889 503s 1 0.021303 0.002055 0.021188 0.003653 503s 2 0.009942 0.006076 0.009979 0.004828 503s 3 0.014126 0.001706 0.014433 0.003517 503s 4 0.005988 0.001878 0.006295 0.003123 503s 5 0.002034 0.001469 0.001689 0.000574 503s 6 0.001228 0.000260 0.001228 0.001041 503s running cross validation, with preprocessing function 503s running cross validation, with customized loss function 503s ========================================== 503s Running case custom_rmsle.py... 503s /tmp/autopkgtest.jlLNaQ/build.N8X/src/demo/guide-python/custom_rmsle.py:139: SyntaxWarning: invalid escape sequence '\s' 503s :math:`\sqrt{\frac{1}{N}[log(pred + 1) - log(label + 1)]^2}` 509s Squared Error 509s [0] dtrain-rmse:682.95908 dtest-rmse:745.95555 509s [1] dtrain-rmse:627.66199 dtest-rmse:751.49583 509s [2] dtrain-rmse:596.74396 dtest-rmse:766.33054 509s [3] dtrain-rmse:555.92371 dtest-rmse:776.92703 509s [4] dtrain-rmse:519.58613 dtest-rmse:789.74145 509s [5] dtrain-rmse:501.26007 dtest-rmse:805.22881 509s [6] dtrain-rmse:453.81757 dtest-rmse:810.70817 509s [7] dtrain-rmse:423.51474 dtest-rmse:822.61798 509s [8] dtrain-rmse:383.34479 dtest-rmse:826.43243 509s [9] dtrain-rmse:371.08179 dtest-rmse:827.23674 509s [10] dtrain-rmse:353.11776 dtest-rmse:828.84174 509s [11] dtrain-rmse:316.42149 dtest-rmse:832.98904 509s [12] dtrain-rmse:300.24359 dtest-rmse:834.90637 509s [13] dtrain-rmse:285.81935 dtest-rmse:836.55001 509s [14] dtrain-rmse:278.47432 dtest-rmse:838.29965 509s [15] dtrain-rmse:266.08310 dtest-rmse:840.16158 509s [16] dtrain-rmse:261.48875 dtest-rmse:841.45332 509s [17] dtrain-rmse:253.15765 dtest-rmse:841.96773 509s [18] dtrain-rmse:246.41335 dtest-rmse:842.26433 510s [19] dtrain-rmse:242.90377 dtest-rmse:843.24280 510s Finished Squared Error in: 0.7308712005615234 510s 510s Squared Log Error 510s [0] dtrain-rmsle:1.31939 dtest-rmsle:1.26056 510s [1] dtrain-rmsle:1.22093 dtest-rmsle:1.16061 510s [2] dtrain-rmsle:1.13670 dtest-rmsle:1.07549 510s [3] dtrain-rmsle:1.06691 dtest-rmsle:1.00568 510s [4] dtrain-rmsle:1.01079 dtest-rmsle:0.95190 510s [5] dtrain-rmsle:0.96709 dtest-rmsle:0.91206 510s [6] dtrain-rmsle:0.93453 dtest-rmsle:0.88458 510s [7] dtrain-rmsle:0.90925 dtest-rmsle:0.86580 510s [8] dtrain-rmsle:0.89139 dtest-rmsle:0.85326 510s [9] dtrain-rmsle:0.87620 dtest-rmsle:0.84621 510s [10] dtrain-rmsle:0.86538 dtest-rmsle:0.84136 510s [11] dtrain-rmsle:0.85715 dtest-rmsle:0.83849 510s [12] dtrain-rmsle:0.84866 dtest-rmsle:0.83767 510s [13] dtrain-rmsle:0.84230 dtest-rmsle:0.83693 510s [14] dtrain-rmsle:0.83639 dtest-rmsle:0.83785 510s [15] dtrain-rmsle:0.83076 dtest-rmsle:0.83853 510s [16] dtrain-rmsle:0.82671 dtest-rmsle:0.83887 510s [17] dtrain-rmsle:0.82297 dtest-rmsle:0.83883 510s [18] dtrain-rmsle:0.81919 dtest-rmsle:0.83945 510s [19] dtrain-rmsle:0.81638 dtest-rmsle:0.83981 510s Finished Squared Log Error in: 0.37279844284057617 510s [0] dtrain-PyRMSLE:1.37154 dtest-PyRMSLE:1.31491 510s [1] dtrain-PyRMSLE:1.26642 dtest-PyRMSLE:1.20792 510s [2] dtrain-PyRMSLE:1.17525 dtest-PyRMSLE:1.11539 510s [3] dtrain-PyRMSLE:1.09848 dtest-PyRMSLE:1.03800 510s [4] dtrain-PyRMSLE:1.03565 dtest-PyRMSLE:0.97673 510s [5] dtrain-PyRMSLE:0.98595 dtest-PyRMSLE:0.93063 510s [6] dtrain-PyRMSLE:0.94774 dtest-PyRMSLE:0.89723 510s [7] dtrain-PyRMSLE:0.91977 dtest-PyRMSLE:0.87448 510s [8] dtrain-PyRMSLE:0.89796 dtest-PyRMSLE:0.85932 510s [9] dtrain-PyRMSLE:0.88141 dtest-PyRMSLE:0.85028 510s [10] dtrain-PyRMSLE:0.86816 dtest-PyRMSLE:0.84450 510s [11] dtrain-PyRMSLE:0.85991 dtest-PyRMSLE:0.84015 510s [12] dtrain-PyRMSLE:0.85120 dtest-PyRMSLE:0.83900 510s [13] dtrain-PyRMSLE:0.84384 dtest-PyRMSLE:0.83775 510s [14] dtrain-PyRMSLE:0.83741 dtest-PyRMSLE:0.83732 510s [15] dtrain-PyRMSLE:0.83253 dtest-PyRMSLE:0.83800 510s [16] dtrain-PyRMSLE:0.82842 dtest-PyRMSLE:0.83827 510s [17] dtrain-PyRMSLE:0.82535 dtest-PyRMSLE:0.83844 510s [18] dtrain-PyRMSLE:0.82169 dtest-PyRMSLE:0.83953 510s [19] dtrain-PyRMSLE:0.81857 dtest-PyRMSLE:0.84046 511s ========================================== 511s Running case custom_softmax.py... 516s /tmp/autopkgtest.jlLNaQ/build.N8X/src/demo/guide-python/custom_softmax.py:76: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.) 