0s autopkgtest [13:51:12]: starting date and time: 2025-03-15 13:51:12+0000
  0s autopkgtest [13:51:12]: git checkout: 325255d2 Merge branch 'pin-any-arch' into 'ubuntu/production'
  0s autopkgtest [13:51:12]: host juju-7f2275-prod-proposed-migration-environment-15; command line: /home/ubuntu/autopkgtest/runner/autopkgtest --output-dir /tmp/autopkgtest-work.yredxyk4/out --timeout-copy=6000 --setup-commands /home/ubuntu/autopkgtest-cloud/worker-config-production/setup-canonical.sh --apt-pocket=proposed=src:glibc --apt-upgrade octave-statistics --timeout-short=300 --timeout-copy=20000 --timeout-build=20000 --env=ADT_TEST_TRIGGERS=glibc/2.41-1ubuntu2 -- ssh -s /home/ubuntu/autopkgtest/ssh-setup/nova -- --flavor autopkgtest --security-groups autopkgtest-juju-7f2275-prod-proposed-migration-environment-15@bos03-arm64-43.secgroup --name adt-plucky-arm64-octave-statistics-20250315-135110-juju-7f2275-prod-proposed-migration-environment-15-3125edf7-fdda-4d31-b120-7ce2f1404de9 --image adt/ubuntu-plucky-arm64-server --keyname testbed-juju-7f2275-prod-proposed-migration-environment-15 --net-id=net_prod-proposed-migration -e TERM=linux -e ''"'"'http_proxy=http://squid.internal:3128'"'"'' -e ''"'"'https_proxy=http://squid.internal:3128'"'"'' -e ''"'"'no_proxy=127.0.0.1,127.0.1.1,login.ubuntu.com,localhost,localdomain,novalocal,internal,archive.ubuntu.com,ports.ubuntu.com,security.ubuntu.com,ddebs.ubuntu.com,changelogs.ubuntu.com,keyserver.ubuntu.com,launchpadlibrarian.net,launchpadcontent.net,launchpad.net,10.24.0.0/24,keystone.ps5.canonical.com,objectstorage.prodstack5.canonical.com,radosgw.ps5.canonical.com'"'"'' --mirror=http://ftpmaster.internal/ubuntu/
188s autopkgtest [13:54:20]: testbed dpkg architecture: arm64
188s autopkgtest [13:54:20]: testbed apt version: 2.9.33
189s autopkgtest [13:54:21]: @@@@@@@@@@@@@@@@@@@@ test bed setup
189s autopkgtest [13:54:21]: testbed release detected to be: None
190s autopkgtest [13:54:22]: updating testbed package index (apt update)
190s Get:1 http://ftpmaster.internal/ubuntu plucky-proposed InRelease [126 kB]
190s Hit:2 http://ftpmaster.internal/ubuntu plucky InRelease
191s Hit:3 http://ftpmaster.internal/ubuntu plucky-updates InRelease
191s Hit:4 http://ftpmaster.internal/ubuntu plucky-security InRelease
191s Get:5 http://ftpmaster.internal/ubuntu plucky-proposed/main Sources [101 kB]
191s Get:6 http://ftpmaster.internal/ubuntu plucky-proposed/multiverse Sources [15.8 kB]
191s Get:7 http://ftpmaster.internal/ubuntu plucky-proposed/universe Sources [404 kB]
191s Get:8 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 Packages [78.2 kB]
191s Get:9 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 c-n-f Metadata [1976 B]
191s Get:10 http://ftpmaster.internal/ubuntu plucky-proposed/restricted arm64 c-n-f Metadata [116 B]
191s Get:11 http://ftpmaster.internal/ubuntu plucky-proposed/universe arm64 Packages [346 kB]
192s Get:12 http://ftpmaster.internal/ubuntu plucky-proposed/universe arm64 c-n-f Metadata [15.8 kB]
192s Get:13 http://ftpmaster.internal/ubuntu plucky-proposed/multiverse arm64 Packages [4948 B]
192s Get:14 http://ftpmaster.internal/ubuntu plucky-proposed/multiverse arm64 c-n-f Metadata [572 B]
192s Fetched 1094 kB in 2s (565 kB/s)
193s Reading package lists...
194s + lsb_release --codename --short
194s + RELEASE=plucky
194s + cat
194s + [ plucky != trusty ]
194s + DEBIAN_FRONTEND=noninteractive eatmydata apt-get -y --allow-downgrades -o Dpkg::Options::=--force-confnew dist-upgrade
194s Reading package lists...
194s Building dependency tree...
194s Reading state information...
195s Calculating upgrade...
195s Calculating upgrade...
195s The following packages will be upgraded:
195s   python3-jinja2 strace
196s 2 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
196s Need to get 608 kB of archives.
196s After this operation, 11.3 kB of additional disk space will be used.
196s Get:1 http://ftpmaster.internal/ubuntu plucky/main arm64 strace arm64 6.13+ds-1ubuntu1 [499 kB]
196s Get:2 http://ftpmaster.internal/ubuntu plucky/main arm64 python3-jinja2 all 3.1.5-2ubuntu1 [109 kB]
197s Fetched 608 kB in 1s (612 kB/s)
197s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 117701 files and directories currently installed.)
197s Preparing to unpack .../strace_6.13+ds-1ubuntu1_arm64.deb ...
197s Unpacking strace (6.13+ds-1ubuntu1) over (6.11-0ubuntu1) ...
197s Preparing to unpack .../python3-jinja2_3.1.5-2ubuntu1_all.deb ...
197s Unpacking python3-jinja2 (3.1.5-2ubuntu1) over (3.1.5-2) ...
197s Setting up python3-jinja2 (3.1.5-2ubuntu1) ...
198s Setting up strace (6.13+ds-1ubuntu1) ...
198s Processing triggers for man-db (2.13.0-1) ...
198s + rm /etc/apt/preferences.d/force-downgrade-to-release.pref
198s + /usr/lib/apt/apt-helper analyze-pattern ?true
198s + + sed s/\./\\./g
198s uname -r
198s + running_kernel_pattern=^linux-.*6\.14\.0-10-generic.*
198s + apt list ?obsolete
198s + tail -n+2
198s + cut -d/ -f1
198s + grep -v ^linux-.*6\.14\.0-10-generic.*
199s + obsolete_pkgs=linux-headers-6.11.0-8-generic
199s linux-headers-6.11.0-8
199s linux-image-6.11.0-8-generic
199s linux-modules-6.11.0-8-generic
199s linux-tools-6.11.0-8-generic
199s linux-tools-6.11.0-8
199s + DEBIAN_FRONTEND=noninteractive eatmydata apt-get -y purge --autoremove linux-headers-6.11.0-8-generic linux-headers-6.11.0-8 linux-image-6.11.0-8-generic linux-modules-6.11.0-8-generic linux-tools-6.11.0-8-generic linux-tools-6.11.0-8
199s Reading package lists...
199s Building dependency tree...
199s Reading state information...
199s Solving dependencies...
200s The following packages will be REMOVED:
200s   libnsl2* libpython3.12-minimal* libpython3.12-stdlib* libpython3.12t64*
200s   libunwind8* linux-headers-6.11.0-8* linux-headers-6.11.0-8-generic*
200s   linux-image-6.11.0-8-generic* linux-modules-6.11.0-8-generic*
200s   linux-tools-6.11.0-8* linux-tools-6.11.0-8-generic*
200s 0 upgraded, 0 newly installed, 11 to remove and 5 not upgraded.
200s After this operation, 267 MB disk space will be freed.
200s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 117701 files and directories currently installed.)
200s Removing linux-tools-6.11.0-8-generic (6.11.0-8.8) ...
200s Removing linux-tools-6.11.0-8 (6.11.0-8.8) ...
200s Removing libpython3.12t64:arm64 (3.12.9-1) ...
200s Removing libpython3.12-stdlib:arm64 (3.12.9-1) ...
200s Removing libnsl2:arm64 (1.3.0-3build3) ...
200s Removing libpython3.12-minimal:arm64 (3.12.9-1) ...
201s Removing libunwind8:arm64 (1.6.2-3.1) ...
201s Removing linux-headers-6.11.0-8-generic (6.11.0-8.8) ...
201s Removing linux-headers-6.11.0-8 (6.11.0-8.8) ...
203s Removing linux-image-6.11.0-8-generic (6.11.0-8.8) ...
203s I: /boot/vmlinuz.old is now a symlink to vmlinuz-6.14.0-10-generic
203s I: /boot/initrd.img.old is now a symlink to initrd.img-6.14.0-10-generic
203s /etc/kernel/postrm.d/initramfs-tools:
203s update-initramfs: Deleting /boot/initrd.img-6.11.0-8-generic
203s /etc/kernel/postrm.d/zz-flash-kernel:
203s flash-kernel: Kernel 6.11.0-8-generic has been removed.
203s flash-kernel: A higher version (6.14.0-10-generic) is still installed, no reflashing required.
204s /etc/kernel/postrm.d/zz-update-grub:
204s Sourcing file `/etc/default/grub'
204s Sourcing file `/etc/default/grub.d/50-cloudimg-settings.cfg'
204s Generating grub configuration file ...
204s Found linux image: /boot/vmlinuz-6.14.0-10-generic
204s Found initrd image: /boot/initrd.img-6.14.0-10-generic
204s Warning: os-prober will not be executed to detect other bootable partitions.
204s Systems on them will not be added to the GRUB boot configuration.
204s Check GRUB_DISABLE_OS_PROBER documentation entry.
204s Adding boot menu entry for UEFI Firmware Settings ...
204s done
204s Removing linux-modules-6.11.0-8-generic (6.11.0-8.8) ...
205s Processing triggers for libc-bin (2.41-1ubuntu1) ...
205s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 81650 files and directories currently installed.)
205s Purging configuration files for linux-image-6.11.0-8-generic (6.11.0-8.8) ...
205s Purging configuration files for libpython3.12-minimal:arm64 (3.12.9-1) ...
205s Purging configuration files for linux-modules-6.11.0-8-generic (6.11.0-8.8) ...
205s + grep -q trusty /etc/lsb-release
205s + [ ! -d /usr/share/doc/unattended-upgrades ]
205s + [ ! -d /usr/share/doc/lxd ]
205s + [ ! -d /usr/share/doc/lxd-client ]
205s + [ ! -d /usr/share/doc/snapd ]
205s + type iptables
205s + cat
205s + chmod 755 /etc/rc.local
205s + . /etc/rc.local
205s + iptables -w -t mangle -A FORWARD -p tcp --tcp-flags SYN,RST SYN -j TCPMSS --clamp-mss-to-pmtu
205s + iptables -A OUTPUT -d 10.255.255.1/32 -p tcp -j DROP
205s + iptables -A OUTPUT -d 10.255.255.2/32 -p tcp -j DROP
205s + uname -m
205s + [ aarch64 = ppc64le ]
205s + [ -d /run/systemd/system ]
205s + systemd-detect-virt --quiet --vm
205s + mkdir -p /etc/systemd/system/systemd-random-seed.service.d/
205s + cat
205s + grep -q lz4 /etc/initramfs-tools/initramfs.conf
205s + echo COMPRESS=lz4
205s autopkgtest [13:54:37]: upgrading testbed (apt dist-upgrade and autopurge)
205s Reading package lists...
206s Building dependency tree...
206s Reading state information...
206s Calculating upgrade...Starting pkgProblemResolver with broken count: 0
206s Starting 2 pkgProblemResolver with broken count: 0
206s Done
207s Entering ResolveByKeep
207s 
207s Calculating upgrade...
208s The following packages will be upgraded:
208s   libc-bin libc-dev-bin libc6 libc6-dev locales
208s 5 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
208s Need to get 9530 kB of archives.
208s After this operation, 0 B of additional disk space will be used.
208s Get:1 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 libc6-dev arm64 2.41-1ubuntu2 [1750 kB]
210s Get:2 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 libc-dev-bin arm64 2.41-1ubuntu2 [24.0 kB]
210s Get:3 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 libc6 arm64 2.41-1ubuntu2 [2910 kB]
213s Get:4 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 libc-bin arm64 2.41-1ubuntu2 [600 kB]
213s Get:5 http://ftpmaster.internal/ubuntu plucky-proposed/main arm64 locales all 2.41-1ubuntu2 [4246 kB]
218s Preconfiguring packages ...
218s Fetched 9530 kB in 10s (980 kB/s)
218s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 81647 files and directories currently installed.)
218s Preparing to unpack .../libc6-dev_2.41-1ubuntu2_arm64.deb ...
218s Unpacking libc6-dev:arm64 (2.41-1ubuntu2) over (2.41-1ubuntu1) ...
218s Preparing to unpack .../libc-dev-bin_2.41-1ubuntu2_arm64.deb ...
218s Unpacking libc-dev-bin (2.41-1ubuntu2) over (2.41-1ubuntu1) ...
218s Preparing to unpack .../libc6_2.41-1ubuntu2_arm64.deb ...
219s Unpacking libc6:arm64 (2.41-1ubuntu2) over (2.41-1ubuntu1) ...
219s Setting up libc6:arm64 (2.41-1ubuntu2) ...
219s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 81647 files and directories currently installed.)
219s Preparing to unpack .../libc-bin_2.41-1ubuntu2_arm64.deb ...
219s Unpacking libc-bin (2.41-1ubuntu2) over (2.41-1ubuntu1) ...
219s Setting up libc-bin (2.41-1ubuntu2) ...
219s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 81647 files and directories currently installed.)
219s Preparing to unpack .../locales_2.41-1ubuntu2_all.deb ...
219s Unpacking locales (2.41-1ubuntu2) over (2.41-1ubuntu1) ...
219s Setting up locales (2.41-1ubuntu2) ...
220s Generating locales (this might take a while)...
222s   en_US.UTF-8... done
222s Generation complete.
222s Setting up libc-dev-bin (2.41-1ubuntu2) ...
222s Setting up libc6-dev:arm64 (2.41-1ubuntu2) ...
222s Processing triggers for man-db (2.13.0-1) ...
223s Processing triggers for systemd (257.3-1ubuntu3) ...
224s Reading package lists...
224s Building dependency tree...
224s Reading state information...
225s Starting pkgProblemResolver with broken count: 0
226s Starting 2 pkgProblemResolver with broken count: 0
226s Done
227s Solving dependencies...
228s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
228s autopkgtest [13:55:00]: rebooting testbed after setup commands that affected boot
254s autopkgtest [13:55:26]: testbed running kernel: Linux 6.14.0-10-generic #10-Ubuntu SMP PREEMPT_DYNAMIC Wed Mar 12 15:45:31 UTC 2025
259s autopkgtest [13:55:31]: @@@@@@@@@@@@@@@@@@@@ apt-source octave-statistics
263s Get:1 http://ftpmaster.internal/ubuntu plucky/universe octave-statistics 1.7.3-2 (dsc) [2285 B]
263s Get:2 http://ftpmaster.internal/ubuntu plucky/universe octave-statistics 1.7.3-2 (tar) [1302 kB]
263s Get:3 http://ftpmaster.internal/ubuntu plucky/universe octave-statistics 1.7.3-2 (diff) [9744 B]
264s gpgv: Signature made Thu Feb 20 15:34:23 2025 UTC
264s gpgv:                using RSA key 53951D95272E0C5B82BE8C4A2CECE9350ECEBE4A
264s gpgv: Can't check signature: No public key
264s dpkg-source: warning: cannot verify inline signature for ./octave-statistics_1.7.3-2.dsc: no acceptable signature found
264s autopkgtest [13:55:36]: testing package octave-statistics version 1.7.3-2
267s autopkgtest [13:55:39]: build not needed
270s autopkgtest [13:55:42]: test command1: preparing testbed
270s Reading package lists...
271s Building dependency tree...
271s Reading state information...
271s Starting pkgProblemResolver with broken count: 0
272s Starting 2 pkgProblemResolver with broken count: 0
272s Done
273s The following NEW packages will be installed:
273s   aglfn appstream autoconf automake autopoint autotools-dev cme comerr-dev cpp
273s   cpp-14 cpp-14-aarch64-linux-gnu cpp-aarch64-linux-gnu debhelper debugedit
273s   dh-autoreconf dh-octave dh-octave-autopkgtest dh-strip-nondeterminism
273s   diffstat dwz fontconfig fontconfig-config fonts-dejavu-core
273s   fonts-dejavu-mono fonts-freefont-otf g++ g++-14 g++-14-aarch64-linux-gnu
273s   g++-aarch64-linux-gnu gcc gcc-14 gcc-14-aarch64-linux-gnu
273s   gcc-aarch64-linux-gnu gettext gfortran gfortran-14
273s   gfortran-14-aarch64-linux-gnu gfortran-aarch64-linux-gnu gnuplot-data
273s   gnuplot-nox hdf5-helpers intltool-debian krb5-multidev libaec-dev libaec0
273s   libalgorithm-c3-perl libaliased-perl libamd3 libaom3 libapp-cmd-perl
273s   libappstream5 libapt-pkg-perl libarchive-zip-perl libarpack2t64
273s   libarray-intspan-perl libasan8 libasound2-data libasound2t64
273s   libavahi-client3 libavahi-common-data libavahi-common3
273s   libb-hooks-endofscope-perl libb-hooks-op-check-perl libb2-1
273s   libberkeleydb-perl libblas-dev libblas3 libboolean-perl libbrotli-dev
273s   libcairo2 libcamd3 libcapture-tiny-perl libcarp-assert-more-perl libcc1-0
273s   libccolamd3 libcgi-pm-perl libcholmod5 libclass-c3-perl
273s   libclass-data-inheritable-perl libclass-inspector-perl libclass-load-perl
273s   libclass-method-modifiers-perl libclass-xsaccessor-perl libclone-choose-perl
273s   libclone-perl libcolamd3 libconfig-model-backend-yaml-perl
273s   libconfig-model-dpkg-perl libconfig-model-perl libconfig-tiny-perl
273s   libconst-fast-perl libconvert-binhex-perl libcpanel-json-xs-perl libcups2t64
273s   libcurl4-openssl-dev libcxsparse4 libdata-dpath-perl
273s   libdata-messagepack-perl libdata-optlist-perl libdata-section-perl
273s   libdata-validate-domain-perl libdata-validate-ip-perl
273s   libdata-validate-uri-perl libdatrie1 libde265-0 libdebhelper-perl
273s   libdeflate0 libdevel-callchecker-perl libdevel-size-perl
273s   libdevel-stacktrace-perl libdouble-conversion3 libduktape207
273s   libdynaloader-functions-perl libegl-mesa0 libegl1 libemail-address-xs-perl
273s   libencode-locale-perl liberror-perl libevent-2.1-7t64
273s   libexception-class-perl libexporter-lite-perl libexporter-tiny-perl
273s   libfftw3-bin libfftw3-dev libfftw3-double3 libfftw3-long3 libfftw3-single3
273s   libfile-basedir-perl libfile-find-rule-perl libfile-homedir-perl
273s   libfile-listing-perl libfile-sharedir-perl libfile-stripnondeterminism-perl
273s   libfile-which-perl libflac12t64 libfltk-gl1.3t64 libfltk1.3t64
273s   libfont-ttf-perl libfontconfig1 libfontenc1 libgbm1 libgcc-14-dev libgd3
273s   libgetopt-long-descriptive-perl libgfortran-14-dev libgfortran5 libgl-dev
273s   libgl1 libgl1-mesa-dri libgl2ps1.4 libglpk40 libglu1-mesa libglvnd0
273s   libglx-dev libglx-mesa0 libglx0 libgmp-dev libgmpxx4ldbl libgnutls-dane0t64
273s   libgnutls-openssl27t64 libgnutls28-dev libgomp1
273s   libgraphicsmagick++-q16-12t64 libgraphicsmagick-q16-3t64 libgraphite2-3
273s   libgssrpc4t64 libharfbuzz0b libhash-merge-perl libhdf5-310 libhdf5-cpp-310
273s   libhdf5-dev libhdf5-fortran-310 libhdf5-hl-310 libhdf5-hl-cpp-310
273s   libhdf5-hl-fortran-310 libheif-plugin-aomdec libheif-plugin-libde265
273s   libheif1 libhtml-form-perl libhtml-html5-entities-perl libhtml-parser-perl
273s   libhtml-tagset-perl libhtml-tokeparser-simple-perl libhtml-tree-perl
273s   libhttp-cookies-perl libhttp-date-perl libhttp-message-perl
273s   libhttp-negotiate-perl libhwasan0 libhwy1t64 libice6 libidn2-dev
273s   libimagequant0 libimport-into-perl libindirect-perl libinput-bin libinput10
273s   libio-html-perl libio-interactive-perl libio-socket-ssl-perl
273s   libio-string-perl libio-stringy-perl libio-tiecombine-perl libipc-run3-perl
273s   libipc-system-simple-perl libisl23 libiterator-perl libiterator-util-perl
273s   libitm1 libjack-jackd2-0 libjbig0 libjpeg-dev libjpeg-turbo8
273s   libjpeg-turbo8-dev libjpeg8 libjpeg8-dev libjson-maybexs-perl libjson-perl
273s   libjxl0.11 libkadm5clnt-mit12 libkadm5srv-mit12 libkdb5-10t64 libkrb5-dev
273s   liblapack-dev liblapack3 liblcms2-2 libldap-dev liblerc4
273s   liblist-compare-perl liblist-moreutils-perl liblist-moreutils-xs-perl
273s   liblist-someutils-perl liblist-utilsby-perl liblog-any-adapter-screen-perl
273s   liblog-any-perl liblog-log4perl-perl liblsan0 libltdl7 liblua5.4-0
273s   liblwp-mediatypes-perl liblwp-protocol-https-perl libmailtools-perl
273s   libmarkdown2 libmd4c0 libmime-tools-perl libmldbm-perl
273s   libmodule-implementation-perl libmodule-pluggable-perl
273s   libmodule-runtime-perl libmoo-perl libmoox-aliases-perl libmouse-perl
273s   libmousex-nativetraits-perl libmousex-strictconstructor-perl libmp3lame0
273s   libmpc3 libmpg123-0t64 libmro-compat-perl libmtdev1t64
273s   libnamespace-clean-perl libncurses-dev libnet-domain-tld-perl
273s   libnet-http-perl libnet-ipv6addr-perl libnet-netmask-perl
273s   libnet-smtp-ssl-perl libnet-ssleay-perl libnetaddr-ip-perl libnghttp2-dev
273s   libnumber-compare-perl libobject-pad-perl libogg0 libopengl0 libopus0
273s   libp11-kit-dev libpackage-stash-perl libpango-1.0-0 libpangocairo-1.0-0
273s   libpangoft2-1.0-0 libparams-classify-perl libparams-util-perl
273s   libparams-validate-perl libparse-debcontrol-perl libparse-recdescent-perl
273s   libpath-iterator-rule-perl libpath-tiny-perl libpcre2-16-0
273s   libperlio-gzip-perl libperlio-utf8-strict-perl libpixman-1-0 libpkgconf3
273s   libpod-constants-perl libpod-parser-perl libpod-pom-perl libportaudio2
273s   libproc-processtable-perl libproxy1v5 libpsl-dev libqhull-r8.0 libqrupdate1
273s   libqscintilla2-qt6-15 libqscintilla2-qt6-l10n libqt6core5compat6
273s   libqt6core6t64 libqt6dbus6 libqt6gui6 libqt6help6 libqt6network6
273s   libqt6opengl6 libqt6openglwidgets6 libqt6printsupport6 libqt6sql6
273s   libqt6widgets6 libqt6xml6 libraqm0 libreadline-dev libregexp-common-perl
273s   libregexp-pattern-license-perl libregexp-pattern-perl
273s   libregexp-wildcards-perl librole-tiny-perl librtmp-dev libsamplerate0
273s   libsereal-decoder-perl libsereal-encoder-perl libset-intspan-perl
273s   libsharpyuv0 libsm6 libsndfile1 libsoftware-copyright-perl
273s   libsoftware-license-perl libsoftware-licensemoreutils-perl
273s   libsort-versions-perl libspqr4 libssh2-1-dev libssl-dev libstdc++-14-dev
273s   libstemmer0d libstrictures-perl libstring-copyright-perl
273s   libstring-escape-perl libstring-license-perl libstring-rewriteprefix-perl
273s   libsub-exporter-perl libsub-exporter-progressive-perl libsub-identify-perl
273s   libsub-install-perl libsub-name-perl libsub-quote-perl libsub-uplevel-perl
273s   libsuitesparseconfig7 libsyntax-keyword-try-perl libsz2 libtasn1-6-dev
273s   libterm-readkey-perl libtest-exception-perl libtext-autoformat-perl
273s   libtext-glob-perl libtext-levenshtein-damerau-perl
273s   libtext-levenshteinxs-perl libtext-markdown-discount-perl
273s   libtext-reform-perl libtext-template-perl libtext-unidecode-perl
273s   libtext-xslate-perl libthai-data libthai0 libtiff6 libtime-duration-perl
273s   libtime-moment-perl libtimedate-perl libtoml-tiny-perl libtool
273s   libtry-tiny-perl libts0t64 libtsan2 libubsan1 libumfpack6 libunbound8
273s   libunicode-utf8-perl libunwind8 liburi-perl libvariable-magic-perl
273s   libvorbis0a libvorbisenc2 libvulkan1 libwacom-common libwacom9
273s   libwayland-client0 libwayland-server0 libwebp7 libwebpmux3 libwmflite-0.2-7
273s   libwww-mechanize-perl libwww-perl libwww-robotrules-perl libx11-dev
273s   libx11-xcb1 libxau-dev libxaw7 libxcb-cursor0 libxcb-dri3-0 libxcb-glx0
273s   libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-present0 libxcb-randr0
273s   libxcb-render-util0 libxcb-render0 libxcb-shape0 libxcb-shm0 libxcb-sync1
273s   libxcb-util1 libxcb-xfixes0 libxcb-xinput0 libxcb-xkb1 libxcb1-dev
273s   libxcursor1 libxdmcp-dev libxfixes3 libxfont2 libxft2 libxinerama1
273s   libxkbcommon-x11-0 libxkbfile1 libxml-libxml-perl
273s   libxml-namespacesupport-perl libxml-sax-base-perl libxml-sax-perl libxmu6
273s   libxpm4 libxrandr2 libxrender1 libxs-parse-keyword-perl
273s   libxs-parse-sublike-perl libxshmfence1 libxt6t64 libxxf86vm1
273s   libyaml-libyaml-perl libyaml-pp-perl libyaml-tiny-perl libzstd-dev
273s   licensecheck lintian lzip lzop m4 mesa-libgallium nettle-dev octave
273s   octave-common octave-dev octave-io octave-statistics
273s   octave-statistics-common patchutils perl-openssl-defaults pkgconf
273s   pkgconf-bin po-debconf t1utils tex-common texinfo texinfo-lib unzip
273s   x11-common x11-xkb-utils x11proto-dev xorg-sgml-doctools xserver-common
273s   xtrans-dev xvfb zlib1g-dev
273s 0 upgraded, 474 newly installed, 0 to remove and 0 not upgraded.
273s Need to get 184 MB of archives.
273s After this operation, 666 MB of additional disk space will be used.
273s Get:1 http://ftpmaster.internal/ubuntu plucky/main arm64 libstemmer0d arm64 2.2.0-4build1 [160 kB]
274s Get:2 http://ftpmaster.internal/ubuntu plucky/main arm64 libappstream5 arm64 1.0.4-1 [239 kB]
274s Get:3 http://ftpmaster.internal/ubuntu plucky/main arm64 appstream arm64 1.0.4-1 [72.3 kB]
274s Get:4 http://ftpmaster.internal/ubuntu plucky/main arm64 m4 arm64 1.4.19-7 [244 kB]
274s Get:5 http://ftpmaster.internal/ubuntu plucky/main arm64 autoconf all 2.72-3ubuntu1 [383 kB]
275s Get:6 http://ftpmaster.internal/ubuntu plucky/main arm64 autotools-dev all 20220109.1 [44.9 kB]
275s Get:7 http://ftpmaster.internal/ubuntu plucky/main arm64 automake all 1:1.17-3ubuntu1 [572 kB]
276s Get:8 http://ftpmaster.internal/ubuntu plucky/main arm64 autopoint all 0.23.1-1 [619 kB]
276s Get:9 http://ftpmaster.internal/ubuntu plucky/main arm64 libcapture-tiny-perl all 0.50-1 [20.7 kB]
276s Get:10 http://ftpmaster.internal/ubuntu plucky/main arm64 libparams-util-perl arm64 1.102-3build1 [20.6 kB]
276s Get:11 http://ftpmaster.internal/ubuntu plucky/main arm64 libsub-install-perl all 0.929-1 [9764 B]
276s Get:12 http://ftpmaster.internal/ubuntu plucky/main arm64 libdata-optlist-perl all 0.114-1 [9708 B]
276s Get:13 http://ftpmaster.internal/ubuntu plucky/main arm64 libb-hooks-op-check-perl arm64 0.22-3build2 [9348 B]
276s Get:14 http://ftpmaster.internal/ubuntu plucky/main arm64 libdynaloader-functions-perl all 0.004-1 [11.4 kB]
276s Get:15 http://ftpmaster.internal/ubuntu plucky/main arm64 libdevel-callchecker-perl arm64 0.009-1build1 [14.0 kB]
276s Get:16 http://ftpmaster.internal/ubuntu plucky/main arm64 libparams-classify-perl arm64 0.015-2build6 [19.8 kB]
276s Get:17 http://ftpmaster.internal/ubuntu plucky/main arm64 libmodule-runtime-perl all 0.016-2 [16.4 kB]
276s Get:18 http://ftpmaster.internal/ubuntu plucky/main arm64 libtry-tiny-perl all 0.32-1 [21.2 kB]
276s Get:19 http://ftpmaster.internal/ubuntu plucky/main arm64 libmodule-implementation-perl all 0.09-2 [12.0 kB]
276s Get:20 http://ftpmaster.internal/ubuntu plucky/main arm64 libpackage-stash-perl all 0.40-1 [19.5 kB]
276s Get:21 http://ftpmaster.internal/ubuntu plucky/universe arm64 libclass-load-perl all 0.25-2 [12.7 kB]
276s Get:22 http://ftpmaster.internal/ubuntu plucky/main arm64 libio-stringy-perl all 2.113-2 [45.3 kB]
277s Get:23 http://ftpmaster.internal/ubuntu plucky/universe arm64 libparams-validate-perl arm64 1.31-2build4 [52.1 kB]
277s Get:24 http://ftpmaster.internal/ubuntu plucky/main arm64 libsub-exporter-perl all 0.990-1 [49.0 kB]
277s Get:25 http://ftpmaster.internal/ubuntu plucky/universe arm64 libgetopt-long-descriptive-perl all 0.116-2 [25.0 kB]
277s Get:26 http://ftpmaster.internal/ubuntu plucky/universe arm64 libio-tiecombine-perl all 1.005-3 [9464 B]
277s Get:27 http://ftpmaster.internal/ubuntu plucky/universe arm64 libmodule-pluggable-perl all 5.2-5 [19.5 kB]
277s Get:28 http://ftpmaster.internal/ubuntu plucky/universe arm64 libstring-rewriteprefix-perl all 0.009-1 [6310 B]
277s Get:29 http://ftpmaster.internal/ubuntu plucky/universe arm64 libapp-cmd-perl all 0.337-2 [58.3 kB]
277s Get:30 http://ftpmaster.internal/ubuntu plucky/universe arm64 libboolean-perl all 0.46-3 [8430 B]
277s Get:31 http://ftpmaster.internal/ubuntu plucky/universe arm64 libsub-uplevel-perl all 0.2800-3 [11.6 kB]
277s Get:32 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtest-exception-perl all 0.43-3 [13.4 kB]
277s Get:33 http://ftpmaster.internal/ubuntu plucky/universe arm64 libcarp-assert-more-perl all 2.8.0-1 [19.2 kB]
277s Get:34 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-which-perl all 1.27-2 [12.5 kB]
277s Get:35 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-homedir-perl all 1.006-2 [37.0 kB]
277s Get:36 http://ftpmaster.internal/ubuntu plucky/universe arm64 libclone-choose-perl all 0.010-2 [7738 B]
277s Get:37 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhash-merge-perl all 0.302-1 [13.0 kB]
277s Get:38 http://ftpmaster.internal/ubuntu plucky/main arm64 libjson-perl all 4.10000-1 [81.9 kB]
277s Get:39 http://ftpmaster.internal/ubuntu plucky/main arm64 libexporter-tiny-perl all 1.006002-1 [36.8 kB]
277s Get:40 http://ftpmaster.internal/ubuntu plucky/universe arm64 liblist-moreutils-xs-perl arm64 0.430-4build1 [39.9 kB]
277s Get:41 http://ftpmaster.internal/ubuntu plucky/universe arm64 liblist-moreutils-perl all 0.430-2 [38.2 kB]
277s Get:42 http://ftpmaster.internal/ubuntu plucky/universe arm64 liblog-log4perl-perl all 1.57-1 [345 kB]
278s Get:43 http://ftpmaster.internal/ubuntu plucky/main arm64 libmouse-perl arm64 2.5.11-1build1 [133 kB]
278s Get:44 http://ftpmaster.internal/ubuntu plucky/universe arm64 libmousex-nativetraits-perl all 1.09-3 [53.2 kB]
278s Get:45 http://ftpmaster.internal/ubuntu plucky/universe arm64 libmousex-strictconstructor-perl all 0.02-3 [4582 B]
278s Get:46 http://ftpmaster.internal/ubuntu plucky/universe arm64 libparse-recdescent-perl all 1.967015+dfsg-4 [139 kB]
278s Get:47 http://ftpmaster.internal/ubuntu plucky/main arm64 libpath-tiny-perl all 0.146-1 [47.5 kB]
278s Get:48 http://ftpmaster.internal/ubuntu plucky/universe arm64 libpod-pom-perl all 2.01-4 [61.3 kB]
278s Get:49 http://ftpmaster.internal/ubuntu plucky/main arm64 libregexp-common-perl all 2024080801-1 [162 kB]
278s Get:50 http://ftpmaster.internal/ubuntu plucky/main arm64 libyaml-tiny-perl all 1.76-1 [24.2 kB]
278s Get:51 http://ftpmaster.internal/ubuntu plucky/universe arm64 libconfig-model-perl all 2.155-1 [356 kB]
279s Get:52 http://ftpmaster.internal/ubuntu plucky/universe arm64 libyaml-pp-perl all 0.39.0-1 [107 kB]
279s Get:53 http://ftpmaster.internal/ubuntu plucky/universe arm64 cme all 1.041-1 [65.4 kB]
279s Get:54 http://ftpmaster.internal/ubuntu plucky/main arm64 libisl23 arm64 0.27-1 [676 kB]
280s Get:55 http://ftpmaster.internal/ubuntu plucky/main arm64 libmpc3 arm64 1.3.1-1build2 [56.8 kB]
280s Get:56 http://ftpmaster.internal/ubuntu plucky/main arm64 cpp-14-aarch64-linux-gnu arm64 14.2.0-17ubuntu3 [10.6 MB]
291s Get:57 http://ftpmaster.internal/ubuntu plucky/main arm64 cpp-14 arm64 14.2.0-17ubuntu3 [1028 B]
291s Get:58 http://ftpmaster.internal/ubuntu plucky/main arm64 cpp-aarch64-linux-gnu arm64 4:14.2.0-1ubuntu1 [5558 B]
291s Get:59 http://ftpmaster.internal/ubuntu plucky/main arm64 cpp arm64 4:14.2.0-1ubuntu1 [22.4 kB]
291s Get:60 http://ftpmaster.internal/ubuntu plucky/main arm64 libdebhelper-perl all 13.24.1ubuntu2 [95.4 kB]
291s Get:61 http://ftpmaster.internal/ubuntu plucky/main arm64 libcc1-0 arm64 15-20250222-0ubuntu1 [44.2 kB]
291s Get:62 http://ftpmaster.internal/ubuntu plucky/main arm64 libgomp1 arm64 15-20250222-0ubuntu1 [146 kB]
291s Get:63 http://ftpmaster.internal/ubuntu plucky/main arm64 libitm1 arm64 15-20250222-0ubuntu1 [28.0 kB]
292s Get:64 http://ftpmaster.internal/ubuntu plucky/main arm64 libasan8 arm64 15-20250222-0ubuntu1 [2924 kB]
295s Get:65 http://ftpmaster.internal/ubuntu plucky/main arm64 liblsan0 arm64 15-20250222-0ubuntu1 [1319 kB]
296s Get:66 http://ftpmaster.internal/ubuntu plucky/main arm64 libtsan2 arm64 15-20250222-0ubuntu1 [2694 kB]
298s Get:67 http://ftpmaster.internal/ubuntu plucky/main arm64 libubsan1 arm64 15-20250222-0ubuntu1 [1178 kB]
300s Get:68 http://ftpmaster.internal/ubuntu plucky/main arm64 libhwasan0 arm64 15-20250222-0ubuntu1 [1642 kB]
302s Get:69 http://ftpmaster.internal/ubuntu plucky/main arm64 libgcc-14-dev arm64 14.2.0-17ubuntu3 [2593 kB]
304s Get:70 http://ftpmaster.internal/ubuntu plucky/main arm64 gcc-14-aarch64-linux-gnu arm64 14.2.0-17ubuntu3 [20.9 MB]
327s Get:71 http://ftpmaster.internal/ubuntu plucky/main arm64 gcc-14 arm64 14.2.0-17ubuntu3 [526 kB]
327s Get:72 http://ftpmaster.internal/ubuntu plucky/main arm64 gcc-aarch64-linux-gnu arm64 4:14.2.0-1ubuntu1 [1200 B]
327s Get:73 http://ftpmaster.internal/ubuntu plucky/main arm64 gcc arm64 4:14.2.0-1ubuntu1 [4998 B]
327s Get:74 http://ftpmaster.internal/ubuntu plucky/main arm64 libtool all 2.5.4-4 [168 kB]
328s Get:75 http://ftpmaster.internal/ubuntu plucky/main arm64 dh-autoreconf all 20 [16.1 kB]
328s Get:76 http://ftpmaster.internal/ubuntu plucky/main arm64 libarchive-zip-perl all 1.68-1 [90.2 kB]
328s Get:77 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-stripnondeterminism-perl all 1.14.1-2 [20.3 kB]
328s Get:78 http://ftpmaster.internal/ubuntu plucky/main arm64 dh-strip-nondeterminism all 1.14.1-2 [5064 B]
328s Get:79 http://ftpmaster.internal/ubuntu plucky/main arm64 debugedit arm64 1:5.1-2 [46.1 kB]
328s Get:80 http://ftpmaster.internal/ubuntu plucky/main arm64 dwz arm64 0.15-1build6 [113 kB]
328s Get:81 http://ftpmaster.internal/ubuntu plucky/main arm64 gettext arm64 0.23.1-1 [998 kB]
329s Get:82 http://ftpmaster.internal/ubuntu plucky/main arm64 intltool-debian all 0.35.0+20060710.6 [23.2 kB]
329s Get:83 http://ftpmaster.internal/ubuntu plucky/main arm64 po-debconf all 1.0.21+nmu1 [233 kB]
329s Get:84 http://ftpmaster.internal/ubuntu plucky/main arm64 debhelper all 13.24.1ubuntu2 [895 kB]
330s Get:85 http://ftpmaster.internal/ubuntu plucky/universe arm64 aglfn all 1.7+git20191031.4036a9c-2 [30.6 kB]
331s Get:86 http://ftpmaster.internal/ubuntu plucky/universe arm64 gnuplot-data all 6.0.2+dfsg1-1 [75.4 kB]
331s Get:87 http://ftpmaster.internal/ubuntu plucky/main arm64 fonts-dejavu-mono all 2.37-8 [502 kB]
331s Get:88 http://ftpmaster.internal/ubuntu plucky/main arm64 fonts-dejavu-core all 2.37-8 [835 kB]
332s Get:89 http://ftpmaster.internal/ubuntu plucky/universe arm64 fonts-freefont-otf all 20211204+svn4273-2 [4596 kB]
337s Get:90 http://ftpmaster.internal/ubuntu plucky/main arm64 fontconfig-config arm64 2.15.0-2ubuntu1 [37.5 kB]
337s Get:91 http://ftpmaster.internal/ubuntu plucky/main arm64 libfontconfig1 arm64 2.15.0-2ubuntu1 [144 kB]
337s Get:92 http://ftpmaster.internal/ubuntu plucky/main arm64 libpixman-1-0 arm64 0.44.0-3 [197 kB]
337s Get:93 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-render0 arm64 1.17.0-2 [16.6 kB]
337s Get:94 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-shm0 arm64 1.17.0-2 [5884 B]
337s Get:95 http://ftpmaster.internal/ubuntu plucky/main arm64 libxrender1 arm64 1:0.9.10-1.1build1 [18.8 kB]
337s Get:96 http://ftpmaster.internal/ubuntu plucky/main arm64 libcairo2 arm64 1.18.2-2 [560 kB]
338s Get:97 http://ftpmaster.internal/ubuntu plucky/main arm64 libsharpyuv0 arm64 1.5.0-0.1 [16.9 kB]
338s Get:98 http://ftpmaster.internal/ubuntu plucky/main arm64 libaom3 arm64 3.12.0-1 [1828 kB]
340s Get:99 http://ftpmaster.internal/ubuntu plucky/main arm64 libheif-plugin-aomdec arm64 1.19.7-1 [11.4 kB]
340s Get:100 http://ftpmaster.internal/ubuntu plucky/main arm64 libde265-0 arm64 1.0.15-1build5 [146 kB]
340s Get:101 http://ftpmaster.internal/ubuntu plucky/main arm64 libheif-plugin-libde265 arm64 1.19.7-1 [8890 B]
340s Get:102 http://ftpmaster.internal/ubuntu plucky/main arm64 libheif1 arm64 1.19.7-1 [371 kB]
341s Get:103 http://ftpmaster.internal/ubuntu plucky/main arm64 libimagequant0 arm64 2.18.0-1build1 [37.1 kB]
341s Get:104 http://ftpmaster.internal/ubuntu plucky/main arm64 libjpeg-turbo8 arm64 2.1.5-3ubuntu2 [165 kB]
341s Get:105 http://ftpmaster.internal/ubuntu plucky/main arm64 libjpeg8 arm64 8c-2ubuntu11 [2148 B]
341s Get:106 http://ftpmaster.internal/ubuntu plucky/main arm64 libgraphite2-3 arm64 1.3.14-2ubuntu1 [70.6 kB]
341s Get:107 http://ftpmaster.internal/ubuntu plucky/main arm64 libharfbuzz0b arm64 10.2.0-1 [490 kB]
342s Get:108 http://ftpmaster.internal/ubuntu plucky/main arm64 libraqm0 arm64 0.10.2-1 [14.9 kB]
342s Get:109 http://ftpmaster.internal/ubuntu plucky/main arm64 libdeflate0 arm64 1.23-1 [46.2 kB]
342s Get:110 http://ftpmaster.internal/ubuntu plucky/main arm64 libjbig0 arm64 2.1-6.1ubuntu2 [29.3 kB]
342s Get:111 http://ftpmaster.internal/ubuntu plucky/main arm64 liblerc4 arm64 4.0.0+ds-5ubuntu1 [167 kB]
342s Get:112 http://ftpmaster.internal/ubuntu plucky/main arm64 libwebp7 arm64 1.5.0-0.1 [194 kB]
343s Get:113 http://ftpmaster.internal/ubuntu plucky/main arm64 libtiff6 arm64 4.5.1+git230720-4ubuntu4 [193 kB]
343s Get:114 http://ftpmaster.internal/ubuntu plucky/main arm64 libxpm4 arm64 1:3.5.17-1build2 [35.1 kB]
343s Get:115 http://ftpmaster.internal/ubuntu plucky/main arm64 libgd3 arm64 2.3.3-12ubuntu3 [122 kB]
343s Get:116 http://ftpmaster.internal/ubuntu plucky/main arm64 liblua5.4-0 arm64 5.4.7-1 [158 kB]
345s Get:117 http://ftpmaster.internal/ubuntu plucky/main arm64 fontconfig arm64 2.15.0-2ubuntu1 [191 kB]
345s Get:118 http://ftpmaster.internal/ubuntu plucky/main arm64 libthai-data all 0.1.29-2build1 [158 kB]
345s Get:119 http://ftpmaster.internal/ubuntu plucky/main arm64 libdatrie1 arm64 0.2.13-3build1 [19.2 kB]
345s Get:120 http://ftpmaster.internal/ubuntu plucky/main arm64 libthai0 arm64 0.1.29-2build1 [18.2 kB]
345s Get:121 http://ftpmaster.internal/ubuntu plucky/main arm64 libpango-1.0-0 arm64 1.56.2-1 [237 kB]
345s Get:122 http://ftpmaster.internal/ubuntu plucky/main arm64 libpangoft2-1.0-0 arm64 1.56.2-1 [49.5 kB]
345s Get:123 http://ftpmaster.internal/ubuntu plucky/main arm64 libpangocairo-1.0-0 arm64 1.56.2-1 [27.6 kB]
345s Get:124 http://ftpmaster.internal/ubuntu plucky/main arm64 libwebpmux3 arm64 1.5.0-0.1 [25.4 kB]
345s Get:125 http://ftpmaster.internal/ubuntu plucky/universe arm64 gnuplot-nox arm64 6.0.2+dfsg1-1 [980 kB]
345s Get:126 http://ftpmaster.internal/ubuntu plucky/universe arm64 dh-octave-autopkgtest all 1.8.0 [10.1 kB]
345s Get:127 http://ftpmaster.internal/ubuntu plucky/main arm64 libapt-pkg-perl arm64 0.1.41build1 [67.7 kB]
345s Get:128 http://ftpmaster.internal/ubuntu plucky/main arm64 libarray-intspan-perl all 2.004-2 [25.0 kB]
345s Get:129 http://ftpmaster.internal/ubuntu plucky/main arm64 libyaml-libyaml-perl arm64 0.903.0+ds-1 [30.4 kB]
345s Get:130 http://ftpmaster.internal/ubuntu plucky/universe arm64 libconfig-model-backend-yaml-perl all 2.134-2 [10.5 kB]
345s Get:131 http://ftpmaster.internal/ubuntu plucky/universe arm64 libexporter-lite-perl all 0.09-2 [9748 B]
345s Get:132 http://ftpmaster.internal/ubuntu plucky/main arm64 libencode-locale-perl all 1.05-3 [11.6 kB]
345s Get:133 http://ftpmaster.internal/ubuntu plucky/main arm64 libtimedate-perl all 2.3300-2 [34.0 kB]
345s Get:134 http://ftpmaster.internal/ubuntu plucky/main arm64 libhttp-date-perl all 6.06-1 [10.2 kB]
345s Get:135 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-listing-perl all 6.16-1 [11.3 kB]
345s Get:136 http://ftpmaster.internal/ubuntu plucky/main arm64 libhtml-tagset-perl all 3.24-1 [14.1 kB]
346s Get:137 http://ftpmaster.internal/ubuntu plucky/main arm64 liburi-perl all 5.30-1 [94.4 kB]
346s Get:138 http://ftpmaster.internal/ubuntu plucky/main arm64 libhtml-parser-perl arm64 3.83-1build1 [85.3 kB]
346s Get:139 http://ftpmaster.internal/ubuntu plucky/main arm64 libhtml-tree-perl all 5.07-3 [200 kB]
346s Get:140 http://ftpmaster.internal/ubuntu plucky/main arm64 libclone-perl arm64 0.47-1 [10.4 kB]
346s Get:141 http://ftpmaster.internal/ubuntu plucky/main arm64 libio-html-perl all 1.004-3 [15.9 kB]
346s Get:142 http://ftpmaster.internal/ubuntu plucky/main arm64 liblwp-mediatypes-perl all 6.04-2 [20.1 kB]
346s Get:143 http://ftpmaster.internal/ubuntu plucky/main arm64 libhttp-message-perl all 7.00-2ubuntu1 [75.9 kB]
346s Get:144 http://ftpmaster.internal/ubuntu plucky/main arm64 libhttp-cookies-perl all 6.11-1 [18.2 kB]
346s Get:145 http://ftpmaster.internal/ubuntu plucky/main arm64 libhttp-negotiate-perl all 6.01-2 [12.4 kB]
346s Get:146 http://ftpmaster.internal/ubuntu plucky/main arm64 perl-openssl-defaults arm64 7build3 [6628 B]
346s Get:147 http://ftpmaster.internal/ubuntu plucky/main arm64 libnet-ssleay-perl arm64 1.94-3 [307 kB]
346s Get:148 http://ftpmaster.internal/ubuntu plucky/main arm64 libio-socket-ssl-perl all 2.089-1 [200 kB]
347s Get:149 http://ftpmaster.internal/ubuntu plucky/main arm64 libnet-http-perl all 6.23-1 [22.3 kB]
347s Get:150 http://ftpmaster.internal/ubuntu plucky/main arm64 liblwp-protocol-https-perl all 6.14-1 [9040 B]
347s Get:151 http://ftpmaster.internal/ubuntu plucky/main arm64 libwww-robotrules-perl all 6.02-1 [12.6 kB]
347s Get:152 http://ftpmaster.internal/ubuntu plucky/main arm64 libwww-perl all 6.78-1 [139 kB]
347s Get:153 http://ftpmaster.internal/ubuntu plucky/main arm64 liberror-perl all 0.17030-1 [23.5 kB]
347s Get:154 http://ftpmaster.internal/ubuntu plucky/universe arm64 libparse-debcontrol-perl all 2.005-6 [20.4 kB]
347s Get:155 http://ftpmaster.internal/ubuntu plucky/universe arm64 libsoftware-copyright-perl all 0.014-1 [14.5 kB]
347s Get:156 http://ftpmaster.internal/ubuntu plucky/universe arm64 libalgorithm-c3-perl all 0.11-2 [10.2 kB]
347s Get:157 http://ftpmaster.internal/ubuntu plucky/universe arm64 libclass-c3-perl all 0.35-2 [18.4 kB]
347s Get:158 http://ftpmaster.internal/ubuntu plucky/universe arm64 libmro-compat-perl all 0.15-2 [10.1 kB]
347s Get:159 http://ftpmaster.internal/ubuntu plucky/universe arm64 libdata-section-perl all 0.200008-1 [11.6 kB]
347s Get:160 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtext-template-perl all 1.61-1 [48.5 kB]
347s Get:161 http://ftpmaster.internal/ubuntu plucky/universe arm64 libsoftware-license-perl all 0.104006-1 [117 kB]
347s Get:162 http://ftpmaster.internal/ubuntu plucky/universe arm64 libsoftware-licensemoreutils-perl all 1.009-1 [21.5 kB]
347s Get:163 http://ftpmaster.internal/ubuntu plucky/main arm64 libsort-versions-perl all 1.62-3 [7378 B]
347s Get:164 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtext-reform-perl all 1.20-5 [35.4 kB]
347s Get:165 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtext-autoformat-perl all 1.750000-2 [29.8 kB]
347s Get:166 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtext-levenshtein-damerau-perl all 0.41-3 [10.8 kB]
347s Get:167 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtoml-tiny-perl all 0.19-1 [21.6 kB]
347s Get:168 http://ftpmaster.internal/ubuntu plucky/main arm64 libclass-inspector-perl all 1.36-3 [15.4 kB]
347s Get:169 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-sharedir-perl all 1.118-3 [14.0 kB]
347s Get:170 http://ftpmaster.internal/ubuntu plucky/main arm64 libindirect-perl arm64 0.39-2build5 [21.7 kB]
347s Get:171 http://ftpmaster.internal/ubuntu plucky/main arm64 libxs-parse-keyword-perl arm64 0.48-2 [61.4 kB]
348s Get:172 http://ftpmaster.internal/ubuntu plucky/main arm64 libxs-parse-sublike-perl arm64 0.37-1 [42.3 kB]
348s Get:173 http://ftpmaster.internal/ubuntu plucky/main arm64 libobject-pad-perl arm64 0.820-1 [127 kB]
348s Get:174 http://ftpmaster.internal/ubuntu plucky/main arm64 libsyntax-keyword-try-perl arm64 0.30-1 [24.2 kB]
348s Get:175 http://ftpmaster.internal/ubuntu plucky/main arm64 libio-interactive-perl all 1.026-1 [10.8 kB]
348s Get:176 http://ftpmaster.internal/ubuntu plucky/main arm64 liblog-any-perl all 1.717-1 [73.2 kB]
348s Get:177 http://ftpmaster.internal/ubuntu plucky/main arm64 liblog-any-adapter-screen-perl all 0.141-1 [12.9 kB]
348s Get:178 http://ftpmaster.internal/ubuntu plucky/main arm64 libsub-exporter-progressive-perl all 0.001013-3 [6718 B]
348s Get:179 http://ftpmaster.internal/ubuntu plucky/main arm64 libvariable-magic-perl arm64 0.64-1build1 [35.3 kB]
348s Get:180 http://ftpmaster.internal/ubuntu plucky/main arm64 libb-hooks-endofscope-perl all 0.28-1 [15.8 kB]
348s Get:181 http://ftpmaster.internal/ubuntu plucky/main arm64 libsub-identify-perl arm64 0.14-3build4 [9762 B]
348s Get:182 http://ftpmaster.internal/ubuntu plucky/main arm64 libsub-name-perl arm64 0.28-1 [10.5 kB]
348s Get:183 http://ftpmaster.internal/ubuntu plucky/main arm64 libnamespace-clean-perl all 0.27-2 [14.0 kB]
348s Get:184 http://ftpmaster.internal/ubuntu plucky/main arm64 libnumber-compare-perl all 0.03-3 [5974 B]
348s Get:185 http://ftpmaster.internal/ubuntu plucky/main arm64 libtext-glob-perl all 0.11-3 [6780 B]
348s Get:186 http://ftpmaster.internal/ubuntu plucky/main arm64 libpath-iterator-rule-perl all 1.015-2 [39.9 kB]
348s Get:187 http://ftpmaster.internal/ubuntu plucky/main arm64 libpod-parser-perl all 1.67-1 [80.6 kB]
348s Get:188 http://ftpmaster.internal/ubuntu plucky/main arm64 libpod-constants-perl all 0.19-2 [16.3 kB]
348s Get:189 http://ftpmaster.internal/ubuntu plucky/main arm64 libset-intspan-perl all 1.19-3 [24.8 kB]
348s Get:190 http://ftpmaster.internal/ubuntu plucky/main arm64 libstring-copyright-perl all 0.003014-1 [20.5 kB]
348s Get:191 http://ftpmaster.internal/ubuntu plucky/main arm64 libstring-escape-perl all 2010.002-3 [16.1 kB]
348s Get:192 http://ftpmaster.internal/ubuntu plucky/main arm64 libregexp-pattern-license-perl all 3.11.2-1 [85.3 kB]
348s Get:193 http://ftpmaster.internal/ubuntu plucky/main arm64 libregexp-pattern-perl all 0.2.14-2 [17.6 kB]
348s Get:194 http://ftpmaster.internal/ubuntu plucky/main arm64 libstring-license-perl all 0.0.11-1ubuntu1 [34.3 kB]
348s Get:195 http://ftpmaster.internal/ubuntu plucky/main arm64 licensecheck all 3.3.9-1ubuntu1 [37.7 kB]
349s Get:196 http://ftpmaster.internal/ubuntu plucky/main arm64 diffstat arm64 1.67-1 [29.1 kB]
349s Get:197 http://ftpmaster.internal/ubuntu plucky/main arm64 libberkeleydb-perl arm64 0.66-1 [117 kB]
349s Get:198 http://ftpmaster.internal/ubuntu plucky/main arm64 libclass-xsaccessor-perl arm64 1.19-4build6 [32.8 kB]
349s Get:199 http://ftpmaster.internal/ubuntu plucky/main arm64 libconfig-tiny-perl all 2.30-1 [14.7 kB]
349s Get:200 http://ftpmaster.internal/ubuntu plucky/main arm64 libconst-fast-perl all 0.014-2 [8034 B]
349s Get:201 http://ftpmaster.internal/ubuntu plucky/main arm64 libcpanel-json-xs-perl arm64 4.39-1 [114 kB]
349s Get:202 http://ftpmaster.internal/ubuntu plucky/main arm64 libaliased-perl all 0.34-3 [12.8 kB]
349s Get:203 http://ftpmaster.internal/ubuntu plucky/main arm64 libclass-data-inheritable-perl all 0.10-1 [8038 B]
349s Get:204 http://ftpmaster.internal/ubuntu plucky/main arm64 libdevel-stacktrace-perl all 2.0500-1 [22.1 kB]
349s Get:205 http://ftpmaster.internal/ubuntu plucky/main arm64 libexception-class-perl all 1.45-1 [28.6 kB]
349s Get:206 http://ftpmaster.internal/ubuntu plucky/main arm64 libiterator-perl all 0.03+ds1-2 [18.8 kB]
349s Get:207 http://ftpmaster.internal/ubuntu plucky/main arm64 libiterator-util-perl all 0.02+ds1-2 [14.1 kB]
349s Get:208 http://ftpmaster.internal/ubuntu plucky/main arm64 libdata-dpath-perl all 0.60-1 [37.3 kB]
349s Get:209 http://ftpmaster.internal/ubuntu plucky/main arm64 libnet-domain-tld-perl all 1.75-4 [29.0 kB]
349s Get:210 http://ftpmaster.internal/ubuntu plucky/main arm64 libdata-validate-domain-perl all 0.15-1 [10.4 kB]
349s Get:211 http://ftpmaster.internal/ubuntu plucky/main arm64 libnet-ipv6addr-perl all 1.02-1 [21.0 kB]
349s Get:212 http://ftpmaster.internal/ubuntu plucky/main arm64 libnet-netmask-perl all 2.0002-2 [24.8 kB]
350s Get:213 http://ftpmaster.internal/ubuntu plucky/main arm64 libnetaddr-ip-perl arm64 4.079+dfsg-2build5 [79.9 kB]
350s Get:214 http://ftpmaster.internal/ubuntu plucky/main arm64 libdata-validate-ip-perl all 0.31-1 [17.2 kB]
350s Get:215 http://ftpmaster.internal/ubuntu plucky/main arm64 libdata-validate-uri-perl all 0.07-3 [10.8 kB]
350s Get:216 http://ftpmaster.internal/ubuntu plucky/main arm64 libdevel-size-perl arm64 0.84-1build1 [19.1 kB]
350s Get:217 http://ftpmaster.internal/ubuntu plucky/main arm64 libemail-address-xs-perl arm64 1.05-1build5 [29.0 kB]
350s Get:218 http://ftpmaster.internal/ubuntu plucky/main arm64 libipc-system-simple-perl all 1.30-2 [22.3 kB]
350s Get:219 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-basedir-perl all 0.09-2 [14.4 kB]
350s Get:220 http://ftpmaster.internal/ubuntu plucky/main arm64 libfile-find-rule-perl all 0.34-3 [24.4 kB]
350s Get:221 http://ftpmaster.internal/ubuntu plucky/main arm64 libio-string-perl all 1.08-4 [11.1 kB]
350s Get:222 http://ftpmaster.internal/ubuntu plucky/main arm64 libfont-ttf-perl all 1.06-2 [323 kB]
350s Get:223 http://ftpmaster.internal/ubuntu plucky/main arm64 libhtml-html5-entities-perl all 0.004-3 [21.6 kB]
350s Get:224 http://ftpmaster.internal/ubuntu plucky/main arm64 libhtml-tokeparser-simple-perl all 3.16-4 [38.0 kB]
350s Get:225 http://ftpmaster.internal/ubuntu plucky/main arm64 libipc-run3-perl all 0.049-1 [28.8 kB]
350s Get:226 http://ftpmaster.internal/ubuntu plucky/main arm64 libjson-maybexs-perl all 1.004008-1 [11.1 kB]
350s Get:227 http://ftpmaster.internal/ubuntu plucky/main arm64 liblist-compare-perl all 0.55-2 [62.9 kB]
351s Get:228 http://ftpmaster.internal/ubuntu plucky/main arm64 liblist-someutils-perl all 0.59-1 [30.4 kB]
351s Get:229 http://ftpmaster.internal/ubuntu plucky/main arm64 liblist-utilsby-perl all 0.12-2 [14.9 kB]
351s Get:230 http://ftpmaster.internal/ubuntu plucky/main arm64 libmldbm-perl all 2.05-4 [16.0 kB]
351s Get:231 http://ftpmaster.internal/ubuntu plucky/main arm64 libclass-method-modifiers-perl all 2.15-1 [16.1 kB]
351s Get:232 http://ftpmaster.internal/ubuntu plucky/main arm64 libimport-into-perl all 1.002005-2 [10.7 kB]
351s Get:233 http://ftpmaster.internal/ubuntu plucky/main arm64 librole-tiny-perl all 2.002004-1 [16.3 kB]
351s Get:234 http://ftpmaster.internal/ubuntu plucky/main arm64 libsub-quote-perl all 2.006008-1ubuntu1 [20.7 kB]
351s Get:235 http://ftpmaster.internal/ubuntu plucky/main arm64 libmoo-perl all 2.005005-1 [47.4 kB]
351s Get:236 http://ftpmaster.internal/ubuntu plucky/main arm64 libstrictures-perl all 2.000006-1 [16.3 kB]
351s Get:237 http://ftpmaster.internal/ubuntu plucky/main arm64 libmoox-aliases-perl all 0.001006-2 [6796 B]
351s Get:238 http://ftpmaster.internal/ubuntu plucky/main arm64 libperlio-gzip-perl arm64 0.20-1build5 [14.6 kB]
351s Get:239 http://ftpmaster.internal/ubuntu plucky/main arm64 libperlio-utf8-strict-perl arm64 0.010-1build4 [11.1 kB]
351s Get:240 http://ftpmaster.internal/ubuntu plucky/main arm64 libproc-processtable-perl arm64 0.636-1build4 [35.5 kB]
351s Get:241 http://ftpmaster.internal/ubuntu plucky/main arm64 libregexp-wildcards-perl all 1.05-3 [12.9 kB]
351s Get:242 http://ftpmaster.internal/ubuntu plucky/main arm64 libsereal-decoder-perl arm64 5.004+ds-1build4 [101 kB]
351s Get:243 http://ftpmaster.internal/ubuntu plucky/main arm64 libsereal-encoder-perl arm64 5.004+ds-1build4 [104 kB]
351s Get:244 http://ftpmaster.internal/ubuntu plucky/main arm64 libterm-readkey-perl arm64 2.38-2build5 [23.2 kB]
351s Get:245 http://ftpmaster.internal/ubuntu plucky/main arm64 libtext-levenshteinxs-perl arm64 0.03-5build5 [8052 B]
351s Get:246 http://ftpmaster.internal/ubuntu plucky/main arm64 libmarkdown2 arm64 2.2.7-2.1 [37.2 kB]
351s Get:247 http://ftpmaster.internal/ubuntu plucky/main arm64 libtext-markdown-discount-perl arm64 0.18-1 [12.4 kB]
351s Get:248 http://ftpmaster.internal/ubuntu plucky/main arm64 libdata-messagepack-perl arm64 1.02-1build5 [30.1 kB]
351s Get:249 http://ftpmaster.internal/ubuntu plucky/main arm64 libtext-xslate-perl arm64 3.5.9-2build1 [161 kB]
351s Get:250 http://ftpmaster.internal/ubuntu plucky/main arm64 libtime-duration-perl all 1.21-2 [12.3 kB]
351s Get:251 http://ftpmaster.internal/ubuntu plucky/main arm64 libtime-moment-perl arm64 0.44-2build5 [72.1 kB]
352s Get:252 http://ftpmaster.internal/ubuntu plucky/main arm64 libunicode-utf8-perl arm64 0.62-2build4 [17.9 kB]
352s Get:253 http://ftpmaster.internal/ubuntu plucky/main arm64 libcgi-pm-perl all 4.67-1 [185 kB]
352s Get:254 http://ftpmaster.internal/ubuntu plucky/main arm64 libhtml-form-perl all 6.12-1 [31.1 kB]
352s Get:255 http://ftpmaster.internal/ubuntu plucky/main arm64 libwww-mechanize-perl all 2.19-1ubuntu1 [93.3 kB]
352s Get:256 http://ftpmaster.internal/ubuntu plucky/main arm64 libxml-namespacesupport-perl all 1.12-2 [13.5 kB]
352s Get:257 http://ftpmaster.internal/ubuntu plucky/main arm64 libxml-sax-base-perl all 1.09-3 [18.9 kB]
352s Get:258 http://ftpmaster.internal/ubuntu plucky/main arm64 libxml-sax-perl all 1.02+dfsg-4 [52.4 kB]
352s Get:259 http://ftpmaster.internal/ubuntu plucky/main arm64 libxml-libxml-perl arm64 2.0207+dfsg+really+2.0134-5build1 [297 kB]
352s Get:260 http://ftpmaster.internal/ubuntu plucky/main arm64 lzip arm64 1.25-2 [83.5 kB]
353s Get:261 http://ftpmaster.internal/ubuntu plucky/main arm64 lzop arm64 1.04-2build3 [82.8 kB]
353s Get:262 http://ftpmaster.internal/ubuntu plucky/main arm64 patchutils arm64 0.4.2-1build3 [75.3 kB]
353s Get:263 http://ftpmaster.internal/ubuntu plucky/main arm64 t1utils arm64 1.41-4build3 [61.0 kB]
353s Get:264 http://ftpmaster.internal/ubuntu plucky/main arm64 unzip arm64 6.0-28ubuntu6 [178 kB]
353s Get:265 http://ftpmaster.internal/ubuntu plucky/main arm64 lintian all 2.121.1+nmu1ubuntu2 [1075 kB]
354s Get:266 http://ftpmaster.internal/ubuntu plucky/universe arm64 libconfig-model-dpkg-perl all 3.010 [176 kB]
355s Get:267 http://ftpmaster.internal/ubuntu plucky/main arm64 libconvert-binhex-perl all 1.125-3 [27.1 kB]
355s Get:268 http://ftpmaster.internal/ubuntu plucky/main arm64 libnet-smtp-ssl-perl all 1.04-2 [6218 B]
355s Get:269 http://ftpmaster.internal/ubuntu plucky/main arm64 libmailtools-perl all 2.22-1 [77.1 kB]
355s Get:270 http://ftpmaster.internal/ubuntu plucky/main arm64 libmime-tools-perl all 5.515-1 [187 kB]
355s Get:271 http://ftpmaster.internal/ubuntu plucky/main arm64 libsuitesparseconfig7 arm64 1:7.8.3+dfsg-3 [13.2 kB]
355s Get:272 http://ftpmaster.internal/ubuntu plucky/universe arm64 libamd3 arm64 1:7.8.3+dfsg-3 [26.1 kB]
355s Get:273 http://ftpmaster.internal/ubuntu plucky/main arm64 libblas3 arm64 3.12.1-2 [161 kB]
355s Get:274 http://ftpmaster.internal/ubuntu plucky/main arm64 libgfortran5 arm64 15-20250222-0ubuntu1 [444 kB]
356s Get:275 http://ftpmaster.internal/ubuntu plucky/main arm64 liblapack3 arm64 3.12.1-2 [2307 kB]
359s Get:276 http://ftpmaster.internal/ubuntu plucky/universe arm64 libarpack2t64 arm64 3.9.1-4 [94.4 kB]
359s Get:277 http://ftpmaster.internal/ubuntu plucky/universe arm64 libccolamd3 arm64 1:7.8.3+dfsg-3 [25.5 kB]
359s Get:278 http://ftpmaster.internal/ubuntu plucky/universe arm64 libcamd3 arm64 1:7.8.3+dfsg-3 [22.6 kB]
359s Get:279 http://ftpmaster.internal/ubuntu plucky/main arm64 libcolamd3 arm64 1:7.8.3+dfsg-3 [18.3 kB]
359s Get:280 http://ftpmaster.internal/ubuntu plucky/universe arm64 libcholmod5 arm64 1:7.8.3+dfsg-3 [614 kB]
360s Get:281 http://ftpmaster.internal/ubuntu plucky/universe arm64 libcxsparse4 arm64 1:7.8.3+dfsg-3 [68.7 kB]
360s Get:282 http://ftpmaster.internal/ubuntu plucky/main arm64 libfftw3-double3 arm64 3.3.10-2fakesync1build1 [392 kB]
360s Get:283 http://ftpmaster.internal/ubuntu plucky/main arm64 libfftw3-single3 arm64 3.3.10-2fakesync1build1 [604 kB]
361s Get:284 http://ftpmaster.internal/ubuntu plucky/main arm64 libxfixes3 arm64 1:6.0.0-2build1 [11.2 kB]
361s Get:285 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcursor1 arm64 1:1.2.3-1 [22.2 kB]
361s Get:286 http://ftpmaster.internal/ubuntu plucky/main arm64 libxft2 arm64 2.3.6-1build1 [44.1 kB]
361s Get:287 http://ftpmaster.internal/ubuntu plucky/main arm64 libxinerama1 arm64 2:1.1.4-3build1 [6394 B]
361s Get:288 http://ftpmaster.internal/ubuntu plucky/universe arm64 libfltk1.3t64 arm64 1.3.8-6.1build2 [597 kB]
362s Get:289 http://ftpmaster.internal/ubuntu plucky/main arm64 libglvnd0 arm64 1.7.0-1build1 [60.6 kB]
362s Get:290 http://ftpmaster.internal/ubuntu plucky/main arm64 libx11-xcb1 arm64 2:1.8.10-2 [8020 B]
362s Get:291 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-dri3-0 arm64 1.17.0-2 [7606 B]
362s Get:292 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-glx0 arm64 1.17.0-2 [25.5 kB]
362s Get:293 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-present0 arm64 1.17.0-2 [6224 B]
362s Get:294 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-xfixes0 arm64 1.17.0-2 [10.6 kB]
362s Get:295 http://ftpmaster.internal/ubuntu plucky/main arm64 libxxf86vm1 arm64 1:1.1.4-1build4 [9130 B]
362s Get:296 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-randr0 arm64 1.17.0-2 [18.5 kB]
362s Get:297 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-sync1 arm64 1.17.0-2 [9688 B]
362s Get:298 http://ftpmaster.internal/ubuntu plucky/main arm64 libxshmfence1 arm64 1.3-1build5 [4938 B]
362s Get:299 http://ftpmaster.internal/ubuntu plucky/main arm64 mesa-libgallium arm64 25.0.1-2ubuntu1 [9450 kB]
374s Get:300 http://ftpmaster.internal/ubuntu plucky/main arm64 libwayland-server0 arm64 1.23.1-3 [36.1 kB]
374s Get:301 http://ftpmaster.internal/ubuntu plucky/main arm64 libgbm1 arm64 25.0.1-2ubuntu1 [33.7 kB]
374s Get:302 http://ftpmaster.internal/ubuntu plucky/main arm64 libvulkan1 arm64 1.4.304.0-1 [158 kB]
374s Get:303 http://ftpmaster.internal/ubuntu plucky/main arm64 libgl1-mesa-dri arm64 25.0.1-2ubuntu1 [34.5 kB]
375s Get:304 http://ftpmaster.internal/ubuntu plucky/main arm64 libglx-mesa0 arm64 25.0.1-2ubuntu1 [151 kB]
375s Get:305 http://ftpmaster.internal/ubuntu plucky/main arm64 libglx0 arm64 1.7.0-1build1 [33.2 kB]
375s Get:306 http://ftpmaster.internal/ubuntu plucky/main arm64 libgl1 arm64 1.7.0-1build1 [106 kB]
375s Get:307 http://ftpmaster.internal/ubuntu plucky/universe arm64 libfltk-gl1.3t64 arm64 1.3.8-6.1build2 [42.1 kB]
375s Get:308 http://ftpmaster.internal/ubuntu plucky/universe arm64 libgl2ps1.4 arm64 1.4.2+dfsg1-2build1 [40.6 kB]
375s Get:309 http://ftpmaster.internal/ubuntu plucky/main arm64 libltdl7 arm64 2.5.4-4 [43.0 kB]
375s Get:310 http://ftpmaster.internal/ubuntu plucky/universe arm64 libglpk40 arm64 5.0-1build2 [337 kB]
376s Get:311 http://ftpmaster.internal/ubuntu plucky/main arm64 libopengl0 arm64 1.7.0-1build1 [35.1 kB]
376s Get:312 http://ftpmaster.internal/ubuntu plucky/main arm64 libglu1-mesa arm64 9.0.2-1.1build1 [139 kB]
376s Get:313 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhwy1t64 arm64 1.2.0-3ubuntu3 [605 kB]
376s Get:314 http://ftpmaster.internal/ubuntu plucky/main arm64 liblcms2-2 arm64 2.16-2 [170 kB]
377s Get:315 http://ftpmaster.internal/ubuntu plucky/universe arm64 libjxl0.11 arm64 0.11.1-1 [937 kB]
378s Get:316 http://ftpmaster.internal/ubuntu plucky/main arm64 libwmflite-0.2-7 arm64 0.2.13-1.1build3 [68.6 kB]
378s Get:317 http://ftpmaster.internal/ubuntu plucky/universe arm64 libgraphicsmagick-q16-3t64 arm64 1.4+really1.3.45+hg17689-1 [1229 kB]
379s Get:318 http://ftpmaster.internal/ubuntu plucky/universe arm64 libgraphicsmagick++-q16-12t64 arm64 1.4+really1.3.45+hg17689-1 [112 kB]
379s Get:319 http://ftpmaster.internal/ubuntu plucky/universe arm64 libaec0 arm64 1.1.3-1 [22.0 kB]
379s Get:320 http://ftpmaster.internal/ubuntu plucky/universe arm64 libsz2 arm64 1.1.3-1 [5254 B]
380s Get:321 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-310 arm64 1.14.5+repack-3 [1331 kB]
381s Get:322 http://ftpmaster.internal/ubuntu plucky/main arm64 libasound2-data all 1.2.13-1build1 [21.1 kB]
381s Get:323 http://ftpmaster.internal/ubuntu plucky/main arm64 libasound2t64 arm64 1.2.13-1build1 [390 kB]
382s Get:324 http://ftpmaster.internal/ubuntu plucky/main arm64 libopus0 arm64 1.5.2-2 [2891 kB]
385s Get:325 http://ftpmaster.internal/ubuntu plucky/main arm64 libsamplerate0 arm64 0.2.2-4build1 [1343 kB]
387s Get:326 http://ftpmaster.internal/ubuntu plucky/main arm64 libjack-jackd2-0 arm64 1.9.22~dfsg-4 [286 kB]
387s Get:327 http://ftpmaster.internal/ubuntu plucky/universe arm64 libportaudio2 arm64 19.6.0-1.2build3 [65.4 kB]
387s Get:328 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqhull-r8.0 arm64 2020.2-6build1 [189 kB]
387s Get:329 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqrupdate1 arm64 1.1.5-1 [38.6 kB]
387s Get:330 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqscintilla2-qt6-l10n all 2.14.1+dfsg-1build4 [56.4 kB]
387s Get:331 http://ftpmaster.internal/ubuntu plucky/universe arm64 libb2-1 arm64 0.98.1-1.1build1 [17.1 kB]
387s Get:332 http://ftpmaster.internal/ubuntu plucky/universe arm64 libdouble-conversion3 arm64 3.3.1-1 [38.8 kB]
388s Get:333 http://ftpmaster.internal/ubuntu plucky/main arm64 libpcre2-16-0 arm64 10.45-1 [222 kB]
388s Get:334 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6core6t64 arm64 6.8.2+dfsg-5 [1942 kB]
390s Get:335 http://ftpmaster.internal/ubuntu plucky/main arm64 libwayland-client0 arm64 1.23.1-3 [27.0 kB]