516s grad[r, c] = g 516s [0] train-PyMError:0.14000 516s [1] train-PyMError:0.00000 516s [2] train-PyMError:0.01000 516s [3] train-PyMError:0.00000 517s [4] train-PyMError:0.00000 517s [5] train-PyMError:0.00000 517s [6] train-PyMError:0.00000 517s [7] train-PyMError:0.00000 517s [8] train-PyMError:0.00000 517s [9] train-PyMError:0.00000 517s [0] train-merror:0.14000 517s [1] train-merror:0.00000 517s [2] train-merror:0.01000 517s [3] train-merror:0.00000 517s [4] train-merror:0.00000 517s [5] train-merror:0.00000 517s [6] train-merror:0.00000 517s [7] train-merror:0.00000 517s [8] train-merror:0.00000 517s [9] train-merror:0.00000 518s ========================================== 518s Running case evals_result.py... 521s /usr/lib/python3/dist-packages/xgboost/core.py:723: FutureWarning: Pass `evals` as keyword args. 521s warnings.warn(msg, FutureWarning) 521s [0] eval-logloss:0.47977 eval-error:0.04283 train-logloss:0.48196 train-error:0.04652 521s [1] eval-logloss:0.35740 eval-error:0.04283 train-logloss:0.35919 train-error:0.04652 521s Access logloss metric directly from evals_result: 521s [0.4797663698279288, 0.35739665886839306] 521s 521s Access metrics through a loop: 521s - eval 521s - logloss 521s - [0.4797663698279288, 0.35739665886839306] 521s - error 521s - [0.04283054003724395, 0.04283054003724395] 521s - train 521s - logloss 521s - [0.4819583435789261, 0.35919429156594646] 521s - error 521s - [0.04652233993551359, 0.04652233993551359] 521s 521s Access complete dictionary: 521s {'eval': OrderedDict({'logloss': [0.4797663698279288, 0.35739665886839306], 'error': [0.04283054003724395, 0.04283054003724395]}), 'train': OrderedDict({'logloss': [0.4819583435789261, 0.35919429156594646], 'error': [0.04652233993551359, 0.04652233993551359]})} 522s ========================================== 522s Running case external_memory.py... 528s [0] Train-rmse:170.67905 528s [1] Train-rmse:166.88130 529s [2] Train-rmse:163.67251 529s [3] Train-rmse:160.83024 530s [4] Train-rmse:158.26351 530s [5] Train-rmse:155.91569 530s [6] Train-rmse:153.74380 530s [7] Train-rmse:151.74583 530s [8] Train-rmse:149.92400 531s [9] Train-rmse:148.14658 532s ========================================== 532s Running case feature_weights.py... 539s [0] d-rmse:1.00430 539s [1] d-rmse:0.99638 539s [2] d-rmse:0.98161 539s [3] d-rmse:0.97086 539s [4] d-rmse:0.96269 539s [5] d-rmse:0.94829 539s [6] d-rmse:0.93914 539s [7] d-rmse:0.93187 539s [8] d-rmse:0.92274 539s [9] d-rmse:0.91749 541s ========================================== 541s Skip case gamma_regression.py... 541s ========================================== 541s Running case generalized_linear_model.py... 545s /usr/lib/python3/dist-packages/xgboost/core.py:723: FutureWarning: Pass `evals` as keyword args. 545s warnings.warn(msg, FutureWarning) 545s [0] eval-logloss:0.57140 train-logloss:0.56882 545s [1] eval-logloss:0.53011 train-logloss:0.52651 545s [2] eval-logloss:0.51441 train-logloss:0.51042 545s [3] eval-logloss:0.50818 train-logloss:0.50404 545s error=0.118560 546s ========================================== 546s Running case individual_trees.py... 551s ========================================== 551s Skip case learning_to_rank.py... 551s ========================================== 551s Running case multioutput_regression.py... 555s [0] validation_0-rmse:0.29417 555s [1] validation_0-rmse:0.26360 555s [2] validation_0-rmse:0.23619 555s [3] validation_0-rmse:0.22068 555s [4] validation_0-rmse:0.20681 555s [5] validation_0-rmse:0.19295 555s [6] validation_0-rmse:0.17849 555s [7] validation_0-rmse:0.16562 555s [8] validation_0-rmse:0.15492 555s [9] validation_0-rmse:0.14493 555s [10] validation_0-rmse:0.13892 555s [11] validation_0-rmse:0.13172 555s [12] validation_0-rmse:0.12253 555s [13] validation_0-rmse:0.11744 555s [14] validation_0-rmse:0.10981 555s [15] validation_0-rmse:0.10176 555s [16] validation_0-rmse:0.09476 555s [17] validation_0-rmse:0.08947 555s [18] validation_0-rmse:0.08399 555s [19] validation_0-rmse:0.07952 555s [20] validation_0-rmse:0.07442 555s [21] validation_0-rmse:0.07048 555s [22] validation_0-rmse:0.06749 555s [23] validation_0-rmse:0.06505 555s [24] validation_0-rmse:0.06060 555s [25] validation_0-rmse:0.05737 555s [26] validation_0-rmse:0.05539 555s [27] validation_0-rmse:0.05326 555s [28] validation_0-rmse:0.05026 555s [29] validation_0-rmse:0.04692 555s [30] validation_0-rmse:0.04501 555s [31] validation_0-rmse:0.04175 555s [32] validation_0-rmse:0.03970 555s [33] validation_0-rmse:0.03683 555s [34] validation_0-rmse:0.03430 555s [35] validation_0-rmse:0.03219 555s [36] validation_0-rmse:0.03058 555s [37] validation_0-rmse:0.02914 555s [38] validation_0-rmse:0.02778 555s [39] validation_0-rmse:0.02611 555s [40] validation_0-rmse:0.02504 555s [41] validation_0-rmse:0.02322 555s [42] validation_0-rmse:0.02212 555s [43] validation_0-rmse:0.02129 555s [44] validation_0-rmse:0.01992 555s [45] validation_0-rmse:0.01930 555s [46] validation_0-rmse:0.01864 555s [47] validation_0-rmse:0.01744 556s [48] validation_0-rmse:0.01618 556s [49] validation_0-rmse:0.01521 556s [50] validation_0-rmse:0.01428 556s [51] validation_0-rmse:0.01346 556s [52] validation_0-rmse:0.01276 556s [53] validation_0-rmse:0.01209 556s [54] validation_0-rmse:0.01154 556s [55] validation_0-rmse:0.01094 556s [56] validation_0-rmse:0.01023 556s [57] validation_0-rmse:0.00979 556s [58] validation_0-rmse:0.00934 556s [59] validation_0-rmse:0.00879 556s [60] validation_0-rmse:0.00845 556s [61] validation_0-rmse:0.00822 556s [62] validation_0-rmse:0.00790 556s [63] validation_0-rmse:0.00742 556s [64] validation_0-rmse:0.00711 556s [65] validation_0-rmse:0.00682 556s [66] validation_0-rmse:0.00644 556s [67] validation_0-rmse:0.00615 556s [68] validation_0-rmse:0.00577 556s [69] validation_0-rmse:0.00553 556s [70] validation_0-rmse:0.00514 556s [71] validation_0-rmse:0.00493 556s [72] validation_0-rmse:0.00468 556s [73] validation_0-rmse:0.00443 556s [74] validation_0-rmse:0.00426 556s [75] validation_0-rmse:0.00389 556s [76] validation_0-rmse:0.00362 556s [77] validation_0-rmse:0.00340 556s [78] validation_0-rmse:0.00323 556s [79] validation_0-rmse:0.00303 556s [80] validation_0-rmse:0.00288 556s [81] validation_0-rmse:0.00275 556s [82] validation_0-rmse:0.00264 556s [83] validation_0-rmse:0.00253 556s [84] validation_0-rmse:0.00240 556s [85] validation_0-rmse:0.00230 556s [86] validation_0-rmse:0.00219 556s [87] validation_0-rmse:0.00208 556s [88] validation_0-rmse:0.00198 556s [89] validation_0-rmse:0.00191 556s [90] validation_0-rmse:0.00183 556s [91] validation_0-rmse:0.00173 556s [92] validation_0-rmse:0.00169 556s [93] validation_0-rmse:0.00161 556s [94] validation_0-rmse:0.00154 556s [95] validation_0-rmse:0.00148 556s [96] validation_0-rmse:0.00145 556s [97] validation_0-rmse:0.00141 556s [98] validation_0-rmse:0.00138 556s [99] validation_0-rmse:0.00134 556s [100] validation_0-rmse:0.00131 556s [101] validation_0-rmse:0.00128 556s [102] validation_0-rmse:0.00122 556s [103] validation_0-rmse:0.00121 556s [104] validation_0-rmse:0.00119 556s [105] validation_0-rmse:0.00117 556s [106] validation_0-rmse:0.00113 556s [107] validation_0-rmse:0.00111 556s [108] validation_0-rmse:0.00108 556s [109] validation_0-rmse:0.00104 556s [110] validation_0-rmse:0.00104 556s [111] validation_0-rmse:0.00102 556s [112] validation_0-rmse:0.00100 556s [113] validation_0-rmse:0.00100 556s [114] validation_0-rmse:0.00098 556s [115] validation_0-rmse:0.00098 556s [116] validation_0-rmse:0.00097 556s [117] validation_0-rmse:0.00097 556s [118] validation_0-rmse:0.00097 556s [119] validation_0-rmse:0.00097 556s [120] validation_0-rmse:0.00097 556s [121] validation_0-rmse:0.00096 556s [122] validation_0-rmse:0.00096 556s [123] validation_0-rmse:0.00095 556s [124] validation_0-rmse:0.00093 556s [125] validation_0-rmse:0.00093 556s [126] validation_0-rmse:0.00093 556s [127] validation_0-rmse:0.00092 556s [0] validation_0-rmse:0.29633 556s [1] validation_0-rmse:0.27038 556s [2] validation_0-rmse:0.24670 556s [3] validation_0-rmse:0.22485 556s [4] validation_0-rmse:0.20795 556s [5] validation_0-rmse:0.19109 556s [6] validation_0-rmse:0.17936 556s [7] validation_0-rmse:0.17053 556s [8] validation_0-rmse:0.16198 556s [9] validation_0-rmse:0.15406 556s [10] validation_0-rmse:0.14510 556s [11] validation_0-rmse:0.13641 556s [12] validation_0-rmse:0.12550 556s [13] validation_0-rmse:0.11761 556s [14] validation_0-rmse:0.11132 556s [15] validation_0-rmse:0.10186 556s [16] validation_0-rmse:0.09376 556s [17] validation_0-rmse:0.08897 556s [18] validation_0-rmse:0.08226 556s [19] validation_0-rmse:0.07742 556s [20] validation_0-rmse:0.07209 556s [21] validation_0-rmse:0.06959 556s [22] validation_0-rmse:0.06703 556s [23] validation_0-rmse:0.06274 556s [24] validation_0-rmse:0.05932 556s [25] validation_0-rmse:0.05540 556s [26] validation_0-rmse:0.05157 556s [27] validation_0-rmse:0.04830 556s [28] validation_0-rmse:0.04540 556s [29] validation_0-rmse:0.04313 556s [30] validation_0-rmse:0.04098 556s [31] validation_0-rmse:0.03869 556s [32] validation_0-rmse:0.03728 556s [33] validation_0-rmse:0.03536 556s [34] validation_0-rmse:0.03372 556s [35] validation_0-rmse:0.03235 556s [36] validation_0-rmse:0.03093 556s [37] validation_0-rmse:0.02889 556s [38] validation_0-rmse:0.02686 556s [39] validation_0-rmse:0.02547 556s [40] validation_0-rmse:0.02372 556s [41] validation_0-rmse:0.02209 556s [42] validation_0-rmse:0.02130 556s [43] validation_0-rmse:0.02008 556s [44] validation_0-rmse:0.01901 556s [45] validation_0-rmse:0.01851 556s [46] validation_0-rmse:0.01714 556s [47] validation_0-rmse:0.01644 556s [48] validation_0-rmse:0.01585 556s [49] validation_0-rmse:0.01493 556s [50] validation_0-rmse:0.01370 556s [51] validation_0-rmse:0.01309 556s [52] validation_0-rmse:0.01257 556s [53] validation_0-rmse:0.01193 556s [54] validation_0-rmse:0.01136 556s [55] validation_0-rmse:0.01080 556s [56] validation_0-rmse:0.01010 556s [57] validation_0-rmse:0.00947 556s [58] validation_0-rmse:0.00871 556s [59] validation_0-rmse:0.00818 556s [60] validation_0-rmse:0.00766 556s [61] validation_0-rmse:0.00737 556s [62] validation_0-rmse:0.00695 556s [63] validation_0-rmse:0.00658 556s [64] validation_0-rmse:0.00616 556s [65] validation_0-rmse:0.00595 