390s Get:336 http://ftpmaster.internal/ubuntu plucky/main arm64 libegl-mesa0 arm64 25.0.1-2ubuntu1 [122 kB]
390s Get:337 http://ftpmaster.internal/ubuntu plucky/main arm64 libegl1 arm64 1.7.0-1build1 [29.5 kB]
390s Get:338 http://ftpmaster.internal/ubuntu plucky/main arm64 x11-common all 1:7.7+23ubuntu3 [21.7 kB]
390s Get:339 http://ftpmaster.internal/ubuntu plucky/main arm64 libice6 arm64 2:1.1.1-1 [42.3 kB]
390s Get:340 http://ftpmaster.internal/ubuntu plucky/main arm64 libmtdev1t64 arm64 1.1.7-1 [14.6 kB]
391s Get:341 http://ftpmaster.internal/ubuntu plucky/main arm64 libwacom-common all 2.14.0-1 [103 kB]
391s Get:342 http://ftpmaster.internal/ubuntu plucky/main arm64 libwacom9 arm64 2.14.0-1 [26.7 kB]
391s Get:343 http://ftpmaster.internal/ubuntu plucky/main arm64 libinput-bin arm64 1.27.1-1 [23.5 kB]
391s Get:344 http://ftpmaster.internal/ubuntu plucky/main arm64 libinput10 arm64 1.27.1-1 [136 kB]
393s Get:345 http://ftpmaster.internal/ubuntu plucky/universe arm64 libmd4c0 arm64 0.5.2-2 [42.4 kB]
393s Get:346 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6dbus6 arm64 6.8.2+dfsg-5 [273 kB]
393s Get:347 http://ftpmaster.internal/ubuntu plucky/main arm64 libsm6 arm64 2:1.2.4-1 [16.4 kB]
393s Get:348 http://ftpmaster.internal/ubuntu plucky/universe arm64 libts0t64 arm64 1.22-1.1build1 [63.9 kB]
393s Get:349 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-util1 arm64 0.4.1-1 [10.9 kB]
393s Get:350 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-image0 arm64 0.4.0-2build1 [10.8 kB]
393s Get:351 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-render-util0 arm64 0.3.10-1 [10.5 kB]
393s Get:352 http://ftpmaster.internal/ubuntu plucky/universe arm64 libxcb-cursor0 arm64 0.1.5-1 [10.6 kB]
393s Get:353 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-icccm4 arm64 0.4.2-1 [10.9 kB]
393s Get:354 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-keysyms1 arm64 0.4.1-1 [8802 B]
393s Get:355 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-shape0 arm64 1.17.0-2 [6246 B]
393s Get:356 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-xinput0 arm64 1.17.0-2 [34.2 kB]
393s Get:357 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb-xkb1 arm64 1.17.0-2 [32.5 kB]
393s Get:358 http://ftpmaster.internal/ubuntu plucky/main arm64 libxkbcommon-x11-0 arm64 1.7.0-2 [13.8 kB]
393s Get:359 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6gui6 arm64 6.8.2+dfsg-5 [3283 kB]
395s Get:360 http://ftpmaster.internal/ubuntu plucky/main arm64 libavahi-common-data arm64 0.8-16ubuntu1 [30.9 kB]
395s Get:361 http://ftpmaster.internal/ubuntu plucky/main arm64 libavahi-common3 arm64 0.8-16ubuntu1 [22.9 kB]
395s Get:362 http://ftpmaster.internal/ubuntu plucky/main arm64 libavahi-client3 arm64 0.8-16ubuntu1 [26.9 kB]
395s Get:363 http://ftpmaster.internal/ubuntu plucky/main arm64 libcups2t64 arm64 2.4.11-0ubuntu2 [274 kB]
395s Get:364 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6widgets6 arm64 6.8.2+dfsg-5 [2789 kB]
399s Get:365 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6printsupport6 arm64 6.8.2+dfsg-5 [223 kB]
399s Get:366 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqscintilla2-qt6-15 arm64 2.14.1+dfsg-1build4 [1137 kB]
400s Get:367 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6core5compat6 arm64 6.8.2-3 [144 kB]
400s Get:368 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6sql6 arm64 6.8.2+dfsg-5 [143 kB]
401s Get:369 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6help6 arm64 6.8.2-3 [194 kB]
401s Get:370 http://ftpmaster.internal/ubuntu plucky/main arm64 libduktape207 arm64 2.7.0+tests-0ubuntu3 [144 kB]
401s Get:371 http://ftpmaster.internal/ubuntu plucky/main arm64 libproxy1v5 arm64 0.5.9-1 [27.2 kB]
401s Get:372 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6network6 arm64 6.8.2+dfsg-5 [847 kB]
402s Get:373 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6opengl6 arm64 6.8.2+dfsg-5 [432 kB]
403s Get:374 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6openglwidgets6 arm64 6.8.2+dfsg-5 [43.6 kB]
403s Get:375 http://ftpmaster.internal/ubuntu plucky/universe arm64 libqt6xml6 arm64 6.8.2+dfsg-5 [82.2 kB]
403s Get:376 http://ftpmaster.internal/ubuntu plucky/main arm64 libogg0 arm64 1.3.5-3build1 [22.6 kB]
403s Get:377 http://ftpmaster.internal/ubuntu plucky/main arm64 libflac12t64 arm64 1.4.3+ds-4 [168 kB]
403s Get:378 http://ftpmaster.internal/ubuntu plucky/main arm64 libmp3lame0 arm64 3.100-6build1 [141 kB]
403s Get:379 http://ftpmaster.internal/ubuntu plucky/main arm64 libmpg123-0t64 arm64 1.32.10-1 [173 kB]
403s Get:380 http://ftpmaster.internal/ubuntu plucky/main arm64 libvorbis0a arm64 1.3.7-2 [95.0 kB]
403s Get:381 http://ftpmaster.internal/ubuntu plucky/main arm64 libvorbisenc2 arm64 1.3.7-2 [80.0 kB]
403s Get:382 http://ftpmaster.internal/ubuntu plucky/main arm64 libsndfile1 arm64 1.2.2-2 [209 kB]
404s Get:383 http://ftpmaster.internal/ubuntu plucky/universe arm64 libspqr4 arm64 1:7.8.3+dfsg-3 [130 kB]
404s Get:384 http://ftpmaster.internal/ubuntu plucky/universe arm64 libumfpack6 arm64 1:7.8.3+dfsg-3 [249 kB]
405s Get:385 http://ftpmaster.internal/ubuntu plucky/universe arm64 libtext-unidecode-perl all 1.30-3 [105 kB]
405s Get:386 http://ftpmaster.internal/ubuntu plucky/universe arm64 texinfo-lib arm64 7.1.1-1 [134 kB]
405s Get:387 http://ftpmaster.internal/ubuntu plucky/universe arm64 tex-common all 6.19 [29.8 kB]
405s Get:388 http://ftpmaster.internal/ubuntu plucky/universe arm64 texinfo all 7.1.1-1 [1272 kB]
406s Get:389 http://ftpmaster.internal/ubuntu plucky/universe arm64 octave-common all 9.4.0-1 [6087 kB]
413s Get:390 http://ftpmaster.internal/ubuntu plucky/universe arm64 octave arm64 9.4.0-1 [9031 kB]
423s Get:391 http://ftpmaster.internal/ubuntu plucky/main arm64 libncurses-dev arm64 6.5+20250216-2 [389 kB]
423s Get:392 http://ftpmaster.internal/ubuntu plucky/main arm64 libreadline-dev arm64 8.2-6 [179 kB]
424s Get:393 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-fortran-310 arm64 1.14.5+repack-3 [109 kB]
424s Get:394 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-hl-310 arm64 1.14.5+repack-3 [59.8 kB]
424s Get:395 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-hl-fortran-310 arm64 1.14.5+repack-3 [31.8 kB]
424s Get:396 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-cpp-310 arm64 1.14.5+repack-3 [117 kB]
424s Get:397 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-hl-cpp-310 arm64 1.14.5+repack-3 [11.6 kB]
424s Get:398 http://ftpmaster.internal/ubuntu plucky/main arm64 zlib1g-dev arm64 1:1.3.dfsg+really1.3.1-1ubuntu1 [894 kB]
425s Get:399 http://ftpmaster.internal/ubuntu plucky/main arm64 libjpeg-turbo8-dev arm64 2.1.5-3ubuntu2 [306 kB]
425s Get:400 http://ftpmaster.internal/ubuntu plucky/main arm64 libjpeg8-dev arm64 8c-2ubuntu11 [1484 B]
425s Get:401 http://ftpmaster.internal/ubuntu plucky/main arm64 libjpeg-dev arm64 8c-2ubuntu11 [1482 B]
425s Get:402 http://ftpmaster.internal/ubuntu plucky/universe arm64 libaec-dev arm64 1.1.3-1 [19.3 kB]
425s Get:403 http://ftpmaster.internal/ubuntu plucky/main arm64 libbrotli-dev arm64 1.1.0-2build4 [359 kB]
426s Get:404 http://ftpmaster.internal/ubuntu plucky/main arm64 libidn2-dev arm64 2.3.7-2build2 [120 kB]
426s Get:405 http://ftpmaster.internal/ubuntu plucky/main arm64 comerr-dev arm64 2.1-1.47.2-1ubuntu1 [45.1 kB]
426s Get:406 http://ftpmaster.internal/ubuntu plucky/main arm64 libgssrpc4t64 arm64 1.21.3-4ubuntu2 [58.5 kB]
426s Get:407 http://ftpmaster.internal/ubuntu plucky/main arm64 libkadm5clnt-mit12 arm64 1.21.3-4ubuntu2 [40.3 kB]
426s Get:408 http://ftpmaster.internal/ubuntu plucky/main arm64 libkdb5-10t64 arm64 1.21.3-4ubuntu2 [40.9 kB]
426s Get:409 http://ftpmaster.internal/ubuntu plucky/main arm64 libkadm5srv-mit12 arm64 1.21.3-4ubuntu2 [53.8 kB]
426s Get:410 http://ftpmaster.internal/ubuntu plucky/main arm64 krb5-multidev arm64 1.21.3-4ubuntu2 [125 kB]
426s Get:411 http://ftpmaster.internal/ubuntu plucky/main arm64 libkrb5-dev arm64 1.21.3-4ubuntu2 [11.9 kB]
426s Get:412 http://ftpmaster.internal/ubuntu plucky/main arm64 libldap-dev arm64 2.6.9+dfsg-1~exp2ubuntu1 [318 kB]
427s Get:413 http://ftpmaster.internal/ubuntu plucky/main arm64 libpkgconf3 arm64 1.8.1-4 [31.4 kB]
427s Get:414 http://ftpmaster.internal/ubuntu plucky/main arm64 pkgconf-bin arm64 1.8.1-4 [20.9 kB]
427s Get:415 http://ftpmaster.internal/ubuntu plucky/main arm64 pkgconf arm64 1.8.1-4 [16.7 kB]
427s Get:416 http://ftpmaster.internal/ubuntu plucky/main arm64 libnghttp2-dev arm64 1.64.0-1 [120 kB]
427s Get:417 http://ftpmaster.internal/ubuntu plucky/main arm64 libpsl-dev arm64 0.21.2-1.1build1 [77.2 kB]
427s Get:418 http://ftpmaster.internal/ubuntu plucky/main arm64 libgmpxx4ldbl arm64 2:6.3.0+dfsg-3ubuntu1 [10.1 kB]
427s Get:419 http://ftpmaster.internal/ubuntu plucky/main arm64 libgmp-dev arm64 2:6.3.0+dfsg-3ubuntu1 [335 kB]
427s Get:420 http://ftpmaster.internal/ubuntu plucky/main arm64 libevent-2.1-7t64 arm64 2.1.12-stable-10 [140 kB]
427s Get:421 http://ftpmaster.internal/ubuntu plucky/main arm64 libunbound8 arm64 1.22.0-1ubuntu1 [437 kB]
428s Get:422 http://ftpmaster.internal/ubuntu plucky/main arm64 libgnutls-dane0t64 arm64 3.8.9-2ubuntu2 [24.4 kB]
428s Get:423 http://ftpmaster.internal/ubuntu plucky/main arm64 libgnutls-openssl27t64 arm64 3.8.9-2ubuntu2 [24.4 kB]
428s Get:424 http://ftpmaster.internal/ubuntu plucky/main arm64 libp11-kit-dev arm64 0.25.5-2ubuntu3 [23.5 kB]
428s Get:425 http://ftpmaster.internal/ubuntu plucky/main arm64 libtasn1-6-dev arm64 4.20.0-2 [91.1 kB]
428s Get:426 http://ftpmaster.internal/ubuntu plucky/main arm64 nettle-dev arm64 3.10.1-1 [1190 kB]
430s Get:427 http://ftpmaster.internal/ubuntu plucky/main arm64 libgnutls28-dev arm64 3.8.9-2ubuntu2 [1143 kB]
431s Get:428 http://ftpmaster.internal/ubuntu plucky/main arm64 librtmp-dev arm64 2.4+20151223.gitfa8646d.1-2build7 [69.4 kB]
431s Get:429 http://ftpmaster.internal/ubuntu plucky/main arm64 libssl-dev arm64 3.4.1-1ubuntu1 [3287 kB]
435s Get:430 http://ftpmaster.internal/ubuntu plucky/main arm64 libssh2-1-dev arm64 1.11.1-1 [286 kB]
435s Get:431 http://ftpmaster.internal/ubuntu plucky/main arm64 libzstd-dev arm64 1.5.6+dfsg-2 [353 kB]
435s Get:432 http://ftpmaster.internal/ubuntu plucky/main arm64 libcurl4-openssl-dev arm64 8.12.1-3ubuntu1 [506 kB]
436s Get:433 http://ftpmaster.internal/ubuntu plucky/universe arm64 hdf5-helpers arm64 1.14.5+repack-3 [17.0 kB]
436s Get:434 http://ftpmaster.internal/ubuntu plucky/universe arm64 libhdf5-dev arm64 1.14.5+repack-3 [3581 kB]
440s Get:435 http://ftpmaster.internal/ubuntu plucky/main arm64 xorg-sgml-doctools all 1:1.11-1.1 [10.9 kB]
440s Get:436 http://ftpmaster.internal/ubuntu plucky/main arm64 x11proto-dev all 2024.1-1 [606 kB]
441s Get:437 http://ftpmaster.internal/ubuntu plucky/main arm64 libxau-dev arm64 1:1.0.11-1 [10.2 kB]
441s Get:438 http://ftpmaster.internal/ubuntu plucky/main arm64 libxdmcp-dev arm64 1:1.1.5-1 [26.4 kB]
441s Get:439 http://ftpmaster.internal/ubuntu plucky/main arm64 xtrans-dev all 1.4.0-1 [68.9 kB]
441s Get:440 http://ftpmaster.internal/ubuntu plucky/main arm64 libxcb1-dev arm64 1.17.0-2 [91.7 kB]
441s Get:441 http://ftpmaster.internal/ubuntu plucky/main arm64 libx11-dev arm64 2:1.8.10-2 [746 kB]
442s Get:442 http://ftpmaster.internal/ubuntu plucky/main arm64 libglx-dev arm64 1.7.0-1build1 [14.2 kB]
442s Get:443 http://ftpmaster.internal/ubuntu plucky/main arm64 libgl-dev arm64 1.7.0-1build1 [102 kB]
442s Get:444 http://ftpmaster.internal/ubuntu plucky/main arm64 libblas-dev arm64 3.12.1-2 [126 kB]
442s Get:445 http://ftpmaster.internal/ubuntu plucky/main arm64 liblapack-dev arm64 3.12.1-2 [4439 kB]
447s Get:446 http://ftpmaster.internal/ubuntu plucky/main arm64 libfftw3-long3 arm64 3.3.10-2fakesync1build1 [653 kB]
448s Get:447 http://ftpmaster.internal/ubuntu plucky/main arm64 libfftw3-bin arm64 3.3.10-2fakesync1build1 [34.1 kB]
448s Get:448 http://ftpmaster.internal/ubuntu plucky/main arm64 libfftw3-dev arm64 3.3.10-2fakesync1build1 [1523 kB]
449s Get:449 http://ftpmaster.internal/ubuntu plucky/main arm64 libgfortran-14-dev arm64 14.2.0-17ubuntu3 [498 kB]
450s Get:450 http://ftpmaster.internal/ubuntu plucky/main arm64 gfortran-14-aarch64-linux-gnu arm64 14.2.0-17ubuntu3 [11.4 MB]
463s Get:451 http://ftpmaster.internal/ubuntu plucky/main arm64 gfortran-14 arm64 14.2.0-17ubuntu3 [13.6 kB]
463s Get:452 http://ftpmaster.internal/ubuntu plucky/main arm64 gfortran-aarch64-linux-gnu arm64 4:14.2.0-1ubuntu1 [1022 B]
463s Get:453 http://ftpmaster.internal/ubuntu plucky/main arm64 gfortran arm64 4:14.2.0-1ubuntu1 [1166 B]
463s Get:454 http://ftpmaster.internal/ubuntu plucky/main arm64 libstdc++-14-dev arm64 14.2.0-17ubuntu3 [2499 kB]
466s Get:455 http://ftpmaster.internal/ubuntu plucky/main arm64 g++-14-aarch64-linux-gnu arm64 14.2.0-17ubuntu3 [12.1 MB]
478s Get:456 http://ftpmaster.internal/ubuntu plucky/main arm64 g++-14 arm64 14.2.0-17ubuntu3 [21.8 kB]
479s Get:457 http://ftpmaster.internal/ubuntu plucky/main arm64 g++-aarch64-linux-gnu arm64 4:14.2.0-1ubuntu1 [956 B]
479s Get:458 http://ftpmaster.internal/ubuntu plucky/main arm64 g++ arm64 4:14.2.0-1ubuntu1 [1080 B]
479s Get:459 http://ftpmaster.internal/ubuntu plucky/universe arm64 octave-dev arm64 9.4.0-1 [459 kB]
479s Get:460 http://ftpmaster.internal/ubuntu plucky/universe arm64 dh-octave all 1.8.0 [19.7 kB]
479s Get:461 http://ftpmaster.internal/ubuntu plucky/main arm64 libfontenc1 arm64 1:1.1.8-1build1 [13.9 kB]
479s Get:462 http://ftpmaster.internal/ubuntu plucky/main arm64 libunwind8 arm64 1.6.2-3.1 [53.5 kB]
479s Get:463 http://ftpmaster.internal/ubuntu plucky/main arm64 libxt6t64 arm64 1:1.2.1-1.2build1 [168 kB]
479s Get:464 http://ftpmaster.internal/ubuntu plucky/main arm64 libxmu6 arm64 2:1.1.3-3build2 [47.5 kB]
479s Get:465 http://ftpmaster.internal/ubuntu plucky/main arm64 libxaw7 arm64 2:1.0.16-1 [184 kB]
480s Get:466 http://ftpmaster.internal/ubuntu plucky/main arm64 libxfont2 arm64 1:2.0.6-1build1 [88.7 kB]
480s Get:467 http://ftpmaster.internal/ubuntu plucky/main arm64 libxkbfile1 arm64 1:1.1.0-1build4 [69.4 kB]
480s Get:468 http://ftpmaster.internal/ubuntu plucky/main arm64 libxrandr2 arm64 2:1.5.4-1 [19.6 kB]
480s Get:469 http://ftpmaster.internal/ubuntu plucky/universe arm64 octave-io arm64 2.6.4-3build2 [222 kB]
480s Get:470 http://ftpmaster.internal/ubuntu plucky/universe arm64 octave-statistics-common all 1.7.3-2 [932 kB]
481s Get:471 http://ftpmaster.internal/ubuntu plucky/universe arm64 octave-statistics arm64 1.7.3-2 [165 kB]
481s Get:472 http://ftpmaster.internal/ubuntu plucky/main arm64 x11-xkb-utils arm64 7.7+9 [165 kB]
482s Get:473 http://ftpmaster.internal/ubuntu plucky/main arm64 xserver-common all 2:21.1.16-1ubuntu1 [34.4 kB]
482s Get:474 http://ftpmaster.internal/ubuntu plucky/universe arm64 xvfb arm64 2:21.1.16-1ubuntu1 [870 kB]
484s Fetched 184 MB in 3min 30s (877 kB/s)
484s Selecting previously unselected package libstemmer0d:arm64.
484s (Reading database ... 
(Reading database ... 5%
(Reading database ... 10%
(Reading database ... 15%
(Reading database ... 20%
(Reading database ... 25%
(Reading database ... 30%
(Reading database ... 35%
(Reading database ... 40%
(Reading database ... 45%
(Reading database ... 50%
(Reading database ... 55%
(Reading database ... 60%
(Reading database ... 65%
(Reading database ... 70%
(Reading database ... 75%
(Reading database ... 80%
(Reading database ... 85%
(Reading database ... 90%
(Reading database ... 95%
(Reading database ... 100%
(Reading database ... 81647 files and directories currently installed.)
484s Preparing to unpack .../000-libstemmer0d_2.2.0-4build1_arm64.deb ...
484s Unpacking libstemmer0d:arm64 (2.2.0-4build1) ...
484s Selecting previously unselected package libappstream5:arm64.
484s Preparing to unpack .../001-libappstream5_1.0.4-1_arm64.deb ...
484s Unpacking libappstream5:arm64 (1.0.4-1) ...
484s Selecting previously unselected package appstream.
484s Preparing to unpack .../002-appstream_1.0.4-1_arm64.deb ...
484s Unpacking appstream (1.0.4-1) ...
484s Selecting previously unselected package m4.
484s Preparing to unpack .../003-m4_1.4.19-7_arm64.deb ...
484s Unpacking m4 (1.4.19-7) ...
484s Selecting previously unselected package autoconf.
484s Preparing to unpack .../004-autoconf_2.72-3ubuntu1_all.deb ...
484s Unpacking autoconf (2.72-3ubuntu1) ...
484s Selecting previously unselected package autotools-dev.
484s Preparing to unpack .../005-autotools-dev_20220109.1_all.deb ...
484s Unpacking autotools-dev (20220109.1) ...
484s Selecting previously unselected package automake.
484s Preparing to unpack .../006-automake_1%3a1.17-3ubuntu1_all.deb ...
484s Unpacking automake (1:1.17-3ubuntu1) ...
484s Selecting previously unselected package autopoint.
484s Preparing to unpack .../007-autopoint_0.23.1-1_all.deb ...
484s Unpacking autopoint (0.23.1-1) ...
484s Selecting previously unselected package libcapture-tiny-perl.
484s Preparing to unpack .../008-libcapture-tiny-perl_0.50-1_all.deb ...
484s Unpacking libcapture-tiny-perl (0.50-1) ...
484s Selecting previously unselected package libparams-util-perl.
484s Preparing to unpack .../009-libparams-util-perl_1.102-3build1_arm64.deb ...
484s Unpacking libparams-util-perl (1.102-3build1) ...
484s Selecting previously unselected package libsub-install-perl.
484s Preparing to unpack .../010-libsub-install-perl_0.929-1_all.deb ...
484s Unpacking libsub-install-perl (0.929-1) ...
484s Selecting previously unselected package libdata-optlist-perl.
484s Preparing to unpack .../011-libdata-optlist-perl_0.114-1_all.deb ...
484s Unpacking libdata-optlist-perl (0.114-1) ...
485s Selecting previously unselected package libb-hooks-op-check-perl:arm64.
485s Preparing to unpack .../012-libb-hooks-op-check-perl_0.22-3build2_arm64.deb ...
485s Unpacking libb-hooks-op-check-perl:arm64 (0.22-3build2) ...
485s Selecting previously unselected package libdynaloader-functions-perl.
485s Preparing to unpack .../013-libdynaloader-functions-perl_0.004-1_all.deb ...
485s Unpacking libdynaloader-functions-perl (0.004-1) ...
485s Selecting previously unselected package libdevel-callchecker-perl:arm64.
485s Preparing to unpack .../014-libdevel-callchecker-perl_0.009-1build1_arm64.deb ...
485s Unpacking libdevel-callchecker-perl:arm64 (0.009-1build1) ...
485s Selecting previously unselected package libparams-classify-perl:arm64.
485s Preparing to unpack .../015-libparams-classify-perl_0.015-2build6_arm64.deb ...
485s Unpacking libparams-classify-perl:arm64 (0.015-2build6) ...
485s Selecting previously unselected package libmodule-runtime-perl.
485s Preparing to unpack .../016-libmodule-runtime-perl_0.016-2_all.deb ...
485s Unpacking libmodule-runtime-perl (0.016-2) ...
485s Selecting previously unselected package libtry-tiny-perl.
485s Preparing to unpack .../017-libtry-tiny-perl_0.32-1_all.deb ...
485s Unpacking libtry-tiny-perl (0.32-1) ...
485s Selecting previously unselected package libmodule-implementation-perl.
485s Preparing to unpack .../018-libmodule-implementation-perl_0.09-2_all.deb ...
485s Unpacking libmodule-implementation-perl (0.09-2) ...
485s Selecting previously unselected package libpackage-stash-perl.
485s Preparing to unpack .../019-libpackage-stash-perl_0.40-1_all.deb ...
485s Unpacking libpackage-stash-perl (0.40-1) ...
485s Selecting previously unselected package libclass-load-perl.
485s Preparing to unpack .../020-libclass-load-perl_0.25-2_all.deb ...
485s Unpacking libclass-load-perl (0.25-2) ...
485s Selecting previously unselected package libio-stringy-perl.
485s Preparing to unpack .../021-libio-stringy-perl_2.113-2_all.deb ...
485s Unpacking libio-stringy-perl (2.113-2) ...
485s Selecting previously unselected package libparams-validate-perl:arm64.
485s Preparing to unpack .../022-libparams-validate-perl_1.31-2build4_arm64.deb ...
485s Unpacking libparams-validate-perl:arm64 (1.31-2build4) ...
485s Selecting previously unselected package libsub-exporter-perl.
485s Preparing to unpack .../023-libsub-exporter-perl_0.990-1_all.deb ...
485s Unpacking libsub-exporter-perl (0.990-1) ...
485s Selecting previously unselected package libgetopt-long-descriptive-perl.
485s Preparing to unpack .../024-libgetopt-long-descriptive-perl_0.116-2_all.deb ...
485s Unpacking libgetopt-long-descriptive-perl (0.116-2) ...
485s Selecting previously unselected package libio-tiecombine-perl.
485s Preparing to unpack .../025-libio-tiecombine-perl_1.005-3_all.deb ...
485s Unpacking libio-tiecombine-perl (1.005-3) ...
485s Selecting previously unselected package libmodule-pluggable-perl.
485s Preparing to unpack .../026-libmodule-pluggable-perl_5.2-5_all.deb ...
485s Unpacking libmodule-pluggable-perl (5.2-5) ...
485s Selecting previously unselected package libstring-rewriteprefix-perl.
485s Preparing to unpack .../027-libstring-rewriteprefix-perl_0.009-1_all.deb ...
485s Unpacking libstring-rewriteprefix-perl (0.009-1) ...
485s Selecting previously unselected package libapp-cmd-perl.
485s Preparing to unpack .../028-libapp-cmd-perl_0.337-2_all.deb ...
485s Unpacking libapp-cmd-perl (0.337-2) ...
485s Selecting previously unselected package libboolean-perl.
485s Preparing to unpack .../029-libboolean-perl_0.46-3_all.deb ...
485s Unpacking libboolean-perl (0.46-3) ...
485s Selecting previously unselected package libsub-uplevel-perl.
485s Preparing to unpack .../030-libsub-uplevel-perl_0.2800-3_all.deb ...
485s Unpacking libsub-uplevel-perl (0.2800-3) ...
485s Selecting previously unselected package libtest-exception-perl.
485s Preparing to unpack .../031-libtest-exception-perl_0.43-3_all.deb ...
485s Unpacking libtest-exception-perl (0.43-3) ...
485s Selecting previously unselected package libcarp-assert-more-perl.
485s Preparing to unpack .../032-libcarp-assert-more-perl_2.8.0-1_all.deb ...
485s Unpacking libcarp-assert-more-perl (2.8.0-1) ...
485s Selecting previously unselected package libfile-which-perl.
485s Preparing to unpack .../033-libfile-which-perl_1.27-2_all.deb ...
485s Unpacking libfile-which-perl (1.27-2) ...
485s Selecting previously unselected package libfile-homedir-perl.
485s Preparing to unpack .../034-libfile-homedir-perl_1.006-2_all.deb ...
485s Unpacking libfile-homedir-perl (1.006-2) ...
485s Selecting previously unselected package libclone-choose-perl.
485s Preparing to unpack .../035-libclone-choose-perl_0.010-2_all.deb ...
485s Unpacking libclone-choose-perl (0.010-2) ...
485s Selecting previously unselected package libhash-merge-perl.
485s Preparing to unpack .../036-libhash-merge-perl_0.302-1_all.deb ...
485s Unpacking libhash-merge-perl (0.302-1) ...
485s Selecting previously unselected package libjson-perl.
485s Preparing to unpack .../037-libjson-perl_4.10000-1_all.deb ...
485s Unpacking libjson-perl (4.10000-1) ...
485s Selecting previously unselected package libexporter-tiny-perl.
485s Preparing to unpack .../038-libexporter-tiny-perl_1.006002-1_all.deb ...
485s Unpacking libexporter-tiny-perl (1.006002-1) ...
485s Selecting previously unselected package liblist-moreutils-xs-perl.
485s Preparing to unpack .../039-liblist-moreutils-xs-perl_0.430-4build1_arm64.deb ...
485s Unpacking liblist-moreutils-xs-perl (0.430-4build1) ...
485s Selecting previously unselected package liblist-moreutils-perl.
485s Preparing to unpack .../040-liblist-moreutils-perl_0.430-2_all.deb ...
486s Unpacking liblist-moreutils-perl (0.430-2) ...
486s Selecting previously unselected package liblog-log4perl-perl.
486s Preparing to unpack .../041-liblog-log4perl-perl_1.57-1_all.deb ...
486s Unpacking liblog-log4perl-perl (1.57-1) ...
486s Selecting previously unselected package libmouse-perl:arm64.
486s Preparing to unpack .../042-libmouse-perl_2.5.11-1build1_arm64.deb ...
486s Unpacking libmouse-perl:arm64 (2.5.11-1build1) ...
486s Selecting previously unselected package libmousex-nativetraits-perl.
486s Preparing to unpack .../043-libmousex-nativetraits-perl_1.09-3_all.deb ...
486s Unpacking libmousex-nativetraits-perl (1.09-3) ...
486s Selecting previously unselected package libmousex-strictconstructor-perl.
486s Preparing to unpack .../044-libmousex-strictconstructor-perl_0.02-3_all.deb ...
486s Unpacking libmousex-strictconstructor-perl (0.02-3) ...
486s Selecting previously unselected package libparse-recdescent-perl.
486s Preparing to unpack .../045-libparse-recdescent-perl_1.967015+dfsg-4_all.deb ...
486s Unpacking libparse-recdescent-perl (1.967015+dfsg-4) ...
486s Selecting previously unselected package libpath-tiny-perl.
486s Preparing to unpack .../046-libpath-tiny-perl_0.146-1_all.deb ...
486s Unpacking libpath-tiny-perl (0.146-1) ...
486s Selecting previously unselected package libpod-pom-perl.
486s Preparing to unpack .../047-libpod-pom-perl_2.01-4_all.deb ...
486s Unpacking libpod-pom-perl (2.01-4) ...
486s Selecting previously unselected package libregexp-common-perl.
486s Preparing to unpack .../048-libregexp-common-perl_2024080801-1_all.deb ...
486s Unpacking libregexp-common-perl (2024080801-1) ...
486s Selecting previously unselected package libyaml-tiny-perl.
486s Preparing to unpack .../049-libyaml-tiny-perl_1.76-1_all.deb ...
486s Unpacking libyaml-tiny-perl (1.76-1) ...
486s Selecting previously unselected package libconfig-model-perl.
486s Preparing to unpack .../050-libconfig-model-perl_2.155-1_all.deb ...
486s Unpacking libconfig-model-perl (2.155-1) ...
486s Selecting previously unselected package libyaml-pp-perl.
486s Preparing to unpack .../051-libyaml-pp-perl_0.39.0-1_all.deb ...
486s Unpacking libyaml-pp-perl (0.39.0-1) ...
486s Selecting previously unselected package cme.
486s Preparing to unpack .../052-cme_1.041-1_all.deb ...
486s Unpacking cme (1.041-1) ...
486s Selecting previously unselected package libisl23:arm64.
486s Preparing to unpack .../053-libisl23_0.27-1_arm64.deb ...
486s Unpacking libisl23:arm64 (0.27-1) ...
486s Selecting previously unselected package libmpc3:arm64.
486s Preparing to unpack .../054-libmpc3_1.3.1-1build2_arm64.deb ...
486s Unpacking libmpc3:arm64 (1.3.1-1build2) ...
486s Selecting previously unselected package cpp-14-aarch64-linux-gnu.
486s Preparing to unpack .../055-cpp-14-aarch64-linux-gnu_14.2.0-17ubuntu3_arm64.deb ...
486s Unpacking cpp-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
486s Selecting previously unselected package cpp-14.
486s Preparing to unpack .../056-cpp-14_14.2.0-17ubuntu3_arm64.deb ...
486s Unpacking cpp-14 (14.2.0-17ubuntu3) ...
486s Selecting previously unselected package cpp-aarch64-linux-gnu.
486s Preparing to unpack .../057-cpp-aarch64-linux-gnu_4%3a14.2.0-1ubuntu1_arm64.deb ...
486s Unpacking cpp-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
486s Selecting previously unselected package cpp.
486s Preparing to unpack .../058-cpp_4%3a14.2.0-1ubuntu1_arm64.deb ...
486s Unpacking cpp (4:14.2.0-1ubuntu1) ...
486s Selecting previously unselected package libdebhelper-perl.
486s Preparing to unpack .../059-libdebhelper-perl_13.24.1ubuntu2_all.deb ...
486s Unpacking libdebhelper-perl (13.24.1ubuntu2) ...
486s Selecting previously unselected package libcc1-0:arm64.
487s Preparing to unpack .../060-libcc1-0_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libcc1-0:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libgomp1:arm64.
487s Preparing to unpack .../061-libgomp1_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libgomp1:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libitm1:arm64.
487s Preparing to unpack .../062-libitm1_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libitm1:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libasan8:arm64.
487s Preparing to unpack .../063-libasan8_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libasan8:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package liblsan0:arm64.
487s Preparing to unpack .../064-liblsan0_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking liblsan0:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libtsan2:arm64.
487s Preparing to unpack .../065-libtsan2_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libtsan2:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libubsan1:arm64.
487s Preparing to unpack .../066-libubsan1_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libubsan1:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libhwasan0:arm64.
487s Preparing to unpack .../067-libhwasan0_15-20250222-0ubuntu1_arm64.deb ...
487s Unpacking libhwasan0:arm64 (15-20250222-0ubuntu1) ...
487s Selecting previously unselected package libgcc-14-dev:arm64.
487s Preparing to unpack .../068-libgcc-14-dev_14.2.0-17ubuntu3_arm64.deb ...
487s Unpacking libgcc-14-dev:arm64 (14.2.0-17ubuntu3) ...
487s Selecting previously unselected package gcc-14-aarch64-linux-gnu.
487s Preparing to unpack .../069-gcc-14-aarch64-linux-gnu_14.2.0-17ubuntu3_arm64.deb ...
487s Unpacking gcc-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
488s Selecting previously unselected package gcc-14.
488s Preparing to unpack .../070-gcc-14_14.2.0-17ubuntu3_arm64.deb ...
488s Unpacking gcc-14 (14.2.0-17ubuntu3) ...
488s Selecting previously unselected package gcc-aarch64-linux-gnu.
488s Preparing to unpack .../071-gcc-aarch64-linux-gnu_4%3a14.2.0-1ubuntu1_arm64.deb ...
488s Unpacking gcc-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
488s Selecting previously unselected package gcc.
488s Preparing to unpack .../072-gcc_4%3a14.2.0-1ubuntu1_arm64.deb ...
488s Unpacking gcc (4:14.2.0-1ubuntu1) ...
488s Selecting previously unselected package libtool.
488s Preparing to unpack .../073-libtool_2.5.4-4_all.deb ...
488s Unpacking libtool (2.5.4-4) ...
488s Selecting previously unselected package dh-autoreconf.
488s Preparing to unpack .../074-dh-autoreconf_20_all.deb ...
488s Unpacking dh-autoreconf (20) ...
488s Selecting previously unselected package libarchive-zip-perl.
488s Preparing to unpack .../075-libarchive-zip-perl_1.68-1_all.deb ...
488s Unpacking libarchive-zip-perl (1.68-1) ...
488s Selecting previously unselected package libfile-stripnondeterminism-perl.
488s Preparing to unpack .../076-libfile-stripnondeterminism-perl_1.14.1-2_all.deb ...
488s Unpacking libfile-stripnondeterminism-perl (1.14.1-2) ...
488s Selecting previously unselected package dh-strip-nondeterminism.
488s Preparing to unpack .../077-dh-strip-nondeterminism_1.14.1-2_all.deb ...
488s Unpacking dh-strip-nondeterminism (1.14.1-2) ...
488s Selecting previously unselected package debugedit.
488s Preparing to unpack .../078-debugedit_1%3a5.1-2_arm64.deb ...
488s Unpacking debugedit (1:5.1-2) ...
488s Selecting previously unselected package dwz.
488s Preparing to unpack .../079-dwz_0.15-1build6_arm64.deb ...
488s Unpacking dwz (0.15-1build6) ...
488s Selecting previously unselected package gettext.
488s Preparing to unpack .../080-gettext_0.23.1-1_arm64.deb ...
488s Unpacking gettext (0.23.1-1) ...
488s Selecting previously unselected package intltool-debian.
488s Preparing to unpack .../081-intltool-debian_0.35.0+20060710.6_all.deb ...
488s Unpacking intltool-debian (0.35.0+20060710.6) ...
488s Selecting previously unselected package po-debconf.
488s Preparing to unpack .../082-po-debconf_1.0.21+nmu1_all.deb ...
488s Unpacking po-debconf (1.0.21+nmu1) ...
488s Selecting previously unselected package debhelper.
488s Preparing to unpack .../083-debhelper_13.24.1ubuntu2_all.deb ...
488s Unpacking debhelper (13.24.1ubuntu2) ...
488s Selecting previously unselected package aglfn.
488s Preparing to unpack .../084-aglfn_1.7+git20191031.4036a9c-2_all.deb ...
488s Unpacking aglfn (1.7+git20191031.4036a9c-2) ...
488s Selecting previously unselected package gnuplot-data.
488s Preparing to unpack .../085-gnuplot-data_6.0.2+dfsg1-1_all.deb ...
488s Unpacking gnuplot-data (6.0.2+dfsg1-1) ...
488s Selecting previously unselected package fonts-dejavu-mono.
488s Preparing to unpack .../086-fonts-dejavu-mono_2.37-8_all.deb ...
488s Unpacking fonts-dejavu-mono (2.37-8) ...
488s Selecting previously unselected package fonts-dejavu-core.
488s Preparing to unpack .../087-fonts-dejavu-core_2.37-8_all.deb ...
488s Unpacking fonts-dejavu-core (2.37-8) ...
488s Selecting previously unselected package fonts-freefont-otf.
488s Preparing to unpack .../088-fonts-freefont-otf_20211204+svn4273-2_all.deb ...
488s Unpacking fonts-freefont-otf (20211204+svn4273-2) ...
488s Selecting previously unselected package fontconfig-config.
488s Preparing to unpack .../089-fontconfig-config_2.15.0-2ubuntu1_arm64.deb ...
489s Unpacking fontconfig-config (2.15.0-2ubuntu1) ...
489s Selecting previously unselected package libfontconfig1:arm64.
489s Preparing to unpack .../090-libfontconfig1_2.15.0-2ubuntu1_arm64.deb ...
489s Unpacking libfontconfig1:arm64 (2.15.0-2ubuntu1) ...
489s Selecting previously unselected package libpixman-1-0:arm64.
489s Preparing to unpack .../091-libpixman-1-0_0.44.0-3_arm64.deb ...
489s Unpacking libpixman-1-0:arm64 (0.44.0-3) ...
489s Selecting previously unselected package libxcb-render0:arm64.
489s Preparing to unpack .../092-libxcb-render0_1.17.0-2_arm64.deb ...
489s Unpacking libxcb-render0:arm64 (1.17.0-2) ...
489s Selecting previously unselected package libxcb-shm0:arm64.
489s Preparing to unpack .../093-libxcb-shm0_1.17.0-2_arm64.deb ...
489s Unpacking libxcb-shm0:arm64 (1.17.0-2) ...
489s Selecting previously unselected package libxrender1:arm64.
489s Preparing to unpack .../094-libxrender1_1%3a0.9.10-1.1build1_arm64.deb ...
489s Unpacking libxrender1:arm64 (1:0.9.10-1.1build1) ...
489s Selecting previously unselected package libcairo2:arm64.
489s Preparing to unpack .../095-libcairo2_1.18.2-2_arm64.deb ...
489s Unpacking libcairo2:arm64 (1.18.2-2) ...
489s Selecting previously unselected package libsharpyuv0:arm64.
489s Preparing to unpack .../096-libsharpyuv0_1.5.0-0.1_arm64.deb ...
489s Unpacking libsharpyuv0:arm64 (1.5.0-0.1) ...
489s Selecting previously unselected package libaom3:arm64.
489s Preparing to unpack .../097-libaom3_3.12.0-1_arm64.deb ...
489s Unpacking libaom3:arm64 (3.12.0-1) ...
489s Selecting previously unselected package libheif-plugin-aomdec:arm64.
489s Preparing to unpack .../098-libheif-plugin-aomdec_1.19.7-1_arm64.deb ...
489s Unpacking libheif-plugin-aomdec:arm64 (1.19.7-1) ...
489s Selecting previously unselected package libde265-0:arm64.
489s Preparing to unpack .../099-libde265-0_1.0.15-1build5_arm64.deb ...
489s Unpacking libde265-0:arm64 (1.0.15-1build5) ...
489s Selecting previously unselected package libheif-plugin-libde265:arm64.
489s Preparing to unpack .../100-libheif-plugin-libde265_1.19.7-1_arm64.deb ...
489s Unpacking libheif-plugin-libde265:arm64 (1.19.7-1) ...
489s Selecting previously unselected package libheif1:arm64.
489s Preparing to unpack .../101-libheif1_1.19.7-1_arm64.deb ...
489s Unpacking libheif1:arm64 (1.19.7-1) ...
489s Selecting previously unselected package libimagequant0:arm64.
489s Preparing to unpack .../102-libimagequant0_2.18.0-1build1_arm64.deb ...
489s Unpacking libimagequant0:arm64 (2.18.0-1build1) ...
489s Selecting previously unselected package libjpeg-turbo8:arm64.
489s Preparing to unpack .../103-libjpeg-turbo8_2.1.5-3ubuntu2_arm64.deb ...
489s Unpacking libjpeg-turbo8:arm64 (2.1.5-3ubuntu2) ...
489s Selecting previously unselected package libjpeg8:arm64.
489s Preparing to unpack .../104-libjpeg8_8c-2ubuntu11_arm64.deb ...
489s Unpacking libjpeg8:arm64 (8c-2ubuntu11) ...
489s Selecting previously unselected package libgraphite2-3:arm64.
489s Preparing to unpack .../105-libgraphite2-3_1.3.14-2ubuntu1_arm64.deb ...
489s Unpacking libgraphite2-3:arm64 (1.3.14-2ubuntu1) ...
489s Selecting previously unselected package libharfbuzz0b:arm64.
489s Preparing to unpack .../106-libharfbuzz0b_10.2.0-1_arm64.deb ...
489s Unpacking libharfbuzz0b:arm64 (10.2.0-1) ...
489s Selecting previously unselected package libraqm0:arm64.
489s Preparing to unpack .../107-libraqm0_0.10.2-1_arm64.deb ...
489s Unpacking libraqm0:arm64 (0.10.2-1) ...
489s Selecting previously unselected package libdeflate0:arm64.
489s Preparing to unpack .../108-libdeflate0_1.23-1_arm64.deb ...
489s Unpacking libdeflate0:arm64 (1.23-1) ...
489s Selecting previously unselected package libjbig0:arm64.
489s Preparing to unpack .../109-libjbig0_2.1-6.1ubuntu2_arm64.deb ...
489s Unpacking libjbig0:arm64 (2.1-6.1ubuntu2) ...
489s Selecting previously unselected package liblerc4:arm64.
489s Preparing to unpack .../110-liblerc4_4.0.0+ds-5ubuntu1_arm64.deb ...
489s Unpacking liblerc4:arm64 (4.0.0+ds-5ubuntu1) ...
489s Selecting previously unselected package libwebp7:arm64.
489s Preparing to unpack .../111-libwebp7_1.5.0-0.1_arm64.deb ...
489s Unpacking libwebp7:arm64 (1.5.0-0.1) ...
490s Selecting previously unselected package libtiff6:arm64.
490s Preparing to unpack .../112-libtiff6_4.5.1+git230720-4ubuntu4_arm64.deb ...
490s Unpacking libtiff6:arm64 (4.5.1+git230720-4ubuntu4) ...
490s Selecting previously unselected package libxpm4:arm64.
490s Preparing to unpack .../113-libxpm4_1%3a3.5.17-1build2_arm64.deb ...
490s Unpacking libxpm4:arm64 (1:3.5.17-1build2) ...
490s Selecting previously unselected package libgd3:arm64.
490s Preparing to unpack .../114-libgd3_2.3.3-12ubuntu3_arm64.deb ...
490s Unpacking libgd3:arm64 (2.3.3-12ubuntu3) ...
490s Selecting previously unselected package liblua5.4-0:arm64.
490s Preparing to unpack .../115-liblua5.4-0_5.4.7-1_arm64.deb ...
490s Unpacking liblua5.4-0:arm64 (5.4.7-1) ...
490s Selecting previously unselected package fontconfig.
490s Preparing to unpack .../116-fontconfig_2.15.0-2ubuntu1_arm64.deb ...
490s Unpacking fontconfig (2.15.0-2ubuntu1) ...
490s Selecting previously unselected package libthai-data.
490s Preparing to unpack .../117-libthai-data_0.1.29-2build1_all.deb ...
490s Unpacking libthai-data (0.1.29-2build1) ...
490s Selecting previously unselected package libdatrie1:arm64.
490s Preparing to unpack .../118-libdatrie1_0.2.13-3build1_arm64.deb ...
490s Unpacking libdatrie1:arm64 (0.2.13-3build1) ...
490s Selecting previously unselected package libthai0:arm64.
490s Preparing to unpack .../119-libthai0_0.1.29-2build1_arm64.deb ...
490s Unpacking libthai0:arm64 (0.1.29-2build1) ...
490s Selecting previously unselected package libpango-1.0-0:arm64.
490s Preparing to unpack .../120-libpango-1.0-0_1.56.2-1_arm64.deb ...
490s Unpacking libpango-1.0-0:arm64 (1.56.2-1) ...
490s Selecting previously unselected package libpangoft2-1.0-0:arm64.
490s Preparing to unpack .../121-libpangoft2-1.0-0_1.56.2-1_arm64.deb ...
490s Unpacking libpangoft2-1.0-0:arm64 (1.56.2-1) ...
490s Selecting previously unselected package libpangocairo-1.0-0:arm64.
490s Preparing to unpack .../122-libpangocairo-1.0-0_1.56.2-1_arm64.deb ...
490s Unpacking libpangocairo-1.0-0:arm64 (1.56.2-1) ...
490s Selecting previously unselected package libwebpmux3:arm64.
490s Preparing to unpack .../123-libwebpmux3_1.5.0-0.1_arm64.deb ...
490s Unpacking libwebpmux3:arm64 (1.5.0-0.1) ...
490s Selecting previously unselected package gnuplot-nox.
490s Preparing to unpack .../124-gnuplot-nox_6.0.2+dfsg1-1_arm64.deb ...
490s Unpacking gnuplot-nox (6.0.2+dfsg1-1) ...
490s Selecting previously unselected package dh-octave-autopkgtest.
490s Preparing to unpack .../125-dh-octave-autopkgtest_1.8.0_all.deb ...
490s Unpacking dh-octave-autopkgtest (1.8.0) ...
490s Selecting previously unselected package libapt-pkg-perl.
490s Preparing to unpack .../126-libapt-pkg-perl_0.1.41build1_arm64.deb ...
490s Unpacking libapt-pkg-perl (0.1.41build1) ...
490s Selecting previously unselected package libarray-intspan-perl.
490s Preparing to unpack .../127-libarray-intspan-perl_2.004-2_all.deb ...
490s Unpacking libarray-intspan-perl (2.004-2) ...
490s Selecting previously unselected package libyaml-libyaml-perl.
490s Preparing to unpack .../128-libyaml-libyaml-perl_0.903.0+ds-1_arm64.deb ...
490s Unpacking libyaml-libyaml-perl (0.903.0+ds-1) ...
490s Selecting previously unselected package libconfig-model-backend-yaml-perl.
490s Preparing to unpack .../129-libconfig-model-backend-yaml-perl_2.134-2_all.deb ...
490s Unpacking libconfig-model-backend-yaml-perl (2.134-2) ...
490s Selecting previously unselected package libexporter-lite-perl.
490s Preparing to unpack .../130-libexporter-lite-perl_0.09-2_all.deb ...
490s Unpacking libexporter-lite-perl (0.09-2) ...
490s Selecting previously unselected package libencode-locale-perl.
490s Preparing to unpack .../131-libencode-locale-perl_1.05-3_all.deb ...
490s Unpacking libencode-locale-perl (1.05-3) ...
490s Selecting previously unselected package libtimedate-perl.
490s Preparing to unpack .../132-libtimedate-perl_2.3300-2_all.deb ...
490s Unpacking libtimedate-perl (2.3300-2) ...
490s Selecting previously unselected package libhttp-date-perl.
490s Preparing to unpack .../133-libhttp-date-perl_6.06-1_all.deb ...
490s Unpacking libhttp-date-perl (6.06-1) ...
490s Selecting previously unselected package libfile-listing-perl.
490s Preparing to unpack .../134-libfile-listing-perl_6.16-1_all.deb ...
490s Unpacking libfile-listing-perl (6.16-1) ...
490s Selecting previously unselected package libhtml-tagset-perl.
490s Preparing to unpack .../135-libhtml-tagset-perl_3.24-1_all.deb ...
490s Unpacking libhtml-tagset-perl (3.24-1) ...
490s Selecting previously unselected package liburi-perl.
490s Preparing to unpack .../136-liburi-perl_5.30-1_all.deb ...
490s Unpacking liburi-perl (5.30-1) ...
490s Selecting previously unselected package libhtml-parser-perl:arm64.
491s Preparing to unpack .../137-libhtml-parser-perl_3.83-1build1_arm64.deb ...
491s Unpacking libhtml-parser-perl:arm64 (3.83-1build1) ...
491s Selecting previously unselected package libhtml-tree-perl.
491s Preparing to unpack .../138-libhtml-tree-perl_5.07-3_all.deb ...
491s Unpacking libhtml-tree-perl (5.07-3) ...
491s Selecting previously unselected package libclone-perl:arm64.
491s Preparing to unpack .../139-libclone-perl_0.47-1_arm64.deb ...
491s Unpacking libclone-perl:arm64 (0.47-1) ...
491s Selecting previously unselected package libio-html-perl.
491s Preparing to unpack .../140-libio-html-perl_1.004-3_all.deb ...
491s Unpacking libio-html-perl (1.004-3) ...
491s Selecting previously unselected package liblwp-mediatypes-perl.
491s Preparing to unpack .../141-liblwp-mediatypes-perl_6.04-2_all.deb ...
491s Unpacking liblwp-mediatypes-perl (6.04-2) ...
491s Selecting previously unselected package libhttp-message-perl.
491s Preparing to unpack .../142-libhttp-message-perl_7.00-2ubuntu1_all.deb ...
491s Unpacking libhttp-message-perl (7.00-2ubuntu1) ...
491s Selecting previously unselected package libhttp-cookies-perl.
491s Preparing to unpack .../143-libhttp-cookies-perl_6.11-1_all.deb ...
491s Unpacking libhttp-cookies-perl (6.11-1) ...
491s Selecting previously unselected package libhttp-negotiate-perl.
491s Preparing to unpack .../144-libhttp-negotiate-perl_6.01-2_all.deb ...
491s Unpacking libhttp-negotiate-perl (6.01-2) ...
491s Selecting previously unselected package perl-openssl-defaults:arm64.
491s Preparing to unpack .../145-perl-openssl-defaults_7build3_arm64.deb ...
491s Unpacking perl-openssl-defaults:arm64 (7build3) ...
491s Selecting previously unselected package libnet-ssleay-perl:arm64.
491s Preparing to unpack .../146-libnet-ssleay-perl_1.94-3_arm64.deb ...
491s Unpacking libnet-ssleay-perl:arm64 (1.94-3) ...
491s Selecting previously unselected package libio-socket-ssl-perl.
491s Preparing to unpack .../147-libio-socket-ssl-perl_2.089-1_all.deb ...
491s Unpacking libio-socket-ssl-perl (2.089-1) ...
491s Selecting previously unselected package libnet-http-perl.
491s Preparing to unpack .../148-libnet-http-perl_6.23-1_all.deb ...
491s Unpacking libnet-http-perl (6.23-1) ...
491s Selecting previously unselected package liblwp-protocol-https-perl.
491s Preparing to unpack .../149-liblwp-protocol-https-perl_6.14-1_all.deb ...
491s Unpacking liblwp-protocol-https-perl (6.14-1) ...
491s Selecting previously unselected package libwww-robotrules-perl.
491s Preparing to unpack .../150-libwww-robotrules-perl_6.02-1_all.deb ...
491s Unpacking libwww-robotrules-perl (6.02-1) ...
491s Selecting previously unselected package libwww-perl.
491s Preparing to unpack .../151-libwww-perl_6.78-1_all.deb ...
491s Unpacking libwww-perl (6.78-1) ...
491s Selecting previously unselected package liberror-perl.
491s Preparing to unpack .../152-liberror-perl_0.17030-1_all.deb ...
491s Unpacking liberror-perl (0.17030-1) ...
491s Selecting previously unselected package libparse-debcontrol-perl.
491s Preparing to unpack .../153-libparse-debcontrol-perl_2.005-6_all.deb ...
491s Unpacking libparse-debcontrol-perl (2.005-6) ...
491s Selecting previously unselected package libsoftware-copyright-perl.
491s Preparing to unpack .../154-libsoftware-copyright-perl_0.014-1_all.deb ...
491s Unpacking libsoftware-copyright-perl (0.014-1) ...
491s Selecting previously unselected package libalgorithm-c3-perl.
491s Preparing to unpack .../155-libalgorithm-c3-perl_0.11-2_all.deb ...
491s Unpacking libalgorithm-c3-perl (0.11-2) ...
491s Selecting previously unselected package libclass-c3-perl.
491s Preparing to unpack .../156-libclass-c3-perl_0.35-2_all.deb ...
491s Unpacking libclass-c3-perl (0.35-2) ...
491s Selecting previously unselected package libmro-compat-perl.
491s Preparing to unpack .../157-libmro-compat-perl_0.15-2_all.deb ...
491s Unpacking libmro-compat-perl (0.15-2) ...
491s Selecting previously unselected package libdata-section-perl.
491s Preparing to unpack .../158-libdata-section-perl_0.200008-1_all.deb ...
491s Unpacking libdata-section-perl (0.200008-1) ...
491s Selecting previously unselected package libtext-template-perl.
491s Preparing to unpack .../159-libtext-template-perl_1.61-1_all.deb ...
491s Unpacking libtext-template-perl (1.61-1) ...
491s Selecting previously unselected package libsoftware-license-perl.
491s Preparing to unpack .../160-libsoftware-license-perl_0.104006-1_all.deb ...
491s Unpacking libsoftware-license-perl (0.104006-1) ...
491s Selecting previously unselected package libsoftware-licensemoreutils-perl.
492s Preparing to unpack .../161-libsoftware-licensemoreutils-perl_1.009-1_all.deb ...
492s Unpacking libsoftware-licensemoreutils-perl (1.009-1) ...
492s Selecting previously unselected package libsort-versions-perl.
492s Preparing to unpack .../162-libsort-versions-perl_1.62-3_all.deb ...
492s Unpacking libsort-versions-perl (1.62-3) ...
492s Selecting previously unselected package libtext-reform-perl.
492s Preparing to unpack .../163-libtext-reform-perl_1.20-5_all.deb ...
492s Unpacking libtext-reform-perl (1.20-5) ...
492s Selecting previously unselected package libtext-autoformat-perl.
492s Preparing to unpack .../164-libtext-autoformat-perl_1.750000-2_all.deb ...
492s Unpacking libtext-autoformat-perl (1.750000-2) ...
492s Selecting previously unselected package libtext-levenshtein-damerau-perl.
492s Preparing to unpack .../165-libtext-levenshtein-damerau-perl_0.41-3_all.deb ...
492s Unpacking libtext-levenshtein-damerau-perl (0.41-3) ...
492s Selecting previously unselected package libtoml-tiny-perl.
492s Preparing to unpack .../166-libtoml-tiny-perl_0.19-1_all.deb ...
492s Unpacking libtoml-tiny-perl (0.19-1) ...
492s Selecting previously unselected package libclass-inspector-perl.
492s Preparing to unpack .../167-libclass-inspector-perl_1.36-3_all.deb ...
492s Unpacking libclass-inspector-perl (1.36-3) ...
492s Selecting previously unselected package libfile-sharedir-perl.
492s Preparing to unpack .../168-libfile-sharedir-perl_1.118-3_all.deb ...
492s Unpacking libfile-sharedir-perl (1.118-3) ...
492s Selecting previously unselected package libindirect-perl.
492s Preparing to unpack .../169-libindirect-perl_0.39-2build5_arm64.deb ...
492s Unpacking libindirect-perl (0.39-2build5) ...
492s Selecting previously unselected package libxs-parse-keyword-perl.
492s Preparing to unpack .../170-libxs-parse-keyword-perl_0.48-2_arm64.deb ...
492s Unpacking libxs-parse-keyword-perl (0.48-2) ...
492s Selecting previously unselected package libxs-parse-sublike-perl:arm64.
492s Preparing to unpack .../171-libxs-parse-sublike-perl_0.37-1_arm64.deb ...
492s Unpacking libxs-parse-sublike-perl:arm64 (0.37-1) ...
492s Selecting previously unselected package libobject-pad-perl.
492s Preparing to unpack .../172-libobject-pad-perl_0.820-1_arm64.deb ...
492s Unpacking libobject-pad-perl (0.820-1) ...
492s Selecting previously unselected package libsyntax-keyword-try-perl.
492s Preparing to unpack .../173-libsyntax-keyword-try-perl_0.30-1_arm64.deb ...
492s Unpacking libsyntax-keyword-try-perl (0.30-1) ...
492s Selecting previously unselected package libio-interactive-perl.
492s Preparing to unpack .../174-libio-interactive-perl_1.026-1_all.deb ...
492s Unpacking libio-interactive-perl (1.026-1) ...
492s Selecting previously unselected package liblog-any-perl.
492s Preparing to unpack .../175-liblog-any-perl_1.717-1_all.deb ...
492s Unpacking liblog-any-perl (1.717-1) ...
492s Selecting previously unselected package liblog-any-adapter-screen-perl.
492s Preparing to unpack .../176-liblog-any-adapter-screen-perl_0.141-1_all.deb ...
492s Unpacking liblog-any-adapter-screen-perl (0.141-1) ...
492s Selecting previously unselected package libsub-exporter-progressive-perl.
492s Preparing to unpack .../177-libsub-exporter-progressive-perl_0.001013-3_all.deb ...
492s Unpacking libsub-exporter-progressive-perl (0.001013-3) ...
492s Selecting previously unselected package libvariable-magic-perl.
492s Preparing to unpack .../178-libvariable-magic-perl_0.64-1build1_arm64.deb ...
492s Unpacking libvariable-magic-perl (0.64-1build1) ...
492s Selecting previously unselected package libb-hooks-endofscope-perl.
492s Preparing to unpack .../179-libb-hooks-endofscope-perl_0.28-1_all.deb ...
492s Unpacking libb-hooks-endofscope-perl (0.28-1) ...
492s Selecting previously unselected package libsub-identify-perl.
492s Preparing to unpack .../180-libsub-identify-perl_0.14-3build4_arm64.deb ...
492s Unpacking libsub-identify-perl (0.14-3build4) ...
492s Selecting previously unselected package libsub-name-perl:arm64.
492s Preparing to unpack .../181-libsub-name-perl_0.28-1_arm64.deb ...
492s Unpacking libsub-name-perl:arm64 (0.28-1) ...
492s Selecting previously unselected package libnamespace-clean-perl.
492s Preparing to unpack .../182-libnamespace-clean-perl_0.27-2_all.deb ...
492s Unpacking libnamespace-clean-perl (0.27-2) ...
492s Selecting previously unselected package libnumber-compare-perl.
492s Preparing to unpack .../183-libnumber-compare-perl_0.03-3_all.deb ...
492s Unpacking libnumber-compare-perl (0.03-3) ...
492s Selecting previously unselected package libtext-glob-perl.
492s Preparing to unpack .../184-libtext-glob-perl_0.11-3_all.deb ...
492s Unpacking libtext-glob-perl (0.11-3) ...
492s Selecting previously unselected package libpath-iterator-rule-perl.
492s Preparing to unpack .../185-libpath-iterator-rule-perl_1.015-2_all.deb ...
492s Unpacking libpath-iterator-rule-perl (1.015-2) ...
493s Selecting previously unselected package libpod-parser-perl.
493s Preparing to unpack .../186-libpod-parser-perl_1.67-1_all.deb ...
493s Adding 'diversion of /usr/bin/podselect to /usr/bin/podselect.bundled by libpod-parser-perl'
493s Adding 'diversion of /usr/share/man/man1/podselect.1.gz to /usr/share/man/man1/podselect.bundled.1.gz by libpod-parser-perl'
493s Unpacking libpod-parser-perl (1.67-1) ...
493s Selecting previously unselected package libpod-constants-perl.
493s Preparing to unpack .../187-libpod-constants-perl_0.19-2_all.deb ...
493s Unpacking libpod-constants-perl (0.19-2) ...
493s Selecting previously unselected package libset-intspan-perl.
493s Preparing to unpack .../188-libset-intspan-perl_1.19-3_all.deb ...
493s Unpacking libset-intspan-perl (1.19-3) ...
493s Selecting previously unselected package libstring-copyright-perl.
493s Preparing to unpack .../189-libstring-copyright-perl_0.003014-1_all.deb ...
493s Unpacking libstring-copyright-perl (0.003014-1) ...
493s Selecting previously unselected package libstring-escape-perl.
493s Preparing to unpack .../190-libstring-escape-perl_2010.002-3_all.deb ...
493s Unpacking libstring-escape-perl (2010.002-3) ...
493s Selecting previously unselected package libregexp-pattern-license-perl.
493s Preparing to unpack .../191-libregexp-pattern-license-perl_3.11.2-1_all.deb ...
493s Unpacking libregexp-pattern-license-perl (3.11.2-1) ...
493s Selecting previously unselected package libregexp-pattern-perl.
493s Preparing to unpack .../192-libregexp-pattern-perl_0.2.14-2_all.deb ...
493s Unpacking libregexp-pattern-perl (0.2.14-2) ...
493s Selecting previously unselected package libstring-license-perl.
493s Preparing to unpack .../193-libstring-license-perl_0.0.11-1ubuntu1_all.deb ...
493s Unpacking libstring-license-perl (0.0.11-1ubuntu1) ...
493s Selecting previously unselected package licensecheck.
493s Preparing to unpack .../194-licensecheck_3.3.9-1ubuntu1_all.deb ...
493s Unpacking licensecheck (3.3.9-1ubuntu1) ...
493s Selecting previously unselected package diffstat.
493s Preparing to unpack .../195-diffstat_1.67-1_arm64.deb ...
493s Unpacking diffstat (1.67-1) ...
493s Selecting previously unselected package libberkeleydb-perl:arm64.
493s Preparing to unpack .../196-libberkeleydb-perl_0.66-1_arm64.deb ...
493s Unpacking libberkeleydb-perl:arm64 (0.66-1) ...
493s Selecting previously unselected package libclass-xsaccessor-perl.
493s Preparing to unpack .../197-libclass-xsaccessor-perl_1.19-4build6_arm64.deb ...
493s Unpacking libclass-xsaccessor-perl (1.19-4build6) ...
493s Selecting previously unselected package libconfig-tiny-perl.
493s Preparing to unpack .../198-libconfig-tiny-perl_2.30-1_all.deb ...
493s Unpacking libconfig-tiny-perl (2.30-1) ...
493s Selecting previously unselected package libconst-fast-perl.
493s Preparing to unpack .../199-libconst-fast-perl_0.014-2_all.deb ...
493s Unpacking libconst-fast-perl (0.014-2) ...
493s Selecting previously unselected package libcpanel-json-xs-perl:arm64.
493s Preparing to unpack .../200-libcpanel-json-xs-perl_4.39-1_arm64.deb ...
493s Unpacking libcpanel-json-xs-perl:arm64 (4.39-1) ...
493s Selecting previously unselected package libaliased-perl.
493s Preparing to unpack .../201-libaliased-perl_0.34-3_all.deb ...
493s Unpacking libaliased-perl (0.34-3) ...
493s Selecting previously unselected package libclass-data-inheritable-perl.
493s Preparing to unpack .../202-libclass-data-inheritable-perl_0.10-1_all.deb ...
493s Unpacking libclass-data-inheritable-perl (0.10-1) ...
493s Selecting previously unselected package libdevel-stacktrace-perl.
493s Preparing to unpack .../203-libdevel-stacktrace-perl_2.0500-1_all.deb ...
493s Unpacking libdevel-stacktrace-perl (2.0500-1) ...
493s Selecting previously unselected package libexception-class-perl.
493s Preparing to unpack .../204-libexception-class-perl_1.45-1_all.deb ...
493s Unpacking libexception-class-perl (1.45-1) ...
493s Selecting previously unselected package libiterator-perl.
493s Preparing to unpack .../205-libiterator-perl_0.03+ds1-2_all.deb ...
493s Unpacking libiterator-perl (0.03+ds1-2) ...
493s Selecting previously unselected package libiterator-util-perl.
493s Preparing to unpack .../206-libiterator-util-perl_0.02+ds1-2_all.deb ...
493s Unpacking libiterator-util-perl (0.02+ds1-2) ...
493s Selecting previously unselected package libdata-dpath-perl.
493s Preparing to unpack .../207-libdata-dpath-perl_0.60-1_all.deb ...
493s Unpacking libdata-dpath-perl (0.60-1) ...
493s Selecting previously unselected package libnet-domain-tld-perl.
493s Preparing to unpack .../208-libnet-domain-tld-perl_1.75-4_all.deb ...
493s Unpacking libnet-domain-tld-perl (1.75-4) ...
493s Selecting previously unselected package libdata-validate-domain-perl.
493s Preparing to unpack .../209-libdata-validate-domain-perl_0.15-1_all.deb ...
493s Unpacking libdata-validate-domain-perl (0.15-1) ...
493s Selecting previously unselected package libnet-ipv6addr-perl.
493s Preparing to unpack .../210-libnet-ipv6addr-perl_1.02-1_all.deb ...
493s Unpacking libnet-ipv6addr-perl (1.02-1) ...
493s Selecting previously unselected package libnet-netmask-perl.
493s Preparing to unpack .../211-libnet-netmask-perl_2.0002-2_all.deb ...
493s Unpacking libnet-netmask-perl (2.0002-2) ...
493s Selecting previously unselected package libnetaddr-ip-perl.
493s Preparing to unpack .../212-libnetaddr-ip-perl_4.079+dfsg-2build5_arm64.deb ...
493s Unpacking libnetaddr-ip-perl (4.079+dfsg-2build5) ...
494s Selecting previously unselected package libdata-validate-ip-perl.
494s Preparing to unpack .../213-libdata-validate-ip-perl_0.31-1_all.deb ...
494s Unpacking libdata-validate-ip-perl (0.31-1) ...
494s Selecting previously unselected package libdata-validate-uri-perl.
494s Preparing to unpack .../214-libdata-validate-uri-perl_0.07-3_all.deb ...
494s Unpacking libdata-validate-uri-perl (0.07-3) ...
494s Selecting previously unselected package libdevel-size-perl.
494s Preparing to unpack .../215-libdevel-size-perl_0.84-1build1_arm64.deb ...
494s Unpacking libdevel-size-perl (0.84-1build1) ...
494s Selecting previously unselected package libemail-address-xs-perl.
494s Preparing to unpack .../216-libemail-address-xs-perl_1.05-1build5_arm64.deb ...
494s Unpacking libemail-address-xs-perl (1.05-1build5) ...
494s Selecting previously unselected package libipc-system-simple-perl.
494s Preparing to unpack .../217-libipc-system-simple-perl_1.30-2_all.deb ...
494s Unpacking libipc-system-simple-perl (1.30-2) ...
494s Selecting previously unselected package libfile-basedir-perl.
494s Preparing to unpack .../218-libfile-basedir-perl_0.09-2_all.deb ...
494s Unpacking libfile-basedir-perl (0.09-2) ...
494s Selecting previously unselected package libfile-find-rule-perl.
494s Preparing to unpack .../219-libfile-find-rule-perl_0.34-3_all.deb ...
494s Unpacking libfile-find-rule-perl (0.34-3) ...
494s Selecting previously unselected package libio-string-perl.
494s Preparing to unpack .../220-libio-string-perl_1.08-4_all.deb ...
494s Unpacking libio-string-perl (1.08-4) ...
494s Selecting previously unselected package libfont-ttf-perl.
494s Preparing to unpack .../221-libfont-ttf-perl_1.06-2_all.deb ...
494s Unpacking libfont-ttf-perl (1.06-2) ...
494s Selecting previously unselected package libhtml-html5-entities-perl.
494s Preparing to unpack .../222-libhtml-html5-entities-perl_0.004-3_all.deb ...
494s Unpacking libhtml-html5-entities-perl (0.004-3) ...
494s Selecting previously unselected package libhtml-tokeparser-simple-perl.
494s Preparing to unpack .../223-libhtml-tokeparser-simple-perl_3.16-4_all.deb ...
494s Unpacking libhtml-tokeparser-simple-perl (3.16-4) ...
494s Selecting previously unselected package libipc-run3-perl.
494s Preparing to unpack .../224-libipc-run3-perl_0.049-1_all.deb ...
494s Unpacking libipc-run3-perl (0.049-1) ...
494s Selecting previously unselected package libjson-maybexs-perl.
494s Preparing to unpack .../225-libjson-maybexs-perl_1.004008-1_all.deb ...
494s Unpacking libjson-maybexs-perl (1.004008-1) ...
494s Selecting previously unselected package liblist-compare-perl.
494s Preparing to unpack .../226-liblist-compare-perl_0.55-2_all.deb ...
494s Unpacking liblist-compare-perl (0.55-2) ...
494s Selecting previously unselected package liblist-someutils-perl.
494s Preparing to unpack .../227-liblist-someutils-perl_0.59-1_all.deb ...
494s Unpacking liblist-someutils-perl (0.59-1) ...
494s Selecting previously unselected package liblist-utilsby-perl.
494s Preparing to unpack .../228-liblist-utilsby-perl_0.12-2_all.deb ...
494s Unpacking liblist-utilsby-perl (0.12-2) ...
494s Selecting previously unselected package libmldbm-perl.
494s Preparing to unpack .../229-libmldbm-perl_2.05-4_all.deb ...
494s Unpacking libmldbm-perl (2.05-4) ...
494s Selecting previously unselected package libclass-method-modifiers-perl.
494s Preparing to unpack .../230-libclass-method-modifiers-perl_2.15-1_all.deb ...
494s Unpacking libclass-method-modifiers-perl (2.15-1) ...
494s Selecting previously unselected package libimport-into-perl.
494s Preparing to unpack .../231-libimport-into-perl_1.002005-2_all.deb ...
494s Unpacking libimport-into-perl (1.002005-2) ...
494s Selecting previously unselected package librole-tiny-perl.
494s Preparing to unpack .../232-librole-tiny-perl_2.002004-1_all.deb ...
494s Unpacking librole-tiny-perl (2.002004-1) ...
494s Selecting previously unselected package libsub-quote-perl.
494s Preparing to unpack .../233-libsub-quote-perl_2.006008-1ubuntu1_all.deb ...
494s Unpacking libsub-quote-perl (2.006008-1ubuntu1) ...
494s Selecting previously unselected package libmoo-perl.
494s Preparing to unpack .../234-libmoo-perl_2.005005-1_all.deb ...
494s Unpacking libmoo-perl (2.005005-1) ...
494s Selecting previously unselected package libstrictures-perl.
494s Preparing to unpack .../235-libstrictures-perl_2.000006-1_all.deb ...
494s Unpacking libstrictures-perl (2.000006-1) ...
494s Selecting previously unselected package libmoox-aliases-perl.
494s Preparing to unpack .../236-libmoox-aliases-perl_0.001006-2_all.deb ...
494s Unpacking libmoox-aliases-perl (0.001006-2) ...
494s Selecting previously unselected package libperlio-gzip-perl.
494s Preparing to unpack .../237-libperlio-gzip-perl_0.20-1build5_arm64.deb ...
494s Unpacking libperlio-gzip-perl (0.20-1build5) ...
494s Selecting previously unselected package libperlio-utf8-strict-perl.
494s Preparing to unpack .../238-libperlio-utf8-strict-perl_0.010-1build4_arm64.deb ...
494s Unpacking libperlio-utf8-strict-perl (0.010-1build4) ...
495s Selecting previously unselected package libproc-processtable-perl:arm64.
495s Preparing to unpack .../239-libproc-processtable-perl_0.636-1build4_arm64.deb ...
495s Unpacking libproc-processtable-perl:arm64 (0.636-1build4) ...
495s Selecting previously unselected package libregexp-wildcards-perl.
495s Preparing to unpack .../240-libregexp-wildcards-perl_1.05-3_all.deb ...
495s Unpacking libregexp-wildcards-perl (1.05-3) ...
495s Selecting previously unselected package libsereal-decoder-perl.
495s Preparing to unpack .../241-libsereal-decoder-perl_5.004+ds-1build4_arm64.deb ...
495s Unpacking libsereal-decoder-perl (5.004+ds-1build4) ...
495s Selecting previously unselected package libsereal-encoder-perl.
495s Preparing to unpack .../242-libsereal-encoder-perl_5.004+ds-1build4_arm64.deb ...
495s Unpacking libsereal-encoder-perl (5.004+ds-1build4) ...
495s Selecting previously unselected package libterm-readkey-perl.
495s Preparing to unpack .../243-libterm-readkey-perl_2.38-2build5_arm64.deb ...
495s Unpacking libterm-readkey-perl (2.38-2build5) ...
495s Selecting previously unselected package libtext-levenshteinxs-perl.
495s Preparing to unpack .../244-libtext-levenshteinxs-perl_0.03-5build5_arm64.deb ...
495s Unpacking libtext-levenshteinxs-perl (0.03-5build5) ...
495s Selecting previously unselected package libmarkdown2:arm64.
495s Preparing to unpack .../245-libmarkdown2_2.2.7-2.1_arm64.deb ...
495s Unpacking libmarkdown2:arm64 (2.2.7-2.1) ...
495s Selecting previously unselected package libtext-markdown-discount-perl.
495s Preparing to unpack .../246-libtext-markdown-discount-perl_0.18-1_arm64.deb ...
495s Unpacking libtext-markdown-discount-perl (0.18-1) ...
495s Selecting previously unselected package libdata-messagepack-perl.
495s Preparing to unpack .../247-libdata-messagepack-perl_1.02-1build5_arm64.deb ...
495s Unpacking libdata-messagepack-perl (1.02-1build5) ...
495s Selecting previously unselected package libtext-xslate-perl:arm64.
495s Preparing to unpack .../248-libtext-xslate-perl_3.5.9-2build1_arm64.deb ...
495s Unpacking libtext-xslate-perl:arm64 (3.5.9-2build1) ...
495s Selecting previously unselected package libtime-duration-perl.
495s Preparing to unpack .../249-libtime-duration-perl_1.21-2_all.deb ...
495s Unpacking libtime-duration-perl (1.21-2) ...
495s Selecting previously unselected package libtime-moment-perl.
495s Preparing to unpack .../250-libtime-moment-perl_0.44-2build5_arm64.deb ...
495s Unpacking libtime-moment-perl (0.44-2build5) ...
495s Selecting previously unselected package libunicode-utf8-perl.
495s Preparing to unpack .../251-libunicode-utf8-perl_0.62-2build4_arm64.deb ...
495s Unpacking libunicode-utf8-perl (0.62-2build4) ...
495s Selecting previously unselected package libcgi-pm-perl.
495s Preparing to unpack .../252-libcgi-pm-perl_4.67-1_all.deb ...
495s Unpacking libcgi-pm-perl (4.67-1) ...
495s Selecting previously unselected package libhtml-form-perl.
495s Preparing to unpack .../253-libhtml-form-perl_6.12-1_all.deb ...
495s Unpacking libhtml-form-perl (6.12-1) ...
495s Selecting previously unselected package libwww-mechanize-perl.
495s Preparing to unpack .../254-libwww-mechanize-perl_2.19-1ubuntu1_all.deb ...
495s Unpacking libwww-mechanize-perl (2.19-1ubuntu1) ...
495s Selecting previously unselected package libxml-namespacesupport-perl.
495s Preparing to unpack .../255-libxml-namespacesupport-perl_1.12-2_all.deb ...
495s Unpacking libxml-namespacesupport-perl (1.12-2) ...
495s Selecting previously unselected package libxml-sax-base-perl.
495s Preparing to unpack .../256-libxml-sax-base-perl_1.09-3_all.deb ...
495s Unpacking libxml-sax-base-perl (1.09-3) ...
495s Selecting previously unselected package libxml-sax-perl.
495s Preparing to unpack .../257-libxml-sax-perl_1.02+dfsg-4_all.deb ...
495s Unpacking libxml-sax-perl (1.02+dfsg-4) ...
495s Selecting previously unselected package libxml-libxml-perl.
495s Preparing to unpack .../258-libxml-libxml-perl_2.0207+dfsg+really+2.0134-5build1_arm64.deb ...
495s Unpacking libxml-libxml-perl (2.0207+dfsg+really+2.0134-5build1) ...
495s Selecting previously unselected package lzip.
495s Preparing to unpack .../259-lzip_1.25-2_arm64.deb ...
495s Unpacking lzip (1.25-2) ...
495s Selecting previously unselected package lzop.
495s Preparing to unpack .../260-lzop_1.04-2build3_arm64.deb ...
495s Unpacking lzop (1.04-2build3) ...
495s Selecting previously unselected package patchutils.
495s Preparing to unpack .../261-patchutils_0.4.2-1build3_arm64.deb ...
495s Unpacking patchutils (0.4.2-1build3) ...
495s Selecting previously unselected package t1utils.
495s Preparing to unpack .../262-t1utils_1.41-4build3_arm64.deb ...
495s Unpacking t1utils (1.41-4build3) ...
496s Selecting previously unselected package unzip.
496s Preparing to unpack .../263-unzip_6.0-28ubuntu6_arm64.deb ...
496s Unpacking unzip (6.0-28ubuntu6) ...
496s Selecting previously unselected package lintian.
496s Preparing to unpack .../264-lintian_2.121.1+nmu1ubuntu2_all.deb ...
496s Unpacking lintian (2.121.1+nmu1ubuntu2) ...
496s Selecting previously unselected package libconfig-model-dpkg-perl.
496s Preparing to unpack .../265-libconfig-model-dpkg-perl_3.010_all.deb ...
496s Unpacking libconfig-model-dpkg-perl (3.010) ...
496s Selecting previously unselected package libconvert-binhex-perl.
496s Preparing to unpack .../266-libconvert-binhex-perl_1.125-3_all.deb ...
496s Unpacking libconvert-binhex-perl (1.125-3) ...
496s Selecting previously unselected package libnet-smtp-ssl-perl.
496s Preparing to unpack .../267-libnet-smtp-ssl-perl_1.04-2_all.deb ...
496s Unpacking libnet-smtp-ssl-perl (1.04-2) ...
496s Selecting previously unselected package libmailtools-perl.
496s Preparing to unpack .../268-libmailtools-perl_2.22-1_all.deb ...
496s Unpacking libmailtools-perl (2.22-1) ...
496s Selecting previously unselected package libmime-tools-perl.
496s Preparing to unpack .../269-libmime-tools-perl_5.515-1_all.deb ...
496s Unpacking libmime-tools-perl (5.515-1) ...
496s Selecting previously unselected package libsuitesparseconfig7:arm64.
496s Preparing to unpack .../270-libsuitesparseconfig7_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libsuitesparseconfig7:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libamd3:arm64.
496s Preparing to unpack .../271-libamd3_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libamd3:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libblas3:arm64.
496s Preparing to unpack .../272-libblas3_3.12.1-2_arm64.deb ...
496s Unpacking libblas3:arm64 (3.12.1-2) ...
496s Selecting previously unselected package libgfortran5:arm64.
496s Preparing to unpack .../273-libgfortran5_15-20250222-0ubuntu1_arm64.deb ...
496s Unpacking libgfortran5:arm64 (15-20250222-0ubuntu1) ...
496s Selecting previously unselected package liblapack3:arm64.
496s Preparing to unpack .../274-liblapack3_3.12.1-2_arm64.deb ...
496s Unpacking liblapack3:arm64 (3.12.1-2) ...
496s Selecting previously unselected package libarpack2t64:arm64.
496s Preparing to unpack .../275-libarpack2t64_3.9.1-4_arm64.deb ...
496s Unpacking libarpack2t64:arm64 (3.9.1-4) ...
496s Selecting previously unselected package libccolamd3:arm64.
496s Preparing to unpack .../276-libccolamd3_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libccolamd3:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libcamd3:arm64.
496s Preparing to unpack .../277-libcamd3_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libcamd3:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libcolamd3:arm64.
496s Preparing to unpack .../278-libcolamd3_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libcolamd3:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libcholmod5:arm64.
496s Preparing to unpack .../279-libcholmod5_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libcholmod5:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libcxsparse4:arm64.
496s Preparing to unpack .../280-libcxsparse4_1%3a7.8.3+dfsg-3_arm64.deb ...
496s Unpacking libcxsparse4:arm64 (1:7.8.3+dfsg-3) ...
496s Selecting previously unselected package libfftw3-double3:arm64.
497s Preparing to unpack .../281-libfftw3-double3_3.3.10-2fakesync1build1_arm64.deb ...
497s Unpacking libfftw3-double3:arm64 (3.3.10-2fakesync1build1) ...
497s Selecting previously unselected package libfftw3-single3:arm64.
497s Preparing to unpack .../282-libfftw3-single3_3.3.10-2fakesync1build1_arm64.deb ...
497s Unpacking libfftw3-single3:arm64 (3.3.10-2fakesync1build1) ...
497s Selecting previously unselected package libxfixes3:arm64.
497s Preparing to unpack .../283-libxfixes3_1%3a6.0.0-2build1_arm64.deb ...
497s Unpacking libxfixes3:arm64 (1:6.0.0-2build1) ...
497s Selecting previously unselected package libxcursor1:arm64.
497s Preparing to unpack .../284-libxcursor1_1%3a1.2.3-1_arm64.deb ...
497s Unpacking libxcursor1:arm64 (1:1.2.3-1) ...
497s Selecting previously unselected package libxft2:arm64.
497s Preparing to unpack .../285-libxft2_2.3.6-1build1_arm64.deb ...
497s Unpacking libxft2:arm64 (2.3.6-1build1) ...
497s Selecting previously unselected package libxinerama1:arm64.
497s Preparing to unpack .../286-libxinerama1_2%3a1.1.4-3build1_arm64.deb ...
497s Unpacking libxinerama1:arm64 (2:1.1.4-3build1) ...
497s Selecting previously unselected package libfltk1.3t64:arm64.
497s Preparing to unpack .../287-libfltk1.3t64_1.3.8-6.1build2_arm64.deb ...
497s Unpacking libfltk1.3t64:arm64 (1.3.8-6.1build2) ...
497s Selecting previously unselected package libglvnd0:arm64.
497s Preparing to unpack .../288-libglvnd0_1.7.0-1build1_arm64.deb ...
497s Unpacking libglvnd0:arm64 (1.7.0-1build1) ...
497s Selecting previously unselected package libx11-xcb1:arm64.
497s Preparing to unpack .../289-libx11-xcb1_2%3a1.8.10-2_arm64.deb ...
497s Unpacking libx11-xcb1:arm64 (2:1.8.10-2) ...
497s Selecting previously unselected package libxcb-dri3-0:arm64.
497s Preparing to unpack .../290-libxcb-dri3-0_1.17.0-2_arm64.deb ...
497s Unpacking libxcb-dri3-0:arm64 (1.17.0-2) ...
497s Selecting previously unselected package libxcb-glx0:arm64.
497s Preparing to unpack .../291-libxcb-glx0_1.17.0-2_arm64.deb ...
497s Unpacking libxcb-glx0:arm64 (1.17.0-2) ...
497s Selecting previously unselected package libxcb-present0:arm64.
497s Preparing to unpack .../292-libxcb-present0_1.17.0-2_arm64.deb ...
497s Unpacking libxcb-present0:arm64 (1.17.0-2) ...
497s Selecting previously unselected package libxcb-xfixes0:arm64.
497s Preparing to unpack .../293-libxcb-xfixes0_1.17.0-2_arm64.deb ...
497s Unpacking libxcb-xfixes0:arm64 (1.17.0-2) ...
497s Selecting previously unselected package libxxf86vm1:arm64.
497s Preparing to unpack .../294-libxxf86vm1_1%3a1.1.4-1build4_arm64.deb ...
497s Unpacking libxxf86vm1:arm64 (1:1.1.4-1build4) ...
497s Selecting previously unselected package libxcb-randr0:arm64.
497s Preparing to unpack .../295-libxcb-randr0_1.17.0-2_arm64.deb ...
497s Unpacking libxcb-randr0:arm64 (1.17.0-2) ...
497s Selecting previously unselected package libxcb-sync1:arm64.
497s Preparing to unpack .../296-libxcb-sync1_1.17.0-2_arm64.deb ...
497s Unpacking libxcb-sync1:arm64 (1.17.0-2) ...
497s Selecting previously unselected package libxshmfence1:arm64.
497s Preparing to unpack .../297-libxshmfence1_1.3-1build5_arm64.deb ...
497s Unpacking libxshmfence1:arm64 (1.3-1build5) ...
497s Selecting previously unselected package mesa-libgallium:arm64.
497s Preparing to unpack .../298-mesa-libgallium_25.0.1-2ubuntu1_arm64.deb ...
497s Unpacking mesa-libgallium:arm64 (25.0.1-2ubuntu1) ...
498s Selecting previously unselected package libwayland-server0:arm64.
498s Preparing to unpack .../299-libwayland-server0_1.23.1-3_arm64.deb ...
498s Unpacking libwayland-server0:arm64 (1.23.1-3) ...
498s Selecting previously unselected package libgbm1:arm64.
498s Preparing to unpack .../300-libgbm1_25.0.1-2ubuntu1_arm64.deb ...
498s Unpacking libgbm1:arm64 (25.0.1-2ubuntu1) ...
498s Selecting previously unselected package libvulkan1:arm64.
498s Preparing to unpack .../301-libvulkan1_1.4.304.0-1_arm64.deb ...
498s Unpacking libvulkan1:arm64 (1.4.304.0-1) ...
498s Selecting previously unselected package libgl1-mesa-dri:arm64.
498s Preparing to unpack .../302-libgl1-mesa-dri_25.0.1-2ubuntu1_arm64.deb ...
498s Unpacking libgl1-mesa-dri:arm64 (25.0.1-2ubuntu1) ...
498s Selecting previously unselected package libglx-mesa0:arm64.
498s Preparing to unpack .../303-libglx-mesa0_25.0.1-2ubuntu1_arm64.deb ...
498s Unpacking libglx-mesa0:arm64 (25.0.1-2ubuntu1) ...
498s Selecting previously unselected package libglx0:arm64.
498s Preparing to unpack .../304-libglx0_1.7.0-1build1_arm64.deb ...
498s Unpacking libglx0:arm64 (1.7.0-1build1) ...
498s Selecting previously unselected package libgl1:arm64.
498s Preparing to unpack .../305-libgl1_1.7.0-1build1_arm64.deb ...
498s Unpacking libgl1:arm64 (1.7.0-1build1) ...
498s Selecting previously unselected package libfltk-gl1.3t64:arm64.
498s Preparing to unpack .../306-libfltk-gl1.3t64_1.3.8-6.1build2_arm64.deb ...
498s Unpacking libfltk-gl1.3t64:arm64 (1.3.8-6.1build2) ...
498s Selecting previously unselected package libgl2ps1.4.
498s Preparing to unpack .../307-libgl2ps1.4_1.4.2+dfsg1-2build1_arm64.deb ...
498s Unpacking libgl2ps1.4 (1.4.2+dfsg1-2build1) ...
498s Selecting previously unselected package libltdl7:arm64.
498s Preparing to unpack .../308-libltdl7_2.5.4-4_arm64.deb ...
498s Unpacking libltdl7:arm64 (2.5.4-4) ...
498s Selecting previously unselected package libglpk40:arm64.
498s Preparing to unpack .../309-libglpk40_5.0-1build2_arm64.deb ...
498s Unpacking libglpk40:arm64 (5.0-1build2) ...
498s Selecting previously unselected package libopengl0:arm64.
498s Preparing to unpack .../310-libopengl0_1.7.0-1build1_arm64.deb ...
498s Unpacking libopengl0:arm64 (1.7.0-1build1) ...
498s Selecting previously unselected package libglu1-mesa:arm64.
498s Preparing to unpack .../311-libglu1-mesa_9.0.2-1.1build1_arm64.deb ...
498s Unpacking libglu1-mesa:arm64 (9.0.2-1.1build1) ...
498s Selecting previously unselected package libhwy1t64:arm64.
498s Preparing to unpack .../312-libhwy1t64_1.2.0-3ubuntu3_arm64.deb ...
498s Unpacking libhwy1t64:arm64 (1.2.0-3ubuntu3) ...
498s Selecting previously unselected package liblcms2-2:arm64.
498s Preparing to unpack .../313-liblcms2-2_2.16-2_arm64.deb ...
498s Unpacking liblcms2-2:arm64 (2.16-2) ...
498s Selecting previously unselected package libjxl0.11:arm64.
498s Preparing to unpack .../314-libjxl0.11_0.11.1-1_arm64.deb ...
498s Unpacking libjxl0.11:arm64 (0.11.1-1) ...
498s Selecting previously unselected package libwmflite-0.2-7:arm64.
498s Preparing to unpack .../315-libwmflite-0.2-7_0.2.13-1.1build3_arm64.deb ...
498s Unpacking libwmflite-0.2-7:arm64 (0.2.13-1.1build3) ...
498s Selecting previously unselected package libgraphicsmagick-q16-3t64.
498s Preparing to unpack .../316-libgraphicsmagick-q16-3t64_1.4+really1.3.45+hg17689-1_arm64.deb ...
498s Unpacking libgraphicsmagick-q16-3t64 (1.4+really1.3.45+hg17689-1) ...
499s Selecting previously unselected package libgraphicsmagick++-q16-12t64.
499s Preparing to unpack .../317-libgraphicsmagick++-q16-12t64_1.4+really1.3.45+hg17689-1_arm64.deb ...
499s Unpacking libgraphicsmagick++-q16-12t64 (1.4+really1.3.45+hg17689-1) ...
499s Selecting previously unselected package libaec0:arm64.
499s Preparing to unpack .../318-libaec0_1.1.3-1_arm64.deb ...
499s Unpacking libaec0:arm64 (1.1.3-1) ...
499s Selecting previously unselected package libsz2:arm64.
499s Preparing to unpack .../319-libsz2_1.1.3-1_arm64.deb ...
499s Unpacking libsz2:arm64 (1.1.3-1) ...
499s Selecting previously unselected package libhdf5-310:arm64.
499s Preparing to unpack .../320-libhdf5-310_1.14.5+repack-3_arm64.deb ...
499s Unpacking libhdf5-310:arm64 (1.14.5+repack-3) ...
499s Selecting previously unselected package libasound2-data.
499s Preparing to unpack .../321-libasound2-data_1.2.13-1build1_all.deb ...
499s Unpacking libasound2-data (1.2.13-1build1) ...
499s Selecting previously unselected package libasound2t64:arm64.
499s Preparing to unpack .../322-libasound2t64_1.2.13-1build1_arm64.deb ...
499s Unpacking libasound2t64:arm64 (1.2.13-1build1) ...
499s Selecting previously unselected package libopus0:arm64.
499s Preparing to unpack .../323-libopus0_1.5.2-2_arm64.deb ...
499s Unpacking libopus0:arm64 (1.5.2-2) ...
499s Selecting previously unselected package libsamplerate0:arm64.
499s Preparing to unpack .../324-libsamplerate0_0.2.2-4build1_arm64.deb ...
499s Unpacking libsamplerate0:arm64 (0.2.2-4build1) ...
499s Selecting previously unselected package libjack-jackd2-0:arm64.
499s Preparing to unpack .../325-libjack-jackd2-0_1.9.22~dfsg-4_arm64.deb ...
499s Unpacking libjack-jackd2-0:arm64 (1.9.22~dfsg-4) ...
499s Selecting previously unselected package libportaudio2:arm64.
499s Preparing to unpack .../326-libportaudio2_19.6.0-1.2build3_arm64.deb ...
499s Unpacking libportaudio2:arm64 (19.6.0-1.2build3) ...
499s Selecting previously unselected package libqhull-r8.0:arm64.
499s Preparing to unpack .../327-libqhull-r8.0_2020.2-6build1_arm64.deb ...
499s Unpacking libqhull-r8.0:arm64 (2020.2-6build1) ...
499s Selecting previously unselected package libqrupdate1:arm64.
499s Preparing to unpack .../328-libqrupdate1_1.1.5-1_arm64.deb ...
499s Unpacking libqrupdate1:arm64 (1.1.5-1) ...
499s Selecting previously unselected package libqscintilla2-qt6-l10n.
499s Preparing to unpack .../329-libqscintilla2-qt6-l10n_2.14.1+dfsg-1build4_all.deb ...
499s Unpacking libqscintilla2-qt6-l10n (2.14.1+dfsg-1build4) ...
499s Selecting previously unselected package libb2-1:arm64.
499s Preparing to unpack .../330-libb2-1_0.98.1-1.1build1_arm64.deb ...
499s Unpacking libb2-1:arm64 (0.98.1-1.1build1) ...
499s Selecting previously unselected package libdouble-conversion3:arm64.
499s Preparing to unpack .../331-libdouble-conversion3_3.3.1-1_arm64.deb ...
499s Unpacking libdouble-conversion3:arm64 (3.3.1-1) ...
499s Selecting previously unselected package libpcre2-16-0:arm64.
499s Preparing to unpack .../332-libpcre2-16-0_10.45-1_arm64.deb ...
499s Unpacking libpcre2-16-0:arm64 (10.45-1) ...
499s Selecting previously unselected package libqt6core6t64:arm64.
499s Preparing to unpack .../333-libqt6core6t64_6.8.2+dfsg-5_arm64.deb ...
499s Unpacking libqt6core6t64:arm64 (6.8.2+dfsg-5) ...
499s Selecting previously unselected package libwayland-client0:arm64.
499s Preparing to unpack .../334-libwayland-client0_1.23.1-3_arm64.deb ...
499s Unpacking libwayland-client0:arm64 (1.23.1-3) ...
499s Selecting previously unselected package libegl-mesa0:arm64.
499s Preparing to unpack .../335-libegl-mesa0_25.0.1-2ubuntu1_arm64.deb ...
499s Unpacking libegl-mesa0:arm64 (25.0.1-2ubuntu1) ...
499s Selecting previously unselected package libegl1:arm64.
499s Preparing to unpack .../336-libegl1_1.7.0-1build1_arm64.deb ...
499s Unpacking libegl1:arm64 (1.7.0-1build1) ...
499s Selecting previously unselected package x11-common.
499s Preparing to unpack .../337-x11-common_1%3a7.7+23ubuntu3_all.deb ...
499s Unpacking x11-common (1:7.7+23ubuntu3) ...
499s Selecting previously unselected package libice6:arm64.
500s Preparing to unpack .../338-libice6_2%3a1.1.1-1_arm64.deb ...
500s Unpacking libice6:arm64 (2:1.1.1-1) ...
500s Selecting previously unselected package libmtdev1t64:arm64.
500s Preparing to unpack .../339-libmtdev1t64_1.1.7-1_arm64.deb ...
500s Unpacking libmtdev1t64:arm64 (1.1.7-1) ...
500s Selecting previously unselected package libwacom-common.
500s Preparing to unpack .../340-libwacom-common_2.14.0-1_all.deb ...
500s Unpacking libwacom-common (2.14.0-1) ...
500s Selecting previously unselected package libwacom9:arm64.
500s Preparing to unpack .../341-libwacom9_2.14.0-1_arm64.deb ...
500s Unpacking libwacom9:arm64 (2.14.0-1) ...
500s Selecting previously unselected package libinput-bin.
500s Preparing to unpack .../342-libinput-bin_1.27.1-1_arm64.deb ...
500s Unpacking libinput-bin (1.27.1-1) ...
500s Selecting previously unselected package libinput10:arm64.
500s Preparing to unpack .../343-libinput10_1.27.1-1_arm64.deb ...
500s Unpacking libinput10:arm64 (1.27.1-1) ...
500s Selecting previously unselected package libmd4c0:arm64.
500s Preparing to unpack .../344-libmd4c0_0.5.2-2_arm64.deb ...
500s Unpacking libmd4c0:arm64 (0.5.2-2) ...
500s Selecting previously unselected package libqt6dbus6:arm64.
500s Preparing to unpack .../345-libqt6dbus6_6.8.2+dfsg-5_arm64.deb ...
500s Unpacking libqt6dbus6:arm64 (6.8.2+dfsg-5) ...
500s Selecting previously unselected package libsm6:arm64.
500s Preparing to unpack .../346-libsm6_2%3a1.2.4-1_arm64.deb ...
500s Unpacking libsm6:arm64 (2:1.2.4-1) ...
500s Selecting previously unselected package libts0t64:arm64.
500s Preparing to unpack .../347-libts0t64_1.22-1.1build1_arm64.deb ...
500s Unpacking libts0t64:arm64 (1.22-1.1build1) ...
500s Selecting previously unselected package libxcb-util1:arm64.
500s Preparing to unpack .../348-libxcb-util1_0.4.1-1_arm64.deb ...
500s Unpacking libxcb-util1:arm64 (0.4.1-1) ...
500s Selecting previously unselected package libxcb-image0:arm64.
500s Preparing to unpack .../349-libxcb-image0_0.4.0-2build1_arm64.deb ...
500s Unpacking libxcb-image0:arm64 (0.4.0-2build1) ...
500s Selecting previously unselected package libxcb-render-util0:arm64.
500s Preparing to unpack .../350-libxcb-render-util0_0.3.10-1_arm64.deb ...
500s Unpacking libxcb-render-util0:arm64 (0.3.10-1) ...
500s Selecting previously unselected package libxcb-cursor0:arm64.
500s Preparing to unpack .../351-libxcb-cursor0_0.1.5-1_arm64.deb ...
500s Unpacking libxcb-cursor0:arm64 (0.1.5-1) ...
500s Selecting previously unselected package libxcb-icccm4:arm64.
500s Preparing to unpack .../352-libxcb-icccm4_0.4.2-1_arm64.deb ...
500s Unpacking libxcb-icccm4:arm64 (0.4.2-1) ...
500s Selecting previously unselected package libxcb-keysyms1:arm64.
500s Preparing to unpack .../353-libxcb-keysyms1_0.4.1-1_arm64.deb ...
500s Unpacking libxcb-keysyms1:arm64 (0.4.1-1) ...
500s Selecting previously unselected package libxcb-shape0:arm64.
500s Preparing to unpack .../354-libxcb-shape0_1.17.0-2_arm64.deb ...
500s Unpacking libxcb-shape0:arm64 (1.17.0-2) ...
500s Selecting previously unselected package libxcb-xinput0:arm64.
500s Preparing to unpack .../355-libxcb-xinput0_1.17.0-2_arm64.deb ...
500s Unpacking libxcb-xinput0:arm64 (1.17.0-2) ...
500s Selecting previously unselected package libxcb-xkb1:arm64.
500s Preparing to unpack .../356-libxcb-xkb1_1.17.0-2_arm64.deb ...
500s Unpacking libxcb-xkb1:arm64 (1.17.0-2) ...
500s Selecting previously unselected package libxkbcommon-x11-0:arm64.
500s Preparing to unpack .../357-libxkbcommon-x11-0_1.7.0-2_arm64.deb ...
500s Unpacking libxkbcommon-x11-0:arm64 (1.7.0-2) ...
500s Selecting previously unselected package libqt6gui6:arm64.
500s Preparing to unpack .../358-libqt6gui6_6.8.2+dfsg-5_arm64.deb ...
500s Unpacking libqt6gui6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libavahi-common-data:arm64.
501s Preparing to unpack .../359-libavahi-common-data_0.8-16ubuntu1_arm64.deb ...
501s Unpacking libavahi-common-data:arm64 (0.8-16ubuntu1) ...
501s Selecting previously unselected package libavahi-common3:arm64.
501s Preparing to unpack .../360-libavahi-common3_0.8-16ubuntu1_arm64.deb ...
501s Unpacking libavahi-common3:arm64 (0.8-16ubuntu1) ...
501s Selecting previously unselected package libavahi-client3:arm64.
501s Preparing to unpack .../361-libavahi-client3_0.8-16ubuntu1_arm64.deb ...
501s Unpacking libavahi-client3:arm64 (0.8-16ubuntu1) ...
501s Selecting previously unselected package libcups2t64:arm64.
501s Preparing to unpack .../362-libcups2t64_2.4.11-0ubuntu2_arm64.deb ...
501s Unpacking libcups2t64:arm64 (2.4.11-0ubuntu2) ...
501s Selecting previously unselected package libqt6widgets6:arm64.
501s Preparing to unpack .../363-libqt6widgets6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6widgets6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libqt6printsupport6:arm64.
501s Preparing to unpack .../364-libqt6printsupport6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6printsupport6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libqscintilla2-qt6-15:arm64.
501s Preparing to unpack .../365-libqscintilla2-qt6-15_2.14.1+dfsg-1build4_arm64.deb ...
501s Unpacking libqscintilla2-qt6-15:arm64 (2.14.1+dfsg-1build4) ...
501s Selecting previously unselected package libqt6core5compat6:arm64.
501s Preparing to unpack .../366-libqt6core5compat6_6.8.2-3_arm64.deb ...
501s Unpacking libqt6core5compat6:arm64 (6.8.2-3) ...
501s Selecting previously unselected package libqt6sql6:arm64.
501s Preparing to unpack .../367-libqt6sql6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6sql6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libqt6help6:arm64.
501s Preparing to unpack .../368-libqt6help6_6.8.2-3_arm64.deb ...
501s Unpacking libqt6help6:arm64 (6.8.2-3) ...
501s Selecting previously unselected package libduktape207:arm64.
501s Preparing to unpack .../369-libduktape207_2.7.0+tests-0ubuntu3_arm64.deb ...
501s Unpacking libduktape207:arm64 (2.7.0+tests-0ubuntu3) ...
501s Selecting previously unselected package libproxy1v5:arm64.
501s Preparing to unpack .../370-libproxy1v5_0.5.9-1_arm64.deb ...
501s Unpacking libproxy1v5:arm64 (0.5.9-1) ...
501s Selecting previously unselected package libqt6network6:arm64.
501s Preparing to unpack .../371-libqt6network6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6network6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libqt6opengl6:arm64.
501s Preparing to unpack .../372-libqt6opengl6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6opengl6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libqt6openglwidgets6:arm64.
501s Preparing to unpack .../373-libqt6openglwidgets6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6openglwidgets6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libqt6xml6:arm64.
501s Preparing to unpack .../374-libqt6xml6_6.8.2+dfsg-5_arm64.deb ...
501s Unpacking libqt6xml6:arm64 (6.8.2+dfsg-5) ...
501s Selecting previously unselected package libogg0:arm64.
501s Preparing to unpack .../375-libogg0_1.3.5-3build1_arm64.deb ...
501s Unpacking libogg0:arm64 (1.3.5-3build1) ...
501s Selecting previously unselected package libflac12t64:arm64.
502s Preparing to unpack .../376-libflac12t64_1.4.3+ds-4_arm64.deb ...
502s Unpacking libflac12t64:arm64 (1.4.3+ds-4) ...
502s Selecting previously unselected package libmp3lame0:arm64.
502s Preparing to unpack .../377-libmp3lame0_3.100-6build1_arm64.deb ...
502s Unpacking libmp3lame0:arm64 (3.100-6build1) ...
502s Selecting previously unselected package libmpg123-0t64:arm64.
502s Preparing to unpack .../378-libmpg123-0t64_1.32.10-1_arm64.deb ...
502s Unpacking libmpg123-0t64:arm64 (1.32.10-1) ...
502s Selecting previously unselected package libvorbis0a:arm64.
502s Preparing to unpack .../379-libvorbis0a_1.3.7-2_arm64.deb ...
502s Unpacking libvorbis0a:arm64 (1.3.7-2) ...
502s Selecting previously unselected package libvorbisenc2:arm64.
502s Preparing to unpack .../380-libvorbisenc2_1.3.7-2_arm64.deb ...
502s Unpacking libvorbisenc2:arm64 (1.3.7-2) ...
502s Selecting previously unselected package libsndfile1:arm64.
502s Preparing to unpack .../381-libsndfile1_1.2.2-2_arm64.deb ...
502s Unpacking libsndfile1:arm64 (1.2.2-2) ...
502s Selecting previously unselected package libspqr4:arm64.
502s Preparing to unpack .../382-libspqr4_1%3a7.8.3+dfsg-3_arm64.deb ...
502s Unpacking libspqr4:arm64 (1:7.8.3+dfsg-3) ...
502s Selecting previously unselected package libumfpack6:arm64.
502s Preparing to unpack .../383-libumfpack6_1%3a7.8.3+dfsg-3_arm64.deb ...
502s Unpacking libumfpack6:arm64 (1:7.8.3+dfsg-3) ...
502s Selecting previously unselected package libtext-unidecode-perl.
502s Preparing to unpack .../384-libtext-unidecode-perl_1.30-3_all.deb ...
502s Unpacking libtext-unidecode-perl (1.30-3) ...
502s Selecting previously unselected package texinfo-lib.
502s Preparing to unpack .../385-texinfo-lib_7.1.1-1_arm64.deb ...
502s Unpacking texinfo-lib (7.1.1-1) ...
502s Selecting previously unselected package tex-common.
502s Preparing to unpack .../386-tex-common_6.19_all.deb ...
502s Unpacking tex-common (6.19) ...
502s Selecting previously unselected package texinfo.
502s Preparing to unpack .../387-texinfo_7.1.1-1_all.deb ...
502s Unpacking texinfo (7.1.1-1) ...
502s Selecting previously unselected package octave-common.
502s Preparing to unpack .../388-octave-common_9.4.0-1_all.deb ...
502s Unpacking octave-common (9.4.0-1) ...
502s Selecting previously unselected package octave.
502s Preparing to unpack .../389-octave_9.4.0-1_arm64.deb ...
502s Unpacking octave (9.4.0-1) ...
502s Selecting previously unselected package libncurses-dev:arm64.
502s Preparing to unpack .../390-libncurses-dev_6.5+20250216-2_arm64.deb ...
502s Unpacking libncurses-dev:arm64 (6.5+20250216-2) ...
503s Selecting previously unselected package libreadline-dev:arm64.
503s Preparing to unpack .../391-libreadline-dev_8.2-6_arm64.deb ...
503s Unpacking libreadline-dev:arm64 (8.2-6) ...
503s Selecting previously unselected package libhdf5-fortran-310:arm64.
503s Preparing to unpack .../392-libhdf5-fortran-310_1.14.5+repack-3_arm64.deb ...
503s Unpacking libhdf5-fortran-310:arm64 (1.14.5+repack-3) ...
503s Selecting previously unselected package libhdf5-hl-310:arm64.
503s Preparing to unpack .../393-libhdf5-hl-310_1.14.5+repack-3_arm64.deb ...
503s Unpacking libhdf5-hl-310:arm64 (1.14.5+repack-3) ...
503s Selecting previously unselected package libhdf5-hl-fortran-310:arm64.
503s Preparing to unpack .../394-libhdf5-hl-fortran-310_1.14.5+repack-3_arm64.deb ...
503s Unpacking libhdf5-hl-fortran-310:arm64 (1.14.5+repack-3) ...
503s Selecting previously unselected package libhdf5-cpp-310:arm64.
503s Preparing to unpack .../395-libhdf5-cpp-310_1.14.5+repack-3_arm64.deb ...
503s Unpacking libhdf5-cpp-310:arm64 (1.14.5+repack-3) ...
503s Selecting previously unselected package libhdf5-hl-cpp-310:arm64.
503s Preparing to unpack .../396-libhdf5-hl-cpp-310_1.14.5+repack-3_arm64.deb ...
503s Unpacking libhdf5-hl-cpp-310:arm64 (1.14.5+repack-3) ...
503s Selecting previously unselected package zlib1g-dev:arm64.
503s Preparing to unpack .../397-zlib1g-dev_1%3a1.3.dfsg+really1.3.1-1ubuntu1_arm64.deb ...
503s Unpacking zlib1g-dev:arm64 (1:1.3.dfsg+really1.3.1-1ubuntu1) ...
503s Selecting previously unselected package libjpeg-turbo8-dev:arm64.
503s Preparing to unpack .../398-libjpeg-turbo8-dev_2.1.5-3ubuntu2_arm64.deb ...
503s Unpacking libjpeg-turbo8-dev:arm64 (2.1.5-3ubuntu2) ...
503s Selecting previously unselected package libjpeg8-dev:arm64.
503s Preparing to unpack .../399-libjpeg8-dev_8c-2ubuntu11_arm64.deb ...
503s Unpacking libjpeg8-dev:arm64 (8c-2ubuntu11) ...
503s Selecting previously unselected package libjpeg-dev:arm64.
503s Preparing to unpack .../400-libjpeg-dev_8c-2ubuntu11_arm64.deb ...
503s Unpacking libjpeg-dev:arm64 (8c-2ubuntu11) ...
503s Selecting previously unselected package libaec-dev:arm64.
503s Preparing to unpack .../401-libaec-dev_1.1.3-1_arm64.deb ...
503s Unpacking libaec-dev:arm64 (1.1.3-1) ...
503s Selecting previously unselected package libbrotli-dev:arm64.
503s Preparing to unpack .../402-libbrotli-dev_1.1.0-2build4_arm64.deb ...
503s Unpacking libbrotli-dev:arm64 (1.1.0-2build4) ...
503s Selecting previously unselected package libidn2-dev:arm64.
503s Preparing to unpack .../403-libidn2-dev_2.3.7-2build2_arm64.deb ...
503s Unpacking libidn2-dev:arm64 (2.3.7-2build2) ...
503s Selecting previously unselected package comerr-dev:arm64.
503s Preparing to unpack .../404-comerr-dev_2.1-1.47.2-1ubuntu1_arm64.deb ...
503s Unpacking comerr-dev:arm64 (2.1-1.47.2-1ubuntu1) ...
503s Selecting previously unselected package libgssrpc4t64:arm64.
503s Preparing to unpack .../405-libgssrpc4t64_1.21.3-4ubuntu2_arm64.deb ...
503s Unpacking libgssrpc4t64:arm64 (1.21.3-4ubuntu2) ...
503s Selecting previously unselected package libkadm5clnt-mit12:arm64.
503s Preparing to unpack .../406-libkadm5clnt-mit12_1.21.3-4ubuntu2_arm64.deb ...
503s Unpacking libkadm5clnt-mit12:arm64 (1.21.3-4ubuntu2) ...
503s Selecting previously unselected package libkdb5-10t64:arm64.
503s Preparing to unpack .../407-libkdb5-10t64_1.21.3-4ubuntu2_arm64.deb ...
503s Unpacking libkdb5-10t64:arm64 (1.21.3-4ubuntu2) ...
503s Selecting previously unselected package libkadm5srv-mit12:arm64.
503s Preparing to unpack .../408-libkadm5srv-mit12_1.21.3-4ubuntu2_arm64.deb ...
503s Unpacking libkadm5srv-mit12:arm64 (1.21.3-4ubuntu2) ...
503s Selecting previously unselected package krb5-multidev:arm64.
503s Preparing to unpack .../409-krb5-multidev_1.21.3-4ubuntu2_arm64.deb ...
503s Unpacking krb5-multidev:arm64 (1.21.3-4ubuntu2) ...
503s Selecting previously unselected package libkrb5-dev:arm64.
503s Preparing to unpack .../410-libkrb5-dev_1.21.3-4ubuntu2_arm64.deb ...
503s Unpacking libkrb5-dev:arm64 (1.21.3-4ubuntu2) ...
503s Selecting previously unselected package libldap-dev:arm64.
503s Preparing to unpack .../411-libldap-dev_2.6.9+dfsg-1~exp2ubuntu1_arm64.deb ...
503s Unpacking libldap-dev:arm64 (2.6.9+dfsg-1~exp2ubuntu1) ...
504s Selecting previously unselected package libpkgconf3:arm64.
504s Preparing to unpack .../412-libpkgconf3_1.8.1-4_arm64.deb ...
504s Unpacking libpkgconf3:arm64 (1.8.1-4) ...
504s Selecting previously unselected package pkgconf-bin.
504s Preparing to unpack .../413-pkgconf-bin_1.8.1-4_arm64.deb ...
504s Unpacking pkgconf-bin (1.8.1-4) ...
504s Selecting previously unselected package pkgconf:arm64.
504s Preparing to unpack .../414-pkgconf_1.8.1-4_arm64.deb ...
504s Unpacking pkgconf:arm64 (1.8.1-4) ...
504s Selecting previously unselected package libnghttp2-dev:arm64.
504s Preparing to unpack .../415-libnghttp2-dev_1.64.0-1_arm64.deb ...
504s Unpacking libnghttp2-dev:arm64 (1.64.0-1) ...
504s Selecting previously unselected package libpsl-dev:arm64.
504s Preparing to unpack .../416-libpsl-dev_0.21.2-1.1build1_arm64.deb ...
504s Unpacking libpsl-dev:arm64 (0.21.2-1.1build1) ...
504s Selecting previously unselected package libgmpxx4ldbl:arm64.
504s Preparing to unpack .../417-libgmpxx4ldbl_2%3a6.3.0+dfsg-3ubuntu1_arm64.deb ...
504s Unpacking libgmpxx4ldbl:arm64 (2:6.3.0+dfsg-3ubuntu1) ...
504s Selecting previously unselected package libgmp-dev:arm64.
504s Preparing to unpack .../418-libgmp-dev_2%3a6.3.0+dfsg-3ubuntu1_arm64.deb ...
504s Unpacking libgmp-dev:arm64 (2:6.3.0+dfsg-3ubuntu1) ...
504s Selecting previously unselected package libevent-2.1-7t64:arm64.
504s Preparing to unpack .../419-libevent-2.1-7t64_2.1.12-stable-10_arm64.deb ...
504s Unpacking libevent-2.1-7t64:arm64 (2.1.12-stable-10) ...
504s Selecting previously unselected package libunbound8:arm64.
504s Preparing to unpack .../420-libunbound8_1.22.0-1ubuntu1_arm64.deb ...
504s Unpacking libunbound8:arm64 (1.22.0-1ubuntu1) ...
504s Selecting previously unselected package libgnutls-dane0t64:arm64.
504s Preparing to unpack .../421-libgnutls-dane0t64_3.8.9-2ubuntu2_arm64.deb ...
504s Unpacking libgnutls-dane0t64:arm64 (3.8.9-2ubuntu2) ...
504s Selecting previously unselected package libgnutls-openssl27t64:arm64.
504s Preparing to unpack .../422-libgnutls-openssl27t64_3.8.9-2ubuntu2_arm64.deb ...
504s Unpacking libgnutls-openssl27t64:arm64 (3.8.9-2ubuntu2) ...
504s Selecting previously unselected package libp11-kit-dev:arm64.
504s Preparing to unpack .../423-libp11-kit-dev_0.25.5-2ubuntu3_arm64.deb ...
504s Unpacking libp11-kit-dev:arm64 (0.25.5-2ubuntu3) ...
504s Selecting previously unselected package libtasn1-6-dev:arm64.
504s Preparing to unpack .../424-libtasn1-6-dev_4.20.0-2_arm64.deb ...
504s Unpacking libtasn1-6-dev:arm64 (4.20.0-2) ...
504s Selecting previously unselected package nettle-dev:arm64.
504s Preparing to unpack .../425-nettle-dev_3.10.1-1_arm64.deb ...
504s Unpacking nettle-dev:arm64 (3.10.1-1) ...
504s Selecting previously unselected package libgnutls28-dev:arm64.
504s Preparing to unpack .../426-libgnutls28-dev_3.8.9-2ubuntu2_arm64.deb ...
504s Unpacking libgnutls28-dev:arm64 (3.8.9-2ubuntu2) ...
504s Selecting previously unselected package librtmp-dev:arm64.
504s Preparing to unpack .../427-librtmp-dev_2.4+20151223.gitfa8646d.1-2build7_arm64.deb ...
504s Unpacking librtmp-dev:arm64 (2.4+20151223.gitfa8646d.1-2build7) ...
504s Selecting previously unselected package libssl-dev:arm64.
504s Preparing to unpack .../428-libssl-dev_3.4.1-1ubuntu1_arm64.deb ...
504s Unpacking libssl-dev:arm64 (3.4.1-1ubuntu1) ...
505s Selecting previously unselected package libssh2-1-dev:arm64.
505s Preparing to unpack .../429-libssh2-1-dev_1.11.1-1_arm64.deb ...
505s Unpacking libssh2-1-dev:arm64 (1.11.1-1) ...
505s Selecting previously unselected package libzstd-dev:arm64.
505s Preparing to unpack .../430-libzstd-dev_1.5.6+dfsg-2_arm64.deb ...
505s Unpacking libzstd-dev:arm64 (1.5.6+dfsg-2) ...
505s Selecting previously unselected package libcurl4-openssl-dev:arm64.
505s Preparing to unpack .../431-libcurl4-openssl-dev_8.12.1-3ubuntu1_arm64.deb ...
505s Unpacking libcurl4-openssl-dev:arm64 (8.12.1-3ubuntu1) ...
505s Selecting previously unselected package hdf5-helpers.
505s Preparing to unpack .../432-hdf5-helpers_1.14.5+repack-3_arm64.deb ...
505s Unpacking hdf5-helpers (1.14.5+repack-3) ...
505s Selecting previously unselected package libhdf5-dev.
505s Preparing to unpack .../433-libhdf5-dev_1.14.5+repack-3_arm64.deb ...
505s Unpacking libhdf5-dev (1.14.5+repack-3) ...
505s Selecting previously unselected package xorg-sgml-doctools.
505s Preparing to unpack .../434-xorg-sgml-doctools_1%3a1.11-1.1_all.deb ...
505s Unpacking xorg-sgml-doctools (1:1.11-1.1) ...
505s Selecting previously unselected package x11proto-dev.
505s Preparing to unpack .../435-x11proto-dev_2024.1-1_all.deb ...
505s Unpacking x11proto-dev (2024.1-1) ...
505s Selecting previously unselected package libxau-dev:arm64.
505s Preparing to unpack .../436-libxau-dev_1%3a1.0.11-1_arm64.deb ...
505s Unpacking libxau-dev:arm64 (1:1.0.11-1) ...
505s Selecting previously unselected package libxdmcp-dev:arm64.
505s Preparing to unpack .../437-libxdmcp-dev_1%3a1.1.5-1_arm64.deb ...
505s Unpacking libxdmcp-dev:arm64 (1:1.1.5-1) ...
505s Selecting previously unselected package xtrans-dev.
505s Preparing to unpack .../438-xtrans-dev_1.4.0-1_all.deb ...
505s Unpacking xtrans-dev (1.4.0-1) ...
505s Selecting previously unselected package libxcb1-dev:arm64.
505s Preparing to unpack .../439-libxcb1-dev_1.17.0-2_arm64.deb ...
505s Unpacking libxcb1-dev:arm64 (1.17.0-2) ...
505s Selecting previously unselected package libx11-dev:arm64.
505s Preparing to unpack .../440-libx11-dev_2%3a1.8.10-2_arm64.deb ...
505s Unpacking libx11-dev:arm64 (2:1.8.10-2) ...
505s Selecting previously unselected package libglx-dev:arm64.
505s Preparing to unpack .../441-libglx-dev_1.7.0-1build1_arm64.deb ...
505s Unpacking libglx-dev:arm64 (1.7.0-1build1) ...
505s Selecting previously unselected package libgl-dev:arm64.
505s Preparing to unpack .../442-libgl-dev_1.7.0-1build1_arm64.deb ...
505s Unpacking libgl-dev:arm64 (1.7.0-1build1) ...
505s Selecting previously unselected package libblas-dev:arm64.
505s Preparing to unpack .../443-libblas-dev_3.12.1-2_arm64.deb ...
505s Unpacking libblas-dev:arm64 (3.12.1-2) ...
505s Selecting previously unselected package liblapack-dev:arm64.
506s Preparing to unpack .../444-liblapack-dev_3.12.1-2_arm64.deb ...
506s Unpacking liblapack-dev:arm64 (3.12.1-2) ...
506s Selecting previously unselected package libfftw3-long3:arm64.
506s Preparing to unpack .../445-libfftw3-long3_3.3.10-2fakesync1build1_arm64.deb ...
506s Unpacking libfftw3-long3:arm64 (3.3.10-2fakesync1build1) ...
506s Selecting previously unselected package libfftw3-bin.
506s Preparing to unpack .../446-libfftw3-bin_3.3.10-2fakesync1build1_arm64.deb ...
506s Unpacking libfftw3-bin (3.3.10-2fakesync1build1) ...
506s Selecting previously unselected package libfftw3-dev:arm64.
506s Preparing to unpack .../447-libfftw3-dev_3.3.10-2fakesync1build1_arm64.deb ...
506s Unpacking libfftw3-dev:arm64 (3.3.10-2fakesync1build1) ...
506s Selecting previously unselected package libgfortran-14-dev:arm64.
506s Preparing to unpack .../448-libgfortran-14-dev_14.2.0-17ubuntu3_arm64.deb ...
506s Unpacking libgfortran-14-dev:arm64 (14.2.0-17ubuntu3) ...
506s Selecting previously unselected package gfortran-14-aarch64-linux-gnu.
506s Preparing to unpack .../449-gfortran-14-aarch64-linux-gnu_14.2.0-17ubuntu3_arm64.deb ...
506s Unpacking gfortran-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
506s Selecting previously unselected package gfortran-14.
506s Preparing to unpack .../450-gfortran-14_14.2.0-17ubuntu3_arm64.deb ...
506s Unpacking gfortran-14 (14.2.0-17ubuntu3) ...
506s Selecting previously unselected package gfortran-aarch64-linux-gnu.
506s Preparing to unpack .../451-gfortran-aarch64-linux-gnu_4%3a14.2.0-1ubuntu1_arm64.deb ...
506s Unpacking gfortran-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
506s Selecting previously unselected package gfortran.
506s Preparing to unpack .../452-gfortran_4%3a14.2.0-1ubuntu1_arm64.deb ...
506s Unpacking gfortran (4:14.2.0-1ubuntu1) ...
506s Selecting previously unselected package libstdc++-14-dev:arm64.
506s Preparing to unpack .../453-libstdc++-14-dev_14.2.0-17ubuntu3_arm64.deb ...
506s Unpacking libstdc++-14-dev:arm64 (14.2.0-17ubuntu3) ...
507s Selecting previously unselected package g++-14-aarch64-linux-gnu.
507s Preparing to unpack .../454-g++-14-aarch64-linux-gnu_14.2.0-17ubuntu3_arm64.deb ...
507s Unpacking g++-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
507s Selecting previously unselected package g++-14.
507s Preparing to unpack .../455-g++-14_14.2.0-17ubuntu3_arm64.deb ...
507s Unpacking g++-14 (14.2.0-17ubuntu3) ...
507s Selecting previously unselected package g++-aarch64-linux-gnu.
507s Preparing to unpack .../456-g++-aarch64-linux-gnu_4%3a14.2.0-1ubuntu1_arm64.deb ...
507s Unpacking g++-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
507s Selecting previously unselected package g++.
507s Preparing to unpack .../457-g++_4%3a14.2.0-1ubuntu1_arm64.deb ...
507s Unpacking g++ (4:14.2.0-1ubuntu1) ...
507s Selecting previously unselected package octave-dev.
507s Preparing to unpack .../458-octave-dev_9.4.0-1_arm64.deb ...
507s Unpacking octave-dev (9.4.0-1) ...
507s Selecting previously unselected package dh-octave.
507s Preparing to unpack .../459-dh-octave_1.8.0_all.deb ...
507s Unpacking dh-octave (1.8.0) ...
507s Selecting previously unselected package libfontenc1:arm64.
507s Preparing to unpack .../460-libfontenc1_1%3a1.1.8-1build1_arm64.deb ...
507s Unpacking libfontenc1:arm64 (1:1.1.8-1build1) ...
507s Selecting previously unselected package libunwind8:arm64.
507s Preparing to unpack .../461-libunwind8_1.6.2-3.1_arm64.deb ...
507s Unpacking libunwind8:arm64 (1.6.2-3.1) ...
507s Selecting previously unselected package libxt6t64:arm64.
507s Preparing to unpack .../462-libxt6t64_1%3a1.2.1-1.2build1_arm64.deb ...
507s Unpacking libxt6t64:arm64 (1:1.2.1-1.2build1) ...
507s Selecting previously unselected package libxmu6:arm64.
507s Preparing to unpack .../463-libxmu6_2%3a1.1.3-3build2_arm64.deb ...
507s Unpacking libxmu6:arm64 (2:1.1.3-3build2) ...
507s Selecting previously unselected package libxaw7:arm64.
507s Preparing to unpack .../464-libxaw7_2%3a1.0.16-1_arm64.deb ...
507s Unpacking libxaw7:arm64 (2:1.0.16-1) ...
507s Selecting previously unselected package libxfont2:arm64.
508s Preparing to unpack .../465-libxfont2_1%3a2.0.6-1build1_arm64.deb ...
508s Unpacking libxfont2:arm64 (1:2.0.6-1build1) ...
508s Selecting previously unselected package libxkbfile1:arm64.
508s Preparing to unpack .../466-libxkbfile1_1%3a1.1.0-1build4_arm64.deb ...
508s Unpacking libxkbfile1:arm64 (1:1.1.0-1build4) ...
508s Selecting previously unselected package libxrandr2:arm64.
508s Preparing to unpack .../467-libxrandr2_2%3a1.5.4-1_arm64.deb ...
508s Unpacking libxrandr2:arm64 (2:1.5.4-1) ...
508s Selecting previously unselected package octave-io.
508s Preparing to unpack .../468-octave-io_2.6.4-3build2_arm64.deb ...
508s Unpacking octave-io (2.6.4-3build2) ...
508s Selecting previously unselected package octave-statistics-common.
508s Preparing to unpack .../469-octave-statistics-common_1.7.3-2_all.deb ...
508s Unpacking octave-statistics-common (1.7.3-2) ...
508s Selecting previously unselected package octave-statistics.
508s Preparing to unpack .../470-octave-statistics_1.7.3-2_arm64.deb ...
508s Unpacking octave-statistics (1.7.3-2) ...
508s Selecting previously unselected package x11-xkb-utils.
508s Preparing to unpack .../471-x11-xkb-utils_7.7+9_arm64.deb ...
508s Unpacking x11-xkb-utils (7.7+9) ...
508s Selecting previously unselected package xserver-common.
508s Preparing to unpack .../472-xserver-common_2%3a21.1.16-1ubuntu1_all.deb ...
508s Unpacking xserver-common (2:21.1.16-1ubuntu1) ...
508s Selecting previously unselected package xvfb.
508s Preparing to unpack .../473-xvfb_2%3a21.1.16-1ubuntu1_arm64.deb ...
508s Unpacking xvfb (2:21.1.16-1ubuntu1) ...
508s Setting up libapt-pkg-perl (0.1.41build1) ...
508s Setting up libhwy1t64:arm64 (1.2.0-3ubuntu3) ...
508s Setting up libmodule-pluggable-perl (5.2-5) ...
508s Setting up libgraphite2-3:arm64 (1.3.14-2ubuntu1) ...
508s Setting up libstring-escape-perl (2010.002-3) ...
508s Setting up libgnutls-openssl27t64:arm64 (3.8.9-2ubuntu2) ...
508s Setting up libxcb-dri3-0:arm64 (1.17.0-2) ...
508s Setting up liblcms2-2:arm64 (2.16-2) ...
508s Setting up libberkeleydb-perl:arm64 (0.66-1) ...
508s Setting up libpixman-1-0:arm64 (0.44.0-3) ...
508s Setting up libsharpyuv0:arm64 (1.5.0-0.1) ...
508s Setting up libwayland-server0:arm64 (1.23.1-3) ...
508s Setting up libaom3:arm64 (3.12.0-1) ...
508s Setting up libx11-xcb1:arm64 (2:1.8.10-2) ...
508s Setting up libfile-which-perl (1.27-2) ...
508s Setting up libdouble-conversion3:arm64 (3.3.1-1) ...
508s Setting up libncurses-dev:arm64 (6.5+20250216-2) ...
508s Setting up libunicode-utf8-perl (0.62-2build4) ...
508s Setting up libset-intspan-perl (1.19-3) ...
508s Setting up libxcb-xfixes0:arm64 (1.17.0-2) ...
508s Setting up libogg0:arm64 (1.3.5-3build1) ...
508s Setting up libmouse-perl:arm64 (2.5.11-1build1) ...
508s Setting up libzstd-dev:arm64 (1.5.6+dfsg-2) ...
508s Setting up liblerc4:arm64 (4.0.0+ds-5ubuntu1) ...
508s Setting up libpod-pom-perl (2.01-4) ...
508s Setting up libxpm4:arm64 (1:3.5.17-1build2) ...
508s Setting up hdf5-helpers (1.14.5+repack-3) ...
508s Setting up libwmflite-0.2-7:arm64 (0.2.13-1.1build3) ...
508s Setting up libregexp-pattern-perl (0.2.14-2) ...
508s Setting up libdata-messagepack-perl (1.02-1build5) ...
508s Setting up libclass-inspector-perl (1.36-3) ...
508s Setting up libxcb-xinput0:arm64 (1.17.0-2) ...
508s Setting up libxrender1:arm64 (1:0.9.10-1.1build1) ...
508s Setting up libdynaloader-functions-perl (0.004-1) ...
508s Setting up libdatrie1:arm64 (0.2.13-3build1) ...
508s Setting up libtext-glob-perl (0.11-3) ...
508s Setting up libclass-method-modifiers-perl (2.15-1) ...
508s Setting up liblist-compare-perl (0.55-2) ...
508s Setting up libxcb-render0:arm64 (1.17.0-2) ...
508s Setting up libclone-perl:arm64 (0.47-1) ...
508s Setting up libarchive-zip-perl (1.68-1) ...
508s Setting up libsub-identify-perl (0.14-3build4) ...
508s Setting up libcpanel-json-xs-perl:arm64 (4.39-1) ...
508s Setting up libglvnd0:arm64 (1.7.0-1build1) ...
508s Setting up libio-stringy-perl (2.113-2) ...
508s Setting up libhtml-tagset-perl (3.24-1) ...
508s Setting up libts0t64:arm64 (1.22-1.1build1) ...
508s Setting up liblog-any-perl (1.717-1) ...
508s Setting up libyaml-pp-perl (0.39.0-1) ...
508s Setting up libxcb-glx0:arm64 (1.17.0-2) ...
508s Setting up libdevel-size-perl (0.84-1build1) ...
508s Setting up unzip (6.0-28ubuntu6) ...
508s Setting up libdebhelper-perl (13.24.1ubuntu2) ...
508s Setting up libregexp-pattern-license-perl (3.11.2-1) ...
508s Setting up libconvert-binhex-perl (1.125-3) ...
508s Setting up liblwp-mediatypes-perl (6.04-2) ...
508s Setting up libyaml-libyaml-perl (0.903.0+ds-1) ...
508s Setting up fonts-freefont-otf (20211204+svn4273-2) ...
508s Setting up libio-interactive-perl (1.026-1) ...
508s Setting up libxcb-keysyms1:arm64 (0.4.1-1) ...
508s Setting up libxcb-shape0:arm64 (1.17.0-2) ...
508s Setting up x11-common (1:7.7+23ubuntu3) ...
508s Setting up libtry-tiny-perl (0.32-1) ...
508s Setting up libdeflate0:arm64 (1.23-1) ...
508s Setting up perl-openssl-defaults:arm64 (7build3) ...
508s Setting up libmldbm-perl (2.05-4) ...
508s Setting up libxml-namespacesupport-perl (1.12-2) ...
508s Setting up m4 (1.4.19-7) ...
508s Setting up libevent-2.1-7t64:arm64 (2.1.12-stable-10) ...
508s Setting up libclone-choose-perl (0.010-2) ...
508s Setting up libqhull-r8.0:arm64 (2020.2-6build1) ...
508s Setting up libxcb-render-util0:arm64 (0.3.10-1) ...
508s Setting up libtime-moment-perl (0.44-2build5) ...
508s Setting up libencode-locale-perl (1.05-3) ...
508s Setting up libxcb-shm0:arm64 (1.17.0-2) ...
508s Setting up libxcb-icccm4:arm64 (0.4.2-1) ...
508s Setting up texinfo-lib (7.1.1-1) ...
508s Setting up libreadline-dev:arm64 (8.2-6) ...
508s Setting up libmpg123-0t64:arm64 (1.32.10-1) ...
508s Setting up libgomp1:arm64 (15-20250222-0ubuntu1) ...
508s Setting up libconfig-tiny-perl (2.30-1) ...
508s Setting up libsereal-encoder-perl (5.004+ds-1build4) ...
508s Setting up libunwind8:arm64 (1.6.2-3.1) ...
508s Setting up liblist-utilsby-perl (0.12-2) ...
508s Setting up libyaml-tiny-perl (1.76-1) ...
508s Setting up libjbig0:arm64 (2.1-6.1ubuntu2) ...
508s Setting up octave-common (9.4.0-1) ...
508s Setting up libregexp-common-perl (2024080801-1) ...
508s Setting up libpcre2-16-0:arm64 (10.45-1) ...
508s Setting up libaec0:arm64 (1.1.3-1) ...
508s Setting up libnet-netmask-perl (2.0002-2) ...
508s Setting up libopengl0:arm64 (1.7.0-1build1) ...
508s Setting up libsub-install-perl (0.929-1) ...
508s Setting up libxcb-util1:arm64 (0.4.1-1) ...
508s Setting up libpsl-dev:arm64 (0.21.2-1.1build1) ...
508s Setting up libxxf86vm1:arm64 (1:1.1.4-1build4) ...
508s Setting up libindirect-perl (0.39-2build5) ...
508s Setting up libxcb-xkb1:arm64 (1.17.0-2) ...
508s Setting up libxcb-image0:arm64 (0.4.0-2build1) ...
508s Setting up libnumber-compare-perl (0.03-3) ...
508s Setting up libxcb-present0:arm64 (1.17.0-2) ...
508s Setting up liberror-perl (0.17030-1) ...
508s Setting up libasound2-data (1.2.13-1build1) ...
508s Setting up patchutils (0.4.2-1build3) ...
508s Setting up tex-common (6.19) ...
509s update-language: texlive-base not installed and configured, doing nothing!
509s Setting up libjson-maybexs-perl (1.004008-1) ...
509s Setting up libxml-sax-base-perl (1.09-3) ...
509s Setting up libio-string-perl (1.08-4) ...
509s Setting up libboolean-perl (0.46-3) ...
509s Setting up libnetaddr-ip-perl (4.079+dfsg-2build5) ...
509s Setting up xtrans-dev (1.4.0-1) ...
509s Setting up libfontenc1:arm64 (1:1.1.8-1build1) ...
509s Setting up autotools-dev (20220109.1) ...
509s Setting up libblas3:arm64 (3.12.1-2) ...
509s update-alternatives: using /usr/lib/aarch64-linux-gnu/blas/libblas.so.3 to provide /usr/lib/aarch64-linux-gnu/libblas.so.3 (libblas.so.3-aarch64-linux-gnu) in auto mode
509s Setting up libclass-data-inheritable-perl (0.10-1) ...
509s Setting up libunbound8:arm64 (1.22.0-1ubuntu1) ...
509s Setting up libpkgconf3:arm64 (1.8.1-4) ...
509s Setting up libgmpxx4ldbl:arm64 (2:6.3.0+dfsg-3ubuntu1) ...
509s Setting up libalgorithm-c3-perl (0.11-2) ...
509s Setting up libasound2t64:arm64 (1.2.13-1build1) ...
509s Setting up liblog-log4perl-perl (1.57-1) ...
509s Setting up libtext-reform-perl (1.20-5) ...
509s Setting up libgnutls-dane0t64:arm64 (3.8.9-2ubuntu2) ...
509s Setting up libfile-find-rule-perl (0.34-3) ...
509s Setting up libxfixes3:arm64 (1:6.0.0-2build1) ...
509s Setting up libxcb-sync1:arm64 (1.17.0-2) ...
509s Setting up libipc-system-simple-perl (1.30-2) ...
509s Setting up libio-tiecombine-perl (1.005-3) ...
509s Setting up libnet-domain-tld-perl (1.75-4) ...
509s Setting up libgssrpc4t64:arm64 (1.21.3-4ubuntu2) ...
509s Setting up libperlio-utf8-strict-perl (0.010-1build4) ...
509s Setting up libldap-dev:arm64 (2.6.9+dfsg-1~exp2ubuntu1) ...
509s Setting up aglfn (1.7+git20191031.4036a9c-2) ...
509s Setting up libxcb-cursor0:arm64 (0.1.5-1) ...
509s Setting up lzip (1.25-2) ...
509s update-alternatives: using /usr/bin/lzip.lzip to provide /usr/bin/lzip (lzip) in auto mode
509s update-alternatives: using /usr/bin/lzip.lzip to provide /usr/bin/lzip-compressor (lzip-compressor) in auto mode
509s update-alternatives: using /usr/bin/lzip.lzip to provide /usr/bin/lzip-decompressor (lzip-decompressor) in auto mode
509s Setting up libavahi-common-data:arm64 (0.8-16ubuntu1) ...
509s Setting up libopus0:arm64 (1.5.2-2) ...
509s Setting up t1utils (1.41-4build3) ...
509s Setting up libxinerama1:arm64 (2:1.1.4-3build1) ...
509s Setting up diffstat (1.67-1) ...
509s Setting up libimagequant0:arm64 (2.18.0-1build1) ...
509s Setting up comerr-dev:arm64 (2.1-1.47.2-1ubuntu1) ...
509s Setting up libxkbcommon-x11-0:arm64 (1.7.0-2) ...
509s Setting up fonts-dejavu-mono (2.37-8) ...
509s Setting up libssl-dev:arm64 (3.4.1-1ubuntu1) ...
509s Setting up libmpc3:arm64 (1.3.1-1build2) ...
509s Setting up libvorbis0a:arm64 (1.3.7-2) ...
509s Setting up libvariable-magic-perl (0.64-1build1) ...
509s Setting up libio-html-perl (1.004-3) ...
509s Setting up libxrandr2:arm64 (2:1.5.4-1) ...
509s Setting up libtext-template-perl (1.61-1) ...
509s Setting up libpod-parser-perl (1.67-1) ...
509s Setting up autopoint (0.23.1-1) ...
509s Setting up libb-hooks-op-check-perl:arm64 (0.22-3build2) ...
509s Setting up fonts-dejavu-core (2.37-8) ...
509s Setting up liblist-moreutils-xs-perl (0.430-4build1) ...
509s Setting up pkgconf-bin (1.8.1-4) ...
509s Setting up libjpeg-turbo8:arm64 (2.1.5-3ubuntu2) ...
509s Setting up libqscintilla2-qt6-l10n (2.14.1+dfsg-1build4) ...
509s Setting up libltdl7:arm64 (2.5.4-4) ...
509s Setting up libidn2-dev:arm64 (2.3.7-2build2) ...
509s Setting up libfftw3-double3:arm64 (3.3.10-2fakesync1build1) ...
509s Setting up libparams-util-perl (1.102-3build1) ...
509s Setting up libgfortran5:arm64 (15-20250222-0ubuntu1) ...
509s Setting up libvulkan1:arm64 (1.4.304.0-1) ...
509s Setting up libtime-duration-perl (1.21-2) ...
509s Setting up autoconf (2.72-3ubuntu1) ...
509s Setting up libtext-xslate-perl:arm64 (3.5.9-2build1) ...
509s Setting up libsub-exporter-progressive-perl (0.001013-3) ...
509s Setting up libwebp7:arm64 (1.5.0-0.1) ...
509s Setting up libarray-intspan-perl (2.004-2) ...
509s Setting up libcapture-tiny-perl (0.50-1) ...
509s Setting up libtimedate-perl (2.3300-2) ...
509s Setting up libexporter-lite-perl (0.09-2) ...
509s Setting up libubsan1:arm64 (15-20250222-0ubuntu1) ...
509s Setting up libsub-name-perl:arm64 (0.28-1) ...
509s Setting up zlib1g-dev:arm64 (1:1.3.dfsg+really1.3.1-1ubuntu1) ...
509s Setting up dwz (0.15-1build6) ...
509s Setting up libdata-validate-domain-perl (0.15-1) ...
509s Setting up libproc-processtable-perl:arm64 (0.636-1build4) ...
509s Setting up libparse-recdescent-perl (1.967015+dfsg-4) ...
509s Setting up libmtdev1t64:arm64 (1.1.7-1) ...