556s [66] validation_0-rmse:0.00566 556s [67] validation_0-rmse:0.00526 556s [68] validation_0-rmse:0.00487 556s [69] validation_0-rmse:0.00469 556s [70] validation_0-rmse:0.00446 556s [71] validation_0-rmse:0.00422 556s [72] validation_0-rmse:0.00403 556s [73] validation_0-rmse:0.00381 556s [74] validation_0-rmse:0.00360 556s [75] validation_0-rmse:0.00346 556s [76] validation_0-rmse:0.00330 556s [77] validation_0-rmse:0.00312 556s [78] validation_0-rmse:0.00296 556s [79] validation_0-rmse:0.00284 556s [80] validation_0-rmse:0.00275 556s [81] validation_0-rmse:0.00264 556s [82] validation_0-rmse:0.00251 556s [83] validation_0-rmse:0.00242 556s [84] validation_0-rmse:0.00231 556s [85] validation_0-rmse:0.00222 556s [86] validation_0-rmse:0.00212 556s [87] validation_0-rmse:0.00203 556s [88] validation_0-rmse:0.00192 556s [89] validation_0-rmse:0.00181 556s [90] validation_0-rmse:0.00174 556s [91] validation_0-rmse:0.00168 556s [92] validation_0-rmse:0.00159 556s [93] validation_0-rmse:0.00153 556s [94] validation_0-rmse:0.00147 556s [95] validation_0-rmse:0.00142 556s [96] validation_0-rmse:0.00138 556s [97] validation_0-rmse:0.00130 556s [98] validation_0-rmse:0.00123 556s [99] validation_0-rmse:0.00118 556s [100] validation_0-rmse:0.00114 556s [101] validation_0-rmse:0.00112 556s [102] validation_0-rmse:0.00110 556s [103] validation_0-rmse:0.00106 556s [104] validation_0-rmse:0.00103 556s [105] validation_0-rmse:0.00102 556s [106] validation_0-rmse:0.00099 556s [107] validation_0-rmse:0.00096 556s [108] validation_0-rmse:0.00094 556s [109] validation_0-rmse:0.00093 556s [110] validation_0-rmse:0.00091 556s [111] validation_0-rmse:0.00087 556s [112] validation_0-rmse:0.00086 556s [113] validation_0-rmse:0.00084 556s [114] validation_0-rmse:0.00084 556s [115] validation_0-rmse:0.00083 556s [116] validation_0-rmse:0.00083 556s [117] validation_0-rmse:0.00082 556s [118] validation_0-rmse:0.00082 556s [119] validation_0-rmse:0.00081 556s [120] validation_0-rmse:0.00080 556s [121] validation_0-rmse:0.00079 556s [122] validation_0-rmse:0.00079 556s [123] validation_0-rmse:0.00078 556s [124] validation_0-rmse:0.00078 556s [125] validation_0-rmse:0.00077 556s [126] validation_0-rmse:0.00077 556s [127] validation_0-rmse:0.00076 556s [0] Train-rmse:0.28597 Train-PyRMSE:4.04424 556s [1] Train-rmse:0.25494 Train-PyRMSE:3.60534 556s [2] Train-rmse:0.23359 Train-PyRMSE:3.30341 556s [3] Train-rmse:0.21640 Train-PyRMSE:3.06038 556s [4] Train-rmse:0.20574 Train-PyRMSE:2.90962 556s [5] Train-rmse:0.19311 Train-PyRMSE:2.73098 556s [6] Train-rmse:0.18435 Train-PyRMSE:2.60710 556s [7] Train-rmse:0.17502 Train-PyRMSE:2.47516 556s [8] Train-rmse:0.16830 Train-PyRMSE:2.38017 556s [9] Train-rmse:0.15957 Train-PyRMSE:2.25667 556s [10] Train-rmse:0.15430 Train-PyRMSE:2.18211 556s [11] Train-rmse:0.14604 Train-PyRMSE:2.06533 556s [12] Train-rmse:0.13629 Train-PyRMSE:1.92740 556s [13] Train-rmse:0.13249 Train-PyRMSE:1.87376 556s [14] Train-rmse:0.12557 Train-PyRMSE:1.77588 556s [15] Train-rmse:0.12198 Train-PyRMSE:1.72505 556s [16] Train-rmse:0.11972 Train-PyRMSE:1.69314 556s [17] Train-rmse:0.11345 Train-PyRMSE:1.60444 556s [18] Train-rmse:0.10926 Train-PyRMSE:1.54524 556s [19] Train-rmse:0.10367 Train-PyRMSE:1.46616 556s [20] Train-rmse:0.09938 Train-PyRMSE:1.40550 556s [21] Train-rmse:0.09543 Train-PyRMSE:1.34963 556s [22] Train-rmse:0.09302 Train-PyRMSE:1.31552 556s [23] Train-rmse:0.08848 Train-PyRMSE:1.25132 556s [24] Train-rmse:0.08575 Train-PyRMSE:1.21274 556s [25] Train-rmse:0.08280 Train-PyRMSE:1.17092 556s [26] Train-rmse:0.07694 Train-PyRMSE:1.08803 556s [27] Train-rmse:0.07375 Train-PyRMSE:1.04299 556s [28] Train-rmse:0.07137 Train-PyRMSE:1.00927 556s [29] Train-rmse:0.06737 Train-PyRMSE:0.95281 556s [30] Train-rmse:0.06433 Train-PyRMSE:0.90978 556s [31] Train-rmse:0.06239 Train-PyRMSE:0.88235 556s [32] Train-rmse:0.06093 Train-PyRMSE:0.86164 556s [33] Train-rmse:0.05800 Train-PyRMSE:0.82031 556s [34] Train-rmse:0.05568 Train-PyRMSE:0.78745 556s [35] Train-rmse:0.05430 Train-PyRMSE:0.76797 556s [36] Train-rmse:0.05124 Train-PyRMSE:0.72468 556s [37] Train-rmse:0.04849 Train-PyRMSE:0.68580 556s [38] Train-rmse:0.04754 Train-PyRMSE:0.67231 556s [39] Train-rmse:0.04704 Train-PyRMSE:0.66519 556s [40] Train-rmse:0.04449 Train-PyRMSE:0.62916 556s [41] Train-rmse:0.04374 Train-PyRMSE:0.61865 556s [42] Train-rmse:0.04281 Train-PyRMSE:0.60545 556s [43] Train-rmse:0.04101 Train-PyRMSE:0.58000 556s [44] Train-rmse:0.03921 Train-PyRMSE:0.55448 556s [45] Train-rmse:0.03761 Train-PyRMSE:0.53186 556s [46] Train-rmse:0.03628 Train-PyRMSE:0.51314 556s [47] Train-rmse:0.03566 Train-PyRMSE:0.50431 556s [48] Train-rmse:0.03379 Train-PyRMSE:0.47782 556s [49] Train-rmse:0.03265 Train-PyRMSE:0.46180 556s [50] Train-rmse:0.03208 Train-PyRMSE:0.45373 556s [51] Train-rmse:0.03132 