509s Setting up libduktape207:arm64 (2.7.0+tests-0ubuntu3) ...
509s Setting up libxshmfence1:arm64 (1.3-1build5) ...
509s Setting up libhwasan0:arm64 (15-20250222-0ubuntu1) ...
509s Setting up libxcb-randr0:arm64 (1.17.0-2) ...
509s Setting up libpath-tiny-perl (0.146-1) ...
509s Setting up libasan8:arm64 (15-20250222-0ubuntu1) ...
509s Setting up lzop (1.04-2build3) ...
509s Setting up libjson-perl (4.10000-1) ...
509s Setting up liblog-any-adapter-screen-perl (0.141-1) ...
509s Setting up librole-tiny-perl (2.002004-1) ...
509s Setting up debugedit (1:5.1-2) ...
509s Setting up libipc-run3-perl (0.049-1) ...
509s Setting up libmd4c0:arm64 (0.5.2-2) ...
509s Setting up libregexp-wildcards-perl (1.05-3) ...
509s Setting up libmousex-strictconstructor-perl (0.02-3) ...
509s Setting up libfile-sharedir-perl (1.118-3) ...
509s Setting up libsub-uplevel-perl (0.2800-3) ...
509s Setting up libsuitesparseconfig7:arm64 (1:7.8.3+dfsg-3) ...
509s Setting up liblua5.4-0:arm64 (5.4.7-1) ...
509s Setting up libaliased-perl (0.34-3) ...
509s Setting up libharfbuzz0b:arm64 (10.2.0-1) ...
509s Setting up libthai-data (0.1.29-2build1) ...
509s Setting up xorg-sgml-doctools (1:1.11-1.1) ...
509s Setting up libstrictures-perl (2.000006-1) ...
509s Setting up libsub-quote-perl (2.006008-1ubuntu1) ...
509s Setting up libdevel-stacktrace-perl (2.0500-1) ...
509s Setting up libclass-xsaccessor-perl (1.19-4build6) ...
509s Setting up libtext-autoformat-perl (1.750000-2) ...
509s Setting up libglu1-mesa:arm64 (9.0.2-1.1build1) ...
509s Setting up libflac12t64:arm64 (1.4.3+ds-4) ...
509s Setting up libtoml-tiny-perl (0.19-1) ...
509s Setting up libstemmer0d:arm64 (2.2.0-4build1) ...
509s Setting up libxkbfile1:arm64 (1:1.1.0-1build4) ...
509s Setting up libsort-versions-perl (1.62-3) ...
509s Setting up libtsan2:arm64 (15-20250222-0ubuntu1) ...
509s Setting up libexporter-tiny-perl (1.006002-1) ...
509s Setting up libterm-readkey-perl (2.38-2build5) ...
509s Setting up libisl23:arm64 (0.27-1) ...
509s Setting up libtext-unidecode-perl (1.30-3) ...
509s Setting up libde265-0:arm64 (1.0.15-1build5) ...
509s Setting up libfont-ttf-perl (1.06-2) ...
509s Setting up libfile-homedir-perl (1.006-2) ...
509s Setting up libsamplerate0:arm64 (0.2.2-4build1) ...
509s Setting up libtasn1-6-dev:arm64 (4.20.0-2) ...
509s Setting up libwebpmux3:arm64 (1.5.0-0.1) ...
509s Setting up libtext-levenshteinxs-perl (0.03-5build5) ...
509s Setting up libperlio-gzip-perl (0.20-1build5) ...
509s Setting up libjxl0.11:arm64 (0.11.1-1) ...
509s Setting up libxfont2:arm64 (1:2.0.6-1build1) ...
509s Setting up libhtml-html5-entities-perl (0.004-3) ...
509s Setting up libtext-levenshtein-damerau-perl (0.41-3) ...
509s Setting up libsereal-decoder-perl (5.004+ds-1build4) ...
509s Setting up libmarkdown2:arm64 (2.2.7-2.1) ...
509s Setting up libcc1-0:arm64 (15-20250222-0ubuntu1) ...
509s Setting up liburi-perl (5.30-1) ...
509s Setting up libnet-ipv6addr-perl (1.02-1) ...
509s Setting up libbrotli-dev:arm64 (1.1.0-2build4) ...
509s Setting up liblsan0:arm64 (15-20250222-0ubuntu1) ...
509s Setting up libp11-kit-dev:arm64 (0.25.5-2ubuntu3) ...
509s Setting up libmp3lame0:arm64 (3.100-6build1) ...
509s Setting up libblas-dev:arm64 (3.12.1-2) ...
509s update-alternatives: using /usr/lib/aarch64-linux-gnu/blas/libblas.so to provide /usr/lib/aarch64-linux-gnu/libblas.so (libblas.so-aarch64-linux-gnu) in auto mode
509s Setting up libsz2:arm64 (1.1.3-1) ...
509s Setting up libitm1:arm64 (15-20250222-0ubuntu1) ...
509s Setting up libvorbisenc2:arm64 (1.3.7-2) ...
509s Setting up libkadm5clnt-mit12:arm64 (1.21.3-4ubuntu2) ...
509s Setting up libdata-validate-ip-perl (0.31-1) ...
509s Setting up libwacom-common (2.14.0-1) ...
509s Setting up libmousex-nativetraits-perl (1.09-3) ...
509s Setting up libemail-address-xs-perl (1.05-1build5) ...
509s Setting up libwayland-client0:arm64 (1.23.1-3) ...
509s Setting up libnet-ssleay-perl:arm64 (1.94-3) ...
509s Setting up libjpeg8:arm64 (8c-2ubuntu11) ...
509s Setting up automake (1:1.17-3ubuntu1) ...
509s update-alternatives: using /usr/bin/automake-1.17 to provide /usr/bin/automake (automake) in auto mode
509s Setting up libb2-1:arm64 (0.98.1-1.1build1) ...
509s Setting up x11proto-dev (2024.1-1) ...
509s Setting up libfile-stripnondeterminism-perl (1.14.1-2) ...
509s Setting up gnuplot-data (6.0.2+dfsg1-1) ...
509s Setting up libice6:arm64 (2:1.1.1-1) ...
509s Setting up libqt6core6t64:arm64 (6.8.2+dfsg-5) ...
509s Setting up libhttp-date-perl (6.06-1) ...
509s Setting up mesa-libgallium:arm64 (25.0.1-2ubuntu1) ...
509s Setting up libjpeg-turbo8-dev:arm64 (2.1.5-3ubuntu2) ...
509s Setting up liblapack3:arm64 (3.12.1-2) ...
509s update-alternatives: using /usr/lib/aarch64-linux-gnu/lapack/liblapack.so.3 to provide /usr/lib/aarch64-linux-gnu/liblapack.so.3 (liblapack.so.3-aarch64-linux-gnu) in auto mode
509s Setting up libproxy1v5:arm64 (0.5.9-1) ...
509s Setting up libfile-basedir-perl (0.09-2) ...
509s Setting up gettext (0.23.1-1) ...
509s Setting up libarpack2t64:arm64 (3.9.1-4) ...
509s Setting up libfftw3-single3:arm64 (3.3.10-2fakesync1build1) ...
509s Setting up libgmp-dev:arm64 (2:6.3.0+dfsg-3ubuntu1) ...
509s Setting up libamd3:arm64 (1:7.8.3+dfsg-3) ...
509s Setting up libfile-listing-perl (6.16-1) ...
509s Setting up libxau-dev:arm64 (1:1.0.11-1) ...
509s Setting up nettle-dev:arm64 (3.10.1-1) ...
509s Setting up libkdb5-10t64:arm64 (1.21.3-4ubuntu2) ...
509s Setting up libgbm1:arm64 (25.0.1-2ubuntu1) ...
509s Setting up libcolamd3:arm64 (1:7.8.3+dfsg-3) ...
509s Setting up libwacom9:arm64 (2.14.0-1) ...
509s Setting up fontconfig-config (2.15.0-2ubuntu1) ...
509s Setting up liblist-moreutils-perl (0.430-2) ...
509s Setting up libxcursor1:arm64 (1:1.2.3-1) ...
509s Setting up libpod-constants-perl (0.19-2) ...
509s Setting up libgl1-mesa-dri:arm64 (25.0.1-2ubuntu1) ...
509s Setting up libhash-merge-perl (0.302-1) ...
509s Setting up libsoftware-copyright-perl (0.014-1) ...
509s Setting up libaec-dev:arm64 (1.1.3-1) ...
509s Setting up libavahi-common3:arm64 (0.8-16ubuntu1) ...
509s Setting up libcxsparse4:arm64 (1:7.8.3+dfsg-3) ...
509s Setting up libfftw3-long3:arm64 (3.3.10-2fakesync1build1) ...
509s Setting up libnet-http-perl (6.23-1) ...
509s Setting up libpath-iterator-rule-perl (1.015-2) ...
509s Setting up libtext-markdown-discount-perl (0.18-1) ...
509s Setting up libappstream5:arm64 (1.0.4-1) ...
509s Setting up libexception-class-perl (1.45-1) ...
509s Setting up libclass-c3-perl (0.35-2) ...
509s Setting up libqrupdate1:arm64 (1.1.5-1) ...
509s Setting up libdevel-callchecker-perl:arm64 (0.009-1build1) ...
509s Setting up libxml-sax-perl (1.02+dfsg-4) ...
509s update-perl-sax-parsers: Registering Perl SAX parser XML::SAX::PurePerl with priority 10...
509s update-perl-sax-parsers: Updating overall Perl SAX parser modules info file...
509s Creating config file /etc/perl/XML/SAX/ParserDetails.ini with new version
509s Setting up libcamd3:arm64 (1:7.8.3+dfsg-3) ...
509s Setting up pkgconf:arm64 (1.8.1-4) ...
509s Setting up libinput-bin (1.27.1-1) ...
509s Setting up libxs-parse-sublike-perl:arm64 (0.37-1) ...
509s Setting up intltool-debian (0.35.0+20060710.6) ...
509s Setting up libthai0:arm64 (0.1.29-2build1) ...
509s Setting up libxdmcp-dev:arm64 (1:1.1.5-1) ...
509s Setting up libegl-mesa0:arm64 (25.0.1-2ubuntu1) ...
509s Setting up libdata-validate-uri-perl (0.07-3) ...
509s Setting up libxs-parse-keyword-perl (0.48-2) ...
509s Setting up libtest-exception-perl (0.43-3) ...
509s Setting up appstream (1.0.4-1) ...
509s ✔ Metadata cache was updated successfully.
510s Setting up libqt6xml6:arm64 (6.8.2+dfsg-5) ...
510s Setting up libglpk40:arm64 (5.0-1build2) ...
510s Setting up libqt6sql6:arm64 (6.8.2+dfsg-5) ...
510s Setting up libstring-copyright-perl (0.003014-1) ...
510s Setting up libraqm0:arm64 (0.10.2-1) ...
510s Setting up liblapack-dev:arm64 (3.12.1-2) ...
510s update-alternatives: using /usr/lib/aarch64-linux-gnu/lapack/liblapack.so to provide /usr/lib/aarch64-linux-gnu/liblapack.so (liblapack.so-aarch64-linux-gnu) in auto mode
510s Setting up libdata-optlist-perl (0.114-1) ...
510s Setting up libssh2-1-dev:arm64 (1.11.1-1) ...
510s Setting up libccolamd3:arm64 (1:7.8.3+dfsg-3) ...
510s Setting up libxml-libxml-perl (2.0207+dfsg+really+2.0134-5build1) ...
510s update-perl-sax-parsers: Registering Perl SAX parser XML::LibXML::SAX::Parser with priority 50...
510s update-perl-sax-parsers: Registering Perl SAX parser XML::LibXML::SAX with priority 50...
510s update-perl-sax-parsers: Updating overall Perl SAX parser modules info file...
510s Replacing config file /etc/perl/XML/SAX/ParserDetails.ini with new version
510s Setting up dh-strip-nondeterminism (1.14.1-2) ...
510s Setting up libwww-robotrules-perl (6.02-1) ...
510s Setting up libsyntax-keyword-try-perl (0.30-1) ...
510s Setting up libjack-jackd2-0:arm64 (1.9.22~dfsg-4) ...
510s Setting up libhdf5-310:arm64 (1.14.5+repack-3) ...
510s Setting up cpp-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
510s Setting up libtiff6:arm64 (4.5.1+git230720-4ubuntu4) ...
510s Setting up libhtml-parser-perl:arm64 (3.83-1build1) ...
510s Setting up libkadm5srv-mit12:arm64 (1.21.3-4ubuntu2) ...
510s Setting up libegl1:arm64 (1.7.0-1build1) ...
510s Setting up libqt6core5compat6:arm64 (6.8.2-3) ...
510s Setting up libfontconfig1:arm64 (2.15.0-2ubuntu1) ...
510s Setting up libsndfile1:arm64 (1.2.2-2) ...
510s Setting up libmro-compat-perl (0.15-2) ...
510s Setting up libgcc-14-dev:arm64 (14.2.0-17ubuntu3) ...
510s Setting up libjpeg8-dev:arm64 (8c-2ubuntu11) ...
510s Setting up libhdf5-fortran-310:arm64 (1.14.5+repack-3) ...
510s Setting up libstdc++-14-dev:arm64 (14.2.0-17ubuntu3) ...
510s Setting up libsm6:arm64 (2:1.2.4-1) ...
510s Setting up libavahi-client3:arm64 (0.8-16ubuntu1) ...
510s Setting up libio-socket-ssl-perl (2.089-1) ...
510s Setting up libsub-exporter-perl (0.990-1) ...
510s Setting up libqt6dbus6:arm64 (6.8.2+dfsg-5) ...
510s Setting up libhttp-message-perl (7.00-2ubuntu1) ...
510s Setting up libhtml-form-perl (6.12-1) ...
510s Setting up krb5-multidev:arm64 (1.21.3-4ubuntu2) ...
510s Setting up libhdf5-cpp-310:arm64 (1.14.5+repack-3) ...
510s Setting up libgfortran-14-dev:arm64 (14.2.0-17ubuntu3) ...
510s Setting up libiterator-perl (0.03+ds1-2) ...
510s Setting up libgnutls28-dev:arm64 (3.8.9-2ubuntu2) ...
510s Setting up libinput10:arm64 (1.27.1-1) ...
510s Setting up libnghttp2-dev:arm64 (1.64.0-1) ...
510s Setting up libhdf5-hl-310:arm64 (1.14.5+repack-3) ...
510s Setting up libportaudio2:arm64 (19.6.0-1.2build3) ...
510s Setting up libhttp-negotiate-perl (6.01-2) ...
510s Setting up fontconfig (2.15.0-2ubuntu1) ...
512s Regenerating fonts cache... done.
512s Setting up libcarp-assert-more-perl (2.8.0-1) ...
512s Setting up libcholmod5:arm64 (1:7.8.3+dfsg-3) ...
512s Setting up libxft2:arm64 (2.3.6-1build1) ...
512s Setting up libglx-mesa0:arm64 (25.0.1-2ubuntu1) ...
512s Setting up libxcb1-dev:arm64 (1.17.0-2) ...
512s Setting up libiterator-util-perl (0.02+ds1-2) ...
512s Setting up libglx0:arm64 (1.7.0-1build1) ...
512s Setting up libhttp-cookies-perl (6.11-1) ...
512s Setting up libspqr4:arm64 (1:7.8.3+dfsg-3) ...
512s Setting up libfftw3-bin (3.3.10-2fakesync1build1) ...
512s Setting up po-debconf (1.0.21+nmu1) ...
512s Setting up libhtml-tree-perl (5.07-3) ...
512s Setting up libparams-classify-perl:arm64 (0.015-2build6) ...
512s Setting up libpango-1.0-0:arm64 (1.56.2-1) ...
512s Setting up libcgi-pm-perl (4.67-1) ...
512s Setting up libjpeg-dev:arm64 (8c-2ubuntu11) ...
512s Setting up libx11-dev:arm64 (2:1.8.10-2) ...
512s Setting up libcairo2:arm64 (1.18.2-2) ...
512s Setting up libobject-pad-perl (0.820-1) ...
512s Setting up libkrb5-dev:arm64 (1.21.3-4ubuntu2) ...
512s Setting up cpp-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
512s Setting up libgl1:arm64 (1.7.0-1build1) ...
512s Setting up libqt6gui6:arm64 (6.8.2+dfsg-5) ...
512s Setting up libnet-smtp-ssl-perl (1.04-2) ...
512s Setting up libmodule-runtime-perl (0.016-2) ...
512s Setting up libmailtools-perl (2.22-1) ...
512s Setting up libconfig-model-perl (2.155-1) ...
512s Setting up libxt6t64:arm64 (1:1.2.1-1.2build1) ...
512s Setting up librtmp-dev:arm64 (2.4+20151223.gitfa8646d.1-2build7) ...
512s Setting up texinfo (7.1.1-1) ...
512s Setting up cpp-14 (14.2.0-17ubuntu3) ...
512s Setting up libumfpack6:arm64 (1:7.8.3+dfsg-3) ...
512s Setting up libconst-fast-perl (0.014-2) ...
512s Setting up libqt6network6:arm64 (6.8.2+dfsg-5) ...
512s Setting up cpp (4:14.2.0-1ubuntu1) ...
512s Setting up libdata-section-perl (0.200008-1) ...
512s Setting up libglx-dev:arm64 (1.7.0-1build1) ...
512s Setting up gcc-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
512s Setting up libpangoft2-1.0-0:arm64 (1.56.2-1) ...
512s Setting up libdata-dpath-perl (0.60-1) ...
512s Setting up libfltk1.3t64:arm64 (1.3.8-6.1build2) ...
512s Setting up libfftw3-dev:arm64 (3.3.10-2fakesync1build1) ...
512s Setting up libcups2t64:arm64 (2.4.11-0ubuntu2) ...
512s Setting up libgl-dev:arm64 (1.7.0-1build1) ...
512s Setting up libstring-rewriteprefix-perl (0.009-1) ...
512s Setting up libpangocairo-1.0-0:arm64 (1.56.2-1) ...
512s Setting up libhdf5-hl-cpp-310:arm64 (1.14.5+repack-3) ...
512s Setting up libconfig-model-backend-yaml-perl (2.134-2) ...
512s Setting up gcc-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
512s Setting up libhdf5-hl-fortran-310:arm64 (1.14.5+repack-3) ...
512s Setting up libxmu6:arm64 (2:1.1.3-3build2) ...
512s Setting up g++-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
512s Setting up libmodule-implementation-perl (0.09-2) ...
512s Setting up libpackage-stash-perl (0.40-1) ...
512s Setting up libimport-into-perl (1.002005-2) ...
512s Setting up libmoo-perl (2.005005-1) ...
512s Setting up libqt6opengl6:arm64 (6.8.2+dfsg-5) ...
512s Setting up liblist-someutils-perl (0.59-1) ...
512s Setting up libxaw7:arm64 (2:1.0.16-1) ...
512s Setting up libmime-tools-perl (5.515-1) ...
512s Setting up libsoftware-license-perl (0.104006-1) ...
512s Setting up libclass-load-perl (0.25-2) ...
512s Setting up libgl2ps1.4 (1.4.2+dfsg1-2build1) ...
512s Setting up gcc-14 (14.2.0-17ubuntu3) ...
512s Setting up libqt6widgets6:arm64 (6.8.2+dfsg-5) ...
512s Setting up libfltk-gl1.3t64:arm64 (1.3.8-6.1build2) ...
512s Setting up libcurl4-openssl-dev:arm64 (8.12.1-3ubuntu1) ...
512s Setting up libhdf5-dev (1.14.5+repack-3) ...
512s update-alternatives: using /usr/lib/aarch64-linux-gnu/pkgconfig/hdf5-serial.pc to provide /usr/lib/aarch64-linux-gnu/pkgconfig/hdf5.pc (hdf5.pc) in auto mode
512s Setting up gfortran-14-aarch64-linux-gnu (14.2.0-17ubuntu3) ...
512s Setting up g++-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
512s Setting up gfortran-aarch64-linux-gnu (4:14.2.0-1ubuntu1) ...
512s Setting up g++-14 (14.2.0-17ubuntu3) ...
512s Setting up libmoox-aliases-perl (0.001006-2) ...
512s Setting up gfortran-14 (14.2.0-17ubuntu3) ...
512s Setting up libparams-validate-perl:arm64 (1.31-2build4) ...
512s Setting up libqt6openglwidgets6:arm64 (6.8.2+dfsg-5) ...
512s Setting up libb-hooks-endofscope-perl (0.28-1) ...
512s Setting up libqt6printsupport6:arm64 (6.8.2+dfsg-5) ...
512s Setting up libtool (2.5.4-4) ...
512s Setting up libsoftware-licensemoreutils-perl (1.009-1) ...
512s Setting up x11-xkb-utils (7.7+9) ...
512s Setting up libqt6help6:arm64 (6.8.2-3) ...
512s Setting up libqscintilla2-qt6-15:arm64 (2.14.1+dfsg-1build4) ...
512s Setting up gcc (4:14.2.0-1ubuntu1) ...
512s Setting up dh-autoreconf (20) ...
512s Setting up libnamespace-clean-perl (0.27-2) ...
512s Setting up libstring-license-perl (0.0.11-1ubuntu1) ...
512s Setting up libgetopt-long-descriptive-perl (0.116-2) ...
512s Setting up g++ (4:14.2.0-1ubuntu1) ...
512s update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode
512s Setting up xserver-common (2:21.1.16-1ubuntu1) ...
512s Setting up licensecheck (3.3.9-1ubuntu1) ...
512s Setting up libapp-cmd-perl (0.337-2) ...
512s Setting up xvfb (2:21.1.16-1ubuntu1) ...
512s Setting up debhelper (13.24.1ubuntu2) ...
512s Setting up gfortran (4:14.2.0-1ubuntu1) ...
512s update-alternatives: using /usr/bin/gfortran to provide /usr/bin/f95 (f95) in auto mode
512s update-alternatives: warning: skip creation of /usr/share/man/man1/f95.1.gz because associated file /usr/share/man/man1/gfortran.1.gz (of link group f95) doesn't exist
512s update-alternatives: using /usr/bin/gfortran to provide /usr/bin/f77 (f77) in auto mode
512s update-alternatives: warning: skip creation of /usr/share/man/man1/f77.1.gz because associated file /usr/share/man/man1/gfortran.1.gz (of link group f77) doesn't exist
512s Setting up cme (1.041-1) ...
512s Setting up libheif-plugin-aomdec:arm64 (1.19.7-1) ...
512s Setting up libwww-perl (6.78-1) ...
512s Setting up libheif1:arm64 (1.19.7-1) ...
512s Setting up libparse-debcontrol-perl (2.005-6) ...
512s Setting up libhtml-tokeparser-simple-perl (3.16-4) ...
512s Setting up libwww-mechanize-perl (2.19-1ubuntu1) ...
512s Setting up libgd3:arm64 (2.3.3-12ubuntu3) ...
512s Setting up gnuplot-nox (6.0.2+dfsg1-1) ...
512s update-alternatives: using /usr/bin/gnuplot-nox to provide /usr/bin/gnuplot (gnuplot) in auto mode
512s Setting up liblwp-protocol-https-perl (6.14-1) ...
512s Setting up libheif-plugin-libde265:arm64 (1.19.7-1) ...
512s Setting up libgraphicsmagick-q16-3t64 (1.4+really1.3.45+hg17689-1) ...
512s Setting up lintian (2.121.1+nmu1ubuntu2) ...
512s Setting up libgraphicsmagick++-q16-12t64 (1.4+really1.3.45+hg17689-1) ...
512s Setting up libconfig-model-dpkg-perl (3.010) ...
512s Setting up dh-octave-autopkgtest (1.8.0) ...
512s Setting up octave (9.4.0-1) ...
512s Setting up octave-dev (9.4.0-1) ...
512s Setting up octave-io (2.6.4-3build2) ...
512s Setting up octave-statistics-common (1.7.3-2) ...
512s Setting up octave-statistics (1.7.3-2) ...
512s Setting up dh-octave (1.8.0) ...
512s Processing triggers for libc-bin (2.41-1ubuntu2) ...
512s Processing triggers for man-db (2.13.0-1) ...
514s Processing triggers for udev (257.3-1ubuntu3) ...
515s Processing triggers for install-info (7.1.1-1) ...
516s autopkgtest [13:59:48]: test command1: DH_OCTAVE_TEST_ENV="xvfb-run -a" /usr/bin/dh_octave_check --use-installed-package
516s autopkgtest [13:59:48]: test command1: [-----------------------
517s Checking package...
518s Run the unit tests...
518s Checking m files ...
518s [inst/nanmin.m]
518s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/nanmin.m
518s ***** demo
518s  ## Find the column minimum values and their indices
518s  ## for matrix data with missing values.
518s 
518s  x = magic (3);
518s  x([1, 6:9]) = NaN
518s  [y, ind] = nanmin (x)
518s ***** demo
518s  ## Find the minimum of all the values in an array, ignoring missing values.
518s  ## Create a 2-by-5-by-3 array x with some missing values.
518s 
518s  x = reshape (1:30, [2, 5, 3]);
518s  x([10:12, 25]) = NaN
518s 
518s  ## Find the minimum of the elements of x.
518s 
518s  y = nanmin (x, [], 'all')
518s ***** assert (nanmin ([2, 4, NaN, 7]), 2)
518s ***** assert (nanmin ([2, 4, NaN, -Inf]), -Inf)
518s ***** assert (nanmin ([1, NaN, 3; NaN, 5, 6; 7, 8, NaN]), [1, 5, 3])
518s ***** assert (nanmin ([1, NaN, 3; NaN, 5, 6; 7, 8, NaN]'), [1, 5, 7])
518s ***** assert (nanmin (single ([1, NaN, 3; NaN, 5, 6; 7, 8, NaN])), single ([1, 5, 3]))
518s ***** shared x, y
518s  x(:,:,1) = [1.77, -0.005, NaN, -2.95; NaN, 0.34, NaN, 0.19];
518s  x(:,:,2) = [1.77, -0.005, NaN, -2.95; NaN, 0.34, NaN, 0.19] + 5;
518s  y = x;
518s  y(2,3,1) = 0.51;
518s ***** assert (nanmin (x, [], [1, 2])(:), [-2.95; 2.05])
518s ***** assert (nanmin (x, [], [1, 3])(:), [1.77; -0.005; NaN; -2.95])
518s ***** assert (nanmin (x, [], [2, 3])(:), [-2.95; 0.19])
518s ***** assert (nanmin (x, [], [1, 2, 3]), -2.95)
518s ***** assert (nanmin (x, [], 'all'), -2.95)
518s ***** assert (nanmin (y, [], [1, 3])(:), [1.77; -0.005; 0.51; -2.95])
518s ***** assert (nanmin (x(1,:,1), x(2,:,1)), [1.77, -0.005, NaN, -2.95])
518s ***** assert (nanmin (x(1,:,2), x(2,:,2)), [6.77, 4.995, NaN, 2.05])
518s ***** assert (nanmin (y(1,:,1), y(2,:,1)), [1.77, -0.005, 0.51, -2.95])
518s ***** assert (nanmin (y(1,:,2), y(2,:,2)), [6.77, 4.995, NaN, 2.05])
518s ***** test
518s  xx = repmat ([1:20;6:25], [5 2 6 3]);
518s  assert (size (nanmin (xx, [], [3, 2])), [10, 1, 1, 3]);
518s  assert (size (nanmin (xx, [], [1, 2])), [1, 1, 6, 3]);
518s  assert (size (nanmin (xx, [], [1, 2, 4])), [1, 1, 6]);
518s  assert (size (nanmin (xx, [], [1, 4, 3])), [1, 40]);
518s  assert (size (nanmin (xx, [], [1, 2, 3, 4])), [1, 1]);
518s ***** assert (nanmin (ones (2), [], 3), ones (2, 2))
518s ***** assert (nanmin (ones (2, 2, 2), [], 99), ones (2, 2, 2))
518s ***** assert (nanmin (magic (3), [], 3), magic (3))
518s ***** assert (nanmin (magic (3), [], [1, 3]), [3, 1, 2])
518s ***** assert (nanmin (magic (3), [], [1, 99]), [3, 1, 2])
518s ***** assert (nanmin (ones (2), 3), ones (2,2))
518s ***** error <nanmin: VECDIM must contain non-repeating positive integers.> ...
518s  nanmin (y, [], [1, 1, 2])
518s ***** error <nanmin: a second output is not supported with this syntax.> ...
518s  [v, idx] = nanmin(x, y, [1 2])
518s 24 tests, 24 passed, 0 known failure, 0 skipped
518s [inst/combnk.m]
518s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/combnk.m
518s ***** demo
518s  c = combnk (1:5, 2);
518s  disp ("All pairs of integers between 1 and 5:");
518s  disp (c);
518s ***** test
518s  c = combnk (1:3, 2);
518s  assert (c, [1, 2; 1, 3; 2, 3]);
518s ***** test
518s  c = combnk (1:3, 6);
518s  assert (isempty (c));
518s ***** test
518s  c = combnk ({1, 2, 3}, 2);
518s  assert (c, {1, 2; 1, 3; 2, 3});
518s ***** test
518s  c = combnk ("hello", 2);
518s  assert (c, ["lo"; "lo"; "ll"; "eo"; "el"; "el"; "ho"; "hl"; "hl"; "he"]);
518s 4 tests, 4 passed, 0 known failure, 0 skipped
518s [inst/mhsample.m]
518s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/mhsample.m
518s ***** demo
518s  ## Define function to sample
518s  d = 2;
518s  mu = [-1; 2];
518s  rand ("seed", 5)  # for reproducibility
518s  Sigma = rand (d);
518s  Sigma = (Sigma + Sigma');
518s  Sigma += eye (d) * abs (eigs (Sigma, 1, "sa")) * 1.1;
518s  pdf = @(x)(2*pi)^(-d/2)*det(Sigma)^-.5*exp(-.5*sum((x.'-mu).*(Sigma\(x.'-mu)),1));
518s  ## Inputs
518s  start = ones (1, 2);
518s  nsamples = 500;
518s  sym = true;
518s  K = 500;
518s  m = 10;
518s  rand ("seed", 8)  # for reproducibility
518s  proprnd = @(x) (rand (size (x)) - .5) * 3 + x;
518s  [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proprnd", proprnd, ...
518s                             "symmetric", sym, "burnin", K, "thin", m);
518s  figure;
518s  hold on;
518s  plot (smpl(:, 1), smpl(:, 2), 'x');
518s  [x, y] = meshgrid (linspace (-6, 4), linspace(-3, 7));
518s  z = reshape (pdf ([x(:), y(:)]), size(x));
518s  mesh (x, y, z, "facecolor", "None");
518s  ## Using sample points to find the volume of half a sphere with radius of .5
518s  f = @(x) ((.25-(x(:,1)+1).^2-(x(:,2)-2).^2).^.5.*(((x(:,1)+1).^2+(x(:,2)-2).^2)<.25)).';
518s  int = mean (f (smpl) ./ pdf (smpl));
518s  errest = std (f (smpl) ./ pdf (smpl)) / nsamples ^ .5;
518s  trueerr = abs (2 / 3 * pi * .25 ^ (3 / 2) - int);
518s  printf ("Monte Carlo integral estimate int f(x) dx = %f\n", int);
518s  printf ("Monte Carlo integral error estimate %f\n", errest);
518s  printf ("The actual error %f\n", trueerr);
518s  mesh (x, y, reshape (f([x(:), y(:)]), size(x)), "facecolor", "None");
518s ***** demo
518s  ## Integrate truncated normal distribution to find normilization constant
518s  pdf = @(x) exp (-.5*x.^2)/(pi^.5*2^.5);
518s  nsamples = 1e3;
518s  rand ("seed", 5)  # for reproducibility
518s  proprnd = @(x) (rand (size (x)) - .5) * 3 + x;
518s  [smpl, accept] = mhsample (1, nsamples, "pdf", pdf, "proprnd", proprnd, ...
518s                             "symmetric", true, "thin", 4);
518s  f = @(x) exp(-.5 * x .^ 2) .* (x >= -2 & x <= 2);
518s  x = linspace (-3, 3, 1000);
518s  area(x, f(x));
518s  xlabel ('x');
518s  ylabel ('f(x)');
518s  int = mean (f (smpl) ./ pdf (smpl));
518s  errest = std (f (smpl) ./ pdf (smpl)) / nsamples^ .5;
518s  trueerr = abs (erf (2 ^ .5) * 2 ^ .5 * pi ^ .5 - int);
518s  printf ("Monte Carlo integral estimate int f(x) dx = %f\n", int);
518s  printf ("Monte Carlo integral error estimate %f\n", errest);
518s  printf ("The actual error %f\n", trueerr);
519s ***** test
519s  nchain = 1e4;
519s  start = rand (nchain, 1);
519s  nsamples = 1e3;
519s  pdf = @(x) exp (-.5*(x-1).^2)/(2*pi)^.5;
519s  proppdf = @(x, y) 1/3;
519s  proprnd = @(x) 3 * (rand (size (x)) - .5) + x;
519s  [smpl, accept] = mhsample (start, nsamples, "pdf", pdf, "proppdf", proppdf, ...
519s                             "proprnd", proprnd, "thin", 2, "nchain", nchain, ...
519s                             "burnin", 0);
519s  assert (mean (mean (smpl, 1), 3), 1, .01);
519s  assert (mean (var (smpl, 1), 3), 1, .01)
522s ***** error mhsample ();
522s ***** error mhsample (1);
523s ***** error mhsample (1, 1);
523s ***** error mhsample (1, 1, "pdf", @(x)x);
523s ***** error mhsample (1, 1, "pdf", @(x)x, "proprnd", @(x)x+rand(size(x)));
523s 6 tests, 6 passed, 0 known failure, 0 skipped
523s [inst/wblplot.m]
523s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/wblplot.m
523s ***** demo
523s  x = [16 34 53 75 93 120];
523s  wblplot (x);
523s ***** demo
523s  x = [2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67]';
523s  c = [0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 1]';
523s  [h, p] = wblplot (x, c);
523s  p
523s ***** demo
523s  x = [16, 34, 53, 75, 93, 120, 150, 191, 240 ,339];
523s  [h, p] = wblplot (x, [], [], 0.05);
523s  p
523s  ## Benchmark Reliasoft eta = 146.2545 beta 1.1973 rho = 0.9999
523s ***** demo
523s  x = [46 64 83 105 123 150 150];
523s  c = [0 0 0 0 0 0 1];
523s  f = [1 1 1 1 1 1 4];
523s  wblplot (x, c, f, 0.05);
523s ***** demo
523s  x = [46 64 83 105 123 150 150];
523s  c = [0 0 0 0 0 0 1];
523s  f = [1 1 1 1 1 1 4];
523s  ## Subtract 30.92 from x to simulate a 3 parameter wbl with gamma = 30.92
523s  wblplot (x - 30.92, c, f, 0.05);
523s ***** test
523s  hf = figure ("visible", "off");
523s  unwind_protect
523s    x = [16, 34, 53, 75, 93, 120, 150, 191, 240 ,339];
523s    [h, p] = wblplot (x, [], [], 0.05);
523s    assert (numel (h), 4)
523s    assert (p(1), 146.2545, 1E-4)
523s    assert (p(2), 1.1973, 1E-4)
523s    assert (p(3), 0.9999, 5E-5)
523s  unwind_protect_cleanup
523s    close (hf);
523s  end_unwind_protect
523s warning: using the gnuplot graphics toolkit is discouraged
523s 
523s The gnuplot graphics toolkit is not actively maintained and has a number
523s of limitations that are unlikely to be fixed.  Communication with gnuplot
523s uses a one-directional pipe and limited information is passed back to the
523s Octave interpreter so most changes made interactively in the plot window
523s will not be reflected in the graphics properties managed by Octave.  For
523s example, if the plot window is closed with a mouse click, Octave will not
523s be notified and will not update its internal list of open figure windows.
523s The qt toolkit is recommended instead.
524s 1 test, 1 passed, 0 known failure, 0 skipped
524s [inst/gmdistribution.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/gmdistribution.m
524s ***** test
524s  mu = eye(2);
524s  Sigma = eye(2);
524s  GM = gmdistribution (mu, Sigma);
524s  density = GM.pdf ([0 0; 1 1]);
524s  assert (density(1) - density(2), 0, 1e-6);
524s 
524s  [idx, nlogl, P, logpdf,M] = cluster (GM, eye(2));
524s  assert (idx, [1; 2]);
524s  [idx2,nlogl2,P2,logpdf2] = GM.cluster (eye(2));
524s  assert (nlogl - nlogl2, 0, 1e-6);
524s  [idx3,nlogl3,P3] = cluster (GM, eye(2));
524s  assert (P - P3, zeros (2), 1e-6);
524s  [idx4,nlogl4] = cluster (GM, eye(2));
524s  assert (size (nlogl4), [1 1]);
524s  idx5 = cluster (GM, eye(2));
524s  assert (idx - idx5, zeros (2,1));
524s 
524s  D = GM.mahal ([1;0]);
524s  assert (D - M(1,:), zeros (1,2), 1e-6);
524s 
524s  P = GM.posterior ([0 1]);
524s  assert (P - P2(2,:), zeros (1,2), 1e-6);
524s 
524s  R = GM.random(20);
524s  assert (size(R), [20, 2]);
524s 
524s  R = GM.random();
524s  assert (size(R), [1, 2]);
524s 1 test, 1 passed, 0 known failure, 0 skipped
524s [inst/ppplot.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ppplot.m
524s ***** test
524s  hf = figure ("visible", "off");
524s  unwind_protect
524s    ppplot ([2 3 3 4 4 5 6 5 6 7 8 9 8 7 8 9 0 8 7 6 5 4 6 13 8 15 9 9]);
524s  unwind_protect_cleanup
524s    close (hf);
524s  end_unwind_protect
524s ***** error ppplot ()
524s ***** error <ppplot: X must be a numeric vector> ppplot (ones (2,2))
524s ***** error <ppplot: X must be a numeric vector> ppplot (1, 2)
524s ***** error <ppplot: DIST must be a strin> ppplot ([1 2 3 4], 2)
524s 5 tests, 5 passed, 0 known failure, 0 skipped
524s [inst/vartest2.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/vartest2.m
524s ***** error<vartest2: too few input arguments.> vartest2 ();
524s ***** error<vartest2: too few input arguments.> vartest2 (ones (20,1));
524s ***** error<vartest2: X and Y must be vectors or matrices or N-D arrays.> ...
524s  vartest2 (rand (20,1), 5);
524s ***** error<vartest2: invalid value for alpha.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "alpha", 0);
524s ***** error<vartest2: invalid value for alpha.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "alpha", 1.2);
524s ***** error<vartest2: invalid value for alpha.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "alpha", "some");
524s ***** error<vartest2: invalid value for alpha.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "alpha", [0.05, 0.001]);
524s ***** error<vartest2: invalid value for tail.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "tail", [0.05, 0.001]);
524s ***** error<vartest2: invalid value for tail.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "tail", "some");
524s ***** error<vartest2: invalid value for operating dimension.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "dim", 3);
524s ***** error<vartest2: invalid value for operating dimension.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "alpha", 0.001, "dim", 3);
524s ***** error<vartest2: invalid name for optional arguments.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "some", 3);
524s ***** error<vartest2: optional arguments must be in name/value pairs.> ...
524s  vartest2 (rand (20,1), rand (25,1)*2, "some");
524s ***** test
524s  load carsmall
524s  [h, pval, ci, stat] = vartest2 (MPG(Model_Year==82), MPG(Model_Year==76));
524s  assert (h, 0);
524s  assert (pval, 0.6288022362718455, 1e-13);
524s  assert (ci, [0.4139; 1.7193], 1e-4);
524s  assert (stat.fstat, 0.8384, 1e-4);
524s  assert (stat.df1, 30);
524s  assert (stat.df2, 33);
524s 14 tests, 14 passed, 0 known failure, 0 skipped
524s [inst/datasample.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/datasample.m
524s ***** error datasample();
524s ***** error datasample(1);
524s ***** error <data must be a vector or matrix> datasample({1, 2, 3}, 1);
524s ***** error <k must be a positive integer scalar> datasample([1 2], -1);
524s ***** error <k must be a positive integer scalar> datasample([1 2], 1.5);
524s ***** error <k must be a positive integer scalar> datasample([1 2], [1 1]);
524s ***** error <k must be a positive integer scalar> datasample([1 2], 'g', [1 1]);
524s ***** error <DIM must be a positive integer scalar> datasample([1 2], 1, -1);
524s ***** error <DIM must be a positive integer scalar> datasample([1 2], 1, 1.5);
524s ***** error <DIM must be a positive integer scalar> datasample([1 2], 1, [1 1]);
524s ***** error <Replace> datasample([1 2], 1, 1, "Replace", -2);
524s ***** error <weights must be defined> datasample([1 2], 1, 1, "Weights", "abc");
524s ***** error <weights must be defined> datasample([1 2], 1, 1, "Weights", [1 -2 3]);
524s ***** error <weights must be defined> datasample([1 2], 1, 1, "Weights", ones (2));
524s ***** error <weights must be equal> datasample([1 2], 1, 1, "Weights", [1 2 3]);
524s ***** test
524s  dat = randn (10, 4);
524s  assert (size (datasample (dat, 3, 1)), [3 4]);
524s ***** test
524s  dat = randn (10, 4);
524s  assert (size (datasample (dat, 3, 2)), [10 3]);
524s 17 tests, 17 passed, 0 known failure, 0 skipped
524s [inst/tabulate.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/tabulate.m
524s ***** demo
524s  ## Generate a frequency table for a vector of data in a cell array
524s  load patients
524s 
524s  ## Display the first seven entries of the Gender variable
524s  gender = Gender(1:7)
524s 
524s  ## Compute the equency table that shows the number and
524s  ## percentage of Male and Female patients
524s  tabulate (Gender)
524s ***** demo
524s  ## Create a frequency table for a vector of positive integers
524s  load patients
524s 
524s  ## Display the first seven entries of the Gender variable
524s  height = Height(1:7)
524s 
524s  ## Create a frequency table that shows, in its second and third columns,
524s  ## the number and percentage of patients with a particular height.
524s  table = tabulate (Height);
524s 
524s  ## Display the first and last seven entries of the frequency table
524s  first = table(1:7,:)
524s 
524s  last = table(end-6:end,:)
524s ***** demo
524s  ## Create a frequency table from a character array
524s  load carsmall
524s 
524s  ## Tabulate the data in the Origin variable, which shows the
524s  ## country of origin of each car in the data set
524s  tabulate (Origin)
524s ***** demo
524s  ## Create a frequency table from a numeric vector with NaN values
524s  load carsmall
524s 
524s  ## The carsmall dataset contains measurements of 100 cars
524s  total_cars = length (MPG)
524s  ## For six cars, the MPG value is missing
524s  missingMPG = length (MPG(isnan (MPG)))
524s 
524s  ## Create a frequency table using MPG
524s  tabulate (MPG)
524s  table = tabulate (MPG);
524s 
524s  ## Only 94 cars were used
524s  valid_cars = sum (table(:,2))
524s ***** test
524s  load patients
524s  table = tabulate (Gender);
524s  assert (table{1,1}, "Male");
524s  assert (table{2,1}, "Female");
524s  assert (table{1,2}, 47);
524s  assert (table{2,2}, 53);
524s ***** test
524s  load patients
524s  table = tabulate (Height);
524s  assert (table(end-4,:), [68, 15, 15]);
524s  assert (table(end-3,:), [69, 8, 8]);
524s  assert (table(end-2,:), [70, 11, 11]);
524s  assert (table(end-1,:), [71, 10, 10]);
524s  assert (table(end,:), [72, 4, 4]);
524s ***** error<tabulate: X must be either a numeric vector> tabulate (ones (3))
524s ***** error<tabulate: X must be either a numeric vector> tabulate ({1, 2, 3, 4})
524s ***** error<tabulate: X must be either a numeric vector> ...
524s  tabulate ({"a", "b"; "a", "c"})
524s 5 tests, 5 passed, 0 known failure, 0 skipped
524s [inst/pcares.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/pcares.m
524s ***** demo
524s  x = [ 7    26     6    60;
524s        1    29    15    52;
524s       11    56     8    20;
524s       11    31     8    47;
524s        7    52     6    33;
524s       11    55     9    22;
524s        3    71    17     6;
524s        1    31    22    44;
524s        2    54    18    22;
524s       21    47     4    26;
524s        1    40    23    34;
524s       11    66     9    12;
524s       10    68     8    12];
524s 
524s  ## As we increase the number of principal components, the norm
524s  ## of the residuals matrix will decrease
524s  r1 = pcares (x,1);
524s  n1 = norm (r1)
524s  r2 = pcares (x,2);
524s  n2 = norm (r2)
524s  r3 = pcares (x,3);
524s  n3 = norm (r3)
524s  r4 = pcares (x,4);
524s  n4 = norm (r4)
524s ***** test
524s  load hald
524s  r1 = pcares (ingredients,1);
524s  r2 = pcares (ingredients,2);
524s  r3 = pcares (ingredients,3);
524s  assert (r1(1,:), [2.0350,  2.8304, -6.8378, 3.0879], 1e-4);
524s  assert (r2(1,:), [-2.4037, 2.6930, -1.6482, 2.3425], 1e-4);
524s  assert (r3(1,:), [ 0.2008, 0.1957,  0.2045, 0.1921], 1e-4);
524s ***** error<pcares: too few input arguments.> pcares (ones (20, 3))
524s ***** error<pcares: NDIM must be less than or equal to the column of X.> ...
524s  pcares (ones (30, 2), 3)
524s 3 tests, 3 passed, 0 known failure, 0 skipped
524s [inst/ztest.m]
524s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ztest.m
524s ***** error<ztest: too few input arguments.> ztest ();
524s ***** error<ztest: invalid value for standard deviation.> ...
524s  ztest ([1, 2, 3, 4], 2, -0.5);
524s ***** error<ztest: invalid VALUE for alpha.> ...
524s  ztest ([1, 2, 3, 4], 1, 2, "alpha", 0);
524s ***** error<ztest: invalid VALUE for alpha.> ...
524s  ztest ([1, 2, 3, 4], 1, 2, "alpha", 1.2);
525s ***** error<ztest: invalid VALUE for alpha.> ...
525s  ztest ([1, 2, 3, 4], 1, 2, "alpha", "val");
525s ***** error<ztest: invalid VALUE for tail.>  ...
525s  ztest ([1, 2, 3, 4], 1, 2, "tail", "val");
525s ***** error<ztest: invalid VALUE for tail.>  ...
525s  ztest ([1, 2, 3, 4], 1, 2, "alpha", 0.01, "tail", "val");
525s ***** error<ztest: invalid VALUE for operating dimension.> ...
525s  ztest ([1, 2, 3, 4], 1, 2, "dim", 3);
525s ***** error<ztest: invalid VALUE for operating dimension.> ...
525s  ztest ([1, 2, 3, 4], 1, 2, "alpha", 0.01, "tail", "both", "dim", 3);
525s ***** error<ztest: invalid NAME for optional arguments.> ...
525s  ztest ([1, 2, 3, 4], 1, 2, "alpha", 0.01, "tail", "both", "badoption", 3);
525s ***** test
525s  load carsmall
525s  [h, pval, ci] = ztest (MPG, mean (MPG, "omitnan"), std (MPG, "omitnan"));
525s  assert (h, 0);
525s  assert (pval, 1, 1e-14);
525s  assert (ci, [22.094; 25.343], 1e-3);
525s ***** test
525s  load carsmall
525s  [h, pval, ci] = ztest (MPG, 26, 8);
525s  assert (h, 1);
525s  assert (pval, 0.00568359158544743, 1e-14);
525s  assert (ci, [22.101; 25.335], 1e-3);
525s ***** test
525s  load carsmall
525s  [h, pval, ci] = ztest (MPG, 26, 4);
525s  assert (h, 1);
525s  assert (pval, 3.184168011941316e-08, 1e-14);
525s  assert (ci, [22.909; 24.527], 1e-3);
525s 13 tests, 13 passed, 0 known failure, 0 skipped
525s [inst/rangesearch.m]
525s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/rangesearch.m
525s ***** demo
525s  ## Generate 1000 random 2D points from each of five distinct multivariate
525s  ## normal distributions that form five separate classes
525s  N = 1000;
525s  d = 10;
525s  randn ("seed", 5);
525s  X1 = mvnrnd (d * [0, 0], eye (2), 1000);
525s  randn ("seed", 6);
525s  X2 = mvnrnd (d * [1, 1], eye (2), 1000);
525s  randn ("seed", 7);
525s  X3 = mvnrnd (d * [-1, -1], eye (2), 1000);
525s  randn ("seed", 8);
525s  X4 = mvnrnd (d * [1, -1], eye (2), 1000);
525s  randn ("seed", 8);
525s  X5 = mvnrnd (d * [-1, 1], eye (2), 1000);
525s  X = [X1; X2; X3; X4; X5];
525s 
525s  ## For each point in X, find the points in X that are within a radius d
525s  ## away from the points in X.
525s  Idx = rangesearch (X, X, d, "NSMethod", "exhaustive");
525s 
525s  ## Select the first point in X (corresponding to the first class) and find
525s  ## its nearest neighbors within the radius d.  Display these points in
525s  ## one color and the remaining points in a different color.
525s  x = X(1,:);
525s  nearestPoints = X (Idx{1},:);
525s  nonNearestIdx = true (size (X, 1), 1);
525s  nonNearestIdx(Idx{1}) = false;
525s 
525s  scatter (X(nonNearestIdx,1), X(nonNearestIdx,2))
525s  hold on
525s  scatter (nearestPoints(:,1),nearestPoints(:,2))
525s  scatter (x(1), x(2), "black", "filled")
525s  hold off
525s 
525s  ## Select the last point in X (corresponding to the fifth class) and find
525s  ## its nearest neighbors within the radius d.  Display these points in
525s  ## one color and the remaining points in a different color.
525s  x = X(end,:);
525s  nearestPoints = X (Idx{1},:);
525s  nonNearestIdx = true (size (X, 1), 1);
525s  nonNearestIdx(Idx{1}) = false;
525s 
525s  figure
525s  scatter (X(nonNearestIdx,1), X(nonNearestIdx,2))
525s  hold on
525s  scatter (nearestPoints(:,1),nearestPoints(:,2))
525s  scatter (x(1), x(2), "black", "filled")
525s  hold off
525s ***** shared x, y, X, Y
525s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
525s  y = [2, 3, 4; 1, 4, 3];
525s  X = [1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6];
525s  Y = [1, 2, 2, 3; 2, 3, 3, 4];
525s ***** test
525s  [idx, D] = rangesearch (x, y, 4);
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 4, "NSMethod", "exhaustive");
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 4, "NSMethod", "kdtree");
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 4, "SortIndices", true);
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 4, "SortIndices", false);
525s  assert (idx, {[1, 2, 4]; [1, 4]});
525s  assert (D, {[1.7321, 3.4641, 3.3166]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 4, "NSMethod", "exhaustive", ...
525s                          "SortIndices", false);
525s  assert (idx, {[1, 2, 4]; [1, 4]});
525s  assert (D, {[1.7321, 3.4641, 3.3166]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
525s  [idx, D] = rangesearch (x, y, 4, "Distance", eucldist);
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
525s  [idx, D] = rangesearch (x, y, 4, "Distance", eucldist, ...
525s                          "NSMethod", "exhaustive");
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[1.7321, 3.3166, 3.4641]; [2, 3.4641]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 1.5, "Distance", "seuclidean", ...
525s                          "NSMethod", "exhaustive");
525s  assert (idx, {[1, 4, 2]; [1, 4]});
525s  assert (D, {[0.6024, 1.0079, 1.2047]; [0.6963, 1.2047]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (x, y, 1.5, "Distance", "seuclidean", ...
525s                          "NSMethod", "exhaustive", "SortIndices", false);
525s  assert (idx, {[1, 2, 4]; [1, 4]});
525s  assert (D, {[0.6024, 1.2047, 1.0079]; [0.6963, 1.2047]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (X, Y, 4);
525s  assert (idx, {[1, 2]; [1, 2, 3]});
525s  assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (X, Y, 2);
525s  assert (idx, {[1]; [1, 2]});
525s  assert (D, {[1.4142]; [1.4142, 1.4142]}, 1e-4);
525s ***** test
525s  eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
525s  [idx, D] = rangesearch (X, Y, 4, "Distance", eucldist);
525s  assert (idx, {[1, 2]; [1, 2, 3]});
525s  assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (X, Y, 4, "SortIndices", false);
525s  assert (idx, {[1, 2]; [1, 2, 3]});
525s  assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4);
525s ***** test
525s  [idx, D] = rangesearch (X, Y, 4, "Distance", "seuclidean", ...
525s                          "NSMethod", "exhaustive");
525s  assert (idx, {[1, 2]; [1, 2, 3]});
525s  assert (D, {[1.4142, 3.1623]; [1.4142, 1.4142, 3.1623]}, 1e-4);
525s ***** error<rangesearch: too few input arguments.> rangesearch (1)
525s ***** error<rangesearch: number of columns in X and Y must match.> ...
525s  rangesearch (ones (4, 5), ones (4))
525s ***** error<rangesearch: invalid NAME in optional pairs of arguments.> ...
525s  rangesearch (ones (4, 2), ones (3, 2), 1, "Distance", "euclidean", "some", "some")
525s ***** error<rangesearch: only a single distance parameter can be defined.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "scale", ones (1, 5), "P", 3)
525s ***** error<rangesearch: invalid value of Minkowski Exponent.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "P",-2)
525s ***** error<rangesearch: invalid value in Scale or the size of Scale.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "scale", ones(4,5), "distance", "euclidean")
525s ***** error<rangesearch: invalid value in Cov, Cov can only be given for mahalanobis distance.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "cov", ["some" "some"])
525s ***** error<rangesearch: invalid value in Cov, Cov can only be given for mahalanobis distance.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "cov", ones(4,5), "distance", "euclidean")
525s ***** error<rangesearch: invalid value of bucketsize.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "bucketsize", -1)
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "cosine")
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "mahalanobis")
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "correlation")
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "seuclidean")
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "spearman")
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "hamming")
525s ***** error<rangesearch: 'kdtree' cannot be used with the given distance metric.> ...
525s  rangesearch (ones (4, 5), ones (1, 5), 1, "NSmethod", "kdtree", "distance", "jaccard")
525s 31 tests, 31 passed, 0 known failure, 0 skipped
525s [inst/pcacov.m]
525s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/pcacov.m
525s ***** demo
525s  x = [ 7    26     6    60;
525s        1    29    15    52;
525s       11    56     8    20;
525s       11    31     8    47;
525s        7    52     6    33;
525s       11    55     9    22;
525s        3    71    17     6;
525s        1    31    22    44;
525s        2    54    18    22;
525s       21    47     4    26;
525s        1    40    23    34;
525s       11    66     9    12;
525s       10    68     8    12
525s      ];
525s  Kxx = cov (x);
525s  [coeff, latent, explained] = pcacov (Kxx)
525s ***** test
525s  load hald
525s  Kxx = cov (ingredients);
525s  [coeff,latent,explained] = pcacov(Kxx);
525s  c_out = [-0.0678, -0.6460,  0.5673, 0.5062; ...
525s           -0.6785, -0.0200, -0.5440, 0.4933; ...
525s            0.0290,  0.7553,  0.4036, 0.5156; ...
525s            0.7309, -0.1085, -0.4684, 0.4844];
525s  l_out = [517.7969; 67.4964; 12.4054; 0.2372];
525s  e_out = [ 86.5974; 11.2882;  2.0747; 0.0397];
525s  assert (coeff, c_out, 1e-4);
525s  assert (latent, l_out, 1e-4);
525s  assert (explained, e_out, 1e-4);
525s ***** error<pcacov: K must be a square matrix.> pcacov (ones (2,3))
525s ***** error<pcacov: K must be a square matrix.> pcacov (ones (3,3,3))
525s 3 tests, 3 passed, 0 known failure, 0 skipped
525s [inst/jackknife.m]
525s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/jackknife.m
525s ***** demo
525s  for k = 1:1000
525s    rand ("seed", k);  # for reproducibility
525s    x = rand (10, 1);
525s    s(k) = std (x);
525s    jackstat = jackknife (@std, x);
525s    j(k) = 10 * std (x) - 9 * mean (jackstat);
525s  endfor
525s  figure();
525s  hist ([s', j'], 0:sqrt(1/12)/10:2*sqrt(1/12))
525s ***** demo
525s  for k = 1:1000
525s    randn ("seed", k); # for reproducibility
525s    x = randn (1, 50);
525s    rand ("seed", k);  # for reproducibility
525s    y = rand (1, 50);
525s    jackstat = jackknife (@(x) std(x{1})/std(x{2}), y, x);
525s    j(k) = 50 * std (y) / std (x) - 49 * mean (jackstat);
525s    v(k) = sumsq ((50 * std (y) / std (x) - 49 * jackstat) - j(k)) / (50 * 49);
525s  endfor
525s  t = (j - sqrt (1 / 12)) ./ sqrt (v);
525s  figure();
525s  plot (sort (tcdf (t, 49)), ...
525s        "-;Almost linear mapping indicates good fit with t-distribution.;")
525s ***** test
525s  ##Example from Quenouille, Table 1
525s  d=[0.18 4.00 1.04 0.85 2.14 1.01 3.01 2.33 1.57 2.19];
525s  jackstat = jackknife ( @(x) 1/mean(x), d );
525s  assert ( 10 / mean(d) - 9 * mean(jackstat), 0.5240, 1e-5 );
525s 1 test, 1 passed, 0 known failure, 0 skipped
525s [inst/fitcgam.m]
525s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitcgam.m
525s ***** demo
525s  ## Train a GAM classifier for binary classification
525s  ## using specific data and plot the decision boundaries.
525s 
525s  ## Define specific data
525s  X = [1, 2; 2, 3; 3, 3; 4, 5; 5, 5; ...
525s      6, 7; 7, 8; 8, 8; 9, 9; 10, 10];
525s  Y = [0; 0; 0; 0; 0; ...
525s      1; 1; 1; 1; 1];
525s 
525s  ## Train the GAM model
525s  obj = fitcgam (X, Y, "Interactions", "all");
525s 
525s  ## Create a grid of values for prediction
525s  x1 = [min(X(:,1)):0.1:max(X(:,1))];
525s  x2 = [min(X(:,2)):0.1:max(X(:,2))];
525s  [x1G, x2G] = meshgrid (x1, x2);
525s  XGrid = [x1G(:), x2G(:)];
525s  pred = predict (obj, XGrid);
525s 
525s  ## Plot decision boundaries and data points
525s  predNumeric = str2double (pred);
525s  gidx = predNumeric > 0.5;
525s 
525s  figure
525s  scatter(XGrid(gidx,1), XGrid(gidx,2), "markerfacecolor", "magenta");
525s  hold on
525s  scatter(XGrid(!gidx,1), XGrid(!gidx,2), "markerfacecolor", "red");
525s  plot(X(Y == 0, 1), X(Y == 0, 2), "ko", X(Y == 1, 1), X(Y == 1, 2), "kx");
525s  xlabel("Feature 1");
525s  ylabel("Feature 2");
525s  title("Generalized Additive Model (GAM) Decision Boundary");
525s  legend({"Class 1 Region", "Class 0 Region", ...
525s        "Class 1 Samples", "Class 0 Samples"}, ...
525s        "location", "northwest")
525s  axis tight
525s  hold off
525s ***** test
525s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
525s  y = [0; 0; 1; 1];
525s  PredictorNames = {'Feature1', 'Feature2', 'Feature3'};
525s  a = fitcgam (x, y, "PredictorNames", PredictorNames);
525s  assert (class (a), "ClassificationGAM");
525s  assert ({a.X, a.Y, a.NumObservations}, {x, y, 4})
525s  assert ({a.NumPredictors, a.ResponseName}, {3, "Y"})
525s  assert (a.ClassNames, {'0'; '1'})
525s  assert (a.PredictorNames, PredictorNames)
525s  assert (a.BaseModel.Intercept, 0)
526s ***** test
526s  x = [1, 2; 3, 4; 5, 6; 7, 8; 9, 10];
526s  y = [1; 0; 1; 0; 1];
526s  a = fitcgam (x, y, "interactions", "all");
526s  assert (class (a), "ClassificationGAM");
526s  assert ({a.X, a.Y, a.NumObservations}, {x, y, 5})
526s  assert ({a.NumPredictors, a.ResponseName}, {2, "Y"})
526s  assert (a.ClassNames, {'1'; '0'})
526s  assert (a.PredictorNames, {'x1', 'x2'})
526s  assert (a.ModelwInt.Intercept, 0.4055, 1e-1)
528s ***** test
528s  load fisheriris
528s  inds = strcmp (species,'versicolor') | strcmp (species,'virginica');
528s  X = meas(inds, :);
528s  Y = species(inds, :)';
528s  Y = strcmp (Y, 'virginica')';
528s  a = fitcgam (X, Y, 'Formula', 'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3');
528s  assert (class (a), "ClassificationGAM");
528s  assert ({a.X, a.Y, a.NumObservations}, {X, Y, 100})
528s  assert ({a.NumPredictors, a.ResponseName}, {4, "Y"})
528s  assert (a.ClassNames, {'0'; '1'})
528s  assert (a.Formula, 'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3')
528s  assert (a.PredictorNames, {'x1', 'x2', 'x3', 'x4'})
528s  assert (a.ModelwInt.Intercept, 0)
533s ***** error<fitcgam: too few arguments.> fitcgam ()
533s ***** error<fitcgam: too few arguments.> fitcgam (ones (4,1))
533s ***** error<fitcgam: name-value arguments must be in pairs.>
533s  fitcgam (ones (4,2), ones (4, 1), "K")
533s ***** error<fitcgam: number of rows in X and Y must be equal.>
533s  fitcgam (ones (4,2), ones (3, 1))
533s ***** error<fitcgam: number of rows in X and Y must be equal.>
533s  fitcgam (ones (4,2), ones (3, 1), "K", 2)
533s 8 tests, 8 passed, 0 known failure, 0 skipped
533s [inst/dist_fit/nakalike.m]
533s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/nakalike.m
533s ***** test
533s  nlogL = nakalike ([0.735504, 858.5], [1:50]);
533s  assert (nlogL, 202.8689, 1e-4);
533s ***** test
533s  nlogL = nakalike ([1.17404, 11], [1:5]);
533s  assert (nlogL, 8.6976, 1e-4);
533s ***** test
533s  nlogL = nakalike ([1.17404, 11], [1:5], [], [1, 1, 1, 1, 1]);
533s  assert (nlogL, 8.6976, 1e-4);
533s ***** test
533s  nlogL = nakalike ([1.17404, 11], [1:6], [], [1, 1, 1, 1, 1, 0]);
533s  assert (nlogL, 8.6976, 1e-4);
533s ***** error<nakalike: function called with too few input arguments.> nakalike (3.25)
533s ***** error<nakalike: X must be a vector.> nakalike ([5, 0.2], ones (2))
533s ***** error<nakalike: PARAMS must be a two-element vector.> ...
533s  nakalike ([1, 0.2, 3], [1, 3, 5, 7])
533s ***** error<nakalike: X and CENSOR vector mismatch.> ...
533s  nakalike ([1.5, 0.2], [1:5], [0, 0, 0])
533s ***** error<nakalike: X and FREQ vector mismatch.> ...
533s  nakalike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
533s ***** error<nakalike: X and FREQ vector mismatch.> ...
533s  nakalike ([1.5, 0.2], [1:5], [], [1, 1, 1])
533s ***** error<nakalike: FREQ must not contain negative values.> ...
533s  nakalike ([1.5, 0.2], [1:5], [], [1, 1, 1, 1, -1])
533s 11 tests, 11 passed, 0 known failure, 0 skipped
533s [inst/dist_fit/gumbelfit.m]
533s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gumbelfit.m
533s ***** demo
533s  ## Sample 3 populations from different Gumbel distibutions
533s  rand ("seed", 1);    # for reproducibility
533s  r1 = gumbelrnd (2, 5, 400, 1);
533s  rand ("seed", 11);    # for reproducibility
533s  r2 = gumbelrnd (-5, 3, 400, 1);
533s  rand ("seed", 16);    # for reproducibility
533s  r3 = gumbelrnd (14, 8, 400, 1);
533s  r = [r1, r2, r3];
533s 
533s  ## Plot them normalized and fix their colors
533s  hist (r, 25, 0.32);
533s  h = findobj (gca, "Type", "patch");
533s  set (h(1), "facecolor", "c");
533s  set (h(2), "facecolor", "g");
533s  set (h(3), "facecolor", "r");
533s  ylim ([0, 0.28])
533s  xlim ([-11, 50]);
533s  hold on
533s 
533s  ## Estimate their MU and BETA parameters
533s  mu_betaA = gumbelfit (r(:,1));
533s  mu_betaB = gumbelfit (r(:,2));
533s  mu_betaC = gumbelfit (r(:,3));
533s 
533s  ## Plot their estimated PDFs
533s  x = [min(r(:)):max(r(:))];
533s  y = gumbelpdf (x, mu_betaA(1), mu_betaA(2));
533s  plot (x, y, "-pr");
533s  y = gumbelpdf (x, mu_betaB(1), mu_betaB(2));
533s  plot (x, y, "-sg");
533s  y = gumbelpdf (x, mu_betaC(1), mu_betaC(2));
533s  plot (x, y, "-^c");
533s  legend ({"Normalized HIST of sample 1 with μ=2 and β=5", ...
533s           "Normalized HIST of sample 2 with μ=-5 and β=3", ...
533s           "Normalized HIST of sample 3 with μ=14 and β=8", ...
533s           sprintf("PDF for sample 1 with estimated μ=%0.2f and β=%0.2f", ...
533s                   mu_betaA(1), mu_betaA(2)), ...
533s           sprintf("PDF for sample 2 with estimated μ=%0.2f and β=%0.2f", ...
533s                   mu_betaB(1), mu_betaB(2)), ...
533s           sprintf("PDF for sample 3 with estimated μ=%0.2f and β=%0.2f", ...
533s                   mu_betaC(1), mu_betaC(2))})
533s  title ("Three population samples from different Gumbel distibutions")
533s  hold off
533s ***** test
533s  x = 1:50;
533s  [paramhat, paramci] = gumbelfit (x);
533s  paramhat_out = [18.3188, 13.0509];
533s  paramci_out = [14.4882, 10.5294; 22.1495, 16.1763];
533s  assert (paramhat, paramhat_out, 1e-4);
533s  assert (paramci, paramci_out, 1e-4);
533s ***** test
533s  x = 1:50;
533s  [paramhat, paramci] = gumbelfit (x, 0.01);
533s  paramci_out = [13.2845, 9.8426; 23.3532, 17.3051];
533s  assert (paramci, paramci_out, 1e-4);
533s ***** error<gumbelfit: X must be a double-precision vector.> gumbelfit (ones (2,5));
533s ***** error<gumbelfit: X must be a double-precision vector.> ...
533s  gumbelfit (single (ones (1,5)));
533s ***** error<gumbelfit: X must NOT contain missing values> ...
533s  gumbelfit ([1, 2, 3, 4, NaN]);
533s ***** error<gumbelfit: wrong value for ALPHA.> gumbelfit ([1, 2, 3, 4, 5], 1.2);
533s ***** error<gumbelfit: X and CENSOR vectors mismatch.> ...
533s  gumbelfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
533s ***** error<gumbelfit: X and FREQ vectors mismatch.> ...
533s  gumbelfit ([1, 2, 3, 4, 5], 0.05, [], [1 1 0]);
533s ***** error<gamfit: FREQ must not contain negative values.>
533s  gamfit ([1, 2, 3], 0.05, [], [1 5 -1])
533s ***** error<gumbelfit: 'options' 5th argument> ...
533s  gumbelfit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
533s 10 tests, 10 passed, 0 known failure, 0 skipped
533s [inst/dist_fit/binolike.m]
533s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/binolike.m
533s ***** assert (binolike ([3, 0.333], [0:3]), 6.8302, 1e-4)
533s ***** assert (binolike ([3, 0.333], 0), 1.2149, 1e-4)
533s ***** assert (binolike ([3, 0.333], 1), 0.8109, 1e-4)
533s ***** assert (binolike ([3, 0.333], 2), 1.5056, 1e-4)
533s ***** assert (binolike ([3, 0.333], 3), 3.2988, 1e-4)
533s ***** test
533s  [nlogL, acov] = binolike ([3, 0.333], 3);
533s  assert (acov(4), 0.0740, 1e-4)
533s ***** error<binolike: function called with too few input arguments.> binolike (3.25)
533s ***** error<binolike: X must be a vector.> binolike ([5, 0.2], ones (2))
533s ***** error<binolike: PARAMS must be a two-element vector.> ...
533s  binolike ([1, 0.2, 3], [1, 3, 5, 7])
533s ***** error<binolike: number of trials,> binolike ([1.5, 0.2], 1)
533s ***** error<binolike: number of trials,> binolike ([-1, 0.2], 1)
533s ***** error<binolike: number of trials,> binolike ([Inf, 0.2], 1)
533s ***** error<binolike: probability of success,> binolike ([5, 1.2], [3, 5])
533s ***** error<binolike: probability of success,> binolike ([5, -0.2], [3, 5])
533s ***** error<binolike: X and FREQ vectors mismatch.> ...
533s  binolike ([5, 0.5], ones (10, 1), ones (8,1))
533s ***** error<binolike: FREQ must not contain negative values.> ...
533s  binolike ([5, 0.5], ones (1, 8), [1 1 1 1 1 1 1 -1])
533s ***** error<binolike: X cannot have negative values.> binolike ([5, 0.2], [-1, 3])
533s ***** error<binolike: number of successes,> binolike ([5, 0.2], [3, 5, 7])
533s 18 tests, 18 passed, 0 known failure, 0 skipped
533s [inst/dist_fit/loglfit.m]
533s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/loglfit.m
533s ***** demo
533s  ## Sample 3 populations from different log-logistic distibutions
533s  rand ("seed", 5)  # for reproducibility
533s  r1 = loglrnd (0, 1, 2000, 1);
533s  rand ("seed", 2)   # for reproducibility
533s  r2 = loglrnd (0, 0.5, 2000, 1);
533s  rand ("seed", 7)   # for reproducibility
533s  r3 = loglrnd (0, 0.125, 2000, 1);
533s  r = [r1, r2, r3];
533s 
533s  ## Plot them normalized and fix their colors
533s  hist (r, [0.05:0.1:2.5], 10);
533s  h = findobj (gca, "Type", "patch");
533s  set (h(1), "facecolor", "c");
533s  set (h(2), "facecolor", "g");
533s  set (h(3), "facecolor", "r");
533s  ylim ([0, 3.5]);
533s  xlim ([0, 2.0]);
533s  hold on
533s 
533s  ## Estimate their MU and LAMBDA parameters
533s  a_bA = loglfit (r(:,1));
533s  a_bB = loglfit (r(:,2));
533s  a_bC = loglfit (r(:,3));
533s 
533s  ## Plot their estimated PDFs
533s  x = [0.01:0.1:2.01];
533s  y = loglpdf (x, a_bA(1), a_bA(2));
533s  plot (x, y, "-pr");
533s  y = loglpdf (x, a_bB(1), a_bB(2));
533s  plot (x, y, "-sg");
533s  y = loglpdf (x, a_bC(1), a_bC(2));
533s  plot (x, y, "-^c");
533s  legend ({"Normalized HIST of sample 1 with α=1 and β=1", ...
533s           "Normalized HIST of sample 2 with α=1 and β=2", ...
533s           "Normalized HIST of sample 3 with α=1 and β=8", ...
533s           sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ...
533s                   a_bA(1), a_bA(2)), ...
533s           sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ...
533s                   a_bB(1), a_bB(2)), ...
533s           sprintf("PDF for sample 3 with estimated α=%0.2f and β=%0.2f", ...
533s                   a_bC(1), a_bC(2))})
533s  title ("Three population samples from different log-logistic distibutions")
533s  hold off
533s ***** test
533s  [paramhat, paramci] = loglfit ([1:50]);
533s  paramhat_out = [3.09717, 0.468525];
533s  paramci_out = [2.87261, 0.370616; 3.32174, 0.5923];
533s  assert (paramhat, paramhat_out, 1e-5);
533s  assert (paramci, paramci_out, 1e-5);
533s ***** test
533s  paramhat = loglfit ([1:5]);
533s  paramhat_out = [1.01124, 0.336449];
533s  assert (paramhat, paramhat_out, 1e-5);
533s ***** test
533s  paramhat = loglfit ([1:6], [], [], [1 1 1 1 1 0]);
533s  paramhat_out = [1.01124, 0.336449];
533s  assert (paramhat, paramhat_out, 1e-4);
533s ***** test
533s  paramhat = loglfit ([1:5], [], [], [1 1 1 1 2]);
533s  paramhat_out = loglfit ([1:5, 5]);
533s  assert (paramhat, paramhat_out, 1e-4);
533s ***** error<loglfit: X must be a vector.> loglfit (ones (2,5));
533s ***** error<loglfit: wrong value for ALPHA.> loglfit ([1, 2, 3, 4, 5], 1.2);
533s ***** error<loglfit: wrong value for ALPHA.> loglfit ([1, 2, 3, 4, 5], 0);
533s ***** error<loglfit: wrong value for ALPHA.> loglfit ([1, 2, 3, 4, 5], "alpha");
533s ***** error<loglfit: X and CENSOR vectors mismatch.> ...
533s  loglfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
533s ***** error<loglfit: X and CENSOR vectors mismatch.> ...
533s  loglfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
533s ***** error<loglfit: X and FREQ vectors mismatch.> ...
533s  loglfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
533s ***** error<loglfit: X and FREQ vectors mismatch.> ...
533s  loglfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
533s ***** error<loglfit: 'options' 5th argument must be a structure> ...
533s  loglfit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
533s 13 tests, 13 passed, 0 known failure, 0 skipped
533s [inst/dist_fit/gplike.m]
533s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gplike.m
533s ***** test
533s  k = 0.8937; sigma = 1.3230; theta = 1;
533s  x = [2.2196, 11.9301, 4.3673, 1.0949, 6.5626, ...
533s       1.2109, 1.8576, 1.0039, 12.7917, 2.2590];
533s  [nlogL, acov] = gplike ([k, sigma, theta], x);
533s  assert (nlogL, 21.736, 1e-3);
533s  assert (acov, [0.7249, -0.7351, 0; -0.7351, 1.3040, 0; 0, 0, 0], 1e-4);
533s ***** assert (gplike ([2, 3, 0], 4), 3.047536764863501, 1e-14)
534s ***** assert (gplike ([2, 3, 4], 8), 3.047536764863501, 1e-14)
534s ***** assert (gplike ([1, 2, 0], 4), 2.890371757896165, 1e-14)
534s ***** assert (gplike ([1, 2, 4], 8), 2.890371757896165, 1e-14)
534s ***** assert (gplike ([2, 3, 0], [1:10]), 32.57864322725392, 1e-14)
534s ***** assert (gplike ([2, 3, 2], [1:10] + 2), 32.57864322725392, 1e-14)
534s ***** assert (gplike ([2, 3, 0], [1:10], ones (1,10)), 32.57864322725392, 1e-14)
534s ***** assert (gplike ([1, 2, 0], [1:10]), 31.65666282460443, 1e-14)
534s ***** assert (gplike ([1, 2, 3], [1:10] + 3), 31.65666282460443, 1e-14)
534s ***** assert (gplike ([1, 2, 0], [1:10], ones (1,10)), 31.65666282460443, 1e-14)
534s ***** assert (gplike ([1, NaN, 0], [1:10]), NaN)
534s ***** error<gplike: function called with too few input arguments.> gplike ()
534s ***** error<gplike: function called with too few input arguments.> gplike (1)
534s ***** error<gplike: X must be a vector.> gplike ([1, 2, 0], [])
534s ***** error<gplike: X must be a vector.> gplike ([1, 2, 0], ones (2))
534s ***** error<gplike: PARAMS must be a three-element vector.> gplike (2, [1:10])
534s ***** error<gplike: PARAMS must be a three-element vector.> gplike ([2, 3], [1:10])
534s ***** error<gplike: X and FREQ vectors mismatch.> ...
534s  gplike ([1, 2, 0], ones (10, 1), ones (8,1))
534s ***** error<gplike: FREQ must not contain negative values.> ...
534s  gplike ([1, 2, 0], ones (1, 8), [1 1 1 1 1 1 1 -1])
534s 20 tests, 20 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/gevfit_lmom.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gevfit_lmom.m
534s ***** xtest <31070>
534s  data = 1:50;
534s  [pfit, pci] = gevfit_lmom (data);
534s  expected_p = [-0.28 15.01 20.22]';
534s  assert (pfit, expected_p, 0.1);
534s 1 test, 1 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/gamfit.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gamfit.m
534s ***** demo
534s  ## Sample 3 populations from different Gamma distibutions
534s  randg ("seed", 5);    # for reproducibility
534s  r1 = gamrnd (1, 2, 2000, 1);
534s  randg ("seed", 2);    # for reproducibility
534s  r2 = gamrnd (2, 2, 2000, 1);
534s  randg ("seed", 7);    # for reproducibility
534s  r3 = gamrnd (7.5, 1, 2000, 1);
534s  r = [r1, r2, r3];
534s 
534s  ## Plot them normalized and fix their colors
534s  hist (r, 75, 4);
534s  h = findobj (gca, "Type", "patch");
534s  set (h(1), "facecolor", "c");
534s  set (h(2), "facecolor", "g");
534s  set (h(3), "facecolor", "r");
534s  ylim ([0, 0.62]);
534s  xlim ([0, 12]);
534s  hold on
534s 
534s  ## Estimate their α and β parameters
534s  a_bA = gamfit (r(:,1));
534s  a_bB = gamfit (r(:,2));
534s  a_bC = gamfit (r(:,3));
534s 
534s  ## Plot their estimated PDFs
534s  x = [0.01,0.1:0.2:18];
534s  y = gampdf (x, a_bA(1), a_bA(2));
534s  plot (x, y, "-pr");
534s  y = gampdf (x, a_bB(1), a_bB(2));
534s  plot (x, y, "-sg");
534s  y = gampdf (x, a_bC(1), a_bC(2));
534s  plot (x, y, "-^c");
534s  hold off
534s  legend ({"Normalized HIST of sample 1 with α=1 and β=2", ...
534s           "Normalized HIST of sample 2 with α=2 and β=2", ...
534s           "Normalized HIST of sample 3 with α=7.5 and β=1", ...
534s           sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ...
534s                   a_bA(1), a_bA(2)), ...
534s           sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ...
534s                   a_bB(1), a_bB(2)), ...
534s           sprintf("PDF for sample 3 with estimated α=%0.2f and β=%0.2f", ...
534s                   a_bC(1), a_bC(2))})
534s  title ("Three population samples from different Gamma distibutions")
534s  hold off
534s ***** shared x
534s  x = [1.2 1.6 1.7 1.8 1.9 2.0 2.2 2.6 3.0 3.5 4.0 4.8 5.6 6.6 7.6];
534s ***** test
534s  [paramhat, paramci] = gamfit (x);
534s  assert (paramhat, [3.4248, 0.9752], 1e-4);
534s  assert (paramci, [1.7287, 0.4670; 6.7852, 2.0366], 1e-4);
534s ***** test
534s  [paramhat, paramci] = gamfit (x, 0.01);
534s  assert (paramhat, [3.4248, 0.9752], 1e-4);
534s  assert (paramci, [1.3945, 0.3705; 8.4113, 2.5668], 1e-4);
534s ***** test
534s  freq = [1 1 1 1 2 1 1 1 1 2 1 1 1 1 2];
534s  [paramhat, paramci] = gamfit (x, [], [], freq);
534s  assert (paramhat, [3.3025, 1.0615], 1e-4);
534s  assert (paramci, [1.7710, 0.5415; 6.1584, 2.0806], 1e-4);
534s ***** test
534s  [paramhat, paramci] = gamfit (x, [], [], [1:15]);
534s  assert (paramhat, [4.4484, 0.9689], 1e-4);
534s  assert (paramci, [3.4848, 0.7482; 5.6785, 1.2546], 1e-4);
534s ***** test
534s  [paramhat, paramci] = gamfit (x, 0.01, [], [1:15]);
534s  assert (paramhat, [4.4484, 0.9689], 1e-4);
534s  assert (paramci, [3.2275, 0.6899; 6.1312, 1.3608], 1e-4);
534s ***** test
534s  cens = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];
534s  [paramhat, paramci] = gamfit (x, [], cens, [1:15]);
534s  assert (paramhat, [4.7537, 0.9308], 1e-4);
534s  assert (paramci, [3.7123, 0.7162; 6.0872, 1.2097], 1e-4);
534s ***** test
534s  cens = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0];
534s  freq = [1 1 1 1 2 1 1 1 1 2 1 1 1 1 2];
534s  [paramhat, paramci] = gamfit (x, [], cens, freq);
534s  assert (paramhat, [3.4736, 1.0847], 1e-4);
534s  assert (paramci, [1.8286, 0.5359; 6.5982, 2.1956], 1e-4);
534s ***** test
534s  [paramhat, paramci] = gamfit ([1 1 1 1 1 1]);
534s  assert (paramhat, [Inf, 0]);
534s  assert (paramci, [Inf, 0; Inf, 0]);
534s ***** test
534s  [paramhat, paramci] = gamfit ([1 1 1 1 1 1], [], [1 1 1 1 1 1]);
534s  assert (paramhat, [NaN, NaN]);
534s  assert (paramci, [NaN, NaN; NaN, NaN]);
534s ***** test
534s  [paramhat, paramci] = gamfit ([1 1 1 1 1 1], [], [], [1 1 1 1 1 1]);
534s  assert (paramhat, [Inf, 0]);
534s  assert (paramci, [Inf, 0; Inf, 0]);
534s ***** assert (class (gamfit (single (x))), "single")
534s ***** error<gamfit: X must be a vector.> gamfit (ones (2))
534s ***** error<gamfit: wrong value for ALPHA.> gamfit (x, 1)
534s ***** error<gamfit: wrong value for ALPHA.> gamfit (x, -1)
534s ***** error<gamfit: wrong value for ALPHA.> gamfit (x, {0.05})
534s ***** error<gamfit: wrong value for ALPHA.> gamfit (x, "a")
534s ***** error<gamfit: wrong value for ALPHA.> gamfit (x, i)
534s ***** error<gamfit: wrong value for ALPHA.> gamfit (x, [0.01 0.02])
534s ***** error<gamfit: X and FREQ vectors mismatch.>
534s  gamfit ([1 2 3], 0.05, [], [1 5])
534s ***** error<gamfit: FREQ must not contain negative values.>
534s  gamfit ([1 2 3], 0.05, [], [1 5 -1])
534s ***** error<gamfit: 'options' 5th argument must be a structure> ...
534s  gamfit ([1:10], 0.05, [], [], 5)
534s ***** error<gamfit: X cannot contain negative values.> gamfit ([1 2 3 -4])
534s ***** error<gamfit: X must contain positive values when censored.> ...
534s  gamfit ([1 2 0], [], [1 0 0])
534s 23 tests, 23 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/burrlike.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/burrlike.m
534s ***** error<burrlike: function called with too few input arguments.> burrlike (3.25)
534s ***** error<burrlike: X must be a vector.> burrlike ([1, 2, 3], ones (2))
534s ***** error<burrlike: X cannot have negative values.> burrlike ([1, 2, 3], [-1, 3])
534s ***** error<burrlike: PARAMS must be a three-element vector.> ...
534s  burrlike ([1, 2], [1, 3, 5, 7])
534s ***** error<burrlike: PARAMS must be a three-element vector.> ...
534s  burrlike ([1, 2, 3, 4], [1, 3, 5, 7])
534s ***** error<burrlike: X and CENSOR vector mismatch.> ...
534s  burrlike ([1, 2, 3], [1:5], [0, 0, 0])
534s ***** error<burrlike: X and FREQ vector mismatch.> ...
534s  burrlike ([1, 2, 3], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
534s ***** error<burrlike: X and FREQ vector mismatch.> ...
534s  burrlike ([1, 2, 3], [1:5], [], [1, 1, 1])
534s 8 tests, 8 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/nakafit.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/nakafit.m
534s ***** demo
534s  ## Sample 3 populations from different Nakagami distibutions
534s  randg ("seed", 5)  # for reproducibility
534s  r1 = nakarnd (0.5, 1, 2000, 1);
534s  randg ("seed", 2)   # for reproducibility
534s  r2 = nakarnd (5, 1, 2000, 1);
534s  randg ("seed", 7)   # for reproducibility
534s  r3 = nakarnd (2, 2, 2000, 1);
534s  r = [r1, r2, r3];
534s 
534s  ## Plot them normalized and fix their colors
534s  hist (r, [0.05:0.1:3.5], 10);
534s  h = findobj (gca, "Type", "patch");
534s  set (h(1), "facecolor", "c");
534s  set (h(2), "facecolor", "g");
534s  set (h(3), "facecolor", "r");
534s  ylim ([0, 2.5]);
534s  xlim ([0, 3.0]);
534s  hold on
534s 
534s  ## Estimate their MU and LAMBDA parameters
534s  mu_omegaA = nakafit (r(:,1));
534s  mu_omegaB = nakafit (r(:,2));
534s  mu_omegaC = nakafit (r(:,3));
534s 
534s  ## Plot their estimated PDFs
534s  x = [0.01:0.1:3.01];
534s  y = nakapdf (x, mu_omegaA(1), mu_omegaA(2));
534s  plot (x, y, "-pr");
534s  y = nakapdf (x, mu_omegaB(1), mu_omegaB(2));
534s  plot (x, y, "-sg");
534s  y = nakapdf (x, mu_omegaC(1), mu_omegaC(2));
534s  plot (x, y, "-^c");
534s  legend ({"Normalized HIST of sample 1 with μ=0.5 and ω=1", ...
534s           "Normalized HIST of sample 2 with μ=5 and ω=1", ...
534s           "Normalized HIST of sample 3 with μ=2 and ω=2", ...
534s           sprintf("PDF for sample 1 with estimated μ=%0.2f and ω=%0.2f", ...
534s                   mu_omegaA(1), mu_omegaA(2)), ...
534s           sprintf("PDF for sample 2 with estimated μ=%0.2f and ω=%0.2f", ...
534s                   mu_omegaB(1), mu_omegaB(2)), ...
534s           sprintf("PDF for sample 3 with estimated μ=%0.2f and ω=%0.2f", ...
534s                   mu_omegaC(1), mu_omegaC(2))})
534s  title ("Three population samples from different Nakagami distibutions")
534s  hold off
534s ***** test
534s  paramhat = nakafit ([1:50]);
534s  paramhat_out = [0.7355, 858.5];
534s  assert (paramhat, paramhat_out, 1e-4);
534s ***** test
534s  paramhat = nakafit ([1:5]);
534s  paramhat_out = [1.1740, 11];
534s  assert (paramhat, paramhat_out, 1e-4);
534s ***** test
534s  paramhat = nakafit ([1:6], [], [], [1 1 1 1 1 0]);
534s  paramhat_out = [1.1740, 11];
534s  assert (paramhat, paramhat_out, 1e-4);
534s ***** test
534s  paramhat = nakafit ([1:5], [], [], [1 1 1 1 2]);
534s  paramhat_out = nakafit ([1:5, 5]);
534s  assert (paramhat, paramhat_out, 1e-4);
534s ***** error<nakafit: X must be a vector.> nakafit (ones (2,5));
534s ***** error<nakafit: wrong value for ALPHA.> nakafit ([1, 2, 3, 4, 5], 1.2);
534s ***** error<nakafit: wrong value for ALPHA.> nakafit ([1, 2, 3, 4, 5], 0);
534s ***** error<nakafit: wrong value for ALPHA.> nakafit ([1, 2, 3, 4, 5], "alpha");
534s ***** error<nakafit: X and CENSOR vectors mismatch.> ...
534s  nakafit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
534s ***** error<nakafit: X and CENSOR vectors mismatch.> ...
534s  nakafit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
534s ***** error<nakafit: X and FREQ vectors mismatch.> ...
534s  nakafit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
534s ***** error<nakafit: X and FREQ vectors mismatch.> ...
534s  nakafit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
534s ***** error<nakafit: FREQ must not contain negative values.> ...
534s  nakafit ([1, 2, 3, 4, 5], [], [], [1 1 -1 1 1]);
534s ***** error<nakafit: FREQ must contain integer values.> ...
534s  nakafit ([1, 2, 3, 4, 5], [], [], [1 1 1.5 1 1]);
534s ***** error<nakafit: 'options' 5th argument must be a structure> ...
534s  nakafit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
534s 15 tests, 15 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/invgfit.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/invgfit.m
534s ***** demo
534s  ## Sample 3 populations from different inverse Gaussian distibutions
534s  rand ("seed", 5); randn ("seed", 5);   # for reproducibility
534s  r1 = invgrnd (1, 0.2, 2000, 1);
534s  rand ("seed", 2); randn ("seed", 2);   # for reproducibility
534s  r2 = invgrnd (1, 3, 2000, 1);
534s  rand ("seed", 7); randn ("seed", 7);   # for reproducibility
534s  r3 = invgrnd (3, 1, 2000, 1);
534s  r = [r1, r2, r3];
534s 
534s  ## Plot them normalized and fix their colors
534s  hist (r, [0.1:0.1:3.2], 9);
534s  h = findobj (gca, "Type", "patch");
534s  set (h(1), "facecolor", "c");
534s  set (h(2), "facecolor", "g");
534s  set (h(3), "facecolor", "r");
534s  ylim ([0, 3]);
534s  xlim ([0, 3]);
534s  hold on
534s 
534s  ## Estimate their MU and LAMBDA parameters
534s  mu_lambdaA = invgfit (r(:,1));
534s  mu_lambdaB = invgfit (r(:,2));
534s  mu_lambdaC = invgfit (r(:,3));
534s 
534s  ## Plot their estimated PDFs
534s  x = [0:0.1:3];
534s  y = invgpdf (x, mu_lambdaA(1), mu_lambdaA(2));
534s  plot (x, y, "-pr");
534s  y = invgpdf (x, mu_lambdaB(1), mu_lambdaB(2));
534s  plot (x, y, "-sg");
534s  y = invgpdf (x, mu_lambdaC(1), mu_lambdaC(2));
534s  plot (x, y, "-^c");
534s  hold off
534s  legend ({"Normalized HIST of sample 1 with μ=1 and λ=0.5", ...
534s           "Normalized HIST of sample 2 with μ=2 and λ=0.3", ...
534s           "Normalized HIST of sample 3 with μ=4 and λ=0.5", ...
534s           sprintf("PDF for sample 1 with estimated μ=%0.2f and λ=%0.2f", ...
534s                   mu_lambdaA(1), mu_lambdaA(2)), ...
534s           sprintf("PDF for sample 2 with estimated μ=%0.2f and λ=%0.2f", ...
534s                   mu_lambdaB(1), mu_lambdaB(2)), ...
534s           sprintf("PDF for sample 3 with estimated μ=%0.2f and λ=%0.2f", ...
534s                   mu_lambdaC(1), mu_lambdaC(2))})
534s  title ("Three population samples from different inverse Gaussian distibutions")
534s  hold off
534s ***** test
534s  paramhat = invgfit ([1:50]);
534s  paramhat_out = [25.5, 19.6973];
534s  assert (paramhat, paramhat_out, 1e-4);
534s ***** test
534s  paramhat = invgfit ([1:5]);
534s  paramhat_out = [3, 8.1081];
534s  assert (paramhat, paramhat_out, 1e-4);
534s ***** error<invgfit: X must be a vector.> invgfit (ones (2,5));
534s ***** error<invgfit: X must contain only positive values.> invgfit ([-1 2 3 4]);
534s ***** error<invgfit: wrong value for ALPHA.> invgfit ([1, 2, 3, 4, 5], 1.2);
534s ***** error<invgfit: wrong value for ALPHA.> invgfit ([1, 2, 3, 4, 5], 0);
534s ***** error<invgfit: wrong value for ALPHA.> invgfit ([1, 2, 3, 4, 5], "alpha");
534s ***** error<invgfit: X and CENSOR vectors mismatch.> ...
534s  invgfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
534s ***** error<invgfit: X and CENSOR vectors mismatch.> ...
534s  invgfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
534s ***** error<invgfit: X and FREQ vectors mismatch.> ...
534s  invgfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
534s ***** error<invgfit: X and FREQ vectors mismatch.> ...
534s  invgfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
534s ***** error<invgfit: 'options' 5th argument must be a structure> ...
534s  invgfit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
534s 12 tests, 12 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/gpfit.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gpfit.m
534s ***** demo
534s  ## Sample 2 populations from different generalized Pareto distibutions
534s  ## Assume location parameter θ is known
534s  theta = 0;
534s  rand ("seed", 5);    # for reproducibility
534s  r1 = gprnd (1, 2, theta, 20000, 1);
534s  rand ("seed", 2);    # for reproducibility
534s  r2 = gprnd (3, 1, theta, 20000, 1);
534s  r = [r1, r2];
534s 
534s  ## Plot them normalized and fix their colors
534s  hist (r, [0.1:0.2:100], 5);
534s  h = findobj (gca, "Type", "patch");
534s  set (h(1), "facecolor", "r");
534s  set (h(2), "facecolor", "c");
534s  ylim ([0, 1]);
534s  xlim ([0, 5]);
534s  hold on
534s 
534s  ## Estimate their α and β parameters
534s  k_sigmaA = gpfit (r(:,1), theta);
534s  k_sigmaB = gpfit (r(:,2), theta);
534s 
534s  ## Plot their estimated PDFs
534s  x = [0.01, 0.1:0.2:18];
534s  y = gppdf (x, k_sigmaA(1), k_sigmaA(2), theta);
534s  plot (x, y, "-pc");
534s  y = gppdf (x, k_sigmaB(1), k_sigmaB(2), theta);
534s  plot (x, y, "-sr");
534s  hold off
534s  legend ({"Normalized HIST of sample 1 with k=1 and σ=2", ...
534s           "Normalized HIST of sample 2 with k=2 and σ=2", ...
534s           sprintf("PDF for sample 1 with estimated k=%0.2f and σ=%0.2f", ...
534s                   k_sigmaA(1), k_sigmaA(2)), ...
534s           sprintf("PDF for sample 3 with estimated k=%0.2f and σ=%0.2f", ...
534s                   k_sigmaB(1), k_sigmaB(2))})
534s  title ("Three population samples from different generalized Pareto distibutions")
534s  text (2, 0.7, "Known location parameter θ = 0")
534s  hold off
534s ***** test
534s  k = 0.8937; sigma = 1.3230; theta = 1;
534s  x = [2.2196, 11.9301, 4.3673, 1.0949, 6.5626, ...
534s       1.2109, 1.8576, 1.0039, 12.7917, 2.2590];
534s  [hat, ci] = gpfit (x, theta);
534s  assert (hat, [k, sigma, theta], 1e-4);
534s  assert (ci, [-0.7750, 0.2437, 1; 2.5624, 7.1820, 1], 1e-4);
534s ***** error<gpfit: function called with too few input arguments.> gpfit ()
534s ***** error<gpfit: function called with too few input arguments.> gpfit (1)
534s ***** error<gpfit: X must be a vector of real values.> gpfit ([0.2, 0.5+i], 0);
534s ***** error<gpfit: X must be a vector of real values.> gpfit (ones (2,2) * 0.5, 0);
534s ***** error<gpfit: THETA must be a real scalar value.> ...
534s  gpfit ([0.5, 1.2], [0, 1]);
534s ***** error<gpfit: THETA must be a real scalar value.> ...
534s  gpfit ([0.5, 1.2], 5+i);
534s ***** error<gpfit: X cannot contain values less than THETA.> ...
534s  gpfit ([1:5], 2);
534s ***** error<gpfit: wrong value for ALPHA.> gpfit ([0.01:0.1:0.99], 0, 1.2);
534s ***** error<gpfit: wrong value for ALPHA.> gpfit ([0.01:0.1:0.99], 0, i);
534s ***** error<gpfit: wrong value for ALPHA.> gpfit ([0.01:0.1:0.99], 0, -1);
534s ***** error<gpfit: wrong value for ALPHA.> gpfit ([0.01:0.1:0.99], 0, [0.05, 0.01]);
534s ***** error<gpfit: X and FREQ vectors mismatch.>
534s  gpfit ([1 2 3], 0, [], [1 5])
534s ***** error<gpfit: FREQ must not contain negative values.>
534s  gpfit ([1 2 3], 0, [], [1 5 -1])
534s ***** error<gpfit: 'options' 5th argument must be a structure> ...
534s  gpfit ([1:10], 1, 0.05, [], 5)
534s 15 tests, 15 passed, 0 known failure, 0 skipped
534s [inst/dist_fit/normfit.m]
534s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/normfit.m
534s ***** demo
534s  ## Sample 3 populations from 3 different normal distibutions
534s  randn ("seed", 1);    # for reproducibility
534s  r1 = normrnd (2, 5, 5000, 1);
534s  randn ("seed", 2);    # for reproducibility
534s  r2 = normrnd (5, 2, 5000, 1);
534s  randn ("seed", 3);    # for reproducibility
534s  r3 = normrnd (9, 4, 5000, 1);
534s  r = [r1, r2, r3];
534s 
534s  ## Plot them normalized and fix their colors
534s  hist (r, 15, 0.4);
534s  h = findobj (gca, "Type", "patch");
534s  set (h(1), "facecolor", "c");
534s  set (h(2), "facecolor", "g");
534s  set (h(3), "facecolor", "r");
534s  hold on
534s 
534s  ## Estimate their mu and sigma parameters
534s  [muhat, sigmahat] = normfit (r);
534s 
534s  ## Plot their estimated PDFs
534s  x = [min(r(:)):max(r(:))];
534s  y = normpdf (x, muhat(1), sigmahat(1));
534s  plot (x, y, "-pr");
534s  y = normpdf (x, muhat(2), sigmahat(2));
534s  plot (x, y, "-sg");
534s  y = normpdf (x, muhat(3), sigmahat(3));
534s  plot (x, y, "-^c");
534s  ylim ([0, 0.5])
534s  xlim ([-20, 20])
534s  hold off
534s  legend ({"Normalized HIST of sample 1 with mu=2, σ=5", ...
534s           "Normalized HIST of sample 2 with mu=5, σ=2", ...
534s           "Normalized HIST of sample 3 with mu=9, σ=4", ...
534s           sprintf("PDF for sample 1 with estimated mu=%0.2f and σ=%0.2f", ...
534s                   muhat(1), sigmahat(1)), ...
534s           sprintf("PDF for sample 2 with estimated mu=%0.2f and σ=%0.2f", ...
534s                   muhat(2), sigmahat(2)), ...
534s           sprintf("PDF for sample 3 with estimated mu=%0.2f and σ=%0.2f", ...
534s                   muhat(3), sigmahat(3))}, "location", "northwest")
534s  title ("Three population samples from different normal distibutions")
534s  hold off
534s ***** test
534s  load lightbulb
534s  idx = find (lightbulb(:,2) == 0);
534s  censoring = lightbulb(idx,3) == 1;
534s  [muHat, sigmaHat] = normfit (lightbulb(idx,1), [], censoring);
534s  assert (muHat, 9496.59586737857, 1e-11);
534s  assert (sigmaHat, 3064.021012796456, 2e-12);
534s ***** test
534s  randn ("seed", 234);
534s  x = normrnd (3, 5, [1000, 1]);
534s  [muHat, sigmaHat, muCI, sigmaCI] = normfit (x, 0.01);
534s  assert (muCI(1) < 3);
534s  assert (muCI(2) > 3);
534s  assert (sigmaCI(1) < 5);
534s  assert (sigmaCI(2) > 5);
535s ***** error<normfit: X must not be a multi-dimensional array.> ...
535s  normfit (ones (3,3,3))
535s ***** error<normfit: matrix data acceptable only under 2-arg syntax.> ...
535s  normfit (ones (20,3), [], zeros (20,1))
535s ***** error<normfit: wrong value for ALPHA.> normfit (ones (20,1), 0)
535s ***** error<normfit: wrong value for ALPHA.> normfit (ones (20,1), -0.3)
535s ***** error<normfit: wrong value for ALPHA.> normfit (ones (20,1), 1.2)
535s ***** error<normfit: wrong value for ALPHA.> normfit (ones (20,1), [0.05 0.1])
535s ***** error<normfit: wrong value for ALPHA.> normfit (ones (20,1), 0.02+i)
535s ***** error<normfit: X and CENSOR vectors mismatch.> ...
535s  normfit (ones (20,1), [], zeros(15,1))
535s ***** error<normfit: X and FREQ vectors mismatch.> ...
535s  normfit (ones (20,1), [], zeros(20,1), ones(25,1))
535s ***** error<normfit: FREQ must not contain negative values.> ...
535s  normfit (ones (5,1), [], zeros(5,1), [1, 2, 1, 2, -1]')
535s ***** error<normfit: > normfit (ones (20,1), [], zeros(20,1), ones(20,1), "options")
535s 13 tests, 13 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/hnlike.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/hnlike.m
535s ***** test
535s  x = 1:20;
535s  paramhat = hnfit (x, 0);
535s  [nlogL, acov] = hnlike (paramhat, x);
535s  assert (nlogL, 64.179177404891300, 1e-14);
535s ***** test
535s  x = 1:20;
535s  paramhat = hnfit (x, 0);
535s  [nlogL, acov] = hnlike (paramhat, x, ones (1, 20));
535s  assert (nlogL, 64.179177404891300, 1e-14);
535s ***** error<hnlike: function called with too few input arguments.> ...
535s  hnlike ([12, 15]);
535s ***** error<hnlike: wrong parameters length.> hnlike ([12, 15, 3], [1:50]);
535s ***** error<hnlike: wrong parameters length.> hnlike ([3], [1:50]);
535s ***** error<hnlike: X must be a vector of real values.> ...
535s  hnlike ([0, 3], ones (2));
535s ***** error<hnlike: X must be a vector of real values.> ...
535s  hnlike ([0, 3], [1, 2, 3, 4, 5+i]);
535s ***** error<hnlike: X and FREQ vectors mismatch.> ...
535s  hnlike ([1, 2], ones (10, 1), ones (8,1))
535s ***** error<hnlike: FREQ must not contain negative values.> ...
535s  hnlike ([1, 2], ones (1, 8), [1 1 1 1 1 1 1 -1])
535s 9 tests, 9 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/evfit.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/evfit.m
535s ***** demo
535s  ## Sample 3 populations from different extreme value distibutions
535s  rand ("seed", 1);    # for reproducibility
535s  r1 = evrnd (2, 5, 400, 1);
535s  rand ("seed", 12);    # for reproducibility
535s  r2 = evrnd (-5, 3, 400, 1);
535s  rand ("seed", 13);    # for reproducibility
535s  r3 = evrnd (14, 8, 400, 1);
535s  r = [r1, r2, r3];
535s 
535s  ## Plot them normalized and fix their colors
535s  hist (r, 25, 0.4);
535s  h = findobj (gca, "Type", "patch");
535s  set (h(1), "facecolor", "c");
535s  set (h(2), "facecolor", "g");
535s  set (h(3), "facecolor", "r");
535s  ylim ([0, 0.28])
535s  xlim ([-30, 30]);
535s  hold on
535s 
535s  ## Estimate their MU and SIGMA parameters
535s  mu_sigmaA = evfit (r(:,1));
535s  mu_sigmaB = evfit (r(:,2));
535s  mu_sigmaC = evfit (r(:,3));
535s 
535s  ## Plot their estimated PDFs
535s  x = [min(r(:)):max(r(:))];
535s  y = evpdf (x, mu_sigmaA(1), mu_sigmaA(2));
535s  plot (x, y, "-pr");
535s  y = evpdf (x, mu_sigmaB(1), mu_sigmaB(2));
535s  plot (x, y, "-sg");
535s  y = evpdf (x, mu_sigmaC(1), mu_sigmaC(2));
535s  plot (x, y, "-^c");
535s  legend ({"Normalized HIST of sample 1 with μ=2 and σ=5", ...
535s           "Normalized HIST of sample 2 with μ=-5 and σ=3", ...
535s           "Normalized HIST of sample 3 with μ=14 and σ=8", ...
535s           sprintf("PDF for sample 1 with estimated μ=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaA(1), mu_sigmaA(2)), ...
535s           sprintf("PDF for sample 2 with estimated μ=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaB(1), mu_sigmaB(2)), ...
535s           sprintf("PDF for sample 3 with estimated μ=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaC(1), mu_sigmaC(2))})
535s  title ("Three population samples from different extreme value distibutions")
535s  hold off
535s ***** test
535s  x = 1:50;
535s  [paramhat, paramci] = evfit (x);
535s  paramhat_out = [32.6811, 13.0509];
535s  paramci_out = [28.8504, 10.5294; 36.5118, 16.1763];
535s  assert (paramhat, paramhat_out, 1e-4);
535s  assert (paramci, paramci_out, 1e-4);
535s ***** test
535s  x = 1:50;
535s  [paramhat, paramci] = evfit (x, 0.01);
535s  paramci_out = [27.6468, 9.8426; 37.7155, 17.3051];
535s  assert (paramci, paramci_out, 1e-4);
535s ***** error<evfit: X must be a double-precision vector.> evfit (ones (2,5));
535s ***** error<evfit: X must be a double-precision vector.> evfit (single (ones (1,5)));
535s ***** error<evfit: X must NOT contain missing values> evfit ([1, 2, 3, 4, NaN]);
535s ***** error<evfit: wrong value for ALPHA.> evfit ([1, 2, 3, 4, 5], 1.2);
535s ***** error<evfit: X and FREQ vectors mismatch.>
535s  evfit ([1 2 3], 0.05, [], [1 5])
535s ***** error<evfit: FREQ must not contain negative values.>
535s  evfit ([1 2 3], 0.05, [], [1 5 -1])
535s ***** error<evfit: 'options' 5th argument must be a structure> ...
535s  evfit ([1:10], 0.05, [], [], 5)
535s 9 tests, 9 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/unidfit.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/unidfit.m
535s ***** demo
535s  ## Sample 2 populations from different discrete uniform distibutions
535s  rand ("seed", 1);    # for reproducibility
535s  r1 = unidrnd (5, 1000, 1);
535s  rand ("seed", 2);    # for reproducibility
535s  r2 = unidrnd (9, 1000, 1);
535s  r = [r1, r2];
535s 
535s  ## Plot them normalized and fix their colors
535s  hist (r, 0:0.5:20.5, 1);
535s  h = findobj (gca, "Type", "patch");
535s  set (h(1), "facecolor", "c");
535s  set (h(2), "facecolor", "g");
535s  hold on
535s 
535s  ## Estimate their probability of success
535s  NhatA = unidfit (r(:,1));
535s  NhatB = unidfit (r(:,2));
535s 
535s  ## Plot their estimated PDFs
535s  x = [0:10];
535s  y = unidpdf (x, NhatA);
535s  plot (x, y, "-pg");
535s  y = unidpdf (x, NhatB);
535s  plot (x, y, "-sc");
535s  xlim ([0, 10])
535s  ylim ([0, 0.4])
535s  legend ({"Normalized HIST of sample 1 with N=5", ...
535s           "Normalized HIST of sample 2 with N=9", ...
535s           sprintf("PDF for sample 1 with estimated N=%0.2f", NhatA), ...
535s           sprintf("PDF for sample 2 with estimated N=%0.2f", NhatB)})
535s  title ("Two population samples from different discrete uniform distibutions")
535s  hold off
535s ***** test
535s  x = 0:5;
535s  [Nhat, Nci] = unidfit (x);
535s  assert (Nhat, 5);
535s  assert (Nci, [5; 9]);
535s ***** test
535s  x = 0:5;
535s  [Nhat, Nci] = unidfit (x, [], [1 1 1 1 1 1]);
535s  assert (Nhat, 5);
535s  assert (Nci, [5; 9]);
535s ***** assert (unidfit ([1 1 2 3]), unidfit ([1 2 3], [] ,[2 1 1]))
535s ***** error<unidfit: function called with too few input arguments.> unidfit ()
535s ***** error<unidfit: X cannot have negative values.> unidfit (-1, [1 2 3 3])
535s ***** error<unidfit: wrong value for ALPHA.> unidfit (1, 0)
535s ***** error<unidfit: wrong value for ALPHA.> unidfit (1, 1.2)
535s ***** error<unidfit: wrong value for ALPHA.> unidfit (1, [0.02 0.05])
535s ***** error<unidfit: X and FREQ vector mismatch.> ...
535s  unidfit ([1.5, 0.2], [], [0, 0, 0, 0, 0])
535s ***** error<unidfit: X and FREQ vector mismatch.> ...
535s  unidfit ([1.5, 0.2], [], [1, 1, 1])
535s ***** error<unidfit: FREQ cannot have negative values.> ...
535s  unidfit ([1.5, 0.2], [], [1, -1])
535s 11 tests, 11 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/wbllike.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/wbllike.m
535s ***** test
535s  x = 1:50;
535s  [nlogL, acov] = wbllike ([2.3, 1.2], x);
535s  avar_out = [0.0250, 0.0062; 0.0062, 0.0017];
535s  assert (nlogL, 945.9589180651594, 1e-12);
535s  assert (acov, avar_out, 1e-4);
535s ***** test
535s  x = 1:50;
535s  [nlogL, acov] = wbllike ([2.3, 1.2], x * 0.5);
535s  avar_out = [-0.3238, -0.1112; -0.1112, -0.0376];
535s  assert (nlogL, 424.9879809704742, 6e-14);
535s  assert (acov, avar_out, 1e-4);
535s ***** test
535s  x = 1:50;
535s  [nlogL, acov] = wbllike ([21, 15], x);
535s  avar_out = [-0.00001236, -0.00001166; -0.00001166, -0.00001009];
535s  assert (nlogL, 1635190.328991511, 1e-8);
535s  assert (acov, avar_out, 1e-8);
535s ***** error<wbllike: too few input arguments.> wbllike ([12, 15]);
535s ***** error<wbllike: wrong parameters length.> wbllike ([12, 15, 3], [1:50]);
535s ***** error<wbllike: X must be a vector.> wbllike ([12, 3], ones (10, 2));
535s ***** error<wbllike: X and CENSOR> wbllike ([12, 15], [1:50], [1, 2, 3]);
535s ***** error<wbllike: X and FREQ> wbllike ([12, 15], [1:50], [], [1, 2, 3]);
535s ***** error<wbllike: FREQ cannot have negative values.> ...
535s  wbllike ([12, 15], [1:5], [], [1, 2, 3, -1, 0]);
535s 9 tests, 9 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/hnfit.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/hnfit.m
535s ***** demo
535s  ## Sample 2 populations from different half-normal distibutions
535s  rand ("seed", 1);   # for reproducibility
535s  r1 = hnrnd (0, 5, 5000, 1);
535s  rand ("seed", 2);   # for reproducibility
535s  r2 = hnrnd (0, 2, 5000, 1);
535s  r = [r1, r2];
535s 
535s  ## Plot them normalized and fix their colors
535s  hist (r, [0.5:20], 1);
535s  h = findobj (gca, "Type", "patch");
535s  set (h(1), "facecolor", "c");
535s  set (h(2), "facecolor", "g");
535s  hold on
535s 
535s  ## Estimate their shape parameters
535s  mu_sigmaA = hnfit (r(:,1), 0);
535s  mu_sigmaB = hnfit (r(:,2), 0);
535s 
535s  ## Plot their estimated PDFs
535s  x = [0:0.2:10];
535s  y = hnpdf (x, mu_sigmaA(1), mu_sigmaA(2));
535s  plot (x, y, "-pr");
535s  y = hnpdf (x, mu_sigmaB(1), mu_sigmaB(2));
535s  plot (x, y, "-sg");
535s  xlim ([0, 10])
535s  ylim ([0, 0.5])
535s  legend ({"Normalized HIST of sample 1 with μ=0 and σ=5", ...
535s           "Normalized HIST of sample 2 with μ=0 and σ=2", ...
535s           sprintf("PDF for sample 1 with estimated μ=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaA(1), mu_sigmaA(2)), ...
535s           sprintf("PDF for sample 2 with estimated μ=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaB(1), mu_sigmaB(2))})
535s  title ("Two population samples from different half-normal distibutions")
535s  hold off
535s ***** test
535s  x = 1:20;
535s  [paramhat, paramci] = hnfit (x, 0);
535s  assert (paramhat, [0, 11.9791], 1e-4);
535s  assert (paramci, [0, 9.1648; 0, 17.2987], 1e-4);
535s ***** test
535s  x = 1:20;
535s  [paramhat, paramci] = hnfit (x, 0, 0.01);
535s  assert (paramci, [0, 8.4709; 0, 19.6487], 1e-4);
535s ***** error<hnfit: function called with too few input arguments.> hnfit ()
535s ***** error<hnfit: function called with too few input arguments.> hnfit (1)
535s ***** error<hnfit: X must be a vector of real values.> hnfit ([0.2, 0.5+i], 0);
535s ***** error<hnfit: X must be a vector of real values.> hnfit (ones (2,2) * 0.5, 0);
535s ***** error<hnfit: MU must be a real scalar value.> ...
535s  hnfit ([0.5, 1.2], [0, 1]);
535s ***** error<hnfit: MU must be a real scalar value.> ...
535s  hnfit ([0.5, 1.2], 5+i);
535s ***** error<hnfit: X cannot contain values less than MU.> ...
535s  hnfit ([1:5], 2);
535s ***** error<hnfit: wrong value for ALPHA.> hnfit ([0.01:0.1:0.99], 0, 1.2);
535s ***** error<hnfit: wrong value for ALPHA.> hnfit ([0.01:0.1:0.99], 0, i);
535s ***** error<hnfit: wrong value for ALPHA.> hnfit ([0.01:0.1:0.99], 0, -1);
535s ***** error<hnfit: wrong value for ALPHA.> hnfit ([0.01:0.1:0.99], 0, [0.05, 0.01]);
535s ***** error<hnfit: X and FREQ vectors mismatch.>
535s  hnfit ([1 2 3], 0, [], [1 5])
535s ***** error<hnfit: FREQ must not contain negative values.>
535s  hnfit ([1 2 3], 0, [], [1 5 -1])
535s 15 tests, 15 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/logllike.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/logllike.m
535s ***** test
535s  [nlogL, acov] = logllike ([3.09717, 0.468525], [1:50]);
535s  assert (nlogL, 211.2965, 1e-4);
535s  assert (acov, [0.0131, -0.0007; -0.0007, 0.0031], 1e-4);
535s ***** test
535s  [nlogL, acov] = logllike ([1.01124, 0.336449], [1:5]);
535s  assert (nlogL, 9.2206, 1e-4);
535s  assert (acov, [0.0712, -0.0032; -0.0032, 0.0153], 1e-4);
535s ***** error<logllike: function called with too few input arguments.> logllike (3.25)
535s ***** error<logllike: X must be a vector.> logllike ([5, 0.2], ones (2))
535s ***** error<logllike: PARAMS must be a two-element vector.> ...
535s  logllike ([1, 0.2, 3], [1, 3, 5, 7])
535s ***** error<logllike: X and CENSOR vector mismatch.> ...
535s  logllike ([1.5, 0.2], [1:5], [0, 0, 0])
535s ***** error<logllike: X and FREQ vector mismatch.> ...
535s  logllike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
535s ***** error<logllike: X and FREQ vector mismatch.> ...
535s  logllike ([1.5, 0.2], [1:5], [], [1, 1, 1])
535s 8 tests, 8 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/bisalike.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/bisalike.m
535s ***** test
535s  nlogL = bisalike ([16.2649, 1.0156], [1:50]);
535s  assert (nlogL, 215.5905, 1e-4);
535s ***** test
535s  nlogL = bisalike ([2.5585, 0.5839], [1:5]);
535s  assert (nlogL, 8.9950, 1e-4);
535s ***** error<bisalike: function called with too few input arguments.> bisalike (3.25)
535s ***** error<bisalike: X must be a vector.> bisalike ([5, 0.2], ones (2))
535s ***** error<bisalike: X cannot have negative values.> bisalike ([5, 0.2], [-1, 3])
535s ***** error<bisalike: PARAMS must be a two-element vector.> ...
535s  bisalike ([1, 0.2, 3], [1, 3, 5, 7])
535s ***** error<bisalike: X and CENSOR vector mismatch.> ...
535s  bisalike ([1.5, 0.2], [1:5], [0, 0, 0])
535s ***** error<bisalike: X and FREQ vector mismatch.> ...
535s  bisalike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
535s ***** error<bisalike: X and FREQ vector mismatch.> ...
535s  bisalike ([1.5, 0.2], [1:5], [], [1, 1, 1])
535s 9 tests, 9 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/lognfit.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/lognfit.m
535s ***** demo
535s  ## Sample 3 populations from 3 different log-normal distibutions
535s  randn ("seed", 1);    # for reproducibility
535s  r1 = lognrnd (0, 0.25, 1000, 1);
535s  randn ("seed", 2);    # for reproducibility
535s  r2 = lognrnd (0, 0.5, 1000, 1);
535s  randn ("seed", 3);    # for reproducibility
535s  r3 = lognrnd (0, 1, 1000, 1);
535s  r = [r1, r2, r3];
535s 
535s  ## Plot them normalized and fix their colors
535s  hist (r, 30, 2);
535s  h = findobj (gca, "Type", "patch");
535s  set (h(1), "facecolor", "c");
535s  set (h(2), "facecolor", "g");
535s  set (h(3), "facecolor", "r");
535s  hold on
535s 
535s  ## Estimate their mu and sigma parameters
535s  mu_sigmaA = lognfit (r(:,1));
535s  mu_sigmaB = lognfit (r(:,2));
535s  mu_sigmaC = lognfit (r(:,3));
535s 
535s  ## Plot their estimated PDFs
535s  x = [0:0.1:6];
535s  y = lognpdf (x, mu_sigmaA(1), mu_sigmaA(2));
535s  plot (x, y, "-pr");
535s  y = lognpdf (x, mu_sigmaB(1), mu_sigmaB(2));
535s  plot (x, y, "-sg");
535s  y = lognpdf (x, mu_sigmaC(1), mu_sigmaC(2));
535s  plot (x, y, "-^c");
535s  ylim ([0, 2])
535s  xlim ([0, 6])
535s  hold off
535s  legend ({"Normalized HIST of sample 1 with mu=0, σ=0.25", ...
535s           "Normalized HIST of sample 2 with mu=0, σ=0.5", ...
535s           "Normalized HIST of sample 3 with mu=0, σ=1", ...
535s           sprintf("PDF for sample 1 with estimated mu=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaA(1), mu_sigmaA(2)), ...
535s           sprintf("PDF for sample 2 with estimated mu=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaB(1), mu_sigmaB(2)), ...
535s           sprintf("PDF for sample 3 with estimated mu=%0.2f and σ=%0.2f", ...
535s                   mu_sigmaC(1), mu_sigmaC(2))}, "location", "northeast")
535s  title ("Three population samples from different log-normal distibutions")
535s  hold off
535s ***** test
535s  randn ("seed", 1);
535s  x = lognrnd (3, 5, [1000, 1]);
535s  [paramhat, paramci] = lognfit (x, 0.01);
535s  assert (paramci(1,1) < 3);
535s  assert (paramci(1,2) > 3);
535s  assert (paramci(2,1) < 5);
535s  assert (paramci(2,2) > 5);
535s ***** error<lognfit: X must be a numeric vector of positive values.> ...
535s  lognfit (ones (20,3))
535s ***** error<lognfit: X must be a numeric vector of positive values.> ...
535s  lognfit ({1, 2, 3, 4, 5})
535s ***** error<lognfit: X must be a numeric vector of positive values.> ...
535s  lognfit ([-1, 2, 3, 4, 5])
535s ***** error<lognfit: wrong value for ALPHA.> lognfit (ones (20,1), 0)
535s ***** error<lognfit: wrong value for ALPHA.> lognfit (ones (20,1), -0.3)
535s ***** error<lognfit: wrong value for ALPHA.> lognfit (ones (20,1), 1.2)
535s ***** error<lognfit: wrong value for ALPHA.> lognfit (ones (20,1), [0.05,  0.1])
535s ***** error<lognfit: wrong value for ALPHA.> lognfit (ones (20,1), 0.02+i)
535s ***** error<lognfit: X and CENSOR vectors mismatch.> ...
535s  lognfit (ones (20,1), [], zeros(15,1))
535s ***** error<lognfit: X and FREQ vectors mismatch.> ...
535s  lognfit (ones (20,1), [], zeros(20,1), ones(25,1))
535s ***** error<lognfit: > lognfit (ones (20,1), [], zeros(20,1), ones(20,1), "options")
535s 12 tests, 12 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/lognlike.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/lognlike.m
535s ***** test
535s  x = 1:50;
535s  [nlogL, avar] = lognlike ([0, 0.25], x);
535s  avar_out = [-5.4749e-03, 2.8308e-04; 2.8308e-04, -1.1916e-05];
535s  assert (nlogL, 3962.330333301793, 1e-10);
535s  assert (avar, avar_out, 1e-7);
535s ***** test
535s  x = 1:50;
535s  [nlogL, avar] = lognlike ([0, 0.25], x * 0.5);
535s  avar_out = [-7.6229e-03, 4.8722e-04; 4.8722e-04, -2.6754e-05];
535s  assert (nlogL, 2473.183051225747, 1e-10);
535s  assert (avar, avar_out, 1e-7);
535s ***** test
535s  x = 1:50;
535s  [nlogL, avar] = lognlike ([0, 0.5], x);
535s  avar_out = [-2.1152e-02, 2.2017e-03; 2.2017e-03, -1.8535e-04];
535s  assert (nlogL, 1119.072424020455, 1e-12);
535s  assert (avar, avar_out, 1e-6);
535s ***** test
535s  x = 1:50;
535s  censor = ones (1, 50);
535s  censor([2, 4, 6, 8, 12, 14]) = 0;
535s  [nlogL, avar] = lognlike ([0, 0.5], x, censor);
535s  avar_out = [-1.9823e-02, 2.0370e-03; 2.0370e-03, -1.6618e-04];
535s  assert (nlogL, 1091.746371145497, 1e-12);
535s  assert (avar, avar_out, 1e-6);
535s ***** test
535s  x = 1:50;
535s  censor = ones (1, 50);
535s  censor([2, 4, 6, 8, 12, 14]) = 0;
535s  [nlogL, avar] = lognlike ([0, 1], x, censor);
535s  avar_out = [-6.8634e-02, 1.3968e-02; 1.3968e-02, -2.1664e-03];
535s  assert (nlogL, 349.3969104144271, 1e-12);
535s  assert (avar, avar_out, 1e-6);
535s ***** error<lognlike: function called with too few input arguments.> ...
535s  lognlike ([12, 15]);
535s ***** error<lognlike: X must be a vector.> lognlike ([12, 15], ones (2));
535s ***** error<lognlike: PARAMS must be a two-element vector.> ...
535s  lognlike ([12, 15, 3], [1:50]);
535s ***** error<lognlike: X and CENSOR vectors mismatch.> ...
535s  lognlike ([12, 15], [1:50], [1, 2, 3]);
535s ***** error<lognlike: X and FREQ vectors mismatch.> ...
535s  lognlike ([12, 15], [1:50], [], [1, 2, 3]);
535s 10 tests, 10 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/gumbellike.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gumbellike.m
535s ***** test
535s  x = 1:50;
535s  [nlogL, avar] = gumbellike ([2.3, 1.2], x);
535s  avar_out = [-1.2778e-13, 3.1859e-15; 3.1859e-15, -7.9430e-17];
535s  assert (nlogL, 3.242264755689906e+17, 1e-14);
535s  assert (avar, avar_out, 1e-3);
535s ***** test
535s  x = 1:50;
535s  [nlogL, avar] = gumbellike ([2.3, 1.2], x * 0.5);
535s  avar_out = [-7.6094e-05, 3.9819e-06; 3.9819e-06, -2.0836e-07];
535s  assert (nlogL, 481898704.0472211, 1e-6);
535s  assert (avar, avar_out, 1e-3);
535s ***** test
535s  x = 1:50;
535s  [nlogL, avar] = gumbellike ([21, 15], x);
535s  avar_out = [11.73913876598908, -5.9546128523121216; ...
535s              -5.954612852312121, 3.708060045170236];
535s  assert (nlogL, 223.7612479380652, 1e-13);
535s  assert (avar, avar_out, 1e-14);
535s ***** error<gumbellike: too few input arguments.> gumbellike ([12, 15]);
535s ***** error<gumbellike: wrong parameters length.> gumbellike ([12, 15, 3], [1:50]);
535s ***** error<gumbellike: X must be a vector.> gumbellike ([12, 3], ones (10, 2));
535s ***** error<gumbellike: X and CENSOR> gumbellike ([12, 15], [1:50], [1, 2, 3]);
535s ***** error<gumbellike: X and FREQ> gumbellike ([12, 15], [1:50], [], [1, 2, 3]);
535s 8 tests, 8 passed, 0 known failure, 0 skipped
535s [inst/dist_fit/burrfit.m]
535s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/burrfit.m
535s ***** demo
535s  ## Sample 3 populations from different Burr type XII distibutions
535s  rand ("seed", 4);    # for reproducibility
535s  r1 = burrrnd (3.5, 2, 2.5, 10000, 1);
535s  rand ("seed", 2);    # for reproducibility
535s  r2 = burrrnd (1, 3, 1, 10000, 1);
535s  rand ("seed", 9);    # for reproducibility
535s  r3 = burrrnd (0.5, 2, 3, 10000, 1);
535s  r = [r1, r2, r3];
535s 
535s  ## Plot them normalized and fix their colors
535s  hist (r, [0.1:0.2:20], [18, 5, 3]);
535s  h = findobj (gca, "Type", "patch");
535s  set (h(1), "facecolor", "c");
535s  set (h(2), "facecolor", "g");
535s  set (h(3), "facecolor", "r");
535s  ylim ([0, 3]);
535s  xlim ([0, 5]);
535s  hold on
535s 
535s  ## Estimate their α and β parameters
535s  lambda_c_kA = burrfit (r(:,1));
535s  lambda_c_kB = burrfit (r(:,2));
535s  lambda_c_kC = burrfit (r(:,3));
535s 
535s  ## Plot their estimated PDFs
535s  x = [0.01:0.15:15];
535s  y = burrpdf (x, lambda_c_kA(1), lambda_c_kA(2), lambda_c_kA(3));
535s  plot (x, y, "-pr");
535s  y = burrpdf (x, lambda_c_kB(1), lambda_c_kB(2), lambda_c_kB(3));
535s  plot (x, y, "-sg");
535s  y = burrpdf (x, lambda_c_kC(1), lambda_c_kC(2), lambda_c_kC(3));
535s  plot (x, y, "-^c");
535s  hold off
535s  legend ({"Normalized HIST of sample 1 with λ=3.5, c=2, and k=2.5", ...
535s           "Normalized HIST of sample 2 with λ=1, c=3, and k=1", ...
535s           "Normalized HIST of sample 3 with λ=0.5, c=2, and k=3", ...
535s   sprintf("PDF for sample 1 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ...
535s           lambda_c_kA(1), lambda_c_kA(2), lambda_c_kA(3)), ...
535s   sprintf("PDF for sample 2 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ...
535s           lambda_c_kB(1), lambda_c_kB(2), lambda_c_kB(3)), ...
535s   sprintf("PDF for sample 3 with estimated λ=%0.2f, c=%0.2f, and k=%0.2f", ...
535s           lambda_c_kC(1), lambda_c_kC(2), lambda_c_kC(3))})
535s  title ("Three population samples from different Burr type XII distibutions")
535s  hold off
535s ***** test
535s  l = 1; c = 2; k = 3;
535s  r = burrrnd (l, c, k, 100000, 1);
535s  lambda_c_kA = burrfit (r);
535s  assert (lambda_c_kA(1), l, 0.2);
535s  assert (lambda_c_kA(2), c, 0.2);
535s  assert (lambda_c_kA(3), k, 0.3);
537s ***** test
537s  l = 0.5; c = 1; k = 3;
537s  r = burrrnd (l, c, k, 100000, 1);
537s  lambda_c_kA = burrfit (r);
537s  assert (lambda_c_kA(1), l, 0.2);
537s  assert (lambda_c_kA(2), c, 0.2);
537s  assert (lambda_c_kA(3), k, 0.3);
539s ***** test
539s  l = 1; c = 3; k = 1;
539s  r = burrrnd (l, c, k, 100000, 1);
539s  lambda_c_kA = burrfit (r);
539s  assert (lambda_c_kA(1), l, 0.2);
539s  assert (lambda_c_kA(2), c, 0.2);
539s  assert (lambda_c_kA(3), k, 0.3);
541s ***** test
541s  l = 3; c = 2; k = 1;
541s  r = burrrnd (l, c, k, 100000, 1);
541s  lambda_c_kA = burrfit (r);
541s  assert (lambda_c_kA(1), l, 0.2);
541s  assert (lambda_c_kA(2), c, 0.2);
541s  assert (lambda_c_kA(3), k, 0.3);
544s ***** test
544s  l = 4; c = 2; k = 4;
544s  r = burrrnd (l, c, k, 100000, 1);
544s  lambda_c_kA = burrfit (r);
544s  assert (lambda_c_kA(1), l, 0.2);
544s  assert (lambda_c_kA(2), c, 0.2);
544s  assert (lambda_c_kA(3), k, 0.3);
545s ***** error<burrfit: X must be a vector.> burrfit (ones (2,5));
545s ***** error<burrfit: X must contain only positive values.> burrfit ([-1 2 3 4]);
545s ***** error<burrfit: wrong value for ALPHA.> burrfit ([1, 2, 3, 4, 5], 1.2);
545s ***** error<burrfit: wrong value for ALPHA.> burrfit ([1, 2, 3, 4, 5], 0);
545s ***** error<burrfit: wrong value for ALPHA.> burrfit ([1, 2, 3, 4, 5], "alpha");
545s ***** error<burrfit: X and CENSOR vectors mismatch.> ...
545s  burrfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
545s ***** error<burrfit: X and CENSOR vectors mismatch.> ...
545s  burrfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
545s ***** error<burrfit: X and FREQ vectors mismatch.>
545s  burrfit ([1, 2, 3, 4, 5], 0.05, [], [1, 1, 5])
545s ***** error<burrfit: FREQ must not contain negative values.>
545s  burrfit ([1, 2, 3, 4, 5], 0.05, [], [1, 5, 1, 1, -1])
545s ***** error<burrfit: 'options' 5th argument must be a structure> ...
545s  burrfit ([1:10], 0.05, [], [], 5)
546s 15 tests, 15 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/gamlike.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gamlike.m
546s ***** test
546s  [nlogL, acov] = gamlike([2, 3], [2, 3, 4, 5, 6, 7, 8, 9]);
546s  assert (nlogL, 19.4426, 1e-4);
546s  assert (acov, [2.7819, -5.0073; -5.0073, 9.6882], 1e-4);
546s ***** test
546s  [nlogL, acov] = gamlike([2, 3], [5:45]);
546s  assert (nlogL, 305.8070, 1e-4);
546s  assert (acov, [0.0423, -0.0087; -0.0087, 0.0167], 1e-4);
546s ***** test
546s  [nlogL, acov] = gamlike([2, 13], [5:45]);
546s  assert (nlogL, 163.2261, 1e-4);
546s  assert (acov, [0.2362, -1.6631; -1.6631, 13.9440], 1e-4);
546s ***** error<gamlike: function called with too few input arguments.> ...
546s  gamlike ([12, 15])
546s ***** error<gamlike: wrong parameters length.> gamlike ([12, 15, 3], [1:50])
546s ***** error<gamlike: X must be a vector.> gamlike ([12, 3], ones (10, 2))
546s ***** error<gamlike: X and CENSOR vectors mismatch.> ...
546s  gamlike ([12, 15], [1:50], [1, 2, 3])
546s ***** error<gamlike: X and FREQ vectors mismatch.> ...
546s  gamlike ([12, 15], [1:50], [], [1, 2, 3])
546s 8 tests, 8 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/evlike.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/evlike.m
546s ***** test
546s  x = 1:50;
546s  [nlogL, acov] = evlike ([2.3, 1.2], x);
546s  avar_out = [-1.2778e-13, 3.1859e-15; 3.1859e-15, -7.9430e-17];
546s  assert (nlogL, 3.242264755689906e+17, 1e-14);
546s  assert (acov, avar_out, 1e-3);
546s ***** test
546s  x = 1:50;
546s  [nlogL, acov] = evlike ([2.3, 1.2], x * 0.5);
546s  avar_out = [-7.6094e-05, 3.9819e-06; 3.9819e-06, -2.0836e-07];
546s  assert (nlogL, 481898704.0472211, 1e-6);
546s  assert (acov, avar_out, 1e-3);
546s ***** test
546s  x = 1:50;
546s  [nlogL, acov] = evlike ([21, 15], x);
546s  avar_out = [11.73913876598908, -5.9546128523121216; ...
546s              -5.954612852312121, 3.708060045170236];
546s  assert (nlogL, 223.7612479380652, 1e-13);
546s  assert (acov, avar_out, 1e-14);
546s ***** error<evlike: function called with too few input arguments.> evlike ([12, 15])
546s ***** error<evlike: wrong parameters length.> evlike ([12, 15, 3], [1:50])
546s ***** error<evlike: X must be a vector.> evlike ([12, 3], ones (10, 2))
546s ***** error<evlike: X and CENSOR vectors mismatch.> ...
546s  evlike ([12, 15], [1:50], [1, 2, 3])
546s ***** error<evlike: X and FREQ vectors mismatch.> ...
546s  evlike ([12, 15], [1:50], [], [1, 2, 3])
546s 8 tests, 8 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/unifit.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/unifit.m
546s ***** demo
546s  ## Sample 2 populations from different continuous uniform distibutions
546s  rand ("seed", 5);    # for reproducibility
546s  r1 = unifrnd (2, 5, 2000, 1);
546s  rand ("seed", 6);    # for reproducibility
546s  r2 = unifrnd (3, 9, 2000, 1);
546s  r = [r1, r2];
546s 
546s  ## Plot them normalized and fix their colors
546s  hist (r, 0:0.5:10, 2);
546s  h = findobj (gca, "Type", "patch");
546s  set (h(1), "facecolor", "c");
546s  set (h(2), "facecolor", "g");
546s  hold on
546s 
546s  ## Estimate their probability of success
546s  a_bA = unifit (r(:,1));
546s  a_bB = unifit (r(:,2));
546s 
546s  ## Plot their estimated PDFs
546s  x = [0:10];
546s  y = unifpdf (x, a_bA(1), a_bA(2));
546s  plot (x, y, "-pg");
546s  y = unifpdf (x, a_bB(1), a_bB(2));
546s  plot (x, y, "-sc");
546s  xlim ([1, 10])
546s  ylim ([0, 0.5])
546s  legend ({"Normalized HIST of sample 1 with a=2 and b=5", ...
546s           "Normalized HIST of sample 2 with a=3 and b=9", ...
546s           sprintf("PDF for sample 1 with estimated a=%0.2f and b=%0.2f", ...
546s                   a_bA(1), a_bA(2)), ...
546s           sprintf("PDF for sample 2 with estimated a=%0.2f and b=%0.2f", ...
546s                   a_bB(1), a_bB(2))})
546s  title ("Two population samples from different continuous uniform distibutions")
546s  hold off
546s ***** test
546s  x = 0:5;
546s  [paramhat, paramci] = unifit (x);
546s  assert (paramhat, [0, 5]);
546s  assert (paramci, [-3.2377, 8.2377; 0, 5], 1e-4);
546s ***** test
546s  x = 0:5;
546s  [paramhat, paramci] = unifit (x, [], [1 1 1 1 1 1]);
546s  assert (paramhat, [0, 5]);
546s  assert (paramci, [-3.2377, 8.2377; 0, 5], 1e-4);
546s ***** assert (unifit ([1 1 2 3]), unifit ([1 2 3], [] ,[2 1 1]))
546s ***** error<unifit: function called with too few input arguments.> unifit ()
546s ***** error<unifit: X cannot have negative values.> unifit (-1, [1 2 3 3])
546s ***** error<unifit: wrong value for ALPHA.> unifit (1, 0)
546s ***** error<unifit: wrong value for ALPHA.> unifit (1, 1.2)
546s ***** error<unifit: wrong value for ALPHA.> unifit (1, [0.02 0.05])
546s ***** error<unifit: X and FREQ vector mismatch.> ...
546s  unifit ([1.5, 0.2], [], [0, 0, 0, 0, 0])
546s ***** error<unifit: FREQ cannot have negative values.> ...
546s  unifit ([1.5, 0.2], [], [1, -1])
546s ***** error<unifit: X and FREQ vector mismatch.> ...
546s  unifit ([1.5, 0.2], [], [1, 1, 1])
546s 11 tests, 11 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/rayllike.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/rayllike.m
546s ***** test
546s  x = [1 3 2 4 5 4 3 4];
546s  [nlogL, acov] = rayllike (3.25, x);
546s  assert (nlogL, 14.7442, 1e-4)
546s ***** test
546s  x = [1 2 3 4 5];
546s  f = [1 1 2 3 1];
546s  [nlogL, acov] = rayllike (3.25, x, [], f);
546s  assert (nlogL, 14.7442, 1e-4)
546s ***** test
546s  x = [1 2 3 4 5 6];
546s  f = [1 1 2 3 1 0];
546s  [nlogL, acov] = rayllike (3.25, x, [], f);
546s  assert (nlogL, 14.7442, 1e-4)
546s ***** test
546s  x = [1 2 3 4 5 6];
546s  c = [0 0 0 0 0 1];
546s  f = [1 1 2 3 1 0];
546s  [nlogL, acov] = rayllike (3.25, x, c, f);
546s  assert (nlogL, 14.7442, 1e-4)
546s ***** error<rayllike: function called with too few input arguments.> rayllike (1)
546s ***** error<rayllike: SIGMA must be a positive scalar.> rayllike ([1 2 3], [1 2])
546s ***** error<rayllike: X must be a vector of non-negative values.> ...
546s  rayllike (3.25, ones (10, 2))
546s ***** error<rayllike: X must be a vector of non-negative values.> ...
546s  rayllike (3.25, [1 2 3 -4 5])
546s ***** error<rayllike: X and CENSOR vectors mismatch.> ...
546s  rayllike (3.25, [1, 2, 3, 4, 5], [1 1 0]);
546s ***** error<rayllike: X and CENSOR vectors mismatch.> ...
546s  rayllike (3.25, [1, 2, 3, 4, 5], [1 1 0 1 1]');
546s ***** error<rayllike: X and FREQ vectors mismatch.> ...
546s  rayllike (3.25, [1, 2, 3, 4, 5], zeros (1,5), [1 1 0]);
546s ***** error<rayllike: X and FREQ vectors mismatch.> ...
546s  rayllike (3.25, [1, 2, 3, 4, 5], [], [1 1 0 1 1]');
546s ***** error<rayllike: FREQ must not contain negative values.> ...
546s  rayllike (3.25, ones (1, 8), [], [1 1 1 1 1 1 1 -1])
546s 13 tests, 13 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/expfit.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/expfit.m
546s ***** demo
546s  ## Sample 3 populations from 3 different exponential distibutions
546s  rande ("seed", 1);   # for reproducibility
546s  r1 = exprnd (2, 4000, 1);
546s  rande ("seed", 2);   # for reproducibility
546s  r2 = exprnd (5, 4000, 1);
546s  rande ("seed", 3);   # for reproducibility
546s  r3 = exprnd (12, 4000, 1);
546s  r = [r1, r2, r3];
546s 
546s  ## Plot them normalized and fix their colors
546s  hist (r, 48, 0.52);
546s  h = findobj (gca, "Type", "patch");
546s  set (h(1), "facecolor", "c");
546s  set (h(2), "facecolor", "g");
546s  set (h(3), "facecolor", "r");
546s  hold on
546s 
546s  ## Estimate their mu parameter
546s  muhat = expfit (r);
546s 
546s  ## Plot their estimated PDFs
546s  x = [0:max(r(:))];
546s  y = exppdf (x, muhat(1));
546s  plot (x, y, "-pr");
546s  y = exppdf (x, muhat(2));
546s  plot (x, y, "-sg");
546s  y = exppdf (x, muhat(3));
546s  plot (x, y, "-^c");
546s  ylim ([0, 0.6])
546s  xlim ([0, 40])
546s  legend ({"Normalized HIST of sample 1 with μ=2", ...
546s           "Normalized HIST of sample 2 with μ=5", ...
546s           "Normalized HIST of sample 3 with μ=12", ...
546s           sprintf("PDF for sample 1 with estimated μ=%0.2f", muhat(1)), ...
546s           sprintf("PDF for sample 2 with estimated μ=%0.2f", muhat(2)), ...
546s           sprintf("PDF for sample 3 with estimated μ=%0.2f", muhat(3))})
546s  title ("Three population samples from different exponential distibutions")
546s  hold off
546s ***** assert (expfit (1), 1)
546s ***** assert (expfit (1:3), 2)
546s ***** assert (expfit ([1:3]'), 2)
546s ***** assert (expfit (1:3, []), 2)
546s ***** assert (expfit (1:3, [], [], []), 2)
546s ***** assert (expfit (magic (3)), [5 5 5])
546s ***** assert (expfit (cat (3, magic (3), 2*magic (3))), cat (3,[5 5 5], [10 10 10]))
546s ***** assert (expfit (1:3, 0.1, [0 0 0], [1 1 1]), 2)
546s ***** assert (expfit ([1:3]', 0.1, [0 0 0]', [1 1 1]'), 2)
546s ***** assert (expfit (1:3, 0.1, [0 0 0]', [1 1 1]'), 2)
546s ***** assert (expfit (1:3, 0.1, [1 0 0], [1 1 1]), 3)
546s ***** assert (expfit (1:3, 0.1, [0 0 0], [4 1 1]), 1.5)
546s ***** assert (expfit (1:3, 0.1, [1 0 0], [4 1 1]), 4.5)
546s ***** assert (expfit (1:3, 0.1, [1 0 1], [4 1 1]), 9)
546s ***** assert (expfit (1:3, 0.1, [], [-1 1 1]), 4)
546s ***** assert (expfit (1:3, 0.1, [], [0.5 1 1]), 2.2)
546s ***** assert (expfit (1:3, 0.1, [1 1 1]), NaN)
546s ***** assert (expfit (1:3, 0.1, [], [0 0 0]), NaN)
546s ***** assert (expfit (reshape (1:9, [3 3])), [2 5 8])
546s ***** assert (expfit (reshape (1:9, [3 3]), [], eye(3)), [3 7.5 12])
546s ***** assert (expfit (reshape (1:9, [3 3]), [], 2*eye(3)), [3 7.5 12])
546s ***** assert (expfit (reshape (1:9, [3 3]), [], [], [2 2 2; 1 1 1; 1 1 1]), ...
546s  [1.75 4.75 7.75])
546s ***** assert (expfit (reshape (1:9, [3 3]), [], [], [2 2 2; 1 1 1; 1 1 1]), ...
546s  [1.75 4.75 7.75])
546s ***** assert (expfit (reshape (1:9, [3 3]), [], eye(3), [2 2 2; 1 1 1; 1 1 1]), ...
546s  [3.5 19/3 31/3])
546s ***** assert ([~,muci] = expfit (1:3, 0), [0; Inf])
546s ***** assert ([~,muci] = expfit (1:3, 2), [Inf; 0])
546s ***** assert ([~,muci] = expfit (1:3, 0.1, [1 1 1]), [NaN; NaN])
546s ***** assert ([~,muci] = expfit (1:3, 0.1, [], [0 0 0]), [NaN; NaN])
546s ***** assert ([~,muci] = expfit (1:3, -1), [NaN; NaN])
546s ***** assert ([~,muci] = expfit (1:3, 5), [NaN; NaN])
546s ***** assert ([~,muci] = expfit (1:3), [0.830485728373393; 9.698190330474096], ...
546s              1000*eps)
546s ***** assert ([~,muci] = expfit (1:3, 0.1), ...
546s                           [0.953017262058213; 7.337731146400207], 1000*eps)
546s ***** assert ([~,muci] = expfit ([1:3;2:4]), ...
546s              [0.538440777613095, 0.897401296021825, 1.256361814430554; ...
546s              12.385982973214016, 20.643304955356694, 28.900626937499371], ...
546s              1000*eps)
546s ***** assert ([~,muci] = expfit ([1:3;2:4], [], [1 1 1; 0 0 0]), ...
546s              100*[0.008132550920455, 0.013554251534091, 0.018975952147727; ...
546s              1.184936706156216, 1.974894510260360, 2.764852314364504], ...
546s              1000*eps)
546s ***** assert ([~,muci] = expfit ([1:3;2:4], [], [], [3 3 3; 1 1 1]), ...
546s              [0.570302756652583, 1.026544961974649, 1.482787167296715; ...
546s              4.587722594914109, 8.257900670845396, 11.928078746776684], ...
546s              1000*eps)
546s ***** assert ([~,muci] = expfit ([1:3;2:4], [], [0 0 0; 1 1 1], [3 3 3; 1 1 1]), ...