Train-PyRMSE:0.44294 556s [52] Train-rmse:0.03024 Train-PyRMSE:0.42768 556s [53] Train-rmse:0.02897 Train-PyRMSE:0.40968 556s [54] Train-rmse:0.02838 Train-PyRMSE:0.40136 556s [55] Train-rmse:0.02777 Train-PyRMSE:0.39273 556s [56] Train-rmse:0.02668 Train-PyRMSE:0.37727 556s [57] Train-rmse:0.02579 Train-PyRMSE:0.36475 556s [58] Train-rmse:0.02436 Train-PyRMSE:0.34444 556s [59] Train-rmse:0.02411 Train-PyRMSE:0.34092 556s [60] Train-rmse:0.02344 Train-PyRMSE:0.33144 556s [61] Train-rmse:0.02296 Train-PyRMSE:0.32477 556s [62] Train-rmse:0.02203 Train-PyRMSE:0.31151 556s [63] Train-rmse:0.02109 Train-PyRMSE:0.29828 556s [64] Train-rmse:0.02058 Train-PyRMSE:0.29102 556s [65] Train-rmse:0.02017 Train-PyRMSE:0.28528 556s [66] Train-rmse:0.01945 Train-PyRMSE:0.27500 556s [67] Train-rmse:0.01861 Train-PyRMSE:0.26320 556s [68] Train-rmse:0.01835 Train-PyRMSE:0.25955 556s [69] Train-rmse:0.01763 Train-PyRMSE:0.24935 556s [70] Train-rmse:0.01697 Train-PyRMSE:0.24001 556s [71] Train-rmse:0.01633 Train-PyRMSE:0.23098 556s [72] Train-rmse:0.01582 Train-PyRMSE:0.22368 556s [73] Train-rmse:0.01562 Train-PyRMSE:0.22096 556s [74] Train-rmse:0.01507 Train-PyRMSE:0.21311 556s [75] Train-rmse:0.01488 Train-PyRMSE:0.21037 556s [76] Train-rmse:0.01417 Train-PyRMSE:0.20036 556s [77] Train-rmse:0.01362 Train-PyRMSE:0.19265 556s [78] Train-rmse:0.01314 Train-PyRMSE:0.18588 556s [79] Train-rmse:0.01263 Train-PyRMSE:0.17868 556s [80] Train-rmse:0.01246 Train-PyRMSE:0.17623 556s [81] Train-rmse:0.01228 Train-PyRMSE:0.17369 556s [82] Train-rmse:0.01171 Train-PyRMSE:0.16556 556s [83] Train-rmse:0.01120 Train-PyRMSE:0.15845 556s [84] Train-rmse:0.01081 Train-PyRMSE:0.15289 556s [85] Train-rmse:0.01031 Train-PyRMSE:0.14579 556s [86] Train-rmse:0.00992 Train-PyRMSE:0.14032 556s [87] Train-rmse:0.00976 Train-PyRMSE:0.13809 556s [88] Train-rmse:0.00950 Train-PyRMSE:0.13438 556s [89] Train-rmse:0.00914 Train-PyRMSE:0.12930 556s [90] Train-rmse:0.00878 Train-PyRMSE:0.12417 556s [91] Train-rmse:0.00845 Train-PyRMSE:0.11946 556s [92] Train-rmse:0.00833 Train-PyRMSE:0.11779 556s [93] Train-rmse:0.00816 Train-PyRMSE:0.11542 556s [94] Train-rmse:0.00786 Train-PyRMSE:0.11115 556s [95] Train-rmse:0.00751 Train-PyRMSE:0.10622 556s [96] Train-rmse:0.00742 Train-PyRMSE:0.10500 556s [97] Train-rmse:0.00718 Train-PyRMSE:0.10148 556s [98] Train-rmse:0.00707 Train-PyRMSE:0.10001 556s [99] Train-rmse:0.00685 Train-PyRMSE:0.09681 556s [100] Train-rmse:0.00676 Train-PyRMSE:0.09558 556s [101] Train-rmse:0.00654 Train-PyRMSE:0.09255 556s [102] Train-rmse:0.00628 Train-PyRMSE:0.08888 556s [103] Train-rmse:0.00601 Train-PyRMSE:0.08495 556s [104] Train-rmse:0.00583 Train-PyRMSE:0.08240 556s [105] Train-rmse:0.00576 Train-PyRMSE:0.08150 556s [106] Train-rmse:0.00568 Train-PyRMSE:0.08027 556s [107] Train-rmse:0.00542 Train-PyRMSE:0.07665 557s [108] Train-rmse:0.00521 Train-PyRMSE:0.07373 557s [109] Train-rmse:0.00502 Train-PyRMSE:0.07100 557s [110] Train-rmse:0.00486 Train-PyRMSE:0.06869 557s [111] Train-rmse:0.00468 Train-PyRMSE:0.06612 557s [112] Train-rmse:0.00452 Train-PyRMSE:0.06399 557s [113] Train-rmse:0.00447 Train-PyRMSE:0.06324 557s [114] Train-rmse:0.00429 Train-PyRMSE:0.06062 557s [115] Train-rmse:0.00414 Train-PyRMSE:0.05856 557s [116] Train-rmse:0.00403 Train-PyRMSE:0.05697 557s [117] Train-rmse:0.00389 Train-PyRMSE:0.05498 557s [118] Train-rmse:0.00377 Train-PyRMSE:0.05330 557s [119] Train-rmse:0.00371 Train-PyRMSE:0.05251 557s [120] Train-rmse:0.00358 Train-PyRMSE:0.05058 557s [121] Train-rmse:0.00349 Train-PyRMSE:0.04940 557s [122] Train-rmse:0.00336 Train-PyRMSE:0.04751 557s [123] Train-rmse:0.00332 Train-PyRMSE:0.04702 557s [124] Train-rmse:0.00324 Train-PyRMSE:0.04584 557s [125] Train-rmse:0.00321 Train-PyRMSE:0.04542 557s [126] Train-rmse:0.00318 Train-PyRMSE:0.04502 557s [127] Train-rmse:0.00308 Train-PyRMSE:0.04355 557s [0] Train-rmse:0.29790 Train-PyRMSE:4.21300 557s [1] Train-rmse:0.26995 Train-PyRMSE:3.81773 557s [2] Train-rmse:0.24596 Train-PyRMSE:3.47845 557s [3] Train-rmse:0.22962 Train-PyRMSE:3.24727 557s [4] Train-rmse:0.22042 Train-PyRMSE:3.11716 557s [5] Train-rmse:0.20740 Train-PyRMSE:2.93305 557s [6] Train-rmse:0.20148 Train-PyRMSE:2.84940 557s [7] Train-rmse:0.19043 Train-PyRMSE:2.69310 557s [8] Train-rmse:0.18596 Train-PyRMSE:2.62991 557s [9] Train-rmse:0.17844 Train-PyRMSE:2.52354 557s [10] Train-rmse:0.17484 Train-PyRMSE:2.47255 557s [11] Train-rmse:0.15904 Train-PyRMSE:2.24910 557s [12] Train-rmse:0.15243 Train-PyRMSE:2.15566 557s [13] Train-rmse:0.14346 Train-PyRMSE:2.02886 557s [14] Train-rmse:0.13921 Train-PyRMSE:1.96873 557s [15] Train-rmse:0.13760 Train-PyRMSE:1.94597 557s [16] Train-rmse:0.13004 Train-PyRMSE:1.83909 557s [17] Train-rmse:0.12588 Train-PyRMSE:1.78025 557s [18] Train-rmse:0.12472 Train-PyRMSE:1.76382 557s [19] Train-rmse:0.11921 