546s              [0.692071440311161, 1.245728592560089, 1.799385744809018; ...
546s              8.081825275395081, 14.547285495711145, 21.012745716027212], ...
546s              1000*eps)
546s ***** test
546s  x = reshape (1:8, [4 2]);
546s  x(4) = NaN;
546s  [muhat,muci] = expfit (x);
546s  assert ({muhat, muci}, {[NaN, 6.5], ...
546s          [NaN, 2.965574334593430;NaN, 23.856157493553368]}, 1000*eps);
546s ***** test
546s  x = magic (3);
546s  censor = [0 1 0; 0 1 0; 0 1 0];
546s  freq = [1 1 0; 1 1 0; 1 1 0];
546s  [muhat,muci] = expfit (x, [], censor, freq);
546s  assert ({muhat, muci}, {[5 NaN NaN], ...
546s                  [[2.076214320933482; 24.245475826185242],NaN(2)]}, 1000*eps);
546s ***** error expfit ()
546s ***** error expfit (1,2,3,4,5)
546s ***** error [a b censor] = expfit (1)
546s ***** error <ALPHA must be a scalar quantity> expfit (1, [1 2])
546s ***** error <X cannot be negative> expfit ([-1 2 3 4 5])
546s ***** error <CENSOR must be a numeric or logical array> expfit ([1:5], [], "test")
546s ***** error <FREQ must be a numeric or logical array> expfit ([1:5], [], [], "test")
546s ***** error <X and CENSOR vectors mismatch.> expfit ([1:5], [], [0 0 0 0])
546s ***** error <X and FREQ vectors mismatch.> expfit ([1:5], [], [], [1 1 1 1])
546s 47 tests, 47 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/betafit.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/betafit.m
546s ***** demo
546s  ## Sample 2 populations from different Beta distibutions
546s  randg ("seed", 1);   # for reproducibility
546s  r1 = betarnd (2, 5, 500, 1);
546s  randg ("seed", 2);   # for reproducibility
546s  r2 = betarnd (2, 2, 500, 1);
546s  r = [r1, r2];
546s 
546s  ## Plot them normalized and fix their colors
546s  hist (r, 12, 15);
546s  h = findobj (gca, "Type", "patch");
546s  set (h(1), "facecolor", "c");
546s  set (h(2), "facecolor", "g");
546s  hold on
546s 
546s  ## Estimate their shape parameters
546s  a_b_A = betafit (r(:,1));
546s  a_b_B = betafit (r(:,2));
546s 
546s  ## Plot their estimated PDFs
546s  x = [min(r(:)):0.01:max(r(:))];
546s  y = betapdf (x, a_b_A(1), a_b_A(2));
546s  plot (x, y, "-pr");
546s  y = betapdf (x, a_b_B(1), a_b_B(2));
546s  plot (x, y, "-sg");
546s  ylim ([0, 4])
546s  legend ({"Normalized HIST of sample 1 with α=2 and β=5", ...
546s           "Normalized HIST of sample 2 with α=2 and β=2", ...
546s           sprintf("PDF for sample 1 with estimated α=%0.2f and β=%0.2f", ...
546s                   a_b_A(1), a_b_A(2)), ...
546s           sprintf("PDF for sample 2 with estimated α=%0.2f and β=%0.2f", ...
546s                   a_b_B(1), a_b_B(2))})
546s  title ("Two population samples from different Beta distibutions")
546s  hold off
546s ***** test
546s  x = 0.01:0.02:0.99;
546s  [paramhat, paramci] = betafit (x);
546s  paramhat_out = [1.0199, 1.0199];
546s  paramci_out = [0.6947, 0.6947; 1.4974, 1.4974];
546s  assert (paramhat, paramhat_out, 1e-4);
546s  assert (paramci, paramci_out, 1e-4);
546s ***** test
546s  x = 0.01:0.02:0.99;
546s  [paramhat, paramci] = betafit (x, 0.01);
546s  paramci_out = [0.6157, 0.6157; 1.6895, 1.6895];
546s  assert (paramci, paramci_out, 1e-4);
546s ***** test
546s  x = 0.00:0.02:1;
546s  [paramhat, paramci] = betafit (x);
546s  paramhat_out = [0.0875, 0.1913];
546s  paramci_out = [0.0822, 0.1490; 0.0931, 0.2455];
546s  assert (paramhat, paramhat_out, 1e-4);
546s  assert (paramci, paramci_out, 1e-4);
546s ***** error<betafit: X must be a vector of real values.> betafit ([0.2, 0.5+i]);
546s ***** error<betafit: X must be a vector of real values.> betafit (ones (2,2) * 0.5);
546s ***** error<betafit: X must be in the range> betafit ([0.5, 1.2]);
546s ***** error<betafit: X must contain distinct values.> betafit ([0.1, 0.1]);
546s ***** error<betafit: wrong value for ALPHA.> betafit ([0.01:0.1:0.99], 1.2);
546s ***** error<betafit: X and FREQ vectors mismatch.> ...
546s  betafit ([0.01:0.01:0.05], 0.05, [1, 2, 3, 2]);
546s ***** error<betafit: FREQ must not contain negative values.> ...
546s  betafit ([0.01:0.01:0.05], 0.05, [1, 2, 3, 2, -1]);
546s ***** error<betafit: FREQ must contain integer values.> ...
546s  betafit ([0.01:0.01:0.05], 0.05, [1, 2, 3, 2, 1.5]);
546s ***** error<betafit: 'options' argument must be a structure> ...
546s  betafit ([0.01:0.01:0.05], 0.05, struct ("option", 234));
546s ***** error<betafit: 'options' argument must be a structure> ...
546s  betafit ([0.01:0.01:0.05], 0.05, ones (1,5), struct ("option", 234));
546s 13 tests, 13 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/poisslike.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/poisslike.m
546s ***** test
546s  x = [1 3 2 4 5 4 3 4];
546s  [nlogL, avar] = poisslike (3.25, x);
546s  assert (nlogL, 13.9533, 1e-4)
546s ***** test
546s  x = [1 2 3 4 5];
546s  f = [1 1 2 3 1];
546s  [nlogL, avar] = poisslike (3.25, x, f);
546s  assert (nlogL, 13.9533, 1e-4)
546s ***** error<poisslike: function called with too few input arguments.> poisslike (1)
546s ***** error<poisslike: LAMBDA must be a positive scalar.> poisslike ([1 2 3], [1 2])
546s ***** error<poisslike: X must be a vector of non-negative values.> ...
546s  poisslike (3.25, ones (10, 2))
546s ***** error<poisslike: X must be a vector of non-negative values.> ...
546s  poisslike (3.25, [1 2 3 -4 5])
546s ***** error<poisslike: X and FREQ vectors mismatch.> ...
546s  poisslike (3.25, ones (10, 1), ones (8,1))
546s ***** error<poisslike: FREQ must not contain negative values.> ...
546s  poisslike (3.25, ones (1, 8), [1 1 1 1 1 1 1 -1])
546s 8 tests, 8 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/geofit.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/geofit.m
546s ***** demo
546s  ## Sample 2 populations from different geometric distibutions
546s  rande ("seed", 1);    # for reproducibility
546s  r1 = geornd (0.15, 1000, 1);
546s  rande ("seed", 2);    # for reproducibility
546s  r2 = geornd (0.5, 1000, 1);
546s  r = [r1, r2];
546s 
546s  ## Plot them normalized and fix their colors
546s  hist (r, 0:0.5:20.5, 1);
546s  h = findobj (gca, "Type", "patch");
546s  set (h(1), "facecolor", "c");
546s  set (h(2), "facecolor", "g");
546s  hold on
546s 
546s  ## Estimate their probability of success
546s  pshatA = geofit (r(:,1));
546s  pshatB = geofit (r(:,2));
546s 
546s  ## Plot their estimated PDFs
546s  x = [0:15];
546s  y = geopdf (x, pshatA);
546s  plot (x, y, "-pg");
546s  y = geopdf (x, pshatB);
546s  plot (x, y, "-sc");
546s  xlim ([0, 15])
546s  ylim ([0, 0.6])
546s  legend ({"Normalized HIST of sample 1 with ps=0.15", ...
546s           "Normalized HIST of sample 2 with ps=0.50", ...
546s           sprintf("PDF for sample 1 with estimated ps=%0.2f", ...
546s                   mean (pshatA)), ...
546s           sprintf("PDF for sample 2 with estimated ps=%0.2f", ...
546s                   mean (pshatB))})
546s  title ("Two population samples from different geometric distibutions")
546s  hold off
546s ***** test
546s  x = 0:5;
546s  [pshat, psci] = geofit (x);
546s  assert (pshat, 0.2857, 1e-4);
546s  assert (psci, [0.092499; 0.478929], 1e-5);
546s ***** test
546s  x = 0:5;
546s  [pshat, psci] = geofit (x, [], [1 1 1 1 1 1]);
546s  assert (pshat, 0.2857, 1e-4);
546s  assert (psci, [0.092499; 0.478929], 1e-5);
546s ***** assert (geofit ([1 1 2 3]), geofit ([1 2 3], [] ,[2 1 1]))
546s ***** error<geofit: function called with too few input arguments.> geofit ()
546s ***** error<geofit: X cannot have negative values.> geofit (-1, [1 2 3 3])
546s ***** error<geofit: wrong value for ALPHA.> geofit (1, 0)
546s ***** error<geofit: wrong value for ALPHA.> geofit (1, 1.2)
546s ***** error<geofit: wrong value for ALPHA.> geofit (1, [0.02 0.05])
546s ***** error<geofit: X and FREQ vector mismatch.> ...
546s  geofit ([1.5, 0.2], [], [0, 0, 0, 0, 0])
546s ***** error<geofit: X and FREQ vector mismatch.> ...
546s  geofit ([1.5, 0.2], [], [1, 1, 1])
546s 10 tests, 10 passed, 0 known failure, 0 skipped
546s [inst/dist_fit/tlsfit.m]
546s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/tlsfit.m
546s ***** demo
546s  ## Sample 3 populations from 3 different location-scale T distibutions
546s  randn ("seed", 1);    # for reproducibility
546s  randg ("seed", 2);    # for reproducibility
546s  r1 = tlsrnd (-4, 3, 1, 2000, 1);
546s  randn ("seed", 3);    # for reproducibility
546s  randg ("seed", 4);    # for reproducibility
546s  r2 = tlsrnd (0, 3, 1, 2000, 1);
546s  randn ("seed", 5);    # for reproducibility
546s  randg ("seed", 6);    # for reproducibility
546s  r3 = tlsrnd (5, 5, 4, 2000, 1);
546s  r = [r1, r2, r3];
546s 
546s  ## Plot them normalized and fix their colors
546s  hist (r, [-21:21], [1, 1, 1]);
546s  h = findobj (gca, "Type", "patch");
546s  set (h(1), "facecolor", "c");
546s  set (h(2), "facecolor", "g");
546s  set (h(3), "facecolor", "r");
546s  ylim ([0, 0.25]);
546s  xlim ([-20, 20]);
546s  hold on
546s 
546s  ## Estimate their lambda parameter
546s  mu_sigma_nuA = tlsfit (r(:,1));
546s  mu_sigma_nuB = tlsfit (r(:,2));
546s  mu_sigma_nuC = tlsfit (r(:,3));
546s 
546s  ## Plot their estimated PDFs
546s  x = [-20:0.1:20];
546s  y = tlspdf (x, mu_sigma_nuA(1), mu_sigma_nuA(2), mu_sigma_nuA(3));
546s  plot (x, y, "-pr");
546s  y = tlspdf (x, mu_sigma_nuB(1), mu_sigma_nuB(2), mu_sigma_nuB(3));
546s  plot (x, y, "-sg");
546s  y = tlspdf (x, mu_sigma_nuC(1), mu_sigma_nuC(2), mu_sigma_nuC(3));
546s  plot (x, y, "-^c");
546s  hold off
546s  legend ({"Normalized HIST of sample 1 with μ=0, σ=2 and nu=1", ...
546s           "Normalized HIST of sample 2 with μ=5, σ=2 and nu=1", ...
546s           "Normalized HIST of sample 3 with μ=3, σ=4 and nu=3", ...
546s           sprintf("PDF for sample 1 with estimated μ=%0.2f, σ=%0.2f, and ν=%0.2f", ...
546s                   mu_sigma_nuA(1), mu_sigma_nuA(2), mu_sigma_nuA(3)), ...
546s           sprintf("PDF for sample 2 with estimated μ=%0.2f, σ=%0.2f, and ν=%0.2f", ...
546s                   mu_sigma_nuB(1), mu_sigma_nuB(2), mu_sigma_nuB(3)), ...
546s           sprintf("PDF for sample 3 with estimated μ=%0.2f, σ=%0.2f, and ν=%0.2f", ...
546s                   mu_sigma_nuC(1), mu_sigma_nuC(2), mu_sigma_nuC(3))})
546s  title ("Three population samples from different location-scale T distibutions")
546s  hold off
546s ***** test
546s  x = [-1.2352, -0.2741, 0.1726, 7.4356, 1.0392, 16.4165];
546s  [paramhat, paramci] = tlsfit (x);
546s  paramhat_out = [0.035893, 0.862711, 0.649261];
546s  paramci_out = [-0.949034, 0.154655, 0.181080; 1.02082, 4.812444, 2.327914];
546s  assert (paramhat, paramhat_out, 1e-6);
546s  assert (paramci, paramci_out, 1e-5);
546s ***** test
546s  x = [-1.2352, -0.2741, 0.1726, 7.4356, 1.0392, 16.4165];
546s  [paramhat, paramci] = tlsfit (x, 0.01);
546s  paramci_out = [-1.2585, 0.0901, 0.1212; 1.3303, 8.2591, 3.4771];
546s  assert (paramci, paramci_out, 1e-4);
547s ***** error<tlsfit: X must be a vector.> tlsfit (ones (2,5));
547s ***** error<tlsfit: wrong value for ALPHA.> tlsfit ([1, 2, 3, 4, 5], 1.2);
547s ***** error<tlsfit: wrong value for ALPHA.> tlsfit ([1, 2, 3, 4, 5], 0);
547s ***** error<tlsfit: wrong value for ALPHA.> tlsfit ([1, 2, 3, 4, 5], "alpha");
547s ***** error<tlsfit: X and CENSOR vectors mismatch.> ...
547s  tlsfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
547s ***** error<tlsfit: X and CENSOR vectors mismatch.> ...
547s  tlsfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
547s ***** error<tlsfit: X and FREQ vectors mismatch.> ...
547s  tlsfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
547s ***** error<tlsfit: X and FREQ vectors mismatch.> ...
547s  tlsfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
547s ***** error<tlsfit: FREQ cannot have negative values.> ...
547s  tlsfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 -1]);
547s ***** error<tlsfit: 'options' 5th argument must be a structure> ...
547s  tlsfit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
547s 12 tests, 12 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/bisafit.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/bisafit.m
547s ***** demo
547s  ## Sample 3 populations from different Birnbaum-Saunders distibutions
547s  rand ("seed", 5);    # for reproducibility
547s  r1 = bisarnd (1, 0.5, 2000, 1);
547s  rand ("seed", 2);    # for reproducibility
547s  r2 = bisarnd (2, 0.3, 2000, 1);
547s  rand ("seed", 7);    # for reproducibility
547s  r3 = bisarnd (4, 0.5, 2000, 1);
547s  r = [r1, r2, r3];
547s 
547s  ## Plot them normalized and fix their colors
547s  hist (r, 80, 4.2);
547s  h = findobj (gca, "Type", "patch");
547s  set (h(1), "facecolor", "c");
547s  set (h(2), "facecolor", "g");
547s  set (h(3), "facecolor", "r");
547s  ylim ([0, 1.1]);
547s  xlim ([0, 8]);
547s  hold on
547s 
547s  ## Estimate their α and β parameters
547s  beta_gammaA = bisafit (r(:,1));
547s  beta_gammaB = bisafit (r(:,2));
547s  beta_gammaC = bisafit (r(:,3));
547s 
547s  ## Plot their estimated PDFs
547s  x = [0:0.1:8];
547s  y = bisapdf (x, beta_gammaA(1), beta_gammaA(2));
547s  plot (x, y, "-pr");
547s  y = bisapdf (x, beta_gammaB(1), beta_gammaB(2));
547s  plot (x, y, "-sg");
547s  y = bisapdf (x, beta_gammaC(1), beta_gammaC(2));
547s  plot (x, y, "-^c");
547s  hold off
547s  legend ({"Normalized HIST of sample 1 with β=1 and γ=0.5", ...
547s           "Normalized HIST of sample 2 with β=2 and γ=0.3", ...
547s           "Normalized HIST of sample 3 with β=4 and γ=0.5", ...
547s           sprintf("PDF for sample 1 with estimated β=%0.2f and γ=%0.2f", ...
547s                   beta_gammaA(1), beta_gammaA(2)), ...
547s           sprintf("PDF for sample 2 with estimated β=%0.2f and γ=%0.2f", ...
547s                   beta_gammaB(1), beta_gammaB(2)), ...
547s           sprintf("PDF for sample 3 with estimated β=%0.2f and γ=%0.2f", ...
547s                   beta_gammaC(1), beta_gammaC(2))})
547s  title ("Three population samples from different Birnbaum-Saunders distibutions")
547s  hold off
547s ***** test
547s  paramhat = bisafit ([1:50]);
547s  paramhat_out = [16.2649, 1.0156];
547s  assert (paramhat, paramhat_out, 1e-4);
547s ***** test
547s  paramhat = bisafit ([1:5]);
547s  paramhat_out = [2.5585, 0.5839];
547s  assert (paramhat, paramhat_out, 1e-4);
547s ***** error<bisafit: X must be a vector.> bisafit (ones (2,5));
547s ***** error<bisafit: X must contain only positive values.> bisafit ([-1 2 3 4]);
547s ***** error<bisafit: wrong value for ALPHA.> bisafit ([1, 2, 3, 4, 5], 1.2);
547s ***** error<bisafit: wrong value for ALPHA.> bisafit ([1, 2, 3, 4, 5], 0);
547s ***** error<bisafit: wrong value for ALPHA.> bisafit ([1, 2, 3, 4, 5], "alpha");
547s ***** error<bisafit: X and CENSOR vectors mismatch.> ...
547s  bisafit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
547s ***** error<bisafit: X and CENSOR vectors mismatch.> ...
547s  bisafit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
547s ***** error<bisafit: X and FREQ vectors mismatch.> ...
547s  bisafit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
547s ***** error<bisafit: X and FREQ vectors mismatch.> ...
547s  bisafit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
547s ***** error<bisafit: 'options' 5th argument must be a structure> ...
547s  bisafit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
547s 12 tests, 12 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/betalike.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/betalike.m
547s ***** test
547s  x = 0.01:0.02:0.99;
547s  [nlogL, avar] = betalike ([2.3, 1.2], x);
547s  avar_out = [0.03691678, 0.02803056; 0.02803056, 0.03965629];
547s  assert (nlogL, 17.873477715879040, 3e-14);
547s  assert (avar, avar_out, 1e-7);
547s ***** test
547s  x = 0.01:0.02:0.99;
547s  [nlogL, avar] = betalike ([1, 4], x);
547s  avar_out = [0.02793282, 0.02717274; 0.02717274, 0.03993361];
547s  assert (nlogL, 79.648061114839550, 1e-13);
547s  assert (avar, avar_out, 1e-7);
547s ***** test
547s  x = 0.00:0.02:1;
547s  [nlogL, avar] = betalike ([1, 4], x);
547s  avar_out = [0.00000801564765, 0.00000131397245; ...
547s              0.00000131397245, 0.00070827639442];
547s  assert (nlogL, 573.2008434477486, 1e-10);
547s  assert (avar, avar_out, 1e-14);
547s ***** error<betalike: function called with too few input arguments.> ...
547s  betalike ([12, 15]);
547s ***** error<betalike: wrong parameters length.> betalike ([12, 15, 3], [1:50]);
547s ***** error<betalike: X and FREQ vectors mismatch.> ...
547s  betalike ([12, 15], ones (10, 1), ones (8,1))
547s ***** error<betalike: FREQ must not contain negative values.> ...
547s  betalike ([12, 15], ones (1, 8), [1 1 1 1 1 1 1 -1])
547s ***** error<betalike: FREQ must contain integer values.> ...
547s  betalike ([12, 15], ones (1, 8), [1 1 1 1 1 1 1 1.5])
547s 8 tests, 8 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/normlike.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/normlike.m
547s ***** error<normlike: too few input arguments.> normlike ([12, 15]);
547s ***** error<normlike: X must be a vector.> normlike ([12, 15], ones (2));
547s ***** error<normlike: PARAMS must be a two-element vector.> ...
547s  normlike ([12, 15, 3], [1:50]);
547s ***** error<normlike: X and CENSOR vectors mismatch.> ...
547s  normlike ([12, 15], [1:50], [1, 2, 3]);
547s ***** error<normlike: X and FREQ vectors mismatch.> ...
547s  normlike ([12, 15], [1:50], [], [1, 2, 3]);
547s ***** error<normlike: FREQ must not contain negative values.> ...
547s  normlike ([12, 15], [1:5], [], [1, 2, 3, 2, -1]);
547s ***** test
547s  x = 1:50;
547s  [nlogL, avar] = normlike ([2.3, 1.2], x);
547s  avar_out = [7.5767e-01, -1.8850e-02; -1.8850e-02, 4.8750e-04];
547s  assert (nlogL, 13014.95883783327, 1e-10);
547s  assert (avar, avar_out, 1e-4);
547s ***** test
547s  x = 1:50;
547s  [nlogL, avar] = normlike ([2.3, 1.2], x * 0.5);
547s  avar_out = [3.0501e-01, -1.5859e-02; -1.5859e-02, 9.1057e-04];
547s  assert (nlogL, 2854.802587833265, 1e-10);
547s  assert (avar, avar_out, 1e-4);
547s ***** test
547s  x = 1:50;
547s  [nlogL, avar] = normlike ([21, 15], x);
547s  avar_out = [5.460474308300396, -1.600790513833993; ...
547s              -1.600790513833993, 2.667984189723321];
547s  assert (nlogL, 206.738325604233, 1e-12);
547s  assert (avar, avar_out, 1e-14);
547s ***** test
547s  x = 1:50;
547s  censor = ones (1, 50);
547s  censor([2, 4, 6, 8, 12, 14]) = 0;
547s  [nlogL, avar] = normlike ([2.3, 1.2], x, censor);
547s  avar_out = [3.0501e-01, -1.5859e-02; -1.5859e-02, 9.1057e-04];
547s  assert (nlogL, Inf);
547s  assert (avar, [NaN, NaN; NaN, NaN]);
547s ***** test
547s  x = 1:50;
547s  censor = ones (1, 50);
547s  censor([2, 4, 6, 8, 12, 14]) = 0;
547s  [nlogL, avar] = normlike ([21, 15], x, censor);
547s  avar_out = [24.4824488866131, -10.6649544179636; ...
547s              -10.6649544179636, 6.22827849965737];
547s  assert (nlogL, 86.9254371829733, 1e-12);
547s  assert (avar, avar_out, 8e-14);
547s 11 tests, 11 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/ricefit.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/ricefit.m
547s ***** demo
547s  ## Sample 3 populations from different Gamma distibutions
547s  randg ("seed", 5);    # for reproducibility
547s  randp ("seed", 6);
547s  r1 = ricernd (1, 2, 3000, 1);
547s  randg ("seed", 2);    # for reproducibility
547s  randp ("seed", 8);
547s  r2 = ricernd (2, 4, 3000, 1);
547s  randg ("seed", 7);    # for reproducibility
547s  randp ("seed", 9);
547s  r3 = ricernd (7.5, 1, 3000, 1);
547s  r = [r1, r2, r3];
547s 
547s  ## Plot them normalized and fix their colors
547s  hist (r, 75, 4);
547s  h = findobj (gca, "Type", "patch");
547s  set (h(1), "facecolor", "c");
547s  set (h(2), "facecolor", "g");
547s  set (h(3), "facecolor", "r");
547s  ylim ([0, 0.7]);
547s  xlim ([0, 12]);
547s  hold on
547s 
547s  ## Estimate their α and β parameters
547s  s_sigmaA = ricefit (r(:,1));
547s  s_sigmaB = ricefit (r(:,2));
547s  s_sigmaC = ricefit (r(:,3));
547s 
547s  ## Plot their estimated PDFs
547s  x = [0.01,0.1:0.2:18];
547s  y = ricepdf (x, s_sigmaA(1), s_sigmaA(2));
547s  plot (x, y, "-pr");
547s  y = ricepdf (x, s_sigmaB(1), s_sigmaB(2));
547s  plot (x, y, "-sg");
547s  y = ricepdf (x, s_sigmaC(1), s_sigmaC(2));
547s  plot (x, y, "-^c");
547s  hold off
547s  legend ({"Normalized HIST of sample 1 with s=1 and σ=2", ...
547s           "Normalized HIST of sample 2 with s=2 and σ=4", ...
547s           "Normalized HIST of sample 3 with s=7.5 and σ=1", ...
547s           sprintf("PDF for sample 1 with estimated s=%0.2f and σ=%0.2f", ...
547s                   s_sigmaA(1), s_sigmaA(2)), ...
547s           sprintf("PDF for sample 2 with estimated s=%0.2f and σ=%0.2f", ...
547s                   s_sigmaB(1), s_sigmaB(2)), ...
547s           sprintf("PDF for sample 3 with estimated s=%0.2f and σ=%0.2f", ...
547s                   s_sigmaC(1), s_sigmaC(2))})
547s  title ("Three population samples from different Rician distibutions")
547s  hold off
547s ***** test
547s  [paramhat, paramci] = ricefit ([1:50]);
547s  assert (paramhat, [15.3057, 17.6668], 1e-4);
547s  assert (paramci, [9.5468, 11.7802; 24.5383, 26.4952], 1e-4);
547s ***** test
547s  [paramhat, paramci] = ricefit ([1:50], 0.01);
547s  assert (paramhat, [15.3057, 17.6668], 1e-4);
547s  assert (paramci, [8.2309, 10.3717; 28.4615, 30.0934], 1e-4);
547s ***** test
547s  [paramhat, paramci] = ricefit ([1:5]);
547s  assert (paramhat, [2.3123, 1.6812], 1e-4);
547s  assert (paramci, [1.0819, 0.6376; 4.9424, 4.4331], 1e-4);
547s ***** test
547s  [paramhat, paramci] = ricefit ([1:5], 0.01);
547s  assert (paramhat, [2.3123, 1.6812], 1e-4);
547s  assert (paramci, [0.8521, 0.4702; 6.2747, 6.0120], 1e-4);
547s ***** test
547s  freq = [1 1 1 1 5];
547s  [paramhat, paramci] = ricefit ([1:5], [], [], freq);
547s  assert (paramhat, [3.5181, 1.5565], 1e-4);
547s  assert (paramci, [2.5893, 0.9049; 4.7801, 2.6772], 1e-4);
547s ***** test
547s  censor = [1 0 0 0 0];
547s  [paramhat, paramci] = ricefit ([1:5], [], censor);
547s  assert (paramhat, [3.2978, 1.1527], 1e-4);
547s  assert (paramci, [2.3192, 0.5476; 4.6895, 2.4261], 1e-4);
547s ***** assert (class (ricefit (single ([1:50]))), "single")
547s ***** error<ricefit: X must be a vector.> ricefit (ones (2))
547s ***** error<ricefit: wrong value for ALPHA.> ricefit ([1:50], 1)
547s ***** error<ricefit: wrong value for ALPHA.> ricefit ([1:50], -1)
547s ***** error<ricefit: wrong value for ALPHA.> ricefit ([1:50], {0.05})
547s ***** error<ricefit: wrong value for ALPHA.> ricefit ([1:50], "k")
547s ***** error<ricefit: wrong value for ALPHA.> ricefit ([1:50], i)
547s ***** error<ricefit: wrong value for ALPHA.> ricefit ([1:50], [0.01 0.02])
547s ***** error<ricefit: X and CENSOR vectors mismatch.> ricefit ([1:50], [], [1 1])
547s ***** error<ricefit: X and FREQ vectors mismatch.> ricefit ([1:50], [], [], [1 1])
547s ***** error<ricefit: FREQ cannot have negative values.> ...
547s  ricefit ([1:5], [], [], [1, 1, 2, 1, -1])
547s ***** error<ricefit: X must contain positive values.> ricefit ([1 2 3 -4])
547s ***** error<ricefit: X must contain positive values.> ricefit ([1 2 0], [], [1 0 0])
547s 19 tests, 19 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/logilike.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/logilike.m
547s ***** test
547s  nlogL = logilike ([25.5, 8.7725], [1:50]);
547s  assert (nlogL, 206.6769, 1e-4);
547s ***** test
547s  nlogL = logilike ([3, 0.8645], [1:5]);
547s  assert (nlogL, 9.0699, 1e-4);
547s ***** error<logilike: function called with too few input arguments.> logilike (3.25)
547s ***** error<logilike: X must be a vector.> logilike ([5, 0.2], ones (2))
547s ***** error<logilike: PARAMS must be a two-element vector.> ...
547s  logilike ([1, 0.2, 3], [1, 3, 5, 7])
547s ***** error<logilike: X and CENSOR vector mismatch.> ...
547s  logilike ([1.5, 0.2], [1:5], [0, 0, 0])
547s ***** error<logilike: X and FREQ vector mismatch.> ...
547s  logilike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
547s ***** error<logilike: X and FREQ vector mismatch.> ...
547s  logilike ([1.5, 0.2], [1:5], [], [1, 1, 1])
547s 8 tests, 8 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/invglike.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/invglike.m
547s ***** test
547s  nlogL = invglike ([25.5, 19.6973], [1:50]);
547s  assert (nlogL, 219.1516, 1e-4);
547s ***** test
547s  nlogL = invglike ([3, 8.1081], [1:5]);
547s  assert (nlogL, 9.0438, 1e-4);
547s ***** error<invglike: function called with too few input arguments.> invglike (3.25)
547s ***** error<invglike: X must be a vector.> invglike ([5, 0.2], ones (2))
547s ***** error<invglike: X must have positive values.> invglike ([5, 0.2], [-1, 3])
547s ***** error<invglike: PARAMS must be a two-element vector.> ...
547s  invglike ([1, 0.2, 3], [1, 3, 5, 7])
547s ***** error<invglike: X and CENSOR vector mismatch.> ...
547s  invglike ([1.5, 0.2], [1:5], [0, 0, 0])
547s ***** error<invglike: X and FREQ vector mismatch.> ...
547s  invglike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
547s ***** error<invglike: X and FREQ vector mismatch.> ...
547s  invglike ([1.5, 0.2], [1:5], [], [1, 1, 1])
547s 9 tests, 9 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/tlslike.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/tlslike.m
547s ***** test
547s  x = [-1.2352, -0.2741, 0.1726, 7.4356, 1.0392, 16.4165];
547s  [nlogL, acov] = tlslike ([0.035893, 0.862711, 0.649261], x);
547s  acov_out = [0.2525, 0.0670, 0.0288; ...
547s              0.0670, 0.5724, 0.1786; ...
547s              0.0288, 0.1786, 0.1789];
547s  assert (nlogL, 17.9979636579, 1e-10);
547s  assert (acov, acov_out, 1e-4);
547s ***** error<tlslike: too few input arguments.> tlslike ([12, 15, 1]);
547s ***** error<tlslike: wrong parameters length.> tlslike ([12, 15], [1:50]);
547s ***** error<tlslike: X must be a vector.> tlslike ([12, 3, 1], ones (10, 2));
547s ***** error<tlslike: X and CENSOR> tlslike ([12, 15, 1], [1:50], [1, 2, 3]);
547s ***** error<tlslike: X and FREQ> tlslike ([12, 15, 1], [1:50], [], [1, 2, 3]);
547s ***** error<tlslike: FREQ cannot> tlslike ([12, 15, 1], [1:3], [], [1, 2, -3]);
547s 7 tests, 7 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/explike.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/explike.m
547s ***** test
547s  x = 12;
547s  beta = 5;
547s  [L, V] = explike (beta, x);
547s  expected_L = 4.0094;
547s  expected_V = 6.5789;
547s  assert (L, expected_L, 0.001);
547s  assert (V, expected_V, 0.001);
547s ***** test
547s  x = 1:5;
547s  beta = 2;
547s  [L, V] = explike (beta, x);
547s  expected_L = 10.9657;
547s  expected_V = 0.4;
547s  assert (L, expected_L, 0.001);
547s  assert (V, expected_V, 0.001);
547s ***** error<explike: function called with too few input arguments.> explike ()
547s ***** error<explike: function called with too few input arguments.> explike (2)
547s ***** error<explike: MU must be a scalar.> explike ([12, 3], [1:50])
547s ***** error<explike: X must be a vector.> explike (3, ones (10, 2))
547s ***** error<explike: X and CENSOR vectors mismatch.> ...
547s  explike (3, [1:50], [1, 2, 3])
547s ***** error<explike: X and FREQ vectors mismatch.> ...
547s  explike (3, [1:50], [], [1, 2, 3])
547s 8 tests, 8 passed, 0 known failure, 0 skipped
547s [inst/dist_fit/nbinfit.m]
547s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/nbinfit.m
547s ***** demo
547s  ## Sample 2 populations from different negative binomial distibutions
547s  randp ("seed", 5); randg ("seed", 5);    # for reproducibility
547s  r1 = nbinrnd (2, 0.15, 5000, 1);
547s  randp ("seed", 8); randg ("seed", 8);    # for reproducibility
547s  r2 = nbinrnd (5, 0.2, 5000, 1);
547s  r = [r1, r2];
547s 
547s  ## Plot them normalized and fix their colors
547s  hist (r, [0:51], 1);
547s  h = findobj (gca, "Type", "patch");
547s  set (h(1), "facecolor", "c");
547s  set (h(2), "facecolor", "g");
547s  hold on
547s 
547s  ## Estimate their probability of success
547s  r_psA = nbinfit (r(:,1));
547s  r_psB = nbinfit (r(:,2));
547s 
547s  ## Plot their estimated PDFs
547s  x = [0:40];
547s  y = nbinpdf (x, r_psA(1), r_psA(2));
547s  plot (x, y, "-pg");
547s  x = [min(r(:,2)):max(r(:,2))];
547s  y = nbinpdf (x, r_psB(1), r_psB(2));
547s  plot (x, y, "-sc");
547s  ylim ([0, 0.1])
547s  xlim ([0, 50])
547s  legend ({"Normalized HIST of sample 1 with r=2 and ps=0.15", ...
547s           "Normalized HIST of sample 2 with r=5 and ps=0.2", ...
547s           sprintf("PDF for sample 1 with estimated r=%0.2f and ps=%0.2f", ...
547s                   r_psA(1), r_psA(2)), ...
547s           sprintf("PDF for sample 2 with estimated r=%0.2f and ps=%0.2f", ...
547s                   r_psB(1), r_psB(2))})
547s  title ("Two population samples from negative different binomial distibutions")
547s  hold off
547s ***** test
547s  [paramhat, paramci] = nbinfit ([1:50]);
547s  assert (paramhat, [2.420857, 0.086704], 1e-6);
547s  assert (paramci(:,1), [1.382702; 3.459012], 1e-6);
547s  assert (paramci(:,2), [0.049676; 0.123732], 1e-6);
547s ***** test
547s  [paramhat, paramci] = nbinfit ([1:20]);
547s  assert (paramhat, [3.588233, 0.254697], 1e-6);
547s  assert (paramci(:,1), [0.451693; 6.724774], 1e-6);
547s  assert (paramci(:,2), [0.081143; 0.428251], 1e-6);
547s ***** test
547s  [paramhat, paramci] = nbinfit ([1:10]);
547s  assert (paramhat, [8.8067, 0.6156], 1e-4);
547s  assert (paramci(:,1), [0; 30.7068], 1e-4);
547s  assert (paramci(:,2), [0.0217; 1], 1e-4);
547s ***** test
547s  [paramhat, paramci] = nbinfit ([1:10], 0.05, ones (1, 10));
547s  assert (paramhat, [8.8067, 0.6156], 1e-4);
547s  assert (paramci(:,1), [0; 30.7068], 1e-4);
547s  assert (paramci(:,2), [0.0217; 1], 1e-4);
547s ***** test
547s  [paramhat, paramci] = nbinfit ([1:11], 0.05, [ones(1, 10), 0]);
547s  assert (paramhat, [8.8067, 0.6156], 1e-4);
547s  assert (paramci(:,1), [0; 30.7068], 1e-4);
547s  assert (paramci(:,2), [0.0217; 1], 1e-4);
547s ***** error<nbinfit: X cannot have negative values.> nbinfit ([-1 2 3 3])
547s ***** error<nbinfit: X must be a vector.> nbinfit (ones (2))
547s ***** error<nbinfit: X must be a non-negative integer.> nbinfit ([1 2 1.2 3])
548s ***** error<nbinfit: wrong value for ALPHA.> nbinfit ([1 2 3], 0)
548s ***** error<nbinfit: wrong value for ALPHA.> nbinfit ([1 2 3], 1.2)
548s ***** error<nbinfit: wrong value for ALPHA.> nbinfit ([1 2 3], [0.02 0.05])
548s ***** error<nbinfit: X and FREQ vectors mismatch.> ...
548s  nbinfit ([1, 2, 3, 4, 5], 0.05, [1, 2, 3, 2]);
548s ***** error<nbinfit: FREQ must not contain negative values.> ...
548s  nbinfit ([1, 2, 3, 4, 5], 0.05, [1, 2, 3, 2, -1]);
548s ***** error<nbinfit: FREQ must contain integer values.> ...
548s  nbinfit ([1, 2, 3, 4, 5], 0.05, [1, 2, 3, 2, 1.5]);
548s ***** error<nbinfit: 'options' argument must be a structure> ...
548s  nbinfit ([1, 2, 3, 4, 5], 0.05, struct ("option", 234));
548s ***** error<nbinfit: 'options' argument must be a structure> ...
548s  nbinfit ([1, 2, 3, 4, 5], 0.05, ones (1,5), struct ("option", 234));
548s 16 tests, 16 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/logifit.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/logifit.m
548s ***** demo
548s  ## Sample 3 populations from different logistic distibutions
548s  rand ("seed", 5)  # for reproducibility
548s  r1 = logirnd (2, 1, 2000, 1);
548s  rand ("seed", 2)   # for reproducibility
548s  r2 = logirnd (5, 2, 2000, 1);
548s  rand ("seed", 7)   # for reproducibility
548s  r3 = logirnd (9, 4, 2000, 1);
548s  r = [r1, r2, r3];
548s 
548s  ## Plot them normalized and fix their colors
548s  hist (r, [-6:20], 1);
548s  h = findobj (gca, "Type", "patch");
548s  set (h(1), "facecolor", "c");
548s  set (h(2), "facecolor", "g");
548s  set (h(3), "facecolor", "r");
548s  ylim ([0, 0.3]);
548s  xlim ([-5, 20]);
548s  hold on
548s 
548s  ## Estimate their MU and LAMBDA parameters
548s  mu_sA = logifit (r(:,1));
548s  mu_sB = logifit (r(:,2));
548s  mu_sC = logifit (r(:,3));
548s 
548s  ## Plot their estimated PDFs
548s  x = [-5:0.5:20];
548s  y = logipdf (x, mu_sA(1), mu_sA(2));
548s  plot (x, y, "-pr");
548s  y = logipdf (x, mu_sB(1), mu_sB(2));
548s  plot (x, y, "-sg");
548s  y = logipdf (x, mu_sC(1), mu_sC(2));
548s  plot (x, y, "-^c");
548s  hold off
548s  legend ({"Normalized HIST of sample 1 with μ=1 and s=0.5", ...
548s           "Normalized HIST of sample 2 with μ=2 and s=0.3", ...
548s           "Normalized HIST of sample 3 with μ=4 and s=0.5", ...
548s           sprintf("PDF for sample 1 with estimated μ=%0.2f and s=%0.2f", ...
548s                   mu_sA(1), mu_sA(2)), ...
548s           sprintf("PDF for sample 2 with estimated μ=%0.2f and s=%0.2f", ...
548s                   mu_sB(1), mu_sB(2)), ...
548s           sprintf("PDF for sample 3 with estimated μ=%0.2f and s=%0.2f", ...
548s                   mu_sC(1), mu_sC(2))})
548s  title ("Three population samples from different logistic distibutions")
548s  hold off
548s ***** test
548s  paramhat = logifit ([1:50]);
548s  paramhat_out = [25.5, 8.7724];
548s  assert (paramhat, paramhat_out, 1e-4);
548s ***** test
548s  paramhat = logifit ([1:5]);
548s  paramhat_out = [3, 0.8645];
548s  assert (paramhat, paramhat_out, 1e-4);
548s ***** test
548s  paramhat = logifit ([1:6], [], [], [1 1 1 1 1 0]);
548s  paramhat_out = [3, 0.8645];
548s  assert (paramhat, paramhat_out, 1e-4);
548s ***** test
548s  paramhat = logifit ([1:5], [], [], [1 1 1 1 2]);
548s  paramhat_out = logifit ([1:5, 5]);
548s  assert (paramhat, paramhat_out, 1e-4);
548s ***** error<logifit: X must be a vector.> logifit (ones (2,5));
548s ***** error<logifit: wrong value for ALPHA.> logifit ([1, 2, 3, 4, 5], 1.2);
548s ***** error<logifit: wrong value for ALPHA.> logifit ([1, 2, 3, 4, 5], 0);
548s ***** error<logifit: wrong value for ALPHA.> logifit ([1, 2, 3, 4, 5], "alpha");
548s ***** error<logifit: X and CENSOR vectors mismatch.> ...
548s  logifit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
548s ***** error<logifit: X and CENSOR vectors mismatch.> ...
548s  logifit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
548s ***** error<logifit: X and FREQ vectors mismatch.> ...
548s  logifit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
548s ***** error<logifit: X and FREQ vectors mismatch.> ...
548s  logifit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
548s ***** error<logifit: 'options' 5th argument must be a structure> ...
548s  logifit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
548s 13 tests, 13 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/gevfit.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gevfit.m
548s ***** demo
548s  ## Sample 2 populations from 2 different exponential distibutions
548s  rand ("seed", 1);   # for reproducibility
548s  r1 = gevrnd (-0.5, 1, 2, 5000, 1);
548s  rand ("seed", 2);   # for reproducibility
548s  r2 = gevrnd (0, 1, -4, 5000, 1);
548s  r = [r1, r2];
548s 
548s  ## Plot them normalized and fix their colors
548s  hist (r, 50, 5);
548s  h = findobj (gca, "Type", "patch");
548s  set (h(1), "facecolor", "c");
548s  set (h(2), "facecolor", "g");
548s  hold on
548s 
548s  ## Estimate their k, sigma, and mu parameters
548s  k_sigma_muA = gevfit (r(:,1));
548s  k_sigma_muB = gevfit (r(:,2));
548s 
548s  ## Plot their estimated PDFs
548s  x = [-10:0.5:20];
548s  y = gevpdf (x, k_sigma_muA(1), k_sigma_muA(2), k_sigma_muA(3));
548s  plot (x, y, "-pr");
548s  y = gevpdf (x, k_sigma_muB(1), k_sigma_muB(2), k_sigma_muB(3));
548s  plot (x, y, "-sg");
548s  ylim ([0, 0.7])
548s  xlim ([-7, 5])
548s  legend ({"Normalized HIST of sample 1 with k=-0.5, σ=1, μ=2", ...
548s           "Normalized HIST of sample 2 with k=0, σ=1, μ=-4",
548s      sprintf("PDF for sample 1 with estimated k=%0.2f, σ=%0.2f, μ=%0.2f", ...
548s                  k_sigma_muA(1), k_sigma_muA(2), k_sigma_muA(3)), ...
548s      sprintf("PDF for sample 3 with estimated k=%0.2f, σ=%0.2f, μ=%0.2f", ...
548s                  k_sigma_muB(1), k_sigma_muB(2), k_sigma_muB(3))})
548s  title ("Two population samples from different exponential distibutions")
548s  hold off
548s ***** test
548s  x = 1:50;
548s  [pfit, pci] = gevfit (x);
548s  pfit_out = [-0.4407, 15.1923, 21.5309];
548s  pci_out = [-0.7532, 11.5878, 16.5686; -0.1282, 19.9183, 26.4926];
548s  assert (pfit, pfit_out, 1e-3);
548s  assert (pci, pci_out, 1e-3);
548s ***** test
548s  x = 1:2:50;
548s  [pfit, pci] = gevfit (x);
548s  pfit_out = [-0.4434, 15.2024, 21.0532];
548s  pci_out = [-0.8904, 10.3439, 14.0168; 0.0035, 22.3429, 28.0896];
548s  assert (pfit, pfit_out, 1e-3);
548s  assert (pci, pci_out, 1e-3);
548s ***** error<gevfit: X must be a vector.> gevfit (ones (2,5));
548s ***** error<gevfit: wrong value for ALPHA.> gevfit ([1, 2, 3, 4, 5], 1.2);
548s ***** error<gevfit: wrong value for ALPHA.> gevfit ([1, 2, 3, 4, 5], 0);
548s ***** error<gevfit: wrong value for ALPHA.> gevfit ([1, 2, 3, 4, 5], "alpha");
548s ***** error<gevfit: X and FREQ vectors mismatch.> ...
548s  gevfit ([1, 2, 3, 4, 5], 0.05, [1, 2, 3, 2]);
548s ***** error<gevfit: FREQ must not contain negative values.> ...
548s  gevfit ([1, 2, 3, 4, 5], 0.05, [1, 2, 3, 2, -1]);
548s ***** error<gevfit: FREQ must contain integer values.> ...
548s  gevfit ([1, 2, 3, 4, 5], 0.05, [1, 2, 3, 2, 1.5]);
548s ***** error<gevfit: 'options' argument must be a structure> ...
548s  gevfit ([1, 2, 3, 4, 5], 0.05, struct ("option", 234));
548s ***** error<gevfit: 'options' argument must be a structure> ...
548s  gevfit ([1, 2, 3, 4, 5], 0.05, ones (1,5), struct ("option", 234));
548s 11 tests, 11 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/ricelike.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/ricelike.m
548s ***** test
548s  nlogL = ricelike ([15.3057344, 17.6668458], [1:50]);
548s  assert (nlogL, 204.5230311010569, 1e-12);
548s ***** test
548s  nlogL = ricelike ([2.312346885, 1.681228265], [1:5]);
548s  assert (nlogL, 8.65562164930058, 1e-12);
548s ***** error<ricelike: function called with too few input arguments.> ricelike (3.25)
548s ***** error<ricelike: X must be a vector.> ricelike ([5, 0.2], ones (2))
548s ***** error<ricelike: PARAMS must be a two-element vector.> ...
548s  ricelike ([1, 0.2, 3], [1, 3, 5, 7])
548s ***** error<ricelike: X and CENSOR vector mismatch.> ...
548s  ricelike ([1.5, 0.2], [1:5], [0, 0, 0])
548s ***** error<ricelike: X and FREQ vector mismatch.> ...
548s  ricelike ([1.5, 0.2], [1:5], [0, 0, 0, 0, 0], [1, 1, 1])
548s ***** error<ricelike: X and FREQ vector mismatch.> ...
548s  ricelike ([1.5, 0.2], [1:5], [], [1, 1, 1])
548s ***** error<ricelike: FREQ must not contain negative values.> ...
548s  ricelike ([1.5, 0.2], [1:5], [], [1, 1, 1, 0, -1])
548s 9 tests, 9 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/binofit.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/binofit.m
548s ***** demo
548s  ## Sample 2 populations from different binomial distibutions
548s  rand ("seed", 1);    # for reproducibility
548s  r1 = binornd (50, 0.15, 1000, 1);
548s  rand ("seed", 2);    # for reproducibility
548s  r2 = binornd (100, 0.5, 1000, 1);
548s  r = [r1, r2];
548s 
548s  ## Plot them normalized and fix their colors
548s  hist (r, 23, 0.35);
548s  h = findobj (gca, "Type", "patch");
548s  set (h(1), "facecolor", "c");
548s  set (h(2), "facecolor", "g");
548s  hold on
548s 
548s  ## Estimate their probability of success
548s  pshatA = binofit (r(:,1), 50);
548s  pshatB = binofit (r(:,2), 100);
548s 
548s  ## Plot their estimated PDFs
548s  x = [min(r(:,1)):max(r(:,1))];
548s  y = binopdf (x, 50, mean (pshatA));
548s  plot (x, y, "-pg");
548s  x = [min(r(:,2)):max(r(:,2))];
548s  y = binopdf (x, 100, mean (pshatB));
548s  plot (x, y, "-sc");
548s  ylim ([0, 0.2])
548s  legend ({"Normalized HIST of sample 1 with ps=0.15", ...
548s           "Normalized HIST of sample 2 with ps=0.50", ...
548s           sprintf("PDF for sample 1 with estimated ps=%0.2f", ...
548s                   mean (pshatA)), ...
548s           sprintf("PDF for sample 2 with estimated ps=%0.2f", ...
548s                   mean (pshatB))})
548s  title ("Two population samples from different binomial distibutions")
548s  hold off
548s ***** test
548s  x = 0:3;
548s  [pshat, psci] = binofit (x, 3);
548s  assert (pshat, [0, 0.3333, 0.6667, 1], 1e-4);
548s  assert (psci(1,:), [0, 0.7076], 1e-4);
548s  assert (psci(2,:), [0.0084, 0.9057], 1e-4);
548s  assert (psci(3,:), [0.0943, 0.9916], 1e-4);
548s  assert (psci(4,:), [0.2924, 1.0000], 1e-4);
548s ***** error<binofit: function called with too few input arguments.> ...
548s  binofit ([1 2 3 4])
548s ***** error<binofit: X cannot have negative values.> ...
548s  binofit ([-1, 4, 3, 2], [1, 2, 3, 3])
548s ***** error<binofit: X must be a vector.> binofit (ones(2), [1, 2, 3, 3])
548s ***** error<binofit: N must be a non-negative integer.> ...
548s  binofit ([1, 4, 3, 2], [1, 2, -1, 3])
548s ***** error<binofit: N must be a scalar or the same size as X.> ...
548s  binofit ([1, 4, 3, 2], [5, 5, 5])
548s ***** error<binofit: N must be at least as large as X.> ...
548s  binofit ([1, 4, 3, 2], [5, 3, 5, 5])
548s ***** error<binofit: wrong value for ALPHA.> binofit ([1, 2, 1], 3, 1.2);
548s ***** error<binofit: wrong value for ALPHA.> binofit ([1, 2, 1], 3, 0);
548s ***** error<binofit: wrong value for ALPHA.> binofit ([1, 2, 1], 3, "alpha");
548s 10 tests, 10 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/poissfit.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/poissfit.m
548s ***** demo
548s  ## Sample 3 populations from 3 different Poisson distibutions
548s  randp ("seed", 2);    # for reproducibility
548s  r1 = poissrnd (1, 1000, 1);
548s  randp ("seed", 2);    # for reproducibility
548s  r2 = poissrnd (4, 1000, 1);
548s  randp ("seed", 3);    # for reproducibility
548s  r3 = poissrnd (10, 1000, 1);
548s  r = [r1, r2, r3];
548s 
548s  ## Plot them normalized and fix their colors
548s  hist (r, [0:20], 1);
548s  h = findobj (gca, "Type", "patch");
548s  set (h(1), "facecolor", "c");
548s  set (h(2), "facecolor", "g");
548s  set (h(3), "facecolor", "r");
548s  hold on
548s 
548s  ## Estimate their lambda parameter
548s  lambdahat = poissfit (r);
548s 
548s  ## Plot their estimated PDFs
548s  x = [0:20];
548s  y = poisspdf (x, lambdahat(1));
548s  plot (x, y, "-pr");
548s  y = poisspdf (x, lambdahat(2));
548s  plot (x, y, "-sg");
548s  y = poisspdf (x, lambdahat(3));
548s  plot (x, y, "-^c");
548s  xlim ([0, 20])
548s  ylim ([0, 0.4])
548s  legend ({"Normalized HIST of sample 1 with λ=1", ...
548s           "Normalized HIST of sample 2 with λ=4", ...
548s           "Normalized HIST of sample 3 with λ=10", ...
548s           sprintf("PDF for sample 1 with estimated λ=%0.2f", ...
548s                   lambdahat(1)), ...
548s           sprintf("PDF for sample 2 with estimated λ=%0.2f", ...
548s                   lambdahat(2)), ...
548s           sprintf("PDF for sample 3 with estimated λ=%0.2f", ...
548s                   lambdahat(3))})
548s  title ("Three population samples from different Poisson distibutions")
548s  hold off
548s ***** test
548s  x = [1 3 2 4 5 4 3 4];
548s  [lhat, lci] = poissfit (x);
548s  assert (lhat, 3.25)
548s  assert (lci, [2.123007901949543; 4.762003010390628], 1e-14)
548s ***** test
548s  x = [1 3 2 4 5 4 3 4];
548s  [lhat, lci] = poissfit (x, 0.01);
548s  assert (lhat, 3.25)
548s  assert (lci, [1.842572740234582; 5.281369033298528], 1e-14)
548s ***** test
548s  x = [1 2 3 4 5];
548s  f = [1 1 2 3 1];
548s  [lhat, lci] = poissfit (x, [], f);
548s  assert (lhat, 3.25)
548s  assert (lci, [2.123007901949543; 4.762003010390628], 1e-14)
548s ***** test
548s  x = [1 2 3 4 5];
548s  f = [1 1 2 3 1];
548s  [lhat, lci] = poissfit (x, 0.01, f);
548s  assert (lhat, 3.25)
548s  assert (lci, [1.842572740234582; 5.281369033298528], 1e-14)
548s ***** error<poissfit: X cannot have negative values.> poissfit ([1 2 -1 3])
548s ***** error<poissfit: wrong value for ALPHA.> poissfit ([1 2 3], 0)
548s ***** error<poissfit: wrong value for ALPHA.> poissfit ([1 2 3], 1.2)
548s ***** error<poissfit: wrong value for ALPHA.> poissfit ([1 2 3], [0.02 0.05])
548s ***** error<poissfit: X and FREQ vectors mismatch.>
548s  poissfit ([1 2 3], [], [1 5])
548s ***** error<poissfit: FREQ must not contain negative values.>
548s  poissfit ([1 2 3], [], [1 5 -1])
548s 10 tests, 10 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/gevlike.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/gevlike.m
548s ***** test
548s  x = 1;
548s  k = 0.2;
548s  sigma = 0.3;
548s  mu = 0.5;
548s  [L, C] = gevlike ([k sigma mu], x);
548s  expected_L = 0.75942;
548s  expected_C = [-0.12547 1.77884 1.06731; 1.77884 16.40761 8.48877; 1.06731 8.48877 0.27979];
548s  assert (L, expected_L, 0.001);
548s  assert (C, inv (expected_C), 0.001);
548s ***** test
548s  x = 1;
548s  k = 0;
548s  sigma = 0.3;
548s  mu = 0.5;
548s  [L, C] = gevlike ([k sigma mu], x);
548s  expected_L = 0.65157;
548s  expected_C = [0.090036 3.41229 2.047337; 3.412229 24.760027 12.510190; 2.047337 12.510190 2.098618];
548s  assert (L, expected_L, 0.001);
548s  assert (C, inv (expected_C), 0.001);
548s ***** test
548s  x = -5:-1;
548s  k = -0.2;
548s  sigma = 0.3;
548s  mu = 0.5;
548s  [L, C] = gevlike ([k sigma mu], x);
548s  expected_L = 3786.4;
548s  expected_C = [1.6802e-07, 4.6110e-06, 8.7297e-05; ...
548s                4.6110e-06, 7.5693e-06, 1.2034e-05; ...
548s                8.7297e-05, 1.2034e-05, -0.0019125];
548s  assert (L, expected_L, -0.001);
548s  assert (C, expected_C, -0.001);
548s ***** test
548s  x = -5:0;
548s  k = -0.2;
548s  sigma = 0.3;
548s  mu = 0.5;
548s  [L, C] = gevlike ([k sigma mu], x, [1, 1, 1, 1, 1, 0]);
548s  expected_L = 3786.4;
548s  expected_C = [1.6802e-07, 4.6110e-06, 8.7297e-05; ...
548s                4.6110e-06, 7.5693e-06, 1.2034e-05; ...
548s                8.7297e-05, 1.2034e-05, -0.0019125];
548s  assert (L, expected_L, -0.001);
548s  assert (C, expected_C, -0.001);
548s ***** error<gevlike: function called with too few input arguments.> gevlike (3.25)
548s ***** error<gevlike: X must be a vector.> gevlike ([1, 2, 3], ones (2))
548s ***** error<gevlike: PARAMS must be a three-element vector.> ...
548s  gevlike ([1, 2], [1, 3, 5, 7])
548s ***** error<gevlike: PARAMS must be a three-element vector.> ...
548s  gevlike ([1, 2, 3, 4], [1, 3, 5, 7])
548s ***** error<gevlike: X and FREQ vectors mismatch.> ...
548s  gevlike ([5, 0.2, 1], ones (10, 1), ones (8,1))
548s ***** error<gevlike: FREQ must not contain negative values.> ...
548s  gevlike ([5, 0.2, 1], ones (1, 8), [1 1 1 1 1 1 1 -1])
548s ***** error<gevlike: FREQ must contain integer values.> ...
548s  gevlike ([5, 0.2, 1], ones (1, 8), [1 1 1 1 1 1 1 1.5])
548s 11 tests, 11 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/raylfit.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/raylfit.m
548s ***** demo
548s  ## Sample 3 populations from 3 different Rayleigh distibutions
548s  rand ("seed", 2);    # for reproducibility
548s  r1 = raylrnd (1, 1000, 1);
548s  rand ("seed", 2);    # for reproducibility
548s  r2 = raylrnd (2, 1000, 1);
548s  rand ("seed", 3);    # for reproducibility
548s  r3 = raylrnd (4, 1000, 1);
548s  r = [r1, r2, r3];
548s 
548s  ## Plot them normalized and fix their colors
548s  hist (r, [0.5:0.5:10.5], 2);
548s  h = findobj (gca, "Type", "patch");
548s  set (h(1), "facecolor", "c");
548s  set (h(2), "facecolor", "g");
548s  set (h(3), "facecolor", "r");
548s  hold on
548s 
548s  ## Estimate their lambda parameter
548s  sigmaA = raylfit (r(:,1));
548s  sigmaB = raylfit (r(:,2));
548s  sigmaC = raylfit (r(:,3));
548s 
548s  ## Plot their estimated PDFs
548s  x = [0:0.1:10];
548s  y = raylpdf (x, sigmaA);
548s  plot (x, y, "-pr");
548s  y = raylpdf (x, sigmaB);
548s  plot (x, y, "-sg");
548s  y = raylpdf (x, sigmaC);
548s  plot (x, y, "-^c");
548s  xlim ([0, 10])
548s  ylim ([0, 0.7])
548s  legend ({"Normalized HIST of sample 1 with σ=1", ...
548s           "Normalized HIST of sample 2 with σ=2", ...
548s           "Normalized HIST of sample 3 with σ=4", ...
548s           sprintf("PDF for sample 1 with estimated σ=%0.2f", ...
548s                   sigmaA), ...
548s           sprintf("PDF for sample 2 with estimated σ=%0.2f", ...
548s                   sigmaB), ...
548s           sprintf("PDF for sample 3 with estimated σ=%0.2f", ...
548s                   sigmaC)})
548s  title ("Three population samples from different Rayleigh distibutions")
548s  hold off
548s ***** test
548s  x = [1 3 2 4 5 4 3 4];
548s  [shat, sci] = raylfit (x);
548s  assert (shat, 2.4495, 1e-4)
548s  assert (sci, [1.8243; 3.7279], 1e-4)
548s ***** test
548s  x = [1 3 2 4 5 4 3 4];
548s  [shat, sci] = raylfit (x, 0.01);
548s  assert (shat, 2.4495, 1e-4)
548s  assert (sci, [1.6738; 4.3208], 1e-4)
548s ***** test
548s  x = [1 2 3 4 5];
548s  f = [1 1 2 3 1];
548s  [shat, sci] = raylfit (x, [], [], f);
548s  assert (shat, 2.4495, 1e-4)
548s  assert (sci, [1.8243; 3.7279], 1e-4)
548s ***** test
548s  x = [1 2 3 4 5];
548s  f = [1 1 2 3 1];
548s  [shat, sci] = raylfit (x, 0.01, [], f);
548s  assert (shat, 2.4495, 1e-4)
548s  assert (sci, [1.6738; 4.3208], 1e-4)
548s ***** test
548s  x = [1 2 3 4 5 6];
548s  c = [0 0 0 0 0 1];
548s  f = [1 1 2 3 1 1];
548s  [shat, sci] = raylfit (x, 0.01, c, f);
548s  assert (shat, 2.4495, 1e-4)
548s  assert (sci, [1.6738; 4.3208], 1e-4)
548s ***** error<raylfit: X must be a vector.> raylfit (ones (2,5));
548s ***** error<raylfit: X cannot have negative values.> raylfit ([1 2 -1 3])
548s ***** error<raylfit: wrong value for ALPHA.> raylfit ([1 2 3], 0)
548s ***** error<raylfit: wrong value for ALPHA.> raylfit ([1 2 3], 1.2)
548s ***** error<raylfit: wrong value for ALPHA.> raylfit ([1 2 3], [0.02 0.05])
548s ***** error<raylfit: X and CENSOR vectors mismatch.> ...
548s  raylfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
548s ***** error<raylfit: X and CENSOR vectors mismatch.> ...
548s  raylfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
548s ***** error<raylfit: X and FREQ vectors mismatch.> ...
548s  raylfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
548s ***** error<raylfit: X and FREQ vectors mismatch.> ...
548s  raylfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
548s ***** error<raylfit: X and FREQ vectors mismatch.>
548s  raylfit ([1 2 3], [], [], [1 5])
548s ***** error<raylfit: FREQ must not contain negative values.>
548s  raylfit ([1 2 3], [], [], [1 5 -1])
548s 16 tests, 16 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/wblfit.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/wblfit.m
548s ***** demo
548s  ## Sample 3 populations from 3 different Weibull distibutions
548s  rande ("seed", 1);    # for reproducibility
548s  r1 = wblrnd(2, 4, 2000, 1);
548s  rande ("seed", 2);    # for reproducibility
548s  r2 = wblrnd(5, 2, 2000, 1);
548s  rande ("seed", 5);    # for reproducibility
548s  r3 = wblrnd(1, 5, 2000, 1);
548s  r = [r1, r2, r3];
548s 
548s  ## Plot them normalized and fix their colors
548s  hist (r, 30, [2.5 2.1 3.2]);
548s  h = findobj (gca, "Type", "patch");
548s  set (h(1), "facecolor", "c");
548s  set (h(2), "facecolor", "g");
548s  set (h(3), "facecolor", "r");
548s  ylim ([0, 2]);
548s  xlim ([0, 10]);
548s  hold on
548s 
548s  ## Estimate their lambda parameter
548s  lambda_kA = wblfit (r(:,1));
548s  lambda_kB = wblfit (r(:,2));
548s  lambda_kC = wblfit (r(:,3));
548s 
548s  ## Plot their estimated PDFs
548s  x = [0:0.1:15];
548s  y = wblpdf (x, lambda_kA(1), lambda_kA(2));
548s  plot (x, y, "-pr");
548s  y = wblpdf (x, lambda_kB(1), lambda_kB(2));
548s  plot (x, y, "-sg");
548s  y = wblpdf (x, lambda_kC(1), lambda_kC(2));
548s  plot (x, y, "-^c");
548s  hold off
548s  legend ({"Normalized HIST of sample 1 with λ=2 and k=4", ...
548s           "Normalized HIST of sample 2 with λ=5 and k=2", ...
548s           "Normalized HIST of sample 3 with λ=1 and k=5", ...
548s           sprintf("PDF for sample 1 with estimated λ=%0.2f and k=%0.2f", ...
548s                   lambda_kA(1), lambda_kA(2)), ...
548s           sprintf("PDF for sample 2 with estimated λ=%0.2f and k=%0.2f", ...
548s                   lambda_kB(1), lambda_kB(2)), ...
548s           sprintf("PDF for sample 3 with estimated λ=%0.2f and k=%0.2f", ...
548s                   lambda_kC(1), lambda_kC(2))})
548s  title ("Three population samples from different Weibull distibutions")
548s  hold off
548s ***** test
548s  x = 1:50;
548s  [paramhat, paramci] = wblfit (x);
548s  paramhat_out = [28.3636, 1.7130];
548s  paramci_out = [23.9531, 1.3551; 33.5861, 2.1655];
548s  assert (paramhat, paramhat_out, 1e-4);
548s  assert (paramci, paramci_out, 1e-4);
548s ***** test
548s  x = 1:50;
548s  [paramhat, paramci] = wblfit (x, 0.01);
548s  paramci_out = [22.7143, 1.2589; 35.4179, 2.3310];
548s  assert (paramci, paramci_out, 1e-4);
548s ***** error<wblfit: X must be a vector.> wblfit (ones (2,5));
548s ***** error<wblfit: X must contain only positive values.> wblfit ([-1 2 3 4]);
548s ***** error<wblfit: wrong value for ALPHA.> wblfit ([1, 2, 3, 4, 5], 1.2);
548s ***** error<wblfit: wrong value for ALPHA.> wblfit ([1, 2, 3, 4, 5], 0);
548s ***** error<wblfit: wrong value for ALPHA.> wblfit ([1, 2, 3, 4, 5], "alpha");
548s ***** error<wblfit: X and CENSOR vectors mismatch.> ...
548s  wblfit ([1, 2, 3, 4, 5], 0.05, [1 1 0]);
548s ***** error<wblfit: X and CENSOR vectors mismatch.> ...
548s  wblfit ([1, 2, 3, 4, 5], [], [1 1 0 1 1]');
548s ***** error<wblfit: X and FREQ vectors mismatch.> ...
548s  wblfit ([1, 2, 3, 4, 5], 0.05, zeros (1,5), [1 1 0]);
548s ***** error<wblfit: FREQ cannot have negative values.> ...
548s  wblfit ([1, 2, 3, 4, 5], [], [], [1 1 0 -1 1]);
548s ***** error<wblfit: X and FREQ vectors mismatch.> ...
548s  wblfit ([1, 2, 3, 4, 5], [], [], [1 1 0 1 1]');
548s ***** error<wblfit: 'options' 5th argument must be a structure> ...
548s  wblfit ([1, 2, 3, 4, 5], 0.05, [], [], 2);
548s 13 tests, 13 passed, 0 known failure, 0 skipped
548s [inst/dist_fit/nbinlike.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fit/nbinlike.m
548s ***** assert (nbinlike ([2.42086, 0.0867043], [1:50]), 205.5942, 1e-4)
548s ***** assert (nbinlike ([3.58823, 0.254697], [1:20]), 63.6435, 1e-4)
548s ***** assert (nbinlike ([8.80671, 0.615565], [1:10]), 24.7410, 1e-4)
548s ***** assert (nbinlike ([22.1756, 0.831306], [1:8]), 17.9528, 1e-4)
548s ***** assert (nbinlike ([22.1756, 0.831306], [1:9], [ones(1,8), 0]), 17.9528, 1e-4)
548s ***** error<nbinlike: function called with too few input arguments.> nbinlike (3.25)
548s ***** error<nbinlike: X must be a vector.> nbinlike ([5, 0.2], ones (2))
548s ***** error<nbinlike: X cannot have negative values.> nbinlike ([5, 0.2], [-1, 3])
548s ***** error<nbinlike: PARAMS must be a two-element vector.> ...
548s  nbinlike ([1, 0.2, 3], [1, 3, 5, 7])
548s ***** error<nbinlike: number of successes,> nbinlike ([-5, 0.2], [1:15])
548s ***** error<nbinlike: number of successes,> nbinlike ([0, 0.2], [1:15])
548s ***** error<nbinlike: probability of success,> nbinlike ([5, 1.2], [3, 5])
548s ***** error<nbinlike: probability of success,> nbinlike ([5, -0.2], [3, 5])
548s ***** error<nbinlike: X and FREQ vectors mismatch.> ...
548s  nbinlike ([5, 0.2], ones (10, 1), ones (8,1))
548s ***** error<nbinlike: FREQ must not contain negative values.> ...
548s  nbinlike ([5, 0.2], ones (1, 8), [1 1 1 1 1 1 1 -1])
548s ***** error<nbinlike: FREQ must contain integer values.> ...
548s  nbinlike ([5, 0.2], ones (1, 8), [1 1 1 1 1 1 1 1.5])
548s 16 tests, 16 passed, 0 known failure, 0 skipped
548s [inst/cmdscale.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cmdscale.m
548s ***** shared m, n, X, D
548s  m = randi(100) + 1; n = randi(100) + 1; X = rand(m, n); D = pdist(X);
548s ***** assert(norm(pdist(cmdscale(D))), norm(D), sqrt(eps))
548s ***** assert(norm(pdist(cmdscale(squareform(D)))), norm(D), sqrt(eps))
548s 2 tests, 2 passed, 0 known failure, 0 skipped
548s [inst/geomean.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/geomean.m
548s ***** test
548s  x = [0:10];
548s  y = [x;x+5;x+10];
548s  assert (geomean (x), 0);
548s  m = [0 9.462942809849169 14.65658770861967];
548s  assert (geomean (y, 2), m', 4e-14);
548s  assert (geomean (y, "all"), 0);
548s  y(2,4) = NaN;
548s  m(2) = 9.623207231679554;
548s  assert (geomean (y, 2), [0 NaN m(3)]', 4e-14);
548s  assert (geomean (y', "omitnan"), m, 4e-14);
548s  z = y + 20;
548s  assert (geomean (z, "all"), NaN);
548s  assert (geomean (z, "all", "includenan"), NaN);
548s  assert (geomean (z, "all", "omitnan"), 29.59298474535024, 4e-14);
548s  m = [24.79790781765634 NaN 34.85638839503932];
548s  assert (geomean (z'), m, 4e-14);
548s  assert (geomean (z', "includenan"), m, 4e-14);
548s  m(2) = 30.02181156156319;
548s  assert (geomean (z', "omitnan"), m, 4e-14);
548s  assert (geomean (z, 2, "omitnan"), m', 4e-14);
548s ***** test
548s  x = repmat ([1:20;6:25], [5 2 6 3]);
548s  assert (size (geomean (x, [3 2])), [10 1 1 3]);
548s  assert (size (geomean (x, [1 2])), [1 1 6 3]);
548s  assert (size (geomean (x, [1 2 4])), [1 1 6]);
548s  assert (size (geomean (x, [1 4 3])), [1 40]);
548s  assert (size (geomean (x, [1 2 3 4])), [1 1]);
548s ***** test
548s  x = repmat ([1:20;6:25], [5 2 6 3]);
548s  m = repmat ([8.304361203739333;14.3078118884256], [5 1 1 3]);
548s  assert (geomean (x, [3 2]), m, 4e-13);
548s  x(2,5,6,3) = NaN;
548s  m(2,3) = NaN;
548s  assert (geomean (x, [3 2]), m, 4e-13);
548s  m(2,3) = 14.3292729579901;
548s  assert (geomean (x, [3 2], "omitnan"), m, 4e-13);
548s ***** error <geomean: X must contain real nonnegative values.> geomean ("char")
548s ***** error <geomean: X must contain real nonnegative values.> geomean ([1 -1 3])
548s ***** error <geomean: DIM must be a positive integer scalar or vector.> ...
548s  geomean (repmat ([1:20;6:25], [5 2 6 3 5]), -1)
548s ***** error <geomean: DIM must be a positive integer scalar or vector.> ...
548s  geomean (repmat ([1:20;6:25], [5 2 6 3 5]), 0)
548s ***** error <geomean: VECDIM must contain non-repeating positive integers.> ...
548s  geomean (repmat ([1:20;6:25], [5 2 6 3 5]), [1 1])
548s 8 tests, 8 passed, 0 known failure, 0 skipped
548s [inst/fitrgam.m]
548s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitrgam.m
548s ***** demo
548s  # Train a RegressionGAM Model for synthetic values
548s 
548s  f1 = @(x) cos (3 *x);
548s  f2 = @(x) x .^ 3;
548s 
548s  # generate x1 and x2 for f1 and f2
548s  x1 = 2 * rand (50, 1) - 1;
548s  x2 = 2 * rand (50, 1) - 1;
548s 
548s  # calculate y
548s  y = f1(x1) + f2(x2);
548s 
548s  # add noise
548s  y = y + y .* 0.2 .* rand (50,1);
548s  X = [x1, x2];
548s 
548s  # create an object
548s  a = fitrgam (X, y, "tol", 1e-3)
548s ***** test
548s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
548s  y = [1; 2; 3; 4];
548s  a = fitrgam (x, y);
548s  assert ({a.X, a.Y}, {x, y})
548s  assert ({a.BaseModel.Intercept}, {2.5000})
548s  assert ({a.Knots, a.Order, a.DoF}, {[5, 5, 5], [3, 3, 3], [8, 8, 8]})
548s  assert ({a.NumObservations, a.NumPredictors}, {4, 3})
548s  assert ({a.ResponseName, a.PredictorNames}, {"Y", {"x1", "x2", "x3"}})
548s  assert ({a.Formula}, {[]})
549s ***** test
549s  x = [1, 2, 3, 4; 4, 5, 6, 7; 7, 8, 9, 1; 3, 2, 1, 2];
549s  y = [1; 2; 3; 4];
549s  pnames = {"A", "B", "C", "D"};
549s  formula = "Y ~ A + B + C + D + A:C";
549s  intMat = logical ([1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;1,0,1,0]);
549s  a = fitrgam (x, y, "predictors", pnames, "formula", formula);
549s  assert ({a.IntMatrix}, {intMat})
549s  assert ({a.ResponseName, a.PredictorNames}, {"Y", pnames})
549s  assert ({a.Formula}, {formula})
549s ***** error<fitrgam: too few arguments.> fitrgam ()
549s ***** error<fitrgam: too few arguments.> fitrgam (ones(10,2))
549s ***** error<fitrgam: Name-Value arguments must be in pairs.>
549s  fitrgam (ones (4,2), ones (4, 1), "K")
549s ***** error<fitrgam: number of rows in X and Y must be equal.>
549s  fitrgam (ones (4,2), ones (3, 1))
549s ***** error<fitrgam: number of rows in X and Y must be equal.>
549s  fitrgam (ones (4,2), ones (3, 1), "K", 2)
549s 7 tests, 7 passed, 0 known failure, 0 skipped
549s [inst/evalclusters.m]
549s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/evalclusters.m
549s ***** demo
549s  load fisheriris;
549s  eva = evalclusters (meas, "kmeans", "calinskiharabasz", "KList", [1:6])
549s  plot (eva)
549s ***** error evalclusters ()
549s ***** error evalclusters ([1 1;0 1])
549s ***** error evalclusters ([1 1;0 1], "kmeans")
549s ***** error <'x' must be a numeric*> evalclusters ("abc", "kmeans", "gap")
549s ***** error <unknown clustering*> evalclusters ([1 1;0 1], "xxx", "gap")
549s ***** error <invalid matrix*> evalclusters ([1 1;0 1], [1 2], "gap")
549s ***** error <invalid argument*> evalclusters ([1 1;0 1], 1.2, "gap")
549s ***** error <invalid criterion*> evalclusters ([1 1;0 1], [1; 2], 123)
549s ***** error <unknown criterion*> evalclusters ([1 1;0 1], [1; 2], "xxx")
549s ***** error <'KList' can be empty*> evalclusters ([1 1;0 1], "kmeans", "gap")
549s ***** error <invalid parameter*> evalclusters ([1 1;0 1], [1; 2], "gap", 1)
549s ***** error <invalid property*> evalclusters ([1 1;0 1], [1; 2], "gap", 1, 1)
549s ***** error <unknown property*> evalclusters ([1 1;0 1], [1; 2], "gap", "xxx", 1)
549s ***** error <'KList'*> evalclusters ([1 1;0 1], [1; 2], "gap", "KList", [-1 0])
549s ***** error <'KList'*> evalclusters ([1 1;0 1], [1; 2], "gap", "KList", [1 .5])
549s ***** error <'KList'*> evalclusters ([1 1;0 1], [1; 2], "gap", "KList", [1 1; 1 1])
549s ***** error <unknown distance*> evalclusters ([1 1;0 1], [1; 2], "gap", ...
549s                                         "distance", "a")
549s ***** error <distance metric*> evalclusters ([1 1;0 1], [1; 2], "daviesbouldin", ...
549s                                        "distance", "a")
549s ***** error <cluster prior*> evalclusters ([1 1;0 1], [1; 2], "gap", ...
549s                                      "clusterpriors", "equal")
549s ***** error <invalid cluster prior*> evalclusters ([1 1;0 1], [1; 2], ...
549s                                          "silhouette", "clusterpriors", "xxx")
549s ***** error <'clust' must be a clustering*> evalclusters ([1 1;0 1], [1; 2], "gap")
549s ***** test
549s  load fisheriris;
549s  eva = evalclusters (meas, "kmeans", "calinskiharabasz", "KList", [1:6]);
549s  assert (isa (eva, "CalinskiHarabaszEvaluation"));
549s  assert (eva.NumObservations, 150);
549s  assert (eva.OptimalK, 3);
549s  assert (eva.InspectedK, [1 2 3 4 5 6]);
549s 22 tests, 22 passed, 0 known failure, 0 skipped
549s [inst/x2fx.m]
549s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/x2fx.m
549s ***** test
549s  X = [1, 10; 2, 20; 3, 10; 4, 20; 5, 15; 6, 15];
549s  D = x2fx(X,'quadratic');
549s  assert (D(1,:) , [1, 1, 10, 10, 1, 100]);
549s  assert (D(2,:) , [1, 2, 20, 40, 4, 400]);
549s ***** test
549s  X = [1, 10; 2, 20; 3, 10; 4, 20; 5, 15; 6, 15];
549s  model = [0, 0; 1, 0; 0, 1; 1, 1; 2, 0];
549s  D = x2fx(X,model);
549s  assert (D(1,:) , [1, 1, 10, 10, 1]);
549s  assert (D(2,:) , [1, 2, 20, 40, 4]);
549s  assert (D(4,:) , [1, 4, 20, 80, 16]);
549s ***** error x2fx ([1, 10; 2, 20; 3, 10], [0; 1]);
549s ***** error x2fx ([1, 10, 15; 2, 20, 40; 3, 10, 25], [0, 0; 1, 0; 0, 1; 1, 1; 2, 0]);
549s ***** error x2fx ([1, 10; 2, 20; 3, 10], "whatever");
549s 5 tests, 5 passed, 0 known failure, 0 skipped
549s [inst/grp2idx.m]
549s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/grp2idx.m
549s ***** test
549s  in = [true false false true];
549s  out = {[1; 2; 2; 1] {"1"; "0"} [true; false]};
549s  assert (nthargout (1:3, @grp2idx, in), out)
549s  assert (nthargout (1:3, @grp2idx, in), nthargout (1:3, @grp2idx, in'))
549s ***** test
549s  assert (nthargout (1:3, @grp2idx, [false, true]),
549s          {[1; 2] {"0"; "1"} [false; true]});
549s  assert (nthargout (1:3, @grp2idx, [true, false]),
549s          {[1; 2] {"1"; "0"} [true; false]});
550s ***** assert (nthargout (1:3, @grp2idx, ["oct"; "sci"; "oct"; "oct"; "sci"]),
550s         {[1; 2; 1; 1; 2] {"oct"; "sci"} ["oct"; "sci"]});
550s ***** assert (nthargout (1:3, @grp2idx, {"oct"; "sci"; "oct"; "oct"; "sci"}),
550s         {[1; 2; 1; 1; 2] {"oct"; "sci"} {"oct"; "sci"}});
550s ***** assert (nthargout (1:3, @grp2idx, [ 1 -3 -2 -3 -3  2  1 -1  3 -3]),
550s         {[1; 2; 3; 2; 2; 4; 1; 5; 6; 2], {"1"; "-3"; "-2"; "2"; "-1"; "3"}, ...
550s          [1; -3; -2; 2; -1; 3]});
550s ***** assert (nthargout (1:3, @grp2idx, [2 2 3 NaN 2 3]),
550s         {[1; 1; 2; NaN; 1; 2] {"2"; "3"} [2; 3]})
550s ***** assert (nthargout (1:3, @grp2idx, {"et" "sa" "sa" "" "et"}),
550s         {[1; 2; 2; NaN; 1] {"et"; "sa"} {"et"; "sa"}})
550s ***** test assert (nthargout (1:3, @grp2idx, ["sci"; "oct"; "sci"; "oct"; "oct"]),
550s         {[1; 2; 1; 2; 2] {"sci"; "oct"} ["sci"; "oct"]});
550s ***** test assert (nthargout (1:3, @grp2idx, {"sci"; "oct"; "sci"; "oct"; "oct"}),
550s         {[1; 2; 1; 2; 2] {"sci"; "oct"} {"sci"; "oct"}});
550s ***** test assert (nthargout (1:3, @grp2idx, {"sa" "et" "et" "" "sa"}),
550s         {[1; 2; 2; NaN; 1] {"sa"; "et"} {"sa"; "et"}})
550s 10 tests, 10 passed, 0 known failure, 0 skipped
550s [inst/canoncorr.m]
550s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/canoncorr.m
550s ***** shared X,Y,A,B,r,U,V,k
550s  k = 10;
550s  X = [1:k; sin(1:k); cos(1:k)]'; Y = [tan(1:k); tanh((1:k)/k)]';
550s  [A,B,r,U,V,stats] = canoncorr (X,Y);
550s ***** assert (A, [-0.329229   0.072908; 0.074870   1.389318; -0.069302  -0.024109], 1E-6);
550s ***** assert (B, [-0.017086  -0.398402; -4.475049  -0.824538], 1E-6);
550s ***** assert (r, [0.99590   0.26754], 1E-5);
550s ***** assert (U, center(X) * A, 10*eps);
550s ***** assert (V, center(Y) * B, 10*eps);
550s ***** assert (cov(U), eye(size(U, 2)), 10*eps);
550s ***** assert (cov(V), eye(size(V, 2)), 10*eps);
550s  rand ("state", 1); [A,B,r] = canoncorr (rand(5, 10),rand(5, 20));
550s ***** assert (r, ones(1, 5), 10*eps);
550s 8 tests, 8 passed, 0 known failure, 0 skipped
550s [inst/ecdf.m]
550s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ecdf.m
550s ***** demo
550s  y = exprnd (10, 50, 1);    ## random failure times are exponential(10)
550s  d = exprnd (20, 50, 1);    ## drop-out times are exponential(20)
550s  t = min (y, d);            ## we observe the minimum of these times
550s  censored = (y > d);        ## we also observe whether the subject failed
550s 
550s  ## Calculate and plot the empirical cdf and confidence bounds
550s  [f, x, flo, fup] = ecdf (t, "censoring", censored);
550s  stairs (x, f);
550s  hold on;
550s  stairs (x, flo, "r:"); stairs (x, fup, "r:");
550s 
550s  ## Superimpose a plot of the known true cdf
550s  xx = 0:.1:max (t); yy = 1 - exp (-xx / 10); plot (xx, yy, "g-");
550s  hold off;
550s ***** demo
550s  R = wblrnd (100, 2, 100, 1);
550s  ecdf (R, "Function", "survivor", "Alpha", 0.01, "Bounds", "on");
550s  hold on
550s  x = 1:1:250;
550s  wblsurv = 1 - cdf ("weibull", x, 100, 2);
550s  plot (x, wblsurv, "g-", "LineWidth", 2)
550s  legend ("Empirical survivor function", "Lower confidence bound", ...
550s          "Upper confidence bound", "Weibull survivor function", ...
550s          "Location", "northeast");
550s  hold off
550s ***** error ecdf ();
550s ***** error ecdf (randi (15,2));
550s ***** error ecdf ([3,2,4,3+2i,5]);
550s ***** error kstest ([2,3,4,5,6],"tail");
550s ***** error kstest ([2,3,4,5,6],"tail", "whatever");
550s ***** error kstest ([2,3,4,5,6],"function", "");
550s ***** error kstest ([2,3,4,5,6],"badoption", 0.51);
550s ***** error kstest ([2,3,4,5,6],"tail", 0);
550s ***** error kstest ([2,3,4,5,6],"alpha", 0);
550s ***** error kstest ([2,3,4,5,6],"alpha", NaN);
550s ***** error kstest ([NaN,NaN,NaN,NaN,NaN],"tail", "unequal");
550s ***** error kstest ([2,3,4,5,6],"alpha", 0.05, "CDF", [2,3,4;1,3,4;1,2,1]);
550s ***** test
550s  hf = figure ("visible", "off");
550s  unwind_protect
550s    x = [2, 3, 4, 3, 5, 4, 6, 5, 8, 3, 7, 8, 9, 0];
550s    [F, x, Flo, Fup] = ecdf (x);
550s    F_out = [0; 0.0714; 0.1429; 0.3571; 0.5; 0.6429; 0.7143; 0.7857; 0.9286; 1];
550s    assert (F, F_out, ones (10,1) * 1e-4);
550s    x_out = [0 0 2 3 4 5 6 7 8 9]';
550s    assert (x, x_out);
550s    Flo_out = [NaN, 0, 0, 0.1061, 0.2381, 0.3919, 0.4776, 0.5708, 0.7937, NaN]';
550s    assert (Flo, Flo_out, ones (10,1) * 1e-4);
550s    Fup_out = [NaN, 0.2063, 0.3262, 0.6081, 0.7619, 0.8939, 0.9509, 1, 1, NaN]';
550s    assert (Fup, Fup_out, ones (10,1) * 1e-4);
550s  unwind_protect_cleanup
550s    close (hf);
550s  end_unwind_protect
550s ***** test
550s  hf = figure ("visible", "off");
550s  unwind_protect
550s    x = [2, 3, 4, 3, 5, 4, 6, 5, 8, 3, 7, 8, 9, 0];
550s    ecdf (x);
550s  unwind_protect_cleanup
550s    close (hf);
550s  end_unwind_protect
550s 14 tests, 14 passed, 0 known failure, 0 skipped
550s [inst/fillmissing.m]
550s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fillmissing.m
550s ***** assert (fillmissing ([1, 2, 3], "constant", 99), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, NaN], "constant", 99), [1, 2, 99])
550s ***** assert (fillmissing ([NaN, 2, NaN], "constant", 99), [99, 2, 99])
550s ***** assert (fillmissing ([1, 2, 3]', "constant", 99), [1, 2, 3]')
550s ***** assert (fillmissing ([1, 2, NaN]', "constant", 99), [1, 2, 99]')
550s ***** assert (fillmissing ([1, 2, 3; 4, 5, 6], "constant", 99), [1, 2, 3; 4, 5, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "constant", 99), [1, 2, 99; 4, 99, 6])
550s ***** assert (fillmissing ([NaN, 2, NaN; 4, NaN, 6], "constant", [97, 98, 99]), [97, 2, 99; 4, 98, 6])
550s ***** test
550s  x = cat (3, [1, 2, NaN; 4, NaN, 6], [NaN, 2, 3; 4, 5, NaN]);
550s  y = cat (3, [1, 2, 99; 4, 99, 6], [99, 2, 3; 4, 5, 99]);
550s  assert (fillmissing (x, "constant", 99), y);
550s  y = cat (3, [1, 2, 96; 4, 95, 6], [97, 2, 3; 4, 5, 99]);
550s  assert (fillmissing (x, "constant", [94:99]), y);
550s  assert (fillmissing (x, "constant", [94:99]'), y);
550s  assert (fillmissing (x, "constant", permute ([94:99], [1 3 2])), y);
550s  assert (fillmissing (x, "constant", [94, 96, 98; 95, 97, 99]), y);
550s  assert (fillmissing (x, "constant", [94:99], 1), y);
550s  y = cat (3, [1, 2, 96; 4, 97, 6], [98, 2, 3; 4, 5, 99]);
550s  assert (fillmissing (x, "constant", [96:99], 2), y);
550s  y = cat (3, [1, 2, 98; 4, 97, 6], [94, 2, 3; 4, 5, 99]);
550s  assert (fillmissing (x, "constant", [94:99], 3), y);
550s  y = cat (3, [1, 2, 92; 4, 91, 6], [94, 2, 3; 4, 5, 99]);
550s  assert (fillmissing (x, "constant", [88:99], 99), y);
550s ***** test
550s  x = reshape ([1:24], 4, 3, 2);
550s  x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN;
550s  y = x;
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [94, 95, 95, 96, 96, 97, 97, 98, 99, 99];
550s  assert (fillmissing (x, "constant", [94:99], 1), y);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [92, 93, 94, 92, 95, 97, 99, 98, 97, 98];
550s  assert (fillmissing (x, "constant", [92:99], 2), y);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [88, 93, 94, 96, 99, 89, 91, 94, 97, 98];
550s  assert (fillmissing (x, "constant", [88:99], 3), y);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [76, 81, 82, 84, 87, 89, 91, 94, 97, 98];
550s  assert (fillmissing (x, "constant", [76:99], 99), y);
550s ***** assert (fillmissing ([1, 2, 3], "constant", 99, "endvalues", 88), [1, 2, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "constant", 99, "endvalues", 88), [1, 99, 3])
550s ***** assert (fillmissing ([1, 2, NaN], "constant", 99, "endvalues", 88), [1, 2, 88])
550s ***** assert (fillmissing ([NaN, 2, 3], "constant", 99, "endvalues", 88), [88, 2, 3])
550s ***** assert (fillmissing ([NaN, NaN, 3], "constant", 99, "endvalues", 88), [88, 88, 3])
550s ***** assert (fillmissing ([1, NaN, NaN], "constant", 99, "endvalues", 88), [1, 88, 88])
550s ***** assert (fillmissing ([NaN, 2, NaN], "constant", 99, "endvalues", 88), [88, 2, 88])
550s ***** assert (fillmissing ([NaN, 2, NaN]', "constant", 99, "endvalues", 88), [88, 2, 88]')
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "constant", 99, "endvalues", 88), [1, 99, 3, 99, 5])
550s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "constant", 99, "endvalues", 88), [1, 99, 99, 99, 5])
550s ***** assert (fillmissing ([NaN, NaN, NaN, NaN, 5], "constant", 99, "endvalues", 88), [88, 88, 88, 88, 5])
550s ***** assert (fillmissing ([1, NaN, 3, 4, NaN], "constant", 99, "endvalues", 88), [1, 99, 3, 4, 88])
550s ***** assert (fillmissing ([1, NaN, 3, 4, NaN], "constant", 99, 1, "endvalues", 88), [1, 88, 3, 4, 88])
550s ***** assert (fillmissing ([1, NaN, 3, 4, NaN], "constant", 99, 1, "endvalues", "extrap"), [1, 99, 3, 4, 99])
550s ***** test
550s  x = reshape ([1:24], 3, 4, 2);
550s  y = x;
550s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
550s  y([1, 2, 5, 6, 10, 13, 16, 18, 19, 20, 21, 22]) = 88;
550s  y([8]) = 99;
550s  assert (fillmissing (x, "constant", 99, "endvalues", 88), y);
550s  assert (fillmissing (x, "constant", 99, 1, "endvalues", 88), y);
550s  y = x;
550s  y([1, 2, 5, 8, 10, 13, 16, 19, 22]) = 88;
550s  y([6, 18, 20, 21]) = 99;
550s  assert (fillmissing (x, "constant", 99, 2, "endvalues", 88), y);
550s  y(y == 99) = 88;
550s  assert (fillmissing (x, "constant", 99, 3, "endvalues", 88), y);
550s  assert (fillmissing (x, "constant", 99, 4, "endvalues", 88), y);
550s  assert (fillmissing (x, "constant", 99, 99, "endvalues", 88), y);
550s  y([8]) = 94;
550s  assert (fillmissing (x, "constant", [92:99], 1, "endvalues", 88), y);
550s  y([6, 8, 18, 20, 21]) = [96, 88, 99, 98, 99];
550s  assert (fillmissing (x, "constant", [94:99], 2, "endvalues", 88), y);
550s  y = x;
550s  y(isnan (y)) = 88;
550s  assert (fillmissing (x, "constant", [88:99], 3, "endvalues", 88), y);
550s  y = x;
550s  y(isnan (y)) = [82, 82, 83, 83, 94, 85, 86, 87, 87, 88, 88, 88, 89];
550s  assert (fillmissing (x, "constant", [92:99], 1, "endvalues", [82:89]), y);
550s  y = x;
550s  y(isnan (y)) = [84, 85, 85, 96, 85, 84, 87, 87, 99, 87, 98, 99, 87];
550s  assert (fillmissing (x, "constant", [94:99], 2, "endvalues", [84:89]), y);
550s  y = x;
550s  y(isnan (y)) = [68, 69, 72, 73, 75, 77, 68, 71, 73, 74, 75, 76, 77];
550s  assert (fillmissing (x, "constant", [88:99], 3, "endvalues", [68:79]), y);
550s  assert (fillmissing (x, "constant", [88:93; 94:99]', 3, "endvalues", [68:73; 74:79]'), y)
550s ***** test
550s  x = reshape ([1:24],4,3,2);
550s  x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN;
550s  y = x;
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [94, 95, 95, 96, 96, 97, 97, 98, 99, 99];
550s  assert (fillmissing (x, "constant", [94:99], 1), y);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [92, 93, 94, 92, 95, 97, 99, 98, 97, 98];
550s  assert (fillmissing (x, "constant", [92:99], 2), y);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [88, 93, 94, 96, 99, 89, 91, 94, 97, 98];
550s  assert (fillmissing (x, "constant", [88:99], 3), y);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [76, 81, 82, 84, 87, 89, 91, 94, 97, 98];
550s  assert (fillmissing (x, "constant", [76:99], 99), y);
550s ***** assert (fillmissing ([1, 2, 3], "previous"), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3], "next"), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3]', "previous"), [1, 2, 3]')
550s ***** assert (fillmissing ([1, 2, 3]', "next"), [1, 2, 3]')
550s ***** assert (fillmissing ([1, 2, NaN], "previous"), [1, 2, 2])
550s ***** assert (fillmissing ([1, 2, NaN], "next"), [1, 2, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN], "previous"), [NaN, 2, 2])
550s ***** assert (fillmissing ([NaN, 2, NaN], "next"), [2, 2, NaN])
550s ***** assert (fillmissing ([1, NaN, 3], "previous"), [1, 1, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "next"), [1, 3, 3])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "previous", 1), [1, 2, NaN; 4, 2, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "previous", 2), [1, 2, 2; 4, 4, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "previous", 3), [1, 2, NaN; 4, NaN, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "next", 1), [1, 2, 6; 4, NaN, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "next", 2), [1, 2, NaN; 4, 6, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "next", 3), [1, 2, NaN; 4, NaN, 6])
550s ***** test
550s  x = reshape ([1:24], 4, 3, 2);
550s  x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN;
550s  y = x;
550s  y([1, 6, 7, 9, 14, 19, 22, 23]) = [2, 8, 8, 10, 15, 20, 24, 24];
550s  assert (fillmissing (x, "next", 1), y);
550s  y = x;
550s  y([1, 6, 7, 14, 16]) = [5, 10, 11, 18, 20];
550s  assert (fillmissing (x, "next", 2), y);
550s  y = x;
550s  y([1, 6, 9, 12]) = [13, 18, 21, 24];
550s  assert (fillmissing (x, "next", 3), y);
550s  assert (fillmissing (x, "next", 99), x);
550s  y = x;
550s  y([6, 7, 12, 14, 16, 19, 22, 23]) = [5, 5, 11, 13, 15, 18, 21, 21];
550s  assert (fillmissing (x, "previous", 1), y);
550s  y = x;
550s  y([6, 7, 9, 12, 19, 22, 23]) = [2, 3, 5, 8, 15, 18, 15];
550s  assert (fillmissing (x, "previous", 2), y);
550s  y = x;
550s  y([14, 16, 22, 23]) = [2, 4, 10, 11];
550s  assert (fillmissing (x, "previous", 3), y);
550s  assert (fillmissing (x, "previous", 99), x);
550s ***** assert (fillmissing ([1, 2, 3], "constant", 0, "endvalues", "previous"), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3], "constant", 0, "endvalues", "next"), [1, 2, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "constant", 0, "endvalues", "previous"), [1, 0, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "constant", 0, "endvalues", "next"), [1, 0, 3])
550s ***** assert (fillmissing ([1, 2, NaN], "constant", 0, "endvalues", "previous"), [1, 2, 2])
550s ***** assert (fillmissing ([1, 2, NaN], "constant", 0, "endvalues", "next"), [1, 2, NaN])
550s ***** assert (fillmissing ([1, NaN, NaN], "constant", 0, "endvalues", "previous"), [1, 1, 1])
550s ***** assert (fillmissing ([1, NaN, NaN], "constant", 0, "endvalues", "next"), [1, NaN, NaN])
550s ***** assert (fillmissing ([NaN, 2, 3], "constant", 0, "endvalues", "previous"), [NaN, 2, 3])
550s ***** assert (fillmissing ([NaN, 2, 3], "constant", 0, "endvalues", "next"), [2, 2, 3])
550s ***** assert (fillmissing ([NaN, NaN, 3], "constant", 0, "endvalues", "previous"), [NaN, NaN, 3])
550s ***** assert (fillmissing ([NaN, NaN, 3], "constant", 0, "endvalues", "next"), [3, 3, 3])
550s ***** assert (fillmissing ([NaN, NaN, NaN], "constant", 0, "endvalues", "previous"), [NaN, NaN, NaN])
550s ***** assert (fillmissing ([NaN, NaN, NaN], "constant", 0, "endvalues", "next"), [NaN, NaN, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, "endvalues", "previous"), [NaN, 2, 0, 4, 4])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, "endvalues", "next"), [2, 2, 0, 4, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 1, "endvalues", "previous"), [NaN, 2, NaN, 4, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 1, "endvalues", "next"), [NaN, 2, NaN, 4, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 2, "endvalues", "previous"), [NaN, 2, 0, 4, 4])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 2, "endvalues", "next"), [2, 2, 0, 4, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 3, "endvalues", "previous"), [NaN, 2, NaN, 4, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 3, "endvalues", "next"), [NaN, 2, NaN, 4, NaN])
550s ***** test
550s  x = reshape ([1:24], 3, 4, 2);
550s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
550s  y = x;
550s  y([5, 6, 8, 18]) = [4, 4, 0, 17];
550s  assert (fillmissing (x, "constant", 0, "endvalues", "previous"), y);
550s  assert (fillmissing (x, "constant", 0, 1, "endvalues", "previous"), y);
550s  y = x;
550s  y([6, 10, 18, 20, 21]) = [0, 7, 0, 0, 0];
550s  assert (fillmissing (x, "constant", 0, 2, "endvalues", "previous"), y);
550s  y = x;
550s  y([16, 19, 21]) = [4, 7, 9];
550s  assert (fillmissing (x, "constant", 0, 3, "endvalues", "previous"), y);
550s  assert (fillmissing (x, "constant", 0, 4, "endvalues", "previous"), x);
550s  assert (fillmissing (x, "constant", 0, 99, "endvalues", "previous"), x);
550s  y = x;
550s  y([1, 2, 8, 10, 13, 16, 22]) = [3, 3, 0, 11, 14, 17, 23];
550s  assert (fillmissing (x, "constant", 0, "endvalues", "next"), y);
550s  assert (fillmissing (x, "constant", 0, 1, "endvalues", "next"), y);
550s  y = x;
550s  y([1, 2, 5, 6, 8, 18, 20, 21]) = [4, 11, 11, 0, 11, 0, 0, 0];
550s  assert (fillmissing (x, "constant", 0, 2, "endvalues", "next"), y);
550s  y = x;
550s  y([2, 5]) = [14, 17];
550s  assert (fillmissing (x, "constant", 0, 3, "endvalues", "next"), y);
550s  assert (fillmissing (x, "constant", 0, 4, "endvalues", "next"), x);
550s  assert (fillmissing (x, "constant", 0, 99, "endvalues", "next"), x);
550s ***** assert (fillmissing ([1, 2, 3], "nearest"), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3]', "nearest"), [1, 2, 3]')
550s ***** assert (fillmissing ([1, 2, NaN], "nearest"), [1, 2, 2])
550s ***** assert (fillmissing ([NaN, 2, NaN], "nearest"), [2, 2, 2])
550s ***** assert (fillmissing ([1, NaN, 3], "nearest"), [1, 3, 3])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "nearest", 1), [1, 2, 6; 4, 2, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "nearest", 2), [1, 2, 2; 4, 6, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "nearest", 3), [1, 2, NaN; 4, NaN, 6])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "nearest"), [1, 3, 3, 5, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "nearest", "samplepoints", [0, 1, 2, 3, 4]), [1, 3, 3, 5, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "nearest", "samplepoints", [0.5, 1, 2, 3, 5]), [1, 1, 3, 3, 5])
550s ***** test
550s  x = reshape ([1:24], 4, 3, 2);
550s  x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN;
550s  y = x;
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [2, 5, 8, 10, 11, 15, 15, 20, 21, 24];
550s  assert (fillmissing (x, "nearest", 1), y);
550s  y = x;
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = [5, 10, 11, 5, 8, 18, 20, 15, 18, 15];
550s  assert (fillmissing (x, "nearest", 2), y);
550s  y = x;
550s  y([1, 6, 9, 12, 14, 16, 22, 23]) = [13, 18, 21, 24, 2, 4, 10, 11];
550s  assert (fillmissing (x, "nearest", 3), y);
550s  assert (fillmissing (x, "nearest", 99), x);
550s ***** assert (fillmissing ([1, 2, 3], "constant", 0, "endvalues", "nearest"), [1, 2, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "constant", 0, "endvalues", "nearest"), [1 0 3])
550s ***** assert (fillmissing ([1, 2, NaN], "constant", 0, "endvalues", "nearest"), [1, 2, 2])
550s ***** assert (fillmissing ([1, NaN, NaN], "constant", 0, "endvalues", "nearest"), [1, 1, 1])
550s ***** assert (fillmissing ([NaN, 2, 3], "constant", 0, "endvalues", "nearest"), [2, 2, 3])
550s ***** assert (fillmissing ([NaN, NaN, 3], "constant", 0, "endvalues", "nearest"), [3, 3, 3])
550s ***** assert (fillmissing ([NaN, NaN, NaN], "constant", 0, "endvalues", "nearest"), [NaN, NaN, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, "endvalues", "nearest"), [2, 2, 0, 4, 4])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 1, "endvalues", "nearest"), [NaN, 2, NaN, 4, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 2, "endvalues", "nearest"), [2, 2, 0, 4, 4])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 0, 3, "endvalues", "nearest"), [NaN, 2, NaN, 4, NaN])
550s ***** test
550s  x = reshape ([1:24], 3, 4, 2);
550s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
550s  y = x;
550s  y([1, 2, 5, 6, 8, 10, 13, 16, 18, 22]) = [3, 3, 4, 4, 0, 11, 14, 17, 17, 23];
550s  assert (fillmissing (x, "constant", 0, "endvalues", "nearest"), y);
550s  assert (fillmissing (x, "constant", 0, 1, "endvalues", "nearest"), y);
550s  y = x;
550s  y([1, 2, 5, 6, 8, 10, 18, 20, 21]) = [4, 11, 11, 0, 11, 7, 0, 0, 0];
550s  assert (fillmissing (x, "constant", 0, 2, "endvalues", "nearest"), y);
550s  y = x;
550s  y([2, 5, 16, 19, 21]) = [14, 17, 4, 7, 9];
550s  assert (fillmissing (x, "constant", 0, 3, "endvalues", "nearest"), y);
550s  assert (fillmissing (x, "constant", 0, 99, "endvalues", "nearest"), x);
550s ***** assert (fillmissing ([1, 2, 3], "linear"), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3]', "linear"), [1, 2, 3]')
550s ***** assert (fillmissing ([1, 2, NaN], "linear"), [1, 2, 3])
550s ***** assert (fillmissing ([NaN, 2, NaN], "linear"), [NaN, 2, NaN])
550s ***** assert (fillmissing ([1, NaN, 3], "linear"), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "linear", 1), [1, 2, NaN; 4, NaN, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "linear", 2), [1, 2, 3; 4, 5, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "linear", 3), [1, 2, NaN; 4, NaN, 6])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "linear"), [1, 2, 3, 4, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "linear", "samplepoints", [0, 1, 2, 3, 4]), [1, 2, 3, 4, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "linear", "samplepoints", [0, 1.5, 2, 5, 14]), [1, 2.5, 3, 3.5, 5], eps)
550s ***** test
550s  x = reshape ([1:24], 4, 3, 2);
550s  x([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN;
550s  assert (fillmissing (x, "linear", 1), reshape ([1:24], 4, 3, 2));
550s  y = reshape ([1:24], 4, 3, 2);
550s  y([1, 9, 14, 19, 22, 23]) = NaN;
550s  assert (fillmissing (x, "linear", 2), y);
550s  y = reshape ([1:24], 4, 3, 2);
550s  y([1, 6, 7, 9, 12, 14, 16, 19, 22, 23]) = NaN;
550s  assert (fillmissing (x, "linear", 3), y);
550s  assert (fillmissing (x, "linear", 99), x);
550s ***** assert (fillmissing ([1, 2, 3], "linear", "endvalues", 0), [1, 2, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "linear", "endvalues", 0), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, NaN], "linear", "endvalues", 0), [1, 2, 0])
550s ***** assert (fillmissing ([1, NaN, NaN], "linear", "endvalues", 0), [1, 0, 0])
550s ***** assert (fillmissing ([NaN, 2, 3], "linear", "endvalues", 0), [0, 2, 3])
550s ***** assert (fillmissing ([NaN, NaN, 3], "linear", "endvalues", 0), [0, 0, 3])
550s ***** assert (fillmissing ([NaN, NaN, NaN], "linear", "endvalues", 0), [0, 0, 0])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "linear", "endvalues", 0), [0, 2, 3, 4, 0])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "linear", 1, "endvalues", 0), [0, 2, 0, 4, 0])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "linear", 2, "endvalues", 0), [0, 2, 3, 4, 0])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "linear", 3, "endvalues", 0), [0, 2, 0, 4, 0])
550s ***** test
550s  x = reshape ([1:24], 3, 4, 2);
550s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
550s  y = x;
550s  y([1, 2, 5, 6, 10, 13, 16, 18, 19, 20, 21, 22]) = 0;
550s  y(8) = 8;
550s  assert (fillmissing (x, "linear", "endvalues", 0), y);
550s  assert (fillmissing (x, "linear", 1, "endvalues", 0), y);
550s  y = x;
550s  y([1, 2, 5, 8, 10, 13, 16, 19, 22]) = 0;
550s  y([6, 18, 20, 21]) = [6, 18, 20, 21];
550s  assert (fillmissing (x, "linear", 2, "endvalues", 0), y);
550s  y = x;
550s  y(isnan(y)) = 0;
550s  assert (fillmissing (x, "linear", 3, "endvalues", 0), y);
550s  assert (fillmissing (x, "linear", 99, "endvalues", 0), y);
550s ***** assert (fillmissing ([1, 2, 3], "constant", 99, "endvalues", "linear"), [1, 2, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "constant", 99, "endvalues", "linear"), [1, 99, 3])
550s ***** assert (fillmissing ([1, NaN, 3, NaN], "constant", 99, "endvalues", "linear"), [1, 99, 3, 4])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 99, "endvalues", "linear"), [1, 2, 99, 4, 5])
550s ***** assert (fillmissing ([NaN, 2, NaN, NaN], "constant", 99, "endvalues", "linear"), [NaN, 2, NaN, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 99, "endvalues", "linear", "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 99, 4, 5])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 99, "endvalues", "linear", "samplepoints", [0, 2, 3, 4, 10]), [0, 2, 99, 4, 10])
550s ***** test
550s  x = reshape ([1:24], 3, 4, 2);
550s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
550s  y = x;
550s  y([1, 6, 10, 18, 20, 21]) = [2.5, 5, 8.5, 17.25, 21, 21.75];
550s  assert (fillmissing (x, "linear", 2, "samplepoints", [2 4 8 10]), y, eps);
550s  y([1, 6, 10, 18, 20, 21]) = [2.5, 4.5, 8.5, 17.25, 21.5, 21.75];
550s  assert (fillmissing (x, "spline", 2, "samplepoints", [2, 4, 8, 10]), y, eps);
550s  y([1, 6, 10, 18, 20, 21]) = [2.5, 4.559386973180077, 8.5, 17.25, 21.440613026819925, 21.75];
550s  assert (fillmissing (x, "pchip", 2, "samplepoints", [2, 4, 8, 10]), y, 10*eps);
550s ***** test <60965>
550s  x = reshape ([1:24], 3, 4, 2);
550s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
550s  y = x;
550s  y([1, 6, 10, 18, 20, 21]) = [2.5, 4.609523809523809, 8.5, 17.25, 21.390476190476186, 21.75];
550s  assert (fillmissing (x, "makima", 2, "samplepoints", [2, 4, 8, 10]), y, 10*eps);
550s !!!!! known bug: https://octave.org/testfailure/?60965
550s interp1: invalid METHOD 'makima'
550s ***** assert (fillmissing ([1, 2, 3], "constant", 99, "endvalues", "spline"), [1, 2, 3])
550s ***** assert (fillmissing ([1, NaN, 3], "constant", 99, "endvalues", "spline"), [1, 99, 3])
550s ***** assert (fillmissing ([1, NaN, 3, NaN], "constant", 99, "endvalues", "spline"), [1, 99, 3, 4])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 99, "endvalues", "spline"), [1, 2, 99, 4, 5])
550s ***** assert (fillmissing ([NaN, 2, NaN, NaN], "constant", 99, "endvalues", "spline"), [NaN, 2, NaN, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 99, "endvalues", "spline", "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 99, 4, 5])
550s ***** assert (fillmissing ([NaN, 2, NaN, 4, NaN], "constant", 99, "endvalues", "spline", "samplepoints", [0, 2, 3, 4, 10]), [0, 2, 99, 4, 10])
550s ***** assert (fillmissing ([1, 2, 3], "movmean", 1), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, NaN], "movmean", 1), [1, 2, NaN])
550s ***** assert (fillmissing ([1, 2, 3], "movmean", 2), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3], "movmean", [1, 0]), [1, 2, 3])
550s ***** assert (fillmissing ([1, 2, 3]', "movmean", 2), [1, 2, 3]')
550s ***** assert (fillmissing ([1, 2, NaN], "movmean", 2), [1, 2, 2])
550s ***** assert (fillmissing ([1, 2, NaN], "movmean", [1, 0]), [1, 2, 2])
550s ***** assert (fillmissing ([1, 2, NaN], "movmean", [1, 0]'), [1, 2, 2])
550s ***** assert (fillmissing ([NaN, 2, NaN], "movmean", 2), [NaN, 2, 2])
550s ***** assert (fillmissing ([NaN, 2, NaN], "movmean", [1, 0]), [NaN, 2, 2])
550s ***** assert (fillmissing ([NaN, 2, NaN], "movmean", [0, 1]), [2, 2, NaN])
550s ***** assert (fillmissing ([NaN, 2, NaN], "movmean", [0, 1.1]), [2, 2, NaN])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmean", [3, 0]), [1, 1, 3, 2, 5])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "movmean", 3, 1), [1, 2, 6; 4, 2, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "movmean", 3, 2), [1, 2, 2; 4, 5, 6])
550s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "movmean", 3, 3), [1, 2, NaN; 4, NaN, 6])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmean", 99), [1, 3, 3, 3, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmean", 99, 1), [1, NaN, 3, NaN, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', "movmean", 99, 1), [1, 3, 3, 3, 5]')
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmean", 99, 2), [1, 3, 3, 3, 5])
550s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', "movmean", 99, 2), [1, NaN, 3, NaN, 5]')
550s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", 3, "samplepoints", [1, 2, 3, 4, 5]), [1, 1, NaN, 5, 5])
550s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", [1, 1], "samplepoints", [1, 2, 3, 4, 5]), [1, 1, NaN, 5, 5])
550s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", [1.5, 1.5], "samplepoints", [1, 2, 3, 4, 5]), [1, 1, NaN, 5, 5])
550s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", 4, "samplepoints", [1, 2, 3, 4, 5]), [1, 1, 1, 5, 5])
550s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", [2, 2], "samplepoints", [1, 2, 3, 4, 5]), [1, 1, 3, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", 4.0001, "samplepoints", [1, 2, 3, 4, 5]), [1, 1, 3, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", 3, "samplepoints", [1.5, 2, 3, 4, 5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", 3, "samplepoints", [1 2, 3, 4, 4.5]), [1, 1, NaN, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", 3, "samplepoints", [1.5, 2, 3, 4, 4.5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", [1.5, 1.5], "samplepoints", [1.5, 2, 3, 4, 5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", [1.5, 1.5], "samplepoints", [1, 2, 3, 4, 4.5]), [1, 1, 5, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmean", [1.5, 1.5], "samplepoints", [1.5, 2 3, 4, 4.5]), [1, 1, 3, 5, 5])
551s ***** test
551s  x = reshape ([1:24], 3, 4, 2);
551s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
551s  y = x;
551s  y([2, 5, 8, 10, 13, 16, 18, 22]) = [3, 4, 8, 11, 14, 17, 17, 23];
551s  assert (fillmissing (x, "movmean", 3), y);
551s  assert (fillmissing (x, "movmean", [1, 1]), y);
551s  assert (fillmissing (x, "movmean", 3, "endvalues", "extrap"), y);
551s  assert (fillmissing (x, "movmean", 3, "samplepoints", [1, 2, 3]), y);
551s  y = x;
551s  y([1, 6, 8, 10, 18, 20, 21]) = [4, 6, 11, 7, 15, 20, 24];
551s  assert (fillmissing (x, "movmean", 3, 2), y);
551s  assert (fillmissing (x, "movmean", [1, 1], 2), y);
551s  assert (fillmissing (x, "movmean", 3, 2, "endvalues", "extrap"), y);
551s  assert (fillmissing (x, "movmean", 3, 2, "samplepoints", [1, 2, 3, 4]), y);
551s  y([1, 18]) = NaN;
551s  y(6) = 9;
551s  assert (fillmissing (x, "movmean", 3, 2, "samplepoints", [0, 2, 3, 4]), y);
551s  y = x;
551s  y([1, 2, 5, 6, 10, 13, 16, 18, 19, 20, 21, 22]) = 99;
551s  y(8) = 8;
551s  assert (fillmissing (x, "movmean", 3, "endvalues", 99), y);
551s  y = x;
551s  y([1, 2, 5, 8, 10, 13, 16, 19, 22]) = 99;
551s  y([6, 18, 20, 21]) = [6, 15, 20, 24];
551s  assert (fillmissing (x, "movmean", 3, 2, "endvalues", 99), y);
551s ***** assert (fillmissing ([1, 2, 3], "movmedian", 1), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, NaN], "movmedian", 1), [1, 2, NaN])
551s ***** assert (fillmissing ([1, 2, 3], "movmedian", 2), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, 3], "movmedian", [1, 0]), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, 3]', "movmedian", 2), [1, 2, 3]')
551s ***** assert (fillmissing ([1, 2, NaN], "movmedian", 2), [1, 2, 2])
551s ***** assert (fillmissing ([1, 2, NaN], "movmedian", [1, 0]), [1, 2, 2])
551s ***** assert (fillmissing ([1, 2, NaN], "movmedian", [1, 0]'), [1, 2, 2])
551s ***** assert (fillmissing ([NaN, 2, NaN], "movmedian", 2), [NaN, 2, 2])
551s ***** assert (fillmissing ([NaN, 2, NaN], "movmedian", [1, 0]), [NaN, 2, 2])
551s ***** assert (fillmissing ([NaN, 2, NaN], "movmedian", [0, 1]), [2, 2, NaN])
551s ***** assert (fillmissing ([NaN, 2, NaN], "movmedian", [0, 1.1]), [2, 2, NaN])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmedian", [3, 0]), [1, 1, 3, 2, 5])
551s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "movmedian", 3, 1), [1, 2, 6; 4, 2, 6])
551s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "movmedian", 3, 2), [1, 2, 2; 4, 5, 6])
551s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], "movmedian", 3, 3), [1, 2, NaN; 4, NaN, 6])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmedian", 99), [1, 3, 3, 3, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmedian", 99, 1), [1, NaN, 3, NaN, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', "movmedian", 99, 1), [1, 3, 3, 3, 5]')
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "movmedian", 99, 2), [1, 3, 3, 3, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', "movmedian", 99, 2), [1, NaN, 3, NaN, 5]')
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", 3, "samplepoints", [1, 2, 3, 4, 5]), [1, 1, NaN, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", [1, 1], "samplepoints", [1, 2, 3, 4, 5]), [1, 1, NaN, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", [1.5, 1.5], "samplepoints", [1, 2, 3, 4, 5]), [1, 1, NaN, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", 4, "samplepoints", [1, 2, 3, 4, 5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", [2, 2], "samplepoints", [1, 2, 3, 4, 5]), [1, 1, 3, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", 4.0001, "samplepoints", [1, 2, 3, 4, 5]), [1, 1, 3, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", 3, "samplepoints", [1.5 2 3 4 5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", 3, "samplepoints", [1 2 3 4 4.5]), [1, 1, NaN, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", 3, "samplepoints", [1.5 2 3 4 4.5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", [1.5, 1.5], "samplepoints", [1.5 2 3 4 5]), [1, 1, 1, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", [1.5, 1.5], "samplepoints", [1 2 3 4 4.5]), [1, 1, 5, 5, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], "movmedian", [1.5, 1.5], "samplepoints", [1.5 2 3 4 4.5]), [1, 1, 3, 5, 5])
551s ***** test
551s  x = reshape ([1:24], 3, 4, 2);
551s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
551s  y = x;
551s  y([2, 5, 8, 10, 13, 16, 18, 22]) = [3, 4, 8, 11, 14, 17, 17, 23];
551s  assert (fillmissing (x, "movmedian", 3), y);
551s  assert (fillmissing (x, "movmedian", [1, 1]), y);
551s  assert (fillmissing (x, "movmedian", 3, "endvalues", "extrap"), y);
551s  assert (fillmissing (x, "movmedian", 3, "samplepoints", [1, 2, 3]), y);
551s  y = x;
551s  y([1, 6, 8, 10, 18, 20, 21]) = [4, 6, 11, 7, 15, 20, 24];
551s  assert (fillmissing (x, "movmedian", 3, 2), y);
551s  assert (fillmissing (x, "movmedian", [1, 1], 2), y);
551s  assert (fillmissing (x, "movmedian", 3, 2, "endvalues", "extrap"), y);
551s  assert (fillmissing (x, "movmedian", 3, 2, "samplepoints", [1, 2, 3, 4]), y);
551s  y([1,18]) = NaN;
551s  y(6) = 9;
551s  assert (fillmissing (x, "movmedian", 3, 2, "samplepoints", [0, 2, 3, 4]), y);
551s  y = x;
551s  y([1, 2, 5, 6, 10, 13, 16, 18, 19, 20, 21, 22]) = 99;
551s  y(8) = 8;
551s  assert (fillmissing (x, "movmedian", 3, "endvalues", 99), y);
551s  y = x;
551s  y([1, 2, 5, 8, 10, 13, 16, 19, 22]) = 99;
551s  y([6, 18, 20, 21]) = [6, 15, 20, 24];
551s  assert (fillmissing (x, "movmedian", 3, 2, "endvalues", 99), y);
551s ***** assert (fillmissing ([1, 2, 3], @(x,y,z) x+y+z, 2), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, NaN], @(x,y,z) x+y+z, 1), [1, 2, NaN])
551s ***** assert (fillmissing ([1, 2, 3], @(x,y,z) x+y+z, 2), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, 3], @(x,y,z) x+y+z, [1, 0]), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, 3]', @(x,y,z) x+y+z, 2), [1, 2, 3]')
551s ***** assert (fillmissing ([1, 2, NaN], @(x,y,z) x+y+z, 2), [1, 2, 7])
551s ***** assert (fillmissing ([1, 2, NaN], @(x,y,z) x+y+z, [1, 0]), [1, 2, 7])
551s ***** assert (fillmissing ([1, 2, NaN], @(x,y,z) x+y+z, [1, 0]'), [1, 2, 7])
551s ***** assert (fillmissing ([NaN, 2, NaN], @(x,y,z) x+y+z, 2), [5, 2, 7])
551s ***** assert (fillmissing ([NaN, 2, NaN], @(x,y,z) x+y+z, [1, 0]), [NaN, 2, 7])
551s ***** assert (fillmissing ([NaN, 2, NaN], @(x,y,z) x+y+z, [0, 1]), [5, 2, NaN])
551s ***** assert (fillmissing ([NaN, 2, NaN], @(x,y,z) x+y+z, [0, 1.1]), [5, 2, NaN])
551s ***** assert (fillmissing ([1, 2, NaN, NaN, 3, 4], @(x,y,z) x+y+z, 2), [1, 2, 7, 12, 3, 4])
551s ***** assert (fillmissing ([1, 2, NaN, NaN, 3, 4], @(x,y,z) x+y+z, 0.5), [1, 2, NaN, NaN, 3, 4])
551s ***** function A = testfcn (x, y, z)
551s   if (isempty (y))
551s     A = z;
551s   elseif (numel (y) == 1)
551s     A = repelem (x(1), numel(z));
551s   else
551s     A = interp1 (y, x, z, "linear", "extrap");
551s   endif
551s ***** endfunction
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], @testfcn, [3, 0]), [1, 1, 3, NaN, 5])
551s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], @testfcn, 3, 1), [1, 2, 6; 4, 2, 6])
551s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], @testfcn, 3, 2), [1, 2, 2; 4, 5, 6])
551s ***** assert (fillmissing ([1, 2, NaN; 4, NaN, 6], @testfcn, 3, 3), [1, 2, NaN; 4, NaN, 6])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], @testfcn, 99), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], @testfcn, 99, 1), [1, NaN, 3, NaN, 5]) ##known not-compatible. matlab bug ML2022a: [1, 1, 3, 1, 5]
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', @testfcn, 99, 1), [1, 2, 3, 4, 5]')
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], @testfcn, 99, 2), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', @testfcn, 99, 2), [1, NaN, 3, NaN, 5]') ##known not-compatible. matlab bug ML2022a: [1, 1, 3, 1, 5]'
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], @testfcn, 99, 3), [1, NaN, 3, NaN, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', @testfcn, 99, 3), [1, NaN, 3, NaN, 5]')
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], @testfcn, 3, "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], @testfcn, [1, 1], "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], @testfcn, [1.5, 1.5], "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], @testfcn, 4, "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], @testfcn, [2, 2], "samplepoints", [1, 2, 3, 4, 5]), [1, 2, 3, 4, 5])
551s ***** assert (fillmissing ([1, NaN, NaN, NaN, 5], @testfcn, 3, "samplepoints", [1, 2, 2.5, 3, 3.5]), [1, 2.6, 3.4, 4.2, 5], 10*eps)
551s ***** assert (fillmissing ([NaN, NaN, 3, NaN, 5], @testfcn, 99, 1), [NaN, NaN, 3, NaN, 5]) ##known not-compatible. matlab bug ML2022a: [1, 1, 3, 1, 5]
551s ***** test
551s ***** function A = testfcn (x, y, z)
551s   if (isempty (y))
551s     A = z;
551s   elseif (numel (y) == 1)
551s     A = repelem (x(1), numel(z));
551s   else
551s     A = interp1 (y, x, z, "linear", "extrap");
551s   endif
551s ***** endfunction
551s  x = reshape ([1:24], 3, 4, 2);
551s  x([1, 2, 5, 6, 8, 10, 13, 16, 18, 19, 20, 21, 22]) = NaN;
551s  y = x;
551s  y([1, 2, 5, 6, 8, 10, 13, 16, 18, 22]) = [3, 3, 4, 4, 8, 11, 14, 17, 17, 23];
551s  assert (fillmissing (x, @testfcn, 3), y);
551s  assert (fillmissing (x, @testfcn, [1, 1]), y);
551s  assert (fillmissing (x, @testfcn, 3, "endvalues", "extrap"), y);
551s  assert (fillmissing (x, @testfcn, 3, "samplepoints", [1, 2, 3]), y);
551s  y= x;
551s  y(isnan (x)) = 99;
551s  y(8) = 8;
551s  assert (fillmissing (x, @testfcn, 3, "endvalues", 99), y)
551s  y = x;
551s  y([1, 2, 5, 6, 8, 10, 18, 20, 21]) = [4, 11, 11, 6, 11, 7, 18, 20, 21];
551s  assert (fillmissing (x, @testfcn, 3, 2), y);
551s  assert (fillmissing (x, @testfcn, [1, 1], 2), y);
551s  assert (fillmissing (x, @testfcn, 3, 2, "endvalues", "extrap"), y);
551s  assert (fillmissing (x, @testfcn, 3, 2, "samplepoints", [1, 2, 3, 4]), y);
551s  y(1) = NaN;
551s  y([6, 18, 21]) = [9, 24, 24];
551s  assert (fillmissing (x, @testfcn, 3, 2, "samplepoints", [0, 2, 3, 4]), y);
551s  y = x;
551s  y([1, 2, 5, 6, 10, 13, 16, 18, 19, 20, 21, 22]) = 99;
551s  y(8) = 8;
551s  assert (fillmissing (x, @testfcn, 3, "endvalues", 99), y);
551s  y([6, 18, 20, 21]) = [6, 18, 20, 21];
551s  y(8) = 99;
551s  assert (fillmissing (x, @testfcn, 3, 2, "endvalues", 99), y);
551s  y([6, 18, 20, 21]) = 99;
551s  assert (fillmissing (x, @testfcn, 3, 3, "endvalues", 99), y);
551s ***** assert (fillmissing ([1, 2, 3], "constant", 0, "maxgap", 1), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, 3], "constant", 0, "maxgap", 99), [1, 2, 3])
551s ***** assert (fillmissing ([1, NaN, 3], "constant", 0, "maxgap", 1), [1, NaN, 3])
551s ***** assert (fillmissing ([1, NaN, 3], "constant", 0, "maxgap", 1.999), [1, NaN, 3])
551s ***** assert (fillmissing ([1, NaN, 3], "constant", 0, "maxgap", 2), [1, 0, 3])
551s ***** assert (fillmissing ([1, NaN, NaN, 4], "constant", 0, "maxgap", 2), [1, NaN, NaN, 4])
551s ***** assert (fillmissing ([1, NaN, NaN, 4], "constant", 0, "maxgap", 3), [1, 0, 0, 4])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "constant", 0, "maxgap", 2), [1, 0, 3, 0, 5])
551s ***** assert (fillmissing ([NaN, 2, NaN], "constant", 0, "maxgap", 0.999), [NaN, 2, NaN])
551s ***** assert (fillmissing ([NaN, 2, NaN], "constant", 0, "maxgap", 1), [0, 2, 0])
551s ***** assert (fillmissing ([NaN, 2, NaN, NaN], "constant", 0, "maxgap", 1), [0, 2, NaN, NaN])
551s ***** assert (fillmissing ([NaN, 2, NaN, NaN], "constant", 0, "maxgap", 2), [0, 2, 0, 0])
551s ***** assert (fillmissing ([NaN, NaN, NaN], "constant", 0, "maxgap", 1), [NaN, NaN, NaN])
551s ***** assert (fillmissing ([NaN, NaN, NaN], "constant", 0, "maxgap", 3), [NaN, NaN, NaN])
551s ***** assert (fillmissing ([NaN, NaN, NaN], "constant", 0, "maxgap", 999), [NaN, NaN, NaN])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "constant", 0, "maxgap", 2, "samplepoints", [0, 1, 2, 3, 5]), [1, 0, 3, NaN, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5]', "constant", 0, "maxgap", 2, "samplepoints", [0, 1, 2, 3, 5]), [1, 0, 3, NaN, 5]')
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "constant", 0, "maxgap", 2, "samplepoints", [0, 2, 3, 4, 5]), [1, NaN, 3, 0, 5])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5; 1, NaN, 3, NaN, 5], "constant", 0, 2, "maxgap", 2, "samplepoints", [0, 2, 3, 4, 5]), [1, NaN, 3, 0, 5; 1, NaN, 3, 0, 5])
551s ***** test
551s  x = cat (3, [1, 2, NaN; 4, NaN, NaN], [NaN, 2, 3; 4, 5, NaN]);
551s  assert (fillmissing (x, "constant", 0, "maxgap", 0.1), x);
551s  y = x;
551s  y([4, 7, 12]) = 0;
551s  assert (fillmissing (x, "constant", 0, "maxgap", 1), y);
551s  assert (fillmissing (x, "constant", 0, 1, "maxgap", 1), y);
551s  y = x;
551s  y([5, 7, 12]) = 0;
551s  assert (fillmissing (x, "constant", 0, 2, "maxgap", 1), y);
551s  y = x;
551s  y([4, 5, 7]) = 0;
551s  assert (fillmissing (x, "constant", 0, 3, "maxgap", 1), y);
551s ***** test
551s  x = cat (3, [1, 2, NaN; 4, NaN, NaN], [NaN, 2, 3; 4, 5, NaN]);
551s  [~, idx] = fillmissing (x, "constant", 0, "maxgap", 1);
551s  assert (idx, logical (cat (3, [0, 0, 0; 0, 1, 0], [1, 0, 0; 0, 0, 1])));
551s  [~, idx] = fillmissing (x, "constant", 0, 1, "maxgap", 1);
551s  assert (idx, logical (cat (3, [0, 0, 0; 0, 1, 0], [1, 0, 0; 0, 0, 1])));
551s  [~, idx] = fillmissing (x, "constant", 0, 2, "maxgap", 1);
551s  assert (idx, logical (cat (3, [0, 0, 1; 0, 0, 0], [1, 0, 0; 0, 0, 1])));
551s  [~, idx] = fillmissing (x, "constant", 0, 3, "maxgap", 1);
551s  assert (idx, logical (cat (3, [0, 0, 1; 0, 1, 0], [1, 0, 0; 0, 0, 0])));
551s ***** test
551s  x = [NaN, 2, 3];
551s  [~, idx] = fillmissing (x, "previous");
551s  assert (idx, logical ([0, 0, 0]));
551s  [~, idx] = fillmissing (x, "movmean", 1);
551s  assert (idx, logical ([0, 0, 0]));
551s  x = [1:3; 4:6; 7:9];
551s  x([2, 4, 7, 9]) = NaN;
551s  [~, idx] = fillmissing (x, "linear");
551s  assert (idx, logical ([0, 1, 0; 1, 0, 0; 0, 0, 0]));
551s  [~, idx] = fillmissing (x, "movmean", 2);
551s  assert (idx, logical ([0, 0, 0; 1, 0, 0; 0, 0, 1]));
551s  [A, idx] = fillmissing ([1, 2, 3, NaN, NaN], "movmean",2);
551s  assert (A, [1, 2, 3, 3, NaN]);
551s  assert (idx, logical ([0, 0, 0, 1, 0]));
551s  [A, idx] = fillmissing ([1, 2, 3, NaN, NaN], "movmean",3);
551s  assert (A, [1, 2, 3, 3, NaN]);
551s  assert (idx, logical ([0, 0, 0, 1, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, NaN, NaN], "movmedian", 2);
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, 3, NaN, NaN], "movmedian", 3);
551s  assert (A, [1, 2, 3, 3, NaN]);
551s  assert (idx, logical ([0, 0, 0, 1, 0]));
551s  [A, idx] = fillmissing ([1, NaN, 1, NaN, 1],  @(x,y,z) z, 3);
551s  assert (A, [1, 2, 1, 4, 1]);
551s  assert (idx, logical ([0, 1, 0, 1, 0]));
551s  [A, idx] = fillmissing ([1, NaN, 1, NaN, 1],  @(x,y,z) NaN (size (z)), 3);
551s  assert (A, [1, NaN, 1, NaN, 1]);
551s  assert (idx, logical ([0, 0, 0, 0, 0]));
551s ***** assert (fillmissing ([1, 2, 3], "constant", 99, "missinglocations", logical ([0, 0, 0])), [1, 2, 3])
551s ***** assert (fillmissing ([1, 2, 3], "constant", 99, "missinglocations", logical ([1, 1, 1])), [99, 99, 99])
551s ***** assert (fillmissing ([1, NaN, 2, 3, NaN], "constant", 99, "missinglocations", logical ([1, 0, 1, 0, 1])), [99, NaN, 99, 3, 99])
551s ***** assert (fillmissing ([1, NaN, 3, NaN, 5], "constant", NaN, "missinglocations", logical ([0, 1, 1, 1, 0])), [1, NaN, NaN, NaN, 5])
551s ***** assert (fillmissing (["foo "; " bar"], "constant", "X", "missinglocations", logical ([0, 0, 0, 0; 0, 0, 0, 0])), ["foo "; " bar"])
551s ***** assert (fillmissing (["foo "; " bar"], "constant", "X", "missinglocations", logical ([1, 0, 1, 0; 0, 1, 1, 0])), ["XoX "; " XXr"])
551s ***** assert (fillmissing ({"foo", "", "bar"}, "constant", "X", "missinglocations", logical ([0, 0, 0])), {"foo", "", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "constant", "X", "missinglocations", logical ([1, 1, 0])), {"X", "X", "bar"})
551s ***** test
551s  [~, idx] = fillmissing ([1, NaN, 3, NaN, 5], "constant", NaN);
551s  assert (idx, logical ([0, 0, 0, 0, 0]));
551s  [~, idx] = fillmissing ([1 NaN 3 NaN 5], "constant", NaN, "missinglocations", logical ([0, 1, 1, 1, 0]));
551s  assert (idx, logical ([0, 1, 1, 1, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, 1, NaN], "movmean", 3.1, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, NaN, NaN], "movmean", 2, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, 1, NaN], "movmean", 3, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, NaN, NaN], "movmean", 3, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, NaN, NaN], "movmedian", 2, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, NaN, NaN], "movmedian", 3, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, 2, NaN, NaN, NaN], "movmedian", 3.1, "missinglocations", logical ([0, 0, 1, 1, 0]));
551s  assert (A, [1, 2, 2, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [A, idx] = fillmissing ([1, NaN, 1, NaN, 1],  @(x,y,z) ones (size (z)), 3, "missinglocations", logical ([0, 1, 0, 1, 1]));
551s  assert (A, [1, 1, 1, 1, 1]);
551s  assert (idx, logical ([0, 1, 0, 1, 1]));
551s  [A, idx] = fillmissing ([1, NaN, 1, NaN, 1],  @(x,y,z) NaN (size (z)), 3, "missinglocations", logical ([0, 1, 0, 1, 1]));
551s  assert (A, [1, NaN, 1, NaN, NaN]);
551s  assert (idx, logical ([0, 0, 0, 0, 0]));
551s ***** test
551s  [A, idx] = fillmissing ([1, 2, 5], "movmedian", 3, "missinglocations", logical ([0, 1, 0]));
551s  assert (A, [1, 3, 5]);
551s  assert (idx, logical ([0, 1, 0]));
551s ***** assert (fillmissing (" foo bar ", "constant", "X"), "XfooXbarX")
551s ***** assert (fillmissing ([" foo"; "bar "], "constant", "X"), ["Xfoo"; "barX"])
551s ***** assert (fillmissing ([" foo"; "bar "], "next"), ["bfoo"; "bar "])
551s ***** assert (fillmissing ([" foo"; "bar "], "next", 1), ["bfoo"; "bar "])
551s ***** assert (fillmissing ([" foo"; "bar "], "previous"), [" foo"; "baro"])
551s ***** assert (fillmissing ([" foo"; "bar "], "previous", 1), [" foo"; "baro"])
551s ***** assert (fillmissing ([" foo"; "bar "], "nearest"), ["bfoo"; "baro"])
551s ***** assert (fillmissing ([" foo"; "bar "], "nearest", 1), ["bfoo"; "baro"])
551s ***** assert (fillmissing ([" foo"; "bar "], "next", 2), ["ffoo"; "bar "])
551s ***** assert (fillmissing ([" foo"; "bar "], "previous", 2), [" foo"; "barr"])
551s ***** assert (fillmissing ([" foo"; "bar "], "nearest", 2), ["ffoo"; "barr"])
551s ***** assert (fillmissing ([" foo"; "bar "], "next", 3), [" foo"; "bar "])
551s ***** assert (fillmissing ([" foo"; "bar "], "previous", 3), [" foo"; "bar "])
551s ***** assert (fillmissing ([" foo"; "bar "], "nearest", 3), [" foo"; "bar "])
551s ***** assert (fillmissing ({"foo", "bar"}, "constant", "a"), {"foo", "bar"})
551s ***** assert (fillmissing ({"foo", "bar"}, "constant", {"a"}), {"foo", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "constant", "a"), {"foo", "a", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "constant", {"a"}), {"foo", "a", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "previous"), {"foo", "foo", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "next"), {"foo", "bar", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "nearest"), {"foo", "bar", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "previous", 2), {"foo", "foo", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "next", 2), {"foo", "bar", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "nearest", 2), {"foo", "bar", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "previous", 1), {"foo", "", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "previous", 1), {"foo", "", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "next", 1), {"foo", "", "bar"})
551s ***** assert (fillmissing ({"foo", "", "bar"}, "nearest", 1), {"foo", "", "bar"})
551s ***** assert (fillmissing ("abc ", @(x,y,z) x+y+z, 2), "abcj")
551s ***** assert (fillmissing ({"foo", "", "bar"}, @(x,y,z) x(1), 3), {"foo", "foo", "bar"})
551s ***** test
551s  [A, idx] = fillmissing (" a b c", "constant", " ");
551s  assert (A, " a b c");
551s  assert (idx, logical ([0, 0, 0, 0, 0, 0]));
551s  [A, idx] = fillmissing ({"foo", "", "bar", ""}, "constant", "");
551s  assert (A, {"foo", "", "bar", ""});
551s  assert (idx, logical ([0, 0, 0, 0]));
551s  [A, idx] = fillmissing ({"foo", "", "bar", ""}, "constant", {""});
551s  assert (A, {"foo", "", "bar", ""});
551s  assert (idx, logical ([0, 0, 0, 0]));
551s  [A,idx] = fillmissing (" f o o ", @(x,y,z) repelem ("a", numel (z)), 3);
551s  assert (A, "afaoaoa");
551s  assert (idx, logical ([1, 0, 1, 0, 1, 0, 1]));
551s  [A,idx] = fillmissing (" f o o ", @(x,y,z) repelem (" ", numel (z)), 3);
551s  assert (A, " f o o ");
551s  assert (idx, logical ([0, 0, 0, 0, 0, 0, 0]));
551s  [A,idx] = fillmissing ({"", "foo", ""}, @(x,y,z) repelem ({"a"}, numel (z)), 3);
551s  assert (A, {"a", "foo", "a"});
551s  assert (idx, logical ([1, 0, 1]));
551s  [A,idx] = fillmissing ({"", "foo", ""}, @(x,y,z) repelem ({""}, numel (z)), 3);
551s  assert (A, {"", "foo", ""});
551s  assert (idx, logical ([0, 0, 0]));
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]), "constant", true), logical ([1, 0, 1, 0, 1]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]), "constant", false, "missinglocations", logical ([1, 0, 1, 0, 1])), logical ([0, 0, 0, 0, 0]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]), "previous",  "missinglocations", logical ([1, 0, 1, 0, 1])), logical ([1, 0, 0, 0, 0]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]), "next",  "missinglocations", logical ([1, 0, 1, 0, 1])), logical ([0, 0, 0, 0, 1]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]), "nearest", "missinglocations", logical ([1, 0, 1, 0, 1])), logical ([0, 0, 0, 0, 0]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]),  @(x,y,z) false(size(z)), 3), logical ([1, 0, 1, 0, 1]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]),  @(x,y,z) false(size(z)), 3, "missinglocations", logical ([1, 0, 1, 0, 1])), logical ([0, 0, 0, 0, 0]))
551s ***** assert (fillmissing (logical ([1, 0, 1, 0, 1]),  @(x,y,z) false(size(z)), [2, 0], "missinglocations", logical ([1, 0, 1, 0, 1])), logical ([1, 0, 0, 0, 0]))
551s ***** test
551s  x = logical ([1, 0, 1, 0, 1]);
551s  [~, idx] = fillmissing (x, "constant", true);
551s  assert (idx, logical ([0, 0, 0, 0, 0]));
551s  [~, idx] = fillmissing (x, "constant", false, "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, "constant", true, "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, "previous", "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([0, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, "next",  "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 0]));
551s  [~, idx] = fillmissing (x, "nearest", "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, @(x,y,z) false(size(z)), 3);
551s  assert (idx, logical ([0, 0, 0, 0, 0]))
551s  [~, idx] = fillmissing (x, @(x,y,z) false(size(z)), 3, "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]))
551s  [~, idx] = fillmissing (x, @(x,y,z) false(size(z)), [2 0], "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([0, 0, 1, 0, 1]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), "constant", 0), int32 ([1, 2, 3, 4, 5]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), "constant", 0, "missinglocations", logical ([1, 0, 1, 0, 1])), int32 ([0, 2, 0, 4, 0]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), "previous", "missinglocations", logical ([1, 0, 1, 0, 1])), int32 ([1, 2, 2, 4, 4]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), "next", "missinglocations", logical ([1, 0, 1, 0, 1])), int32 ([2, 2, 4, 4, 5]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), "nearest", "missinglocations", logical ([1, 0, 1, 0, 1])), int32 ([2, 2, 4, 4, 4]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), @(x,y,z) z+10, 3), int32 ([1, 2, 3, 4, 5]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), @(x,y,z) z+10, 3, "missinglocations", logical ([1, 0, 1, 0, 1])), int32 ([11, 2, 13, 4, 15]))
551s ***** assert (fillmissing (int32 ([1, 2, 3, 4, 5]), @(x,y,z) z+10, [2, 0], "missinglocations", logical ([1, 0, 1, 0, 1])), int32 ([1, 2, 13, 4, 15]))
551s ***** test
551s  x = int32 ([1, 2, 3, 4, 5]);
551s  [~, idx] = fillmissing (x, "constant", 0);
551s  assert (idx, logical ([0, 0, 0, 0, 0]));
551s  [~, idx] = fillmissing (x, "constant", 0, "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, "constant", 3, "missinglocations", logical ([0, 0, 1, 0, 0]));
551s  assert (idx, logical ([0, 0, 1, 0, 0]));
551s  [~, idx] = fillmissing (x, "previous", "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([0, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, "next", "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 0]));
551s  [~, idx] = fillmissing (x, "nearest", "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, @(x,y,z) z+10, 3);
551s  assert (idx, logical ([0, 0, 0, 0, 0]));
551s  [~, idx] = fillmissing (x, @(x,y,z) z+10, 3, "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([1, 0, 1, 0, 1]));
551s  [~, idx] = fillmissing (x, @(x,y,z) z+10, [2 0], "missinglocations", logical ([1, 0, 1, 0, 1]));
551s  assert (idx, logical ([0, 0, 1, 0, 1]));
551s ***** test
551s  [A, idx] = fillmissing ([struct, struct], "constant", 1);
551s  assert (A, [struct, struct])
551s  assert (idx, [false, false])
551s ***** error <Invalid call> fillmissing ()
551s ***** error <Invalid call> fillmissing (1)
552s ***** error <Invalid call> fillmissing (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)
552s ***** error <second input must be a> fillmissing (1, 2)
552s ***** error <unknown fill method 'foo'> fillmissing (1, "foo")
552s ***** error <fill function must accept at least> fillmissing (1, @(x) x, 1)
552s ***** error <fill function must accept at least> fillmissing (1, @(x,y) x+y, 1)
552s ***** error <interpolation methods only valid for numeric> fillmissing ("a b c", "linear")
552s ***** error <interpolation methods only valid for numeric> fillmissing ({"a", "b"}, "linear")
552s ***** error <'movmean' and 'movmedian' methods only valid for numeric> fillmissing ("a b c", "movmean", 2)
552s ***** error <'movmean' and 'movmedian' methods only valid for numeric> fillmissing ({"a", "b"}, "movmean", 2)
552s ***** error <'constant' method must be followed by> fillmissing (1, "constant")
552s ***** error <a numeric fill value cannot be emtpy> fillmissing (1, "constant", [])
552s ***** error <fill value must be the same data type> fillmissing (1, "constant", "a")
552s ***** error <fill value must be the same data type> fillmissing ("a", "constant", 1)
552s ***** error <fill value must be the same data type> fillmissing ("a", "constant", {"foo"})
552s ***** error <fill value must be the same data type> fillmissing ({"foo"}, "constant", 1)
552s ***** error <moving window method must be followed by> fillmissing (1, "movmean")
552s ***** error <moving window method must be followed by> fillmissing (1, "movmedian")
552s ***** error <DIM must be a positive scalar> fillmissing (1, "constant", 1, 0)
552s ***** error <DIM must be a positive scalar> fillmissing (1, "constant", 1, -1)
552s ***** error <DIM must be a positive scalar> fillmissing (1, "constant", 1, [1, 2])
552s ***** error <properties must be given as> fillmissing (1, "constant", 1, "samplepoints")
552s ***** error <properties must be given as> fillmissing (1, "constant", 1, "foo")
552s ***** error <properties must be given as> fillmissing (1, "constant", 1, 1, "foo")
552s ***** error <invalid parameter name specified> fillmissing (1, "constant", 1, 2, {1}, 4)
552s ***** error <SamplePoints must be a> fillmissing ([1, 2, 3], "constant", 1, 2, "samplepoints", [1, 2])
552s ***** error <SamplePoints must be a> fillmissing ([1, 2, 3], "constant", 1, 2, "samplepoints", [3, 1, 2])
552s ***** error <SamplePoints must be a> fillmissing ([1, 2, 3], "constant", 1, 2, "samplepoints", [1, 1, 2])
552s ***** error <SamplePoints must be a> fillmissing ([1, 2, 3], "constant", 1, 2, "samplepoints", "abc")
552s ***** error <SamplePoints must be a> fillmissing ([1, 2, 3], "constant", 1, 2, "samplepoints", logical ([1, 1, 1]))
552s ***** error <SamplePoints must be a> fillmissing ([1, 2, 3], "constant", 1, 1, "samplepoints", [1, 2, 3])
552s ***** error <EndValues method 'constant' only valid> fillmissing ("foo", "next", "endvalues", 1)
552s ***** error <invalid EndValues method 'foo'> fillmissing (1, "constant", 1, 1, "endvalues", "foo")
552s ***** error <EndValues must be a scalar or a 1 element array> fillmissing ([1, 2, 3], "constant", 1, 2, "endvalues", [1, 2, 3])
552s ***** error <EndValues must be a scalar or a 3 element array> fillmissing ([1, 2, 3], "constant", 1, 1, "endvalues", [1, 2])
552s ***** error <EndValues must be a scalar or a 12 element array> fillmissing (randi(5,4,3,2), "constant", 1, 3, "endvalues", [1, 2])
552s ***** error <EndValues must be numeric or a> fillmissing (1, "constant", 1, 1, "endvalues", {1})
552s ***** error <invalid parameter name 'foo'> fillmissing (1, "constant", 1, 2, "foo", 4)
552s ***** error <MissingLocations option is not compatible with> fillmissing (struct, "constant", 1, "missinglocations", false)
552s ***** error <MissingLocations and MaxGap options> fillmissing (1, "constant", 1, 2, "maxgap", 1, "missinglocations", false)
552s ***** error <MissingLocations and MaxGap options> fillmissing (1, "constant", 1, 2, "missinglocations", false, "maxgap", 1)
552s ***** error <the 'replacevalues' option has not> fillmissing (1, "constant", 1, "replacevalues", true)
552s ***** error <the 'datavariables' option has not> fillmissing (1, "constant", 1, "datavariables", "Varname")
552s ***** error <MissingLocations must be a> fillmissing (1, "constant", 1, 2, "missinglocations", 1)
552s ***** error <MissingLocations must be a> fillmissing (1, "constant", 1, 2, "missinglocations", "a")
552s ***** error <MissingLocations must be a> fillmissing (1, "constant", 1, 2, "missinglocations", [true, false])
552s ***** error <MissingLocations cannot be used with method> fillmissing (true, "linear", "missinglocations", true)
552s ***** error <MissingLocations cannot be used with method> fillmissing (int8 (1), "linear", "missinglocations", true)
552s ***** error <MissingLocations cannot be used with EndValues method> fillmissing (true, "next", "missinglocations", true, "EndValues", "linear")
552s ***** error <MissingLocations cannot be used with EndValues method> fillmissing (true, "next", "EndValues", "linear", "missinglocations", true)
552s ***** error <MissingLocations cannot be used with EndValues method> fillmissing (int8 (1), "next", "missinglocations", true, "EndValues", "linear")
552s ***** error <MissingLocations cannot be used with EndValues method> fillmissing (int8 (1), "next", "EndValues", "linear", "missinglocations", true)
552s ***** error <MaxGap must be a positive numeric scalar> fillmissing (1, "constant", 1, 2, "maxgap", true)
552s ***** error <MaxGap must be a positive numeric scalar> fillmissing (1, "constant", 1, 2, "maxgap", "a")
552s ***** error <MaxGap must be a positive numeric scalar> fillmissing (1, "constant", 1, 2, "maxgap", [1, 2])
552s ***** error <MaxGap must be a positive numeric scalar> fillmissing (1, "constant", 1, 2, "maxgap", 0)
552s ***** error <MaxGap must be a positive numeric scalar> fillmissing (1, "constant", 1, 2, "maxgap", -1)
552s ***** error <fill value 'V' must be a scalar or a 1> fillmissing ([1, 2, 3], "constant", [1, 2, 3])
552s ***** error <fill value 'V' must be a scalar or a 1> fillmissing ([1, 2, 3]', "constant", [1, 2, 3])
552s ***** error <fill value 'V' must be a scalar or a 1> fillmissing ([1, 2, 3]', "constant", [1, 2, 3], 1)
552s ***** error <fill value 'V' must be a scalar or a 1> fillmissing ([1, 2, 3], "constant", [1, 2, 3], 2)
552s ***** error <fill value 'V' must be a scalar or a 6> fillmissing (randi (5, 4, 3, 2), "constant", [1, 2], 1)
552s ***** error <fill value 'V' must be a scalar or a 8> fillmissing (randi (5, 4, 3, 2), "constant", [1, 2], 2)
552s ***** error <fill value 'V' must be a scalar or a 12> fillmissing (randi (5, 4, 3, 2), "constant", [1, 2], 3)
552s ***** error <fill function handle must be followed by> fillmissing (1, @(x,y,z) x+y+z)
552s ***** error <fill function return values must be the same size> fillmissing ([1, NaN, 2], @(x,y,z) [1, 2], 2)
552s 380 tests, 379 passed, 0 known failure, 1 skipped
552s [inst/silhouette.m]
552s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/silhouette.m
552s ***** demo
552s  load fisheriris;
552s  X = meas(:,3:4);
552s  cidcs = kmeans (X, 3, "Replicates", 5);
552s  silhouette (X, cidcs);
552s  y_labels(cidcs([1 51 101])) = unique (species);
552s  set (gca, "yticklabel", y_labels);
552s  title ("Fisher's iris data");
552s ***** error silhouette ();
552s ***** error silhouette ([1 2; 1 1]);
552s ***** error <X .* doesn't match .* clust> silhouette ([1 2; 1 1], [1 2 3]');
552s ***** error <invalid metric> silhouette ([1 2; 1 1], [1 2]', "xxx");
552s 4 tests, 4 passed, 0 known failure, 0 skipped
552s [inst/fishertest.m]
552s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fishertest.m
552s ***** demo
552s  ## A Fisher's exact test example
552s 
552s  x = [3, 1; 1, 3]
552s  [h, p, stats] = fishertest(x)
552s ***** assert (fishertest ([3, 4; 5, 7]), false);
552s ***** assert (isa (fishertest ([3, 4; 5, 7]), "logical"), true);
552s ***** test
552s  [h, pval, stats] = fishertest ([3, 4; 5, 7]);
552s  assert (pval, 1, 1e-14);
552s  assert (stats.OddsRatio, 1.05);
552s  CI = [0.159222057151289, 6.92429189601808];
552s  assert (stats.ConfidenceInterval, CI, 1e-14)
552s ***** test
552s  [h, pval, stats] = fishertest ([3, 4; 5, 0]);
552s  assert (pval, 0.08080808080808080, 1e-14);
552s  assert (stats.OddsRatio, 0);
552s  assert (stats.ConfidenceInterval, [-Inf, Inf])
552s ***** error fishertest ();
552s ***** error fishertest (1, 2, 3, 4, 5, 6);
552s ***** error<fishertest: X must be a 2-dimensional matrix.> ...