Train-PyRMSE:1.68592 557s [20] Train-rmse:0.11146 Train-PyRMSE:1.57621 557s [21] Train-rmse:0.10750 Train-PyRMSE:1.52031 557s [22] Train-rmse:0.10276 Train-PyRMSE:1.45326 557s [23] Train-rmse:0.10194 Train-PyRMSE:1.44162 557s [24] Train-rmse:0.09842 Train-PyRMSE:1.39186 557s [25] Train-rmse:0.09715 Train-PyRMSE:1.37398 557s [26] Train-rmse:0.09312 Train-PyRMSE:1.31692 557s [27] Train-rmse:0.09226 Train-PyRMSE:1.30482 557s [28] Train-rmse:0.08662 Train-PyRMSE:1.22503 557s [29] Train-rmse:0.08231 Train-PyRMSE:1.16407 557s [30] Train-rmse:0.08159 Train-PyRMSE:1.15381 557s [31] Train-rmse:0.07851 Train-PyRMSE:1.11031 557s [32] Train-rmse:0.07481 Train-PyRMSE:1.05796 557s [33] Train-rmse:0.07150 Train-PyRMSE:1.01120 557s [34] Train-rmse:0.07080 Train-PyRMSE:1.00132 557s [35] Train-rmse:0.06830 Train-PyRMSE:0.96591 557s [36] Train-rmse:0.06769 Train-PyRMSE:0.95733 557s [37] Train-rmse:0.06484 Train-PyRMSE:0.91694 557s [38] Train-rmse:0.06165 Train-PyRMSE:0.87181 557s [39] Train-rmse:0.05937 Train-PyRMSE:0.83965 557s [40] Train-rmse:0.05873 Train-PyRMSE:0.83051 557s [41] Train-rmse:0.05667 Train-PyRMSE:0.80140 557s [42] Train-rmse:0.05596 Train-PyRMSE:0.79141 557s [43] Train-rmse:0.05416 Train-PyRMSE:0.76589 557s [44] Train-rmse:0.05299 Train-PyRMSE:0.74934 557s [45] Train-rmse:0.05052 Train-PyRMSE:0.71453 557s [46] Train-rmse:0.04922 Train-PyRMSE:0.69609 557s [47] Train-rmse:0.04883 Train-PyRMSE:0.69062 557s [48] Train-rmse:0.04610 Train-PyRMSE:0.65199 557s [49] Train-rmse:0.04417 Train-PyRMSE:0.62469 557s [50] Train-rmse:0.04190 Train-PyRMSE:0.59254 557s [51] Train-rmse:0.04114 Train-PyRMSE:0.58181 557s [52] Train-rmse:0.03957 Train-PyRMSE:0.55954 557s [53] Train-rmse:0.03922 Train-PyRMSE:0.55469 557s [54] Train-rmse:0.03852 Train-PyRMSE:0.54478 557s [55] Train-rmse:0.03717 Train-PyRMSE:0.52562 557s [56] Train-rmse:0.03584 Train-PyRMSE:0.50680 557s [57] Train-rmse:0.03429 Train-PyRMSE:0.48498 557s [58] Train-rmse:0.03400 Train-PyRMSE:0.48083 557s [59] Train-rmse:0.03295 Train-PyRMSE:0.46597 557s [60] Train-rmse:0.03237 Train-PyRMSE:0.45775 557s [61] Train-rmse:0.03091 Train-PyRMSE:0.43707 557s [62] Train-rmse:0.02998 Train-PyRMSE:0.42399 557s [63] Train-rmse:0.02849 Train-PyRMSE:0.40286 557s [64] Train-rmse:0.02729 Train-PyRMSE:0.38595 557s [65] Train-rmse:0.02692 Train-PyRMSE:0.38069 557s [66] Train-rmse:0.02618 Train-PyRMSE:0.37018 557s [67] Train-rmse:0.02588 Train-PyRMSE:0.36600 557s [68] Train-rmse:0.02491 Train-PyRMSE:0.35229 557s [69] Train-rmse:0.02428 Train-PyRMSE:0.34344 557s [70] Train-rmse:0.02398 Train-PyRMSE:0.33907 557s [71] Train-rmse:0.02309 Train-PyRMSE:0.32650 557s [72] Train-rmse:0.02219 Train-PyRMSE:0.31381 557s [73] Train-rmse:0.02094 Train-PyRMSE:0.29616 557s [74] Train-rmse:0.02079 Train-PyRMSE:0.29398 557s [75] Train-rmse:0.02028 Train-PyRMSE:0.28685 557s [76] Train-rmse:0.01931 Train-PyRMSE:0.27311 557s [77] Train-rmse:0.01919 Train-PyRMSE:0.27140 557s [78] Train-rmse:0.01862 Train-PyRMSE:0.26336 557s [79] Train-rmse:0.01743 Train-PyRMSE:0.24652 557s [80] Train-rmse:0.01699 Train-PyRMSE:0.24033 557s [81] Train-rmse:0.01644 Train-PyRMSE:0.23256 557s [82] Train-rmse:0.01565 Train-PyRMSE:0.22127 557s [83] Train-rmse:0.01526 Train-PyRMSE:0.21582 557s [84] Train-rmse:0.01503 Train-PyRMSE:0.21258 557s [85] Train-rmse:0.01450 Train-PyRMSE:0.20508 558s [86] Train-rmse:0.01410 Train-PyRMSE:0.19936 558s [87] Train-rmse:0.01349 Train-PyRMSE:0.19080 558s [88] Train-rmse:0.01288 Train-PyRMSE:0.18211 558s [89] Train-rmse:0.01278 Train-PyRMSE:0.18071 558s [90] Train-rmse:0.01220 Train-PyRMSE:0.17252 558s [91] Train-rmse:0.01179 Train-PyRMSE:0.16679 558s [92] Train-rmse:0.01166 Train-PyRMSE:0.16490 558s [93] Train-rmse:0.01132 Train-PyRMSE:0.16008 558s [94] Train-rmse:0.01088 Train-PyRMSE:0.15388 558s [95] Train-rmse:0.01060 Train-PyRMSE:0.14993 558s [96] Train-rmse:0.01006 Train-PyRMSE:0.14229 558s [97] Train-rmse:0.00998 Train-PyRMSE:0.14109 558s [98] Train-rmse:0.00954 Train-PyRMSE:0.13496 558s [99] Train-rmse:0.00948 Train-PyRMSE:0.13406 558s [100] Train-rmse:0.00926 Train-PyRMSE:0.13098 558s [101] Train-rmse:0.00901 Train-PyRMSE:0.12747 558s [102] Train-rmse:0.00885 Train-PyRMSE:0.12510 558s [103] Train-rmse:0.00847 Train-PyRMSE:0.11979 558s [104] Train-rmse:0.00833 Train-PyRMSE:0.11784 558s [105] Train-rmse:0.00791 Train-PyRMSE:0.11187 558s [106] Train-rmse:0.00787 Train-PyRMSE:0.11125 558s [107] Train-rmse:0.00755 Train-PyRMSE:0.10682 558s [108] Train-rmse:0.00724 Train-PyRMSE:0.10245 558s [109] Train-rmse:0.00705 Train-PyRMSE:0.09976 558s [110] Train-rmse:0.00683 Train-PyRMSE:0.09662 558s [111] Train-rmse:0.00656 Train-PyRMSE:0.09274 558s [112] Train-rmse:0.00641 Train-PyRMSE:0.09058 558s [113] Train-rmse:0.00631 Train-PyRMSE:0.08921 558s [114] Train-rmse:0.00606 Train-PyRMSE:0.08569 558s [115] Train-rmse:0.00583 Train-PyRMSE:0.08241 558s [116] Train-rmse:0.00578 Train-PyRMSE:0.08175 558s [117] Train-rmse:0.00562 Train-PyRMSE:0.07946 558s [118] Train-rmse:0.00553 Train-PyRMSE:0.07818 558s [119] Train-rmse:0.00533 Train-PyRMSE:0.07539 558s [120] Train-rmse:0.00514 Train-PyRMSE:0.07262 558s [121] Train-rmse:0.00510 Train-PyRMSE:0.07211 558s [122] Train-rmse:0.00501 Train-PyRMSE:0.07088 558s [123] Train-rmse:0.00489 Train-PyRMSE:0.06912 558s [124] Train-rmse:0.00475 Train-PyRMSE:0.06722 558s [125] Train-rmse:0.00473 Train-PyRMSE:0.06690 558s [126] Train-rmse:0.00467 Train-PyRMSE:0.06603 558s [127] Train-rmse:0.00443 Train-PyRMSE:0.06259 559s ========================================== 559s Running case predict_first_ntree.py... 564s /usr/lib/python3/dist-packages/xgboost/core.py:723: FutureWarning: Pass `evals` as keyword args. 564s warnings.warn(msg, FutureWarning) 565s [0] eval-logloss:0.22646 train-logloss:0.23316 565s [1] eval-logloss:0.13776 train-logloss:0.13654 565s [2] eval-logloss:0.08036 train-logloss:0.08243 567s start testing prediction from first n trees 567s error of ypred1=0.042831 567s error of ypred2=0.006207 567s [0] validation_0-logloss:0.22646 567s [1] validation_0-logloss:0.13776 567s [2] validation_0-logloss:0.08036 567s start testing prediction from first n trees 567s error of ypred1=0.042831 567s error of ypred2=0.006207 567s ========================================== 567s Running case predict_leaf_indices.py... 573s /usr/lib/python3/dist-packages/xgboost/core.py:723: FutureWarning: Pass `evals` as keyword args. 573s warnings.warn(msg, FutureWarning) 573s [0] eval-logloss:0.22646 train-logloss:0.23316 573s [1] eval-logloss:0.13776 train-logloss:0.13654 573s [2] eval-logloss:0.08036 train-logloss:0.08243 573s start testing predict the leaf indices 573s (1611, 2, 1, 1) 573s [[[[5.]] 573s 573s [[4.]]] 573s 573s 573s [[[6.]] 573s 573s [[4.]]] 573s 573s 573s [[[5.]] 573s 573s [[4.]]] 573s 573s 573s ... 573s 573s 573s [[[6.]] 573s 573s [[4.]]] 573s 573s 573s [[[4.]] 573s 573s [[3.]]] 573s 573s 573s [[[6.]] 573s 573s [[4.]]]] 573s (1611, 3) 574s ========================================== 574s Skip case quantile_data_iterator.py... 574s ========================================== 574s Running case quantile_regression.py... 580s [0] Train-quantile:1.50159 Test-quantile:1.45489 580s [1] Train-quantile:1.41395 Test-quantile:1.36960 580s [2] Train-quantile:1.33178 Test-quantile:1.28702 580s [3] Train-quantile:1.25429 Test-quantile:1.21133 580s [4] Train-quantile:1.18373 Test-quantile:1.13959 580s [5] Train-quantile:1.11898 Test-quantile:1.07261 580s [6] Train-quantile:1.05770 Test-quantile:1.01264 580s [7] Train-quantile:1.00142 Test-quantile:0.96139 580s [8] Train-quantile:0.94844 Test-quantile:0.91339 580s [9] Train-quantile:0.89917 Test-quantile:0.86934 580s [10] Train-quantile:0.85692 Test-quantile:0.82830 580s [11] Train-quantile:0.81823 Test-quantile:0.79270 580s [12] Train-quantile:0.78400 Test-quantile:0.75817 580s [13] Train-quantile:0.75333 Test-quantile:0.72983 580s [14] Train-quantile:0.72555 Test-quantile:0.70335 580s [15] Train-quantile:0.69885 Test-quantile:0.67960 580s [16] Train-quantile:0.67482 Test-quantile:0.65947 580s [17] Train-quantile:0.65359 Test-quantile:0.64055 580s [18] Train-quantile:0.63363 Test-quantile:0.62346 580s [19] Train-quantile:0.61495 Test-quantile:0.60855 580s [20] Train-quantile:0.59783 Test-quantile:0.59489 580s [21] Train-quantile:0.58197 Test-quantile:0.58130 580s [22] Train-quantile:0.56682 Test-quantile:0.56949 580s [23] Train-quantile:0.55237 Test-quantile:0.55744 580s [24] Train-quantile:0.53809 Test-quantile:0.54622 580s [25] Train-quantile:0.52441 Test-quantile:0.53571 580s [26] Train-quantile:0.51174 Test-quantile:0.52520 580s [27] Train-quantile:0.49974 Test-quantile:0.51546 580s [28] Train-quantile:0.48865 Test-quantile:0.50628 580s [29] Train-quantile:0.47833 Test-quantile:0.49784 580s [30] Train-quantile:0.46895 Test-quantile:0.48966 580s [31] Train-quantile:0.45900 Test-quantile:0.48302 580s [0] Train-rmse:4.32523 Test-rmse:4.63143 580s [1] Train-rmse:4.21367 Test-rmse:4.53399 580s [2] Train-rmse:4.10813 Test-rmse:4.44222 580s [3] Train-rmse:4.00795 Test-rmse:4.35559 580s [4] Train-rmse:3.91314 Test-rmse:4.27507 580s [5] Train-rmse:3.82342 Test-rmse:4.19994 580s [6] Train-rmse:3.73860 Test-rmse:4.12864 580s [7] Train-rmse:3.65855 Test-rmse:4.06333 580s [8] Train-rmse:3.58302 Test-rmse:3.99920 580s [9] Train-rmse:3.51166 Test-rmse:3.94100 580s [10] Train-rmse:3.44443 Test-rmse:3.88581 580s [11] Train-rmse:3.38085 Test-rmse:3.83491 580s [12] Train-rmse:3.32121 Test-rmse:3.78659 580s [13] Train-rmse:3.26491 Test-rmse:3.74137 580s [14] Train-rmse:3.21217 Test-rmse:3.69918 580s [15] Train-rmse:3.16233 Test-rmse:3.66047 580s [16] Train-rmse:3.11625 Test-rmse:3.62292 580s [17] Train-rmse:3.07250 Test-rmse:3.58980 580s [18] Train-rmse:3.03120 Test-rmse:3.55971 580s [19] Train-rmse:2.99260 Test-rmse:3.53039 580s [20] Train-rmse:2.95471 Test-rmse:3.50273 580s [21] Train-rmse:2.92082 Test-rmse:3.47765 580s [22] Train-rmse:2.88707 Test-rmse:3.45409 580s [23] Train-rmse:2.85719 Test-rmse:3.43196 580s [24] Train-rmse:2.82955 Test-rmse:3.41116 580s [25] Train-rmse:2.80145 Test-rmse:3.39262 580s [26] Train-rmse:2.77526 Test-rmse:3.37544 580s [27] Train-rmse:2.75237 Test-rmse:3.35703 580s [28] Train-rmse:2.73071 Test-rmse:3.34065 580s [29] Train-rmse:2.70895 Test-rmse:3.32714 580s [30] Train-rmse:2.69007 Test-rmse:3.31295 580s [31] Train-rmse:2.67125 Test-rmse:3.30119 581s ========================================== 581s Running case sklearn_evals_result.py... 586s [0] validation_0-logloss:0.63169 validation_1-logloss:0.65974 586s [1] validation_0-logloss:0.58449 validation_1-logloss:0.62161 586s Access logloss metric directly from validation_0: 586s [0.6316909282654524, 0.5844871088303626] 586s 586s Access metrics through a loop: 586s - validation_0 586s - logloss 586s - [0.6316909282654524, 0.5844871088303626] 586s - validation_1 586s - logloss 586s - [0.6597448766976595, 0.6216080508381129] 586s 586s Access complete dict: 586s {'validation_0': OrderedDict({'logloss': [0.6316909282654524, 0.5844871088303626]}), 'validation_1': OrderedDict({'logloss': [0.6597448766976595, 0.6216080508381129]})} 586s ========================================== 586s Running case sklearn_examples.py... 605s Zeros and Ones from the Digits dataset: binary classification 605s [[87 0] 605s [ 1 92]] 605s [[91 0] 605s [ 3 86]] 605s Iris: multiclass classification 605s [[19 0 0] 605s [ 1 31 2] 605s [ 0 3 19]] 605s [[31 0 0] 605s [ 0 16 0] 605s [ 0 1 27]] 605s California Housing: regression 605s 0.2310805601814026 605s 0.23533764411819863 605s Parameter optimization 605s Fitting 3 folds for each of 4 candidates, totalling 12 fits 605s 0.6838972456687431 605s {'max_depth': 4, 'n_estimators': 100} 605s Pickling sklearn API models 605s True 605s [0] validation_0-auc:0.99020 605s [1] validation_0-auc:0.99975 605s [2] validation_0-auc:0.99975 605s [3] validation_0-auc:0.99975 605s [4] validation_0-auc:0.99975 605s [5] validation_0-auc:0.99975 605s [6] validation_0-auc:1.00000 605s [7] validation_0-auc:1.00000 605s [8] validation_0-auc:1.00000 605s [9] validation_0-auc:1.00000 605s [10] validation_0-auc:1.00000 605s [11] validation_0-auc:1.00000 605s [12] validation_0-auc:1.00000 605s [13] validation_0-auc:1.00000 605s [14] validation_0-auc:1.00000 605s [15] validation_0-auc:1.00000 605s [16] validation_0-auc:1.00000 606s ========================================== 606s Running case sklearn_parallel.py... 609s Parallel Parameter optimization 609s Fitting 5 folds for each of 9 candidates, totalling 45 fits 645s 0.688555675183378 645s {'max_depth': 4, 'n_estimators': 50} 645s Exception ignored in: 645s Traceback (most recent call last): 645s File "/usr/lib/python3.13/multiprocessing/resource_tracker.py", line 82, in __del__ 645s File "/usr/lib/python3.13/multiprocessing/resource_tracker.py", line 91, in _stop 645s File "/usr/lib/python3.13/multiprocessing/resource_tracker.py", line 116, in _stop_locked 645s ChildProcessError: [Errno 10] No child processes 646s Exception ignored in: 646s Traceback (most recent call last): 646s File "/usr/lib/python3.13/multiprocessing/resource_tracker.py", line 82, in __del__ 646s File "/usr/lib/python3.13/multiprocessing/resource_tracker.py", line 91, in _stop 646s File "/usr/lib/python3.13/multiprocessing/resource_tracker.py", line 116, in _stop_locked 646s ChildProcessError: [Errno 10] No child processes 647s ========================================== 647s Skip case spark_estimator_examples.py... 647s ========================================== 647s Skip case update_process.py... 647s ========================================== 647s All cases passed. 647s /tmp/autopkgtest.jlLNaQ/wrapper.sh: Killing leaked background processes: 9044 647s PID TTY STAT TIME COMMAND 647s /tmp/autopkgtest.jlLNaQ/wrapper.sh: 235: kill: No such process 647s 647s /tmp/autopkgtest.jlLNaQ/wrapper.sh: 237: kill: No such process 647s 648s autopkgtest [18:52:43]: test run-demos: -----------------------] 648s autopkgtest [18:52:43]: test run-demos: - - - - - - - - - - results - - - - - - - - - - 648s run-demos PASS 648s autopkgtest [18:52:43]: @@@@@@@@@@@@@@@@@@@@ summary 648s run-demos PASS 664s nova [W] Using flock in prodstack7-s390x 664s Creating nova instance adt-questing-s390x-xgboost-20250501-184155-juju-7f2275-prod-proposed-migration-environment-23-4154552c-b107-4303-afab-dc3b8e4abf6d from image adt/ubuntu-questing-s390x-server-20250501.img (UUID 2a693762-e567-4bbe-9838-630e77f0775f)... 664s nova [W] Timed out waiting for 6e503dd0-8170-4b72-b5e4-03f2244a720f to get deleted.