552s  fishertest (ones (2, 2, 2));
552s ***** error<fishertest: X must contain only non-negative real integers.> ...
552s  fishertest ([1, 2; -3, 4]);
552s ***** error<fishertest: X must contain only non-negative real integers.> ...
552s  fishertest ([1, 2; 3, 4+i]);
552s ***** error<fishertest: X must contain only non-negative real integers.> ...
552s  fishertest ([1, 2; 3, 4.2]);
552s ***** error<fishertest: X must contain only non-negative real integers.> ...
552s  fishertest ([NaN, 2; 3, 4]);
552s ***** error<fishertest: X must contain only non-negative real integers.> ...
552s  fishertest ([1, Inf; 3, 4]);
552s ***** error<fishertest: cannot handle large entries> ...
552s  fishertest (ones (2) * 1e8);
552s ***** error<fishertest: invalid value for alpha.> ...
552s  fishertest ([1, 2; 3, 4], "alpha", 0);
552s ***** error<fishertest: invalid value for alpha.> ...
552s  fishertest ([1, 2; 3, 4], "alpha", 1.2);
552s ***** error<fishertest: invalid value for alpha.> ...
552s  fishertest ([1, 2; 3, 4], "alpha", "val");
552s ***** error<fishertest: invalid value for tail.>  ...
552s  fishertest ([1, 2; 3, 4], "tail", "val");
552s ***** error<fishertest: invalid value for tail.>  ...
552s  fishertest ([1, 2; 3, 4], "alpha", 0.01, "tail", "val");
552s ***** error<fishertest: invalid name for optional arguments.> ...
552s  fishertest ([1, 2; 3, 4], "alpha", 0.01, "badoption", 3);
552s 19 tests, 19 passed, 0 known failure, 0 skipped
552s [inst/ttest2.m]
552s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ttest2.m
552s ***** test
552s  a = 1:5;
552s  b = 6:10;
552s  b(5) = NaN;
552s  [h,p,ci,stats] = ttest2 (a,b);
552s  assert (h, 1);
552s  assert (p, 0.002535996080258229, 1e-14);
552s  assert (ci, [-6.822014919225481, -2.17798508077452], 1e-14);
552s  assert (stats.tstat, -4.582575694955839, 1e-14);
552s  assert (stats.df, 7);
552s  assert (stats.sd, 1.4638501094228, 1e-13);
552s ***** error ttest2 ([8:0.1:12], [8:0.1:12], "tail", "invalid");
552s ***** error ttest2 ([8:0.1:12], [8:0.1:12], "tail", 25);
552s 3 tests, 3 passed, 0 known failure, 0 skipped
552s [inst/normplot.m]
552s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/normplot.m
552s ***** demo
552s  h = normplot([1:20]);
552s ***** demo
552s  h = normplot([1:20;5:2:44]');
552s ***** demo
552s  ax = newplot();
552s  h = normplot(ax, [1:20]);
552s  ax = gca;
552s  h = normplot(ax, [-10:10]);
552s  set (ax, "xlim", [-11, 21]);
552s ***** error normplot ();
552s ***** error normplot (23);
552s ***** error normplot (23, [1:20]);
552s ***** error normplot (ones(3,4,5));
552s ***** test
552s  hf = figure ("visible", "off");
552s  unwind_protect
552s    ax = newplot (hf);
552s    h = normplot (ax, [1:20]);
552s    ax = gca;
552s    h = normplot(ax, [-10:10]);
552s    set (ax, "xlim", [-11, 21]);
552s  unwind_protect_cleanup
552s    close (hf);
552s  end_unwind_protect
552s ***** test
552s  hf = figure ("visible", "off");
552s  unwind_protect
552s    h = normplot([1:20;5:2:44]');
552s  unwind_protect_cleanup
552s    close (hf);
552s  end_unwind_protect
553s 6 tests, 6 passed, 0 known failure, 0 skipped
553s [inst/multcompare.m]
553s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/multcompare.m
553s ***** demo
553s 
553s  ## Demonstration using balanced one-way ANOVA from anova1
553s 
553s  x = ones (50, 4) .* [-2, 0, 1, 5];
553s  randn ("seed", 1);    # for reproducibility
553s  x = x + normrnd (0, 2, 50, 4);
553s  groups = {"A", "B", "C", "D"};
553s  [p, tbl, stats] = anova1 (x, groups, "off");
553s  multcompare (stats);
553s ***** demo
553s 
553s  ## Demonstration using unbalanced one-way ANOVA example from anovan
553s 
553s  dv =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
553s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
553s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
553s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
553s         25.694 ]';
553s  g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ...
553s       4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
553s 
553s  [P,ATAB, STATS] = anovan (dv, g, "varnames", "score", "display", "off");
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "holm", ...
553s                                   "ControlGroup", 1, "display", "on")
553s 
553s ***** demo
553s 
553s  ## Demonstration using factorial ANCOVA example from anovan
553s 
553s  score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ...
553s  97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ...
553s  81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ...
553s  84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ...
553s  100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ...
553s  91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]';
553s  treatment = {"yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
553s               "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
553s               "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
553s               "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
553s               "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
553s               "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"}';
553s  exercise = {"lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
553s              "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
553s              "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  ...
553s              "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
553s              "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
553s              "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"}';
553s  age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ...
553s  58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ...
553s  75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]';
553s 
553s  [P, ATAB, STATS] = anovan (score, {treatment, exercise, age}, "model", ...
553s                             [1 0 0; 0 1 0; 0 0 1; 1 1 0], "continuous", 3, ...
553s                             "sstype", "h", "display", "off", "contrasts", ...
553s                             {"simple","poly",""});
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", [1 2], "ctype", "holm", ...
553s                                   "display", "on")
553s 
553s ***** demo
553s 
553s  ## Demonstration using one-way ANOVA from anovan, with fit by weighted least
553s  ## squares to account for heteroskedasticity.
553s 
553s  g = [1, 1, 1, 1, 1, 1, 1, 1, ...
553s       2, 2, 2, 2, 2, 2, 2, 2, ...
553s       3, 3, 3, 3, 3, 3, 3, 3]';
553s 
553s  y = [13, 16, 16,  7, 11,  5,  1,  9, ...
553s       10, 25, 66, 43, 47, 56,  6, 39, ...
553s       11, 39, 26, 35, 25, 14, 24, 17]';
553s 
553s  [P,ATAB,STATS] = anovan(y, g, "display", "off");
553s  fitted = STATS.X * STATS.coeffs(:,1); # fitted values
553s  b = polyfit (fitted, abs (STATS.resid), 1);
553s  v = polyval (b, fitted);  # Variance as a function of the fitted values
553s  [P,ATAB,STATS] = anovan (y, g, "weights", v.^-1, "display", "off");
553s  [C, M] =  multcompare (STATS, "display", "on", "ctype", "mvt")
553s ***** demo
553s 
553s  ## Demonstration of p-value adjustments to control the false discovery rate
553s  ## Data from Westfall (1997) JASA. 92(437):299-306
553s 
553s  p = [.005708; .023544; .024193; .044895; ...
553s        .048805; .221227; .395867; .693051; .775755];
553s 
553s  padj = multcompare(p,'ctype','fdr')
553s ***** test
553s 
553s  ## Tests using unbalanced one-way ANOVA example from anovan and anova1
553s 
553s  ## Test for anovan - compare pairwise comparisons with matlab for CTYPE "lsd"
553s 
553s  dv =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
553s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
553s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
553s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
553s         25.694 ]';
553s  g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ...
553s       4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
553s 
553s  [P, ATAB, STATS] = anovan (dv, g, "varnames", "score", "display", "off");
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "lsd", ...
553s                                   "display", "off");
553s  assert (C(1,6), 2.85812420217898e-05, 1e-09);
553s  assert (C(2,6), 5.22936741204085e-07, 1e-09);
553s  assert (C(3,6), 2.12794763209146e-08, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-15, 1e-09);
553s  assert (C(5,6), 0.546591417210693, 1e-09);
553s  assert (C(6,6), 0.0845897945254446, 1e-09);
553s  assert (C(7,6), 9.47436557975328e-08, 1e-09);
553s  assert (C(8,6), 0.188873478781067, 1e-09);
553s  assert (C(9,6), 4.08974010364197e-08, 1e-09);
553s  assert (C(10,6), 4.44427348175241e-06, 1e-09);
553s  assert (M(1,1), 10, 1e-09);
553s  assert (M(2,1), 18, 1e-09);
553s  assert (M(3,1), 19, 1e-09);
553s  assert (M(4,1), 21.0001428571429, 1e-09);
553s  assert (M(5,1), 29.0001111111111, 1e-09);
553s  assert (M(1,2), 1.0177537954095, 1e-09);
553s  assert (M(2,2), 1.28736803631001, 1e-09);
553s  assert (M(3,2), 1.0177537954095, 1e-09);
553s  assert (M(4,2), 1.0880245732889, 1e-09);
553s  assert (M(5,2), 0.959547480416536, 1e-09);
553s 
553s  ## Compare "fdr" adjusted p-values to those obtained using p.adjust in R
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "fdr", ...
553s                                   "display", "off");
553s  assert (C(1,6), 4.08303457454140e-05, 1e-09);
553s  assert (C(2,6), 1.04587348240817e-06, 1e-09);
553s  assert (C(3,6), 1.06397381604573e-07, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-14, 1e-09);
553s  assert (C(5,6), 5.46591417210693e-01, 1e-09);
553s  assert (C(6,6), 1.05737243156806e-01, 1e-09);
553s  assert (C(7,6), 2.36859139493832e-07, 1e-09);
553s  assert (C(8,6), 2.09859420867852e-01, 1e-09);
553s  assert (C(9,6), 1.36324670121399e-07, 1e-09);
553s  assert (C(10,6), 7.40712246958735e-06, 1e-09);
553s 
553s  ## Compare "hochberg" adjusted p-values to those obtained using p.adjust in R
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "hochberg", ...
553s                                   "display", "off");
553s  assert (C(1,6), 1.14324968087159e-04, 1e-09);
553s  assert (C(2,6), 3.13762044722451e-06, 1e-09);
553s  assert (C(3,6), 1.91515286888231e-07, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-14, 1e-09);
553s  assert (C(5,6), 5.46591417210693e-01, 1e-09);
553s  assert (C(6,6), 2.53769383576334e-01, 1e-09);
553s  assert (C(7,6), 6.63205590582730e-07, 1e-09);
553s  assert (C(8,6), 3.77746957562134e-01, 1e-09);
553s  assert (C(9,6), 3.27179208291358e-07, 1e-09);
553s  assert (C(10,6), 2.22213674087620e-05, 1e-09);
553s 
553s  ## Compare "holm" adjusted p-values to those obtained using p.adjust in R
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "holm", ...
553s                                   "display", "off");
553s  assert (C(1,6), 1.14324968087159e-04, 1e-09);
553s  assert (C(2,6), 3.13762044722451e-06, 1e-09);
553s  assert (C(3,6), 1.91515286888231e-07, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-14, 1e-09);
553s  assert (C(5,6), 5.46591417210693e-01, 1e-09);
553s  assert (C(6,6), 2.53769383576334e-01, 1e-09);
553s  assert (C(7,6), 6.63205590582730e-07, 1e-09);
553s  assert (C(8,6), 3.77746957562134e-01, 1e-09);
553s  assert (C(9,6), 3.27179208291358e-07, 1e-09);
553s  assert (C(10,6), 2.22213674087620e-05, 1e-09);
553s 
553s  ## Compare "scheffe" adjusted p-values to those obtained using 'scheffe' in Matlab
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "scheffe", ...
553s                                   "display", "off");
553s  assert (C(1,6), 0.00108105386141085, 1e-09);
553s  assert (C(2,6), 2.7779386789517e-05, 1e-09);
553s  assert (C(3,6), 1.3599854038198e-06, 1e-09);
553s  assert (C(4,6), 7.58830197867751e-13, 1e-09);
553s  assert (C(5,6), 0.984039948220281, 1e-09);
553s  assert (C(6,6), 0.539077018557706, 1e-09);
553s  assert (C(7,6), 5.59475764460574e-06, 1e-09);
553s  assert (C(8,6), 0.771173490574105, 1e-09);
553s  assert (C(9,6), 2.52838425729905e-06, 1e-09);
553s  assert (C(10,6), 0.000200719143889168, 1e-09);
553s 
553s  ## Compare "bonferroni" adjusted p-values to those obtained using p.adjust in R
553s 
553s  [C, M, H, GNAMES] = multcompare (STATS, "dim", 1, "ctype", "bonferroni", ...
553s                                   "display", "off");
553s  assert (C(1,6), 2.85812420217898e-04, 1e-09);
553s  assert (C(2,6), 5.22936741204085e-06, 1e-09);
553s  assert (C(3,6), 2.12794763209146e-07, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-14, 1e-09);
553s  assert (C(5,6), 1.00000000000000e+00, 1e-09);
553s  assert (C(6,6), 8.45897945254446e-01, 1e-09);
553s  assert (C(7,6), 9.47436557975328e-07, 1e-09);
553s  assert (C(8,6), 1.00000000000000e+00, 1e-09);
553s  assert (C(9,6), 4.08974010364197e-07, 1e-09);
553s  assert (C(10,6), 4.44427348175241e-05, 1e-09);
553s 
553s  ## Test for anova1 ("equal")- comparison of results from Matlab
553s 
553s  [P, ATAB, STATS] = anova1 (dv, g, "off", "equal");
553s  [C, M, H, GNAMES] = multcompare (STATS, "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 2.85812420217898e-05, 1e-09);
553s  assert (C(2,6), 5.22936741204085e-07, 1e-09);
553s  assert (C(3,6), 2.12794763209146e-08, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-15, 1e-09);
553s  assert (C(5,6), 0.546591417210693, 1e-09);
553s  assert (C(6,6), 0.0845897945254446, 1e-09);
553s  assert (C(7,6), 9.47436557975328e-08, 1e-09);
553s  assert (C(8,6), 0.188873478781067, 1e-09);
553s  assert (C(9,6), 4.08974010364197e-08, 1e-09);
553s  assert (C(10,6), 4.44427348175241e-06, 1e-09);
553s  assert (M(1,1), 10, 1e-09);
553s  assert (M(2,1), 18, 1e-09);
553s  assert (M(3,1), 19, 1e-09);
553s  assert (M(4,1), 21.0001428571429, 1e-09);
553s  assert (M(5,1), 29.0001111111111, 1e-09);
553s  assert (M(1,2), 1.0177537954095, 1e-09);
553s  assert (M(2,2), 1.28736803631001, 1e-09);
553s  assert (M(3,2), 1.0177537954095, 1e-09);
553s  assert (M(4,2), 1.0880245732889, 1e-09);
553s  assert (M(5,2), 0.959547480416536, 1e-09);
553s 
553s  ## Test for anova1 ("unequal") - comparison with results from GraphPad Prism 8
553s  [P, ATAB, STATS] = anova1 (dv, g, "off", "unequal");
553s  [C, M, H, GNAMES] = multcompare (STATS, "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 0.001247025266382, 1e-09);
553s  assert (C(2,6), 0.000018037115146, 1e-09);
553s  assert (C(3,6), 0.000002974595187, 1e-09);
553s  assert (C(4,6), 0.000000000786046, 1e-09);
553s  assert (C(5,6), 0.5693192886650109, 1e-09);
553s  assert (C(6,6), 0.110501699029776, 1e-09);
553s  assert (C(7,6), 0.000131226488700, 1e-09);
553s  assert (C(8,6), 0.1912101409715992, 1e-09);
553s  assert (C(9,6), 0.000005385256394, 1e-09);
553s  assert (C(10,6), 0.000074089106171, 1e-09);
553s ***** test
553s 
553s  ## Test for anova2 ("interaction") - comparison with results from Matlab for column effect
553s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
553s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
553s  [P, ATAB, STATS] = anova2 (popcorn, 3, "off");
553s  [C, M, H, GNAMES] = multcompare (STATS, "estimate", "column",...
553s                                   "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 1.49311100811177e-05, 1e-09);
553s  assert (C(2,6), 2.20506904243535e-07, 1e-09);
553s  assert (C(3,6), 0.00449897860490058, 1e-09);
553s  assert (M(1,1), 6.25, 1e-09);
553s  assert (M(2,1), 4.75, 1e-09);
553s  assert (M(3,1), 4, 1e-09);
553s  assert (M(1,2), 0.152145154862547, 1e-09);
553s  assert (M(2,2), 0.152145154862547, 1e-09);
553s  assert (M(3,2), 0.152145154862547, 1e-09);
553s ***** test
553s 
553s  ## Test for anova2 ("linear") - comparison with results from GraphPad Prism 8
553s  words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ...
553s           15 17 17; 1 1 4; 12 15 17;  9 12 12;  8 9 12];
553s  [P, ATAB, STATS] = anova2 (words, 1, "off", "linear");
553s  [C, M, H, GNAMES] = multcompare (STATS, "estimate", "column",...
553s                                   "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 0.000020799832702, 1e-09);
553s  assert (C(2,6), 0.000000035812410, 1e-09);
553s  assert (C(3,6), 0.003038942449215, 1e-09);
553s ***** test
553s 
553s  ## Test for anova2 ("nested") - comparison with results from GraphPad Prism 8
553s  data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ...
553s          6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ...
553s          5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ...
553s          6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203];
553s  [P, ATAB, STATS] = anova2 (data, 4, "off", "nested");
553s  [C, M, H, GNAMES] = multcompare (STATS, "estimate", "column",...
553s                                   "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 0.261031111511073, 1e-09);
553s  assert (C(2,6), 0.065879755907745, 1e-09);
553s  assert (C(3,6), 0.241874613529270, 1e-09);
553s ***** shared visibility_setting
553s  visibility_setting = get (0, "DefaultFigureVisible");
553s ***** test
553s  set (0, "DefaultFigureVisible", "off");
553s 
553s  ## Test for kruskalwallis - comparison with results from MATLAB
553s  data = [3,2,4; 5,4,4; 4,2,4; 4,2,4; 4,1,5; ...
553s          4,2,3; 4,3,5; 4,2,4; 5,2,4; 5,3,3];
553s  group = [1:3] .* ones (10,3);
553s  [P, ATAB, STATS] = kruskalwallis (data(:), group(:), "off");
553s  C = multcompare (STATS, "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 0.000163089828959986, 1e-09);
553s  assert (C(2,6), 0.630298044801257, 1e-09);
553s  assert (C(3,6), 0.00100567660695682, 1e-09);
553s  C = multcompare (STATS, "ctype", "bonferroni", "display", "off");
553s  assert (C(1,6), 0.000489269486879958, 1e-09);
553s  assert (C(2,6), 1, 1e-09);
553s  assert (C(3,6), 0.00301702982087047, 1e-09);
553s  C = multcompare(STATS, "ctype", "scheffe", "display", "off");
553s  assert (C(1,6), 0.000819054880289573, 1e-09);
553s  assert (C(2,6), 0.890628039849261, 1e-09);
553s  assert (C(3,6), 0.00447816059021654, 1e-09);
553s  set (0, "DefaultFigureVisible", visibility_setting);
553s ***** test
553s  set (0, "DefaultFigureVisible", "off");
553s  ## Test for friedman - comparison with results from MATLAB
553s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
553s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
553s  [P, ATAB, STATS] = friedman (popcorn, 3, "off");
553s  C = multcompare(STATS, "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 0.227424558028569, 1e-09);
553s  assert (C(2,6), 0.0327204848315735, 1e-09);
553s  assert (C(3,6), 0.353160353315988, 1e-09);
553s  C = multcompare(STATS, "ctype", "bonferroni", "display", "off");
553s  assert (C(1,6), 0.682273674085708, 1e-09);
553s  assert (C(2,6), 0.0981614544947206, 1e-09);
553s  assert (C(3,6), 1, 1e-09);
553s  C = multcompare(STATS, "ctype", "scheffe", "display", "off");
553s  assert (C(1,6), 0.482657360384373, 1e-09);
553s  assert (C(2,6), 0.102266573027672, 1e-09);
553s  assert (C(3,6), 0.649836502233148, 1e-09);
553s  set (0, "DefaultFigureVisible", visibility_setting);
553s ***** test
553s  set (0, "DefaultFigureVisible", "off");
553s  ## Test for fitlm - same comparisons as for first anovan example
553s  y =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
553s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
553s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
553s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
553s         25.694 ]';
553s  X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
553s  [TAB,STATS] = fitlm (X,y,"linear","categorical",1,"display","off",...
553s                       "contrasts","simple");
553s  [C, M] = multcompare(STATS, "ctype", "lsd", "display", "off");
553s  assert (C(1,6), 2.85812420217898e-05, 1e-09);
553s  assert (C(2,6), 5.22936741204085e-07, 1e-09);
553s  assert (C(3,6), 2.12794763209146e-08, 1e-09);
553s  assert (C(4,6), 7.82091664406946e-15, 1e-09);
553s  assert (C(5,6), 0.546591417210693, 1e-09);
553s  assert (C(6,6), 0.0845897945254446, 1e-09);
553s  assert (C(7,6), 9.47436557975328e-08, 1e-09);
553s  assert (C(8,6), 0.188873478781067, 1e-09);
553s  assert (C(9,6), 4.08974010364197e-08, 1e-09);
553s  assert (C(10,6), 4.44427348175241e-06, 1e-09);
553s  assert (M(1,1), 10, 1e-09);
553s  assert (M(2,1), 18, 1e-09);
553s  assert (M(3,1), 19, 1e-09);
553s  assert (M(4,1), 21.0001428571429, 1e-09);
553s  assert (M(5,1), 29.0001111111111, 1e-09);
553s  assert (M(1,2), 1.0177537954095, 1e-09);
553s  assert (M(2,2), 1.28736803631001, 1e-09);
553s  assert (M(3,2), 1.0177537954095, 1e-09);
553s  assert (M(4,2), 1.0880245732889, 1e-09);
553s  assert (M(5,2), 0.959547480416536, 1e-09);
553s  set (0, "DefaultFigureVisible", visibility_setting);
553s ***** test
553s  ## Test p-value adjustments compared to R stats package function p.adjust
553s  ## Data from Westfall (1997) JASA. 92(437):299-306
553s  p = [.005708; .023544; .024193; .044895; ...
553s        .048805; .221227; .395867; .693051; .775755];
553s  padj = multcompare (p);
553s  assert (padj(1), 0.051372, 1e-06);
553s  assert (padj(2), 0.188352, 1e-06);
553s  assert (padj(3), 0.188352, 1e-06);
553s  assert (padj(4), 0.269370, 1e-06);
553s  assert (padj(5), 0.269370, 1e-06);
553s  assert (padj(6), 0.884908, 1e-06);
553s  assert (padj(7), 1.000000, 1e-06);
553s  assert (padj(8), 1.000000, 1e-06);
553s  assert (padj(9), 1.000000, 1e-06);
553s  padj = multcompare(p,'ctype','holm');
553s  assert (padj(1), 0.051372, 1e-06);
553s  assert (padj(2), 0.188352, 1e-06);
553s  assert (padj(3), 0.188352, 1e-06);
553s  assert (padj(4), 0.269370, 1e-06);
553s  assert (padj(5), 0.269370, 1e-06);
553s  assert (padj(6), 0.884908, 1e-06);
553s  assert (padj(7), 1.000000, 1e-06);
553s  assert (padj(8), 1.000000, 1e-06);
553s  assert (padj(9), 1.000000, 1e-06);
553s  padj = multcompare(p,'ctype','hochberg');
553s  assert (padj(1), 0.051372, 1e-06);
553s  assert (padj(2), 0.169351, 1e-06);
553s  assert (padj(3), 0.169351, 1e-06);
553s  assert (padj(4), 0.244025, 1e-06);
553s  assert (padj(5), 0.244025, 1e-06);
553s  assert (padj(6), 0.775755, 1e-06);
553s  assert (padj(7), 0.775755, 1e-06);
553s  assert (padj(8), 0.775755, 1e-06);
553s  assert (padj(9), 0.775755, 1e-06);
553s  padj = multcompare(p,'ctype','fdr');
553s  assert (padj(1), 0.0513720, 1e-07);
553s  assert (padj(2), 0.0725790, 1e-07);
553s  assert (padj(3), 0.0725790, 1e-07);
553s  assert (padj(4), 0.0878490, 1e-07);
553s  assert (padj(5), 0.0878490, 1e-07);
553s  assert (padj(6), 0.3318405, 1e-07);
553s  assert (padj(7), 0.5089719, 1e-07);
553s  assert (padj(8), 0.7757550, 1e-07);
553s  assert (padj(9), 0.7757550, 1e-07);
553s 8 tests, 8 passed, 0 known failure, 0 skipped
553s [inst/bar3.m]
553s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/bar3.m
553s ***** demo
553s  ## Ploting 5 bars in the same series.
553s 
553s  z = [50; 40; 30; 20; 10];
553s  bar3 (z);
553s ***** demo
553s  ## Ploting 5 bars in different groups.
553s 
553s  z = [50, 40, 30, 20, 10];
553s  bar3 (z);
553s ***** demo
553s  ## A 3D bar graph with each series corresponding to a column in z.
553s 
553s  z = [1, 4, 7; 2, 5, 8; 3, 6, 9; 4, 7, 10];
553s  bar3 (z);
553s ***** demo
553s  ## Specify y-axis locations as tick names. y must be a column vector!
553s 
553s  y = [1950, 1960, 1970, 1980, 1990]';
553s  z = [16, 8, 4, 2, 1]';
553s  bar3 (y, z);
553s ***** demo
553s  ## Plot 3 series as a grouped plot without any space between the grouped bars
553s 
553s  z = [70 50 33 10; 75 55 35 15; 80 60 40 20];
553s  bar3 (z, 1, 'grouped');
553s ***** demo
553s  ## Plot a stacked style 3D bar graph
553s 
553s  z = [19, 30, 21, 30; 40, 16, 32, 12];
553s  b = bar3 (z, 0.5, 'stacked');
553s ***** error <bar3: Z must be numeric.> bar3 ("A")
553s ***** error <bar3: Z must be numeric.> bar3 ({2,3,4,5})
553s ***** error <bar3: inconsistent size in Y and Z input arguments.> ...
553s  bar3 ([1,2,3]', ones (2))
553s ***** error <bar3: WIDTH must be a scalar in the range> ...
553s  bar3 ([1:5], 1.2)
553s ***** error <bar3: WIDTH must be a scalar in the range> ...
553s  bar3 ([1:5]', ones (5), 1.2)
553s ***** error <bar3: numeric COLOR must be a 1x3 vector of an Nx3 matrix> ...
553s  bar3 ([1:5]', ones (5), [0.8, 0.7])
553s ***** error <bar3: missing value for optional argument 'width'.> ...
553s  bar3 (ones (5), 'width')
553s ***** error <bar3: invalid value for optional argument 'width'.> ...
553s  bar3 (ones (5), 'width', 1.2)
553s ***** error <bar3: invalid value for optional argument 'width'.> ...
553s  bar3 (ones (5), 'width', [0.8, 0.8, 0.8])
553s ***** error <bar3: missing value for optional argument 'color'.> ...
553s  bar3 (ones (5), 'color')
553s ***** error <bar3: numeric COLOR must be a 1x3 vector of an Nx3 matrix> ...
553s  bar3 (ones (5), 'color', [0.8, 0.8])
553s ***** error <bar3: invalid value for optional argument 'color'.> ...
553s  bar3 (ones (5), 'color', "brown")
553s ***** error <bar3: invalid value for optional argument 'color'.> ...
553s  bar3 (ones (5), 'color', {"r", "k", "c", "m", "brown"})
553s ***** error <bar3: missing value for optional argument 'xlabel'.> ...
553s  bar3 (ones (5), 'xlabel')
553s ***** error <bar3: invalid value for optional argument 'xlabel'.> ...
553s  bar3 (ones (5), 'xlabel', 4)
553s ***** error <bar3: missing value for optional argument 'ylabel'.> ...
553s  bar3 (ones (5), 'ylabel')
553s ***** error <bar3: invalid value for optional argument 'ylabel'.> ...
553s  bar3 (ones (5), 'ylabel', 4)
553s ***** error <bar3: invalid optional argument.> bar3 (ones (5), 'this', 4)
553s ***** error <bar3: the elements in 'xlabel' must equal the columns in Z.> ...
553s  bar3 (ones (5), 'xlabel', {"A", "B", "C"})
553s ***** error <bar3: the elements in 'ylabel' must equal the rows in Z.> ...
553s  bar3 (ones (5), 'ylabel', {"A", "B", "C"})
553s 20 tests, 20 passed, 0 known failure, 0 skipped
553s [inst/optimalleaforder.m]
553s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/optimalleaforder.m
553s ***** demo
553s  randn ("seed", 5)  # for reproducibility
553s  X = randn (10, 2);
553s  D = pdist (X);
553s  tree = linkage(D, 'average');
553s  optimalleaforder (tree, D, 'Transformation', 'linear')
553s ***** error optimalleaforder ()
553s ***** error optimalleaforder (1)
553s ***** error <tree must be .*> optimalleaforder (ones (2, 2), 1)
553s ***** error <character inputs expected> optimalleaforder ([1 2 3], [1 2; 3 4], "criteria", 5)
553s ***** error <D must be .*> optimalleaforder ([1 2 1], [1 2 3])
553s ***** error <unknown property .*> optimalleaforder ([1 2 1], 1, "xxx", "xxx")
553s ***** error optimalleaforder ([1 2 1], 1, "Transformation", "xxx")
553s 7 tests, 7 passed, 0 known failure, 0 skipped
553s [inst/signrank.m]
553s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/signrank.m
553s ***** test
553s  load gradespaired.mat
553s  [p, h, stats] = signrank (gradespaired(:,1), ...
553s                            gradespaired(:,2), 'tail', 'left');
553s  assert (p, 0.0047, 1e-4);
553s  assert (h, true);
553s  assert (stats.zval, -2.5982, 1e-4);
553s  assert (stats.signedrank, 2017.5);
553s ***** test
553s  load ('gradespaired.mat');
553s  [p, h, stats] = signrank (gradespaired(:,1), gradespaired(:,2), ...
553s                            'tail', 'left', 'method', 'exact');
553s  assert (p, 0.0045, 1e-4);
553s  assert (h, true);
553s  assert (stats.zval, NaN);
553s  assert (stats.signedrank, 2017.5);
554s ***** test
554s  load mileage
554s  [p, h, stats] = signrank (mileage(:,2), 33);
554s  assert (p, 0.0312, 1e-4);
554s  assert (h, true);
554s  assert (stats.zval, NaN);
554s  assert (stats.signedrank, 21);
554s ***** test
554s  load mileage
554s  [p, h, stats] = signrank (mileage(:,2), 33, 'tail', 'right');
554s  assert (p, 0.0156, 1e-4);
554s  assert (h, true);
554s  assert (stats.zval, NaN);
554s  assert (stats.signedrank, 21);
554s ***** test
554s  load mileage
554s  [p, h, stats] = signrank (mileage(:,2), 33, 'tail', 'right', ...
554s                            'alpha', 0.01, 'method', 'approximate');
554s  assert (p, 0.0180, 1e-4);
554s  assert (h, false);
554s  assert (stats.zval, 2.0966, 1e-4);
554s  assert (stats.signedrank, 21);
554s ***** error <signrank: X must be a vector.> signrank (ones (2))
554s ***** error <signrank: Y must be either a scalar of a vector.> ...
554s  signrank ([1, 2, 3, 4], ones (2))
554s ***** error <signrank: X and Y vectors have different lengths.> ...
554s  signrank ([1, 2, 3, 4], [1, 2, 3])
554s ***** error <signrank: optional arguments must be in pairs.> ...
554s  signrank ([1, 2, 3, 4], [], 'tail')
554s ***** error <signrank: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
554s  signrank ([1, 2, 3, 4], [], 'alpha', 1.2)
554s ***** error <signrank: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
554s  signrank ([1, 2, 3, 4], [], 'alpha', 0)
554s ***** error <signrank: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
554s  signrank ([1, 2, 3, 4], [], 'alpha', -0.05)
554s ***** error <signrank: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
554s  signrank ([1, 2, 3, 4], [], 'alpha', "a")
554s ***** error <signrank: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
554s  signrank ([1, 2, 3, 4], [], 'alpha', [0.01, 0.05])
554s ***** error <signrank: 'tail' argument must be a character vector.> ...
554s  signrank ([1, 2, 3, 4], [], 'tail', 0.01)
554s ***** error <signrank: 'tail' argument must be a character vector.> ...
554s  signrank ([1, 2, 3, 4], [], 'tail', {"both"})
554s ***** error <signrank: 'tail' value must be either 'both', right' or 'left'.> ...
554s  signrank ([1, 2, 3, 4], [], 'tail', "some")
554s ***** error <signrank: 'tail' value must be either 'both', right' or 'left'.> ...
554s  signrank ([1, 2, 3, 4], [], 'method', 'exact', 'tail', "some")
554s ***** error <signrank: 'method' argument must be a character vector.> ...
554s  signrank ([1, 2, 3, 4], [], 'method', 0.01)
554s ***** error <signrank: 'method' argument must be a character vector.> ...
554s  signrank ([1, 2, 3, 4], [], 'method', {"exact"})
554s ***** error <signrank: 'method' value must be either 'exact' or 'approximate'.> ...
554s  signrank ([1, 2, 3, 4], [], 'method', "some")
554s ***** error <signrank: 'method' value must be either 'exact' or 'approximate'.> ...
554s  signrank ([1, 2, 3, 4], [], 'tail', "both", 'method', "some")
554s 22 tests, 22 passed, 0 known failure, 0 skipped
554s [inst/fitcknn.m]
554s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitcknn.m
554s ***** demo
554s  ## Train a k-nearest neighbor classifier for k = 10
554s  ## and plot the decision boundaries.
554s 
554s  load fisheriris
554s  idx = ! strcmp (species, "setosa");
554s  X = meas(idx,3:4);
554s  Y = cast (strcmpi (species(idx), "virginica"), "double");
554s  obj = fitcknn (X, Y, "Standardize", 1, "NumNeighbors", 10, "NSMethod", "exhaustive")
554s  x1 = [min(X(:,1)):0.03:max(X(:,1))];
554s  x2 = [min(X(:,2)):0.02:max(X(:,2))];
554s  [x1G, x2G] = meshgrid (x1, x2);
554s  XGrid = [x1G(:), x2G(:)];
554s  pred = predict (obj, XGrid);
554s  gidx = logical (str2num (cell2mat (pred)));
554s 
554s  figure
554s  scatter (XGrid(gidx,1), XGrid(gidx,2), "markerfacecolor", "magenta");
554s  hold on
554s  scatter (XGrid(!gidx,1), XGrid(!gidx,2), "markerfacecolor", "red");
554s  plot (X(Y == 0, 1), X(Y == 0, 2), "ko", X(Y == 1, 1), X(Y == 1, 2), "kx");
554s  xlabel ("Petal length (cm)");
554s  ylabel ("Petal width (cm)");
554s  title ("5-Nearest Neighbor Classifier Decision Boundary");
554s  legend ({"Versicolor Region", "Virginica Region", ...
554s          "Sampled Versicolor", "Sampled Virginica"}, ...
554s          "location", "northwest")
554s  axis tight
554s  hold off
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y);
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y, "NSMethod", "exhaustive");
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  k = 10;
554s  a = fitcknn (x, y, "NumNeighbors" ,k);
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = ones (4, 11);
554s  y = ["a"; "a"; "b"; "b"];
554s  k = 10;
554s  a = fitcknn (x, y, "NumNeighbors" ,k);
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  k = 10;
554s  a = fitcknn (x, y, "NumNeighbors" ,k, "NSMethod", "exhaustive");
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  k = 10;
554s  a = fitcknn (x, y, "NumNeighbors" ,k, "Distance", "hamming");
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  weights = ones (4,1);
554s  a = fitcknn (x, y, "Standardize", 1);
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.Standardize}, {true})
554s  assert ({a.Sigma}, {std(x, [], 1)})
554s  assert ({a.Mu}, {[3.75, 4.25, 4.75]})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  weights = ones (4,1);
554s  a = fitcknn (x, y, "Standardize", false);
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.Standardize}, {false})
554s  assert ({a.Sigma}, {[]})
554s  assert ({a.Mu}, {[]})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  s = ones (1, 3);
554s  a = fitcknn (x, y, "Scale" , s, "Distance", "seuclidean");
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.DistParameter}, {s})
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "seuclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y, "Exponent" , 5, "Distance", "minkowski");
554s  assert (class (a), "ClassificationKNN");
554s  assert (a.DistParameter, 5)
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "minkowski"})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y, "Exponent" , 5, "Distance", "minkowski", ...
554s                     "NSMethod", "exhaustive");
554s  assert (class (a), "ClassificationKNN");
554s  assert (a.DistParameter, 5)
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "minkowski"})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y, "BucketSize" , 20, "distance", "mahalanobis");
554s  assert (class (a), "ClassificationKNN");
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "mahalanobis"})
554s  assert ({a.BucketSize}, {20})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y, "IncludeTies", true);
554s  assert (class (a), "ClassificationKNN");
554s  assert (a.IncludeTies, true);
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y);
554s  assert (class (a), "ClassificationKNN");
554s  assert (a.IncludeTies, false);
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y);
554s  assert (class (a), "ClassificationKNN")
554s  assert (a.Prior, [0.5; 0.5])
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  prior = [0.5; 0.5];
554s  a = fitcknn (x, y, "Prior", "empirical");
554s  assert (class (a), "ClassificationKNN")
554s  assert (a.Prior, prior)
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "a"; "b"];
554s  prior = [0.75; 0.25];
554s  a = fitcknn (x, y, "Prior", "empirical");
554s  assert (class (a), "ClassificationKNN")
554s  assert (a.Prior, prior)
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "a"; "b"];
554s  prior = [0.5; 0.5];
554s  a = fitcknn (x, y, "Prior", "uniform");
554s  assert (class (a), "ClassificationKNN")
554s  assert (a.Prior, prior)
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  cost = eye (2);
554s  a = fitcknn (x, y, "Cost", cost);
554s  assert (class (a), "ClassificationKNN")
554s  assert (a.Cost, [1, 0; 0, 1])
554s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  cost = eye (2);
554s  a = fitcknn (x, y, "Cost", cost, "Distance", "hamming" );
554s  assert (class (a), "ClassificationKNN")
554s  assert (a.Cost, [1, 0; 0, 1])
554s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"})
554s  assert ({a.BucketSize}, {50})
554s ***** test
554s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
554s  y = ["a"; "a"; "b"; "b"];
554s  a = fitcknn (x, y, "NSMethod", "exhaustive", "CrossVal", "on");
554s  assert (class (a), "ClassificationPartitionedModel");
554s  assert ({a.X, a.Y, a.Trained{1}.NumNeighbors}, {x, y, 1})
554s  assert (a.ModelParameters.NSMethod, "exhaustive")
554s  assert (a.ModelParameters.Distance, "euclidean")
554s  assert ({a.Trained{1}.BucketSize}, {50})
554s ***** error<fitcknn: too few arguments.> fitcknn ()
554s ***** error<fitcknn: too few arguments.> fitcknn (ones (4,1))
554s ***** error<fitcknn: Name-Value arguments must be in pairs.>
554s  fitcknn (ones (4,2), ones (4, 1), "K")
554s ***** error<fitcknn: number of rows in X and Y must be equal.>
554s  fitcknn (ones (4,2), ones (3, 1))
554s ***** error<fitcknn: number of rows in X and Y must be equal.>
554s  fitcknn (ones (4,2), ones (3, 1), "K", 2)
554s ***** error <fitcknn: 'CrossVal' must be either 'off' or 'on'.>
554s  fitcknn (ones (4,2), ones (4, 1), "CrossVal", 2)
554s ***** error <fitcknn: 'CrossVal' must be either 'off' or 'on'.>
554s  fitcknn (ones (4,2), ones (4, 1), "CrossVal", 'a')
554s ***** error <fitcknn: You can use only one cross-validation name-value pair argument> ...
554s  fitcknn (ones (4,2), ones (4, 1), "KFold", 10, "Holdout", 0.3)
554s 29 tests, 29 passed, 0 known failure, 0 skipped
554s [inst/glmval.m]
554s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/glmval.m
554s ***** demo
554s  x = [210, 230, 250, 270, 290, 310, 330, 350, 370, 390, 410, 430]';
554s  n = [48, 42, 31, 34, 31, 21, 23, 23, 21, 16, 17, 21]';
554s  y = [1, 2, 0, 3, 8, 8, 14, 17, 19, 15, 17, 21]';
554s  b = glmfit (x, [y n], "binomial", "Link", "probit");
554s  yfit = glmval (b, x, "probit", "Size", n);
554s  plot (x, y./n, 'o', x, yfit ./ n, '-')
554s ***** error <glmval: too few input arguments.> glmval ()
554s ***** error <glmval: too few input arguments.> glmval (1)
554s ***** error <glmval: too few input arguments.> glmval (1, 2)
554s ***** error <glmval: B must be a numeric vector of coefficient estimates.> ...
554s  glmval ("asd", [1; 1; 1], 'probit')
554s ***** error <glmval: B must be a numeric vector of coefficient estimates.> ...
554s  glmval ([], [1; 1; 1], 'probit')
554s ***** error <glmval: X must be a numeric matrix.> ...
554s  glmval ([0.1; 0.3; 0.4], [], 'probit')
554s ***** error <glmval: X must be a numeric matrix.> ...
554s  glmval ([0.1; 0.3; 0.4], "asd", 'probit')
554s ***** error <glmval: structure with custom link functions must be a scalar.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", {1, 2}))
554s ***** error <glmval: structure with custom link functions requires the fields 'Link', 'Derivative', and 'Inverse'.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", "norminv"))
554s ***** error <glmval: bad 'Link' function in custom link function structure.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", "some", "Derivative", @(x)x, "Inverse", "normcdf"))
554s ***** error <glmval: bad 'Link' function in custom link function structure.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", 1, "Derivative", @(x)x, "Inverse", "normcdf"))
554s ***** error <glmval: custom 'Link' function must return an output of the same size as input.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x) [x, x], "Derivative", @(x)x, "Inverse", "normcdf"))
554s ***** error <glmval: invalid custom 'Link' function.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", "what", "Derivative", @(x)x, "Inverse", "normcdf"))
554s ***** error <glmval: bad 'Derivative' function in custom link function structure.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", "some", "Inverse", "normcdf"))
554s ***** error <glmval: bad 'Derivative' function in custom link function structure.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", 1, "Inverse", "normcdf"))
554s ***** error <glmval: custom 'Derivative' function must return an output of the same size as input.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", @(x) [x, x], "Inverse", "normcdf"))
554s ***** error <glmval: invalid custom 'Derivative' function.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", "what", "Inverse", "normcdf"))
554s ***** error <glmval: bad 'Inverse' function in custom link function structure.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", "some"))
554s ***** error <glmval: bad 'Inverse' function in custom link function structure.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", 1))
554s ***** error <glmval: custom 'Inverse' function must return an output of the same size as input.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", @(x) [x, x]))
554s ***** error <glmval: invalid custom 'Inverse' function.> ...
554s  glmval (rand (3,1), rand (5,2), struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", "what"))
554s ***** error <glmval: cell array with custom link functions must have three elements.> ...
554s  glmval (rand (3,1), rand (5,2), {'log'})
554s ***** error <glmval: cell array with custom link functions must have three elements.> ...
554s  glmval (rand (3,1), rand (5,2), {'log', 'hijy'})
554s ***** error <glmval: cell array with custom link functions must have three elements.> ...
554s  glmval (rand (3,1), rand (5,2), {1, 2, 3, 4})
554s ***** error <glmval: bad 'Link' function in custom link function cell array.> ...
554s  glmval (rand (3,1), rand (5,2), {"log", "dfv", "dfgvd"})
554s ***** error <glmval: custom 'Link' function must return an output of the same size as input.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) [x, x], "dfv", "dfgvd"})
554s ***** error <glmval: invalid custom 'Link' function.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) what (x), "dfv", "dfgvd"})
554s ***** error <glmval: bad 'Derivative' function in custom link function cell array.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) x, "dfv", "dfgvd"})
554s ***** error <glmval: custom 'Derivative' function must return an output of the same size as input.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) x, @(x) [x, x], "dfgvd"})
554s ***** error <glmval: invalid custom 'Derivative' function.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) x, @(x) what (x), "dfgvd"})
554s ***** error <glmval: bad 'Inverse' function in custom link function cell array.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) x, @(x) x, "dfgvd"})
554s ***** error <glmval: custom 'Inverse' function must return an output of the same size as input.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) x, @(x) x, @(x) [x, x]})
554s ***** error <glmval: invalid custom 'Inverse' function.> ...
554s  glmval (rand (3,1), rand (5,2), {@(x) x, @(x) x, @(x) what (x)})
554s ***** error <glmval: numeric input for custom link function must be a finite real scalar value.> ...
554s  glmval (rand (3,1), rand (5,2), NaN)
554s ***** error <glmval: numeric input for custom link function must be a finite real scalar value.> ...
554s  glmval (rand (3,1), rand (5,2), [1, 2])
554s ***** error <glmval: numeric input for custom link function must be a finite real scalar value.> ...
554s  glmval (rand (3,1), rand (5,2), [1i])
554s ***** error <glmval: canonical link function name must be a character vector.> ...
554s  glmval (rand (3,1), rand (5,2), ["log"; "log1"])
554s ***** error <glmval: canonical link function 'somelinkfunction' is not supported.> ...
554s  glmval (rand (3,1), rand (5,2), 'somelinkfunction')
554s ***** error <glmval: invalid value for custom link function.> ...
554s  glmval (rand (3,1), rand (5,2), true)
554s ***** error <glmval: invalid 'stats' structure.> ...
554s  glmval (rand (3,1), rand (5,2), 'probit', struct ("s", 1))
554s ***** error <glmval: Name-Value arguments must be in pairs.> ...
554s  glmval (rand (3,1), rand (5,2), 'probit', 'confidence')
554s ***** error <glmval: 'Confidence' must be a scalar between 0 and 1.> ...
554s  glmval (rand (3,1), rand (5,2), 'probit', 'confidence', 0)
554s ***** error <glmval: 'Confidence' must be a scalar between 0 and 1.> ...
554s  glmval (rand (3,1), rand (5,2), 'probit', 'confidence', 1.2)
554s ***** error <glmval: 'Confidence' must be a scalar between 0 and 1.> ...
554s  glmval (rand (3,1), rand (5,2), 'probit', 'confidence', [0.9, 0.95])
554s ***** error <glmval: 'Constant' should be either 'on' or 'off'.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'constant', 1)
554s ***** error <glmval: 'Constant' should be either 'on' or 'off'.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'constant', 'o')
554s ***** error <glmval: 'Constant' should be either 'on' or 'off'.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'constant', true)
554s ***** error <glmval: 'Offset' must be a numeric vector of the same length as the rows in X.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'offset', [1; 2; 3; 4])
554s ***** error <glmval: 'Offset' must be a numeric vector of the same length as the rows in X.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'offset', 'asdfg')
554s ***** error <glmval: 'simultaneous' must be a boolean scalar.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'simultaneous', 'asdfg')
554s ***** error <glmval: 'simultaneous' must be a boolean scalar.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'simultaneous', [true, false])
554s ***** error <glmval: 'size' must be a scalar or a vector with one value for each row of X.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'size', "asd")
554s ***** error <glmval: 'size' must be a scalar or a vector with one value for each row of X.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'size', [2, 3, 4])
554s ***** error <glmval: 'size' must be a scalar or a vector with one value for each row of X.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'size', [2; 3; 4])
554s ***** error <glmval: 'size' must be a scalar or a vector with one value for each row of X.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'size', ones (3))
554s ***** error <glmval: unknown parameter name.> ...
554s  glmval (rand (3, 1), rand (5, 2), 'probit', 'someparam', 4)
554s ***** error <glmval: cannot compute confidence intervals without STATS structure.> ...
554s  [y,lo,hi] = glmval (rand (3, 1), rand (5, 2), 'probit')
554s 57 tests, 57 passed, 0 known failure, 0 skipped
554s [inst/knnsearch.m]
554s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/knnsearch.m
554s ***** demo
554s  ## find 10 nearest neighbour of a point using different distance metrics
554s  ## and compare the results by plotting
554s  load fisheriris
554s  X = meas(:,3:4);
554s  Y = species;
554s  point = [5, 1.45];
554s 
554s  ## calculate 10 nearest-neighbours by minkowski distance
554s  [id, d] = knnsearch (X, point, "K", 10);
554s 
554s  ## calculate 10 nearest-neighbours by minkowski distance
554s  [idm, dm] = knnsearch (X, point, "K", 10, "distance", "minkowski", "p", 5);
554s 
554s  ## calculate 10 nearest-neighbours by chebychev distance
554s  [idc, dc] = knnsearch (X, point, "K", 10, "distance", "chebychev");
554s 
554s  ## plotting the results
554s  gscatter (X(:,1), X(:,2), species, [.75 .75 0; 0 .75 .75; .75 0 .75], ".", 20);
554s  title ("Fisher's Iris Data - Nearest Neighbors with different types of distance metrics");
554s  xlabel("Petal length (cm)");
554s  ylabel("Petal width (cm)");
554s 
554s  line (point(1), point(2), "marker", "X", "color", "k", ...
554s        "linewidth", 2, "displayname", "query point")
554s  line (X(id,1), X(id,2), "color", [0.5 0.5 0.5], "marker", "o", ...
554s        "linestyle", "none", "markersize", 10, "displayname", "eulcidean")
554s  line (X(idm,1), X(idm,2), "color", [0.5 0.5 0.5], "marker", "d", ...
554s        "linestyle", "none", "markersize", 10, "displayname", "Minkowski")
554s  line (X(idc,1), X(idc,2), "color", [0.5 0.5 0.5], "marker", "p", ...
554s        "linestyle", "none", "markersize", 10, "displayname", "chebychev")
554s  xlim ([4.5 5.5]);
554s  ylim ([1 2]);
554s  axis square;
554s ***** demo
554s  ## knnsearch on iris dataset using kdtree method
554s  load fisheriris
554s  X = meas(:,3:4);
554s  gscatter (X(:,1), X(:,2), species, [.75 .75 0; 0 .75 .75; .75 0 .75], ".", 20);
554s  title ("Fisher's iris dataset : Nearest Neighbors with kdtree search");
554s 
554s  ## new point to be predicted
554s  point = [5 1.45];
554s 
554s  line (point(1), point(2), "marker", "X", "color", "k", ...
554s        "linewidth", 2, "displayname", "query point")
554s 
554s  ## knnsearch using kdtree method
554s  [idx, d] = knnsearch (X, point, "K", 10, "NSMethod", "kdtree");
554s 
554s  ## plotting predicted neighbours
554s  line (X(idx,1), X(idx,2), "color", [0.5 0.5 0.5], "marker", "o", ...
554s        "linestyle", "none", "markersize", 10, ...
554s        "displayname", "nearest neighbour")
554s  xlim ([4 6])
554s  ylim ([1 3])
554s  axis square
554s  ## details of predicted labels
554s  tabulate (species(idx))
554s 
554s  ctr = point - d(end);
554s  diameter = 2 * d(end);
554s  ##  Draw a circle around the 10 nearest neighbors.
554s  h = rectangle ("position", [ctr, diameter, diameter], "curvature", [1 1]);
554s 
554s  ## here only 8 neighbours are plotted instead of 10 since the dataset
554s  ## contains duplicate values
554s ***** shared X, Y
554s  X = [1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6];
554s  Y = [1, 2, 2, 3; 2, 3, 3, 4];
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "euclidean");
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * sqrt (2));
554s ***** test
554s  eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
554s  [idx, D] = knnsearch (X, Y, "Distance", eucldist);
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * sqrt (2));
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "euclidean", "includeties", true);
554s  assert (iscell (idx), true);
554s  assert (iscell (D), true)
554s  assert (idx {1}, [1]);
554s  assert (idx {2}, [1, 2]);
554s  assert (D{1}, ones (1, 1) * sqrt (2));
554s  assert (D{2}, ones (1, 2) * sqrt (2));
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "euclidean", "k", 2);
554s  assert (idx, [1, 2; 1, 2]);
554s  assert (D, [sqrt(2), 3.162277660168380; sqrt(2), sqrt(2)], 1e-14);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "seuclidean");
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * sqrt (2));
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "seuclidean", "k", 2);
554s  assert (idx, [1, 2; 1, 2]);
554s  assert (D, [sqrt(2), 3.162277660168380; sqrt(2), sqrt(2)], 1e-14);
554s ***** test
554s  xx = [1, 2; 1, 3; 2, 4; 3, 6];
554s  yy = [2, 4; 2, 6];
554s  [idx, D] = knnsearch (xx, yy, "Distance", "mahalanobis");
554s  assert (idx, [3; 2]);
554s  assert (D, [0; 3.162277660168377], 1e-14);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "minkowski");
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * sqrt (2));
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "minkowski", "p", 3);
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * 1.259921049894873, 1e-14);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "cityblock");
554s  assert (idx, [1; 1]);
554s  assert (D, [2; 2]);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "chebychev");
554s  assert (idx, [1; 1]);
554s  assert (D, [1; 1]);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "cosine");
554s  assert (idx, [2; 3]);
554s  assert (D, [0.005674536395645; 0.002911214328620], 1e-14);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "correlation");
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * 0.051316701949486, 1e-14);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "spearman");
554s  assert (idx, [1; 1]);
554s  assert (D, ones (2, 1) * 0.051316701949486, 1e-14);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "hamming");
554s  assert (idx, [1; 1]);
554s  assert (D, [0.5; 0.5]);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "jaccard");
554s  assert (idx, [1; 1]);
554s  assert (D, [0.5; 0.5]);
554s ***** test
554s  [idx, D] = knnsearch (X, Y, "Distance", "jaccard", "k", 2);
554s  assert (idx, [1, 2; 1, 2]);
554s  assert (D, [0.5, 1; 0.5, 0.5]);
554s ***** test
554s  a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9];
554s  b = [1, 1];
554s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree", "includeties", true);
554s  assert (iscell (idx), true);
554s  assert (iscell (D), true)
554s  assert (cell2mat (idx), [4, 2, 3, 6, 1, 5, 7, 9]);
554s  assert (cell2mat (D), [0.7071, 1.0000, 1.4142, 2.5447, 4.0000, 4.0000, 4.0000, 4.0000],1e-4);
554s ***** test
554s  a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9];
554s  b = [1, 1];
554s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "exhaustive", "includeties", true);
554s  assert (iscell (idx), true);
554s  assert (iscell (D), true)
554s  assert (cell2mat (idx), [4, 2, 3, 6, 1, 5, 7, 9]);
554s  assert (cell2mat (D), [0.7071, 1.0000, 1.4142, 2.5447, 4.0000, 4.0000, 4.0000, 4.0000],1e-4);
554s ***** test
554s  a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9];
554s  b = [1, 1];
554s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree", "includeties", false);
554s  assert (iscell (idx), false);
554s  assert (iscell (D), false)
554s  assert (idx, [4, 2, 3, 6, 1]);
554s  assert (D, [0.7071, 1.0000, 1.4142, 2.5447, 4.0000],1e-4);
554s ***** test
554s  a = [1, 5; 1, 2; 2, 2; 1.5, 1.5; 5, 1; 2 -1.34; 1, -3; 4, -4; -3, 1; 8, 9];
554s  b = [1, 1];
554s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "exhaustive", "includeties", false);
554s  assert (iscell (idx), false);
554s  assert (iscell (D), false)
554s  assert (idx, [4, 2, 3, 6, 1]);
554s  assert (D, [0.7071, 1.0000, 1.4142, 2.5447, 4.0000],1e-4);
554s ***** test
554s  load fisheriris
554s  a = meas;
554s  b = min(meas);
554s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree");
554s  assert (idx, [42, 9, 14, 39, 13]);
554s  assert (D, [0.5099, 0.9950, 1.0050, 1.0536, 1.1874],1e-4);
555s ***** test
555s  load fisheriris
555s  a = meas;
555s  b = mean(meas);
555s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree");
555s  assert (idx, [65, 83, 89, 72, 100]);
555s  assert (D, [0.3451, 0.3869, 0.4354, 0.4481, 0.4625],1e-4);
555s ***** test
555s  load fisheriris
555s  a = meas;
555s  b = max(meas);
555s  [idx, D] = knnsearch (a, b, "K", 5, "NSMethod", "kdtree");
555s  assert (idx, [118, 132, 110, 106, 136]);
555s  assert (D, [0.7280, 0.9274, 1.3304, 1.5166, 1.6371],1e-4);
555s 
555s ***** test
555s  load fisheriris
555s  a = meas;
555s  b = max(meas);
555s  [idx, D] = knnsearch (a, b, "K", 5, "includeties", true);
555s  assert ( iscell (idx), true);
555s  assert ( iscell (D), true);
555s  assert (cell2mat (idx), [118, 132, 110, 106, 136]);
555s  assert (cell2mat (D), [0.7280, 0.9274, 1.3304, 1.5166, 1.6371],1e-4);
555s ***** error<knnsearch: too few input arguments.> knnsearch (1)
555s ***** error<knnsearch: number of columns in X and Y must match.> ...
555s  knnsearch (ones (4, 5), ones (4))
555s ***** error<knnsearch: invalid NAME in optional pairs of arguments.> ...
555s  knnsearch (ones (4, 2), ones (3, 2), "Distance", "euclidean", "some", "some")
555s ***** error<knnsearch: only a single distance parameter can be defined.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "scale", ones (1, 5), "P", 3)
555s ***** error<knnsearch: invalid value of K.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "K", 0)
555s ***** error<knnsearch: invalid value of Minkowski Exponent.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "P",-2)
555s ***** error<knnsearch: invalid value in Scale or the size of Scale.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "scale", ones(4,5), "distance", "euclidean")
555s ***** error<knnsearch: invalid value in Cov, Cov can only be given for mahalanobis distance.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "cov", ["some" "some"])
555s ***** error<knnsearch: invalid value in Cov, Cov can only be given for mahalanobis distance.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "cov", ones(4,5), "distance", "euclidean")
555s ***** error<knnsearch: invalid value of bucketsize.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "bucketsize", -1)
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "cosine")
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "mahalanobis")
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "correlation")
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "seuclidean")
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "spearman")
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "hamming")
555s ***** error<knnsearch: 'kdtree' cannot be used with the given distance metric.> ...
555s  knnsearch (ones (4, 5), ones (1, 5), "NSmethod", "kdtree", "distance", "jaccard")
555s 42 tests, 42 passed, 0 known failure, 0 skipped
555s [inst/hist3.m]
555s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/hist3.m
555s ***** demo
555s  X = [
555s     1    1
555s     1    1
555s     1   10
555s     1   10
555s     5    5
555s     5    5
555s     5    5
555s     5    5
555s     5    5
555s     7    3
555s     7    3
555s     7    3
555s    10   10
555s    10   10];
555s  hist3 (X)
555s ***** test
555s  N_exp = [ 0  0  0  5 20
555s            0  0 10 15  0
555s            0 15 10  0  0
555s           20  5  0  0  0];
555s 
555s  n = 100;
555s  x = [1:n]';
555s  y = [n:-1:1]';
555s  D = [x y];
555s  N = hist3 (D, [4 5]);
555s  assert (N, N_exp);
555s ***** test
555s  N_exp = [0  0  0  0  1
555s           0  0  0  0  1
555s           0  0  0  0  1
555s           1  1  1  1 93];
555s 
555s  n = 100;
555s  x = [1:n]';
555s  y = [n:-1:1]';
555s  D = [x y];
555s  C{1} = [1 1.7 3 4];
555s  C{2} = [1:5];
555s  N = hist3 (D, C);
555s  assert (N, N_exp);
555s ***** test
555s  D = [1 1; 3 1; 3 3; 3 1];
555s  [c, nn] = hist3 (D, {0:4, 0:4});
555s  exp_c = zeros (5);
555s  exp_c([7 9 19]) = [1 2 1];
555s  assert (c, exp_c);
555s  assert (nn, {0:4, 0:4});
555s ***** test
555s  for i = 10
555s    assert (size (hist3 (rand (9, 2), "Edges", {[0:.2:1]; [0:.2:1]})), [6 6])
555s  endfor
555s ***** test
555s  edge_1 = linspace (0, 10, 10);
555s  edge_2 = linspace (0, 50, 10);
555s  [c, nn] = hist3 ([1:10; 1:5:50]', "Edges", {edge_1, edge_2});
555s  exp_c = zeros (10, 10);
555s  exp_c([1 12 13 24 35 46 57 68 79 90]) = 1;
555s  assert (c, exp_c);
555s 
555s  assert (nn{1}, edge_1 + edge_1(2)/2, eps*10^4)
555s  assert (nn{2}, edge_2 + edge_2(2)/2, eps*10^4)
555s ***** shared X
555s  X = [
555s   5  2
555s   5  3
555s   1  4
555s   5  3
555s   4  4
555s   1  2
555s   2  3
555s   3  3
555s   5  4
555s   5  3];
555s ***** test
555s  N = zeros (10);
555s  N([1 10 53 56 60 91 98 100]) = [1 1 1 1 3 1 1 1];
555s  C = {(1.2:0.4:4.8), (2.1:0.2:3.9)};
555s  assert (nthargout ([1 2], @hist3, X), {N C}, eps*10^3)
555s ***** test
555s  N = zeros (5, 7);
555s  N([1 5 17 18 20 31 34 35]) = [1 1 1 1 3 1 1 1];
555s  C = {(1.4:0.8:4.6), ((2+(1/7)):(2/7):(4-(1/7)))};
555s  assert (nthargout ([1 2], @hist3, X, [5 7]), {N C}, eps*10^3)
555s  assert (nthargout ([1 2], @hist3, X, "Nbins", [5 7]), {N C}, eps*10^3)
555s ***** test
555s  N = [0 1 0; 0 1 0; 0 0 1; 0 0 0];
555s  C = {(2:5), (2.5:1:4.5)};
555s  assert (nthargout ([1 2], @hist3, X, "Edges", {(1.5:4.5), (2:4)}), {N C})
555s ***** test
555s  N = [0 0 1 0 1 0; 0 0 0 1 0 0; 0 0 1 4 2 0];
555s  C = {(1.2:3.2), (0:5)};
555s  assert (nthargout ([1 2], @hist3, X, "Ctrs", C), {N C})
555s  assert (nthargout ([1 2], @hist3, X, C), {N C})
555s ***** test
555s  [~, C] = hist3 (rand (10, 2), "Edges", {[0 .05 .15 .35 .55 .95],
555s                                          [-1 .05 .07 .2 .3 .5 .89 1.2]});
555s  C_exp = {[ 0.025  0.1   0.25   0.45  0.75  1.15], ...
555s           [-0.475  0.06  0.135  0.25  0.4   0.695  1.045  1.355]};
555s  assert (C, C_exp, eps*10^2)
555s ***** test
555s  Xv = repmat ([1:10]', [1 2]);
555s 
555s  ## Test Centers
555s  assert (hist3 (Xv, "Ctrs", {1:10, 1:10}), eye (10))
555s 
555s  N_exp = eye (6);
555s  N_exp([1 end]) = 3;
555s  assert (hist3 (Xv, "Ctrs", {3:8, 3:8}), N_exp)
555s 
555s  N_exp = zeros (8, 6);
555s  N_exp([1 2 11 20 29 38 47 48]) = [2 1 1 1 1 1 1 2];
555s  assert (hist3 (Xv, "Ctrs", {2:9, 3:8}), N_exp)
555s 
555s  ## Test Edges
555s  assert (hist3 (Xv, "Edges", {1:10, 1:10}), eye (10))
555s  assert (hist3 (Xv, "Edges", {3:8, 3:8}), eye (6))
555s  assert (hist3 (Xv, "Edges", {2:9, 3:8}), [zeros(1, 6); eye(6); zeros(1, 6)])
555s 
555s  N_exp = zeros (14);
555s  N_exp(3:12, 3:12) = eye (10);
555s  assert (hist3 (Xv, "Edges", {-1:12, -1:12}), N_exp)
555s 
555s  ## Test for Nbins
555s  assert (hist3 (Xv), eye (10))
555s  assert (hist3 (Xv, [10 10]), eye (10))
555s  assert (hist3 (Xv, "nbins", [10 10]), eye (10))
555s  assert (hist3 (Xv, [5 5]), eye (5) * 2)
555s 
555s  N_exp = zeros (7, 5);
555s  N_exp([1 9 10 18 26 27 35]) = [2 1 1 2 1 1 2];
555s  assert (hist3 (Xv, [7 5]), N_exp)
555s ***** test # bug #51059
555s  D = [1 1; NaN 2; 3 1; 3 3; 1 NaN; 3 1];
555s  [c, nn] = hist3 (D, {0:4, 0:4});
555s  exp_c = zeros (5);
555s  exp_c([7 9 19]) = [1 2 1];
555s  assert (c, exp_c)
555s  assert (nn, {0:4, 0:4})
555s ***** test
555s  [c, nn] = hist3 ([1 8]);
555s  exp_c = zeros (10, 10);
555s  exp_c(6, 6) = 1;
555s  exp_nn = {-4:5, 3:12};
555s  assert (c, exp_c)
555s  assert (nn, exp_nn, eps)
555s 
555s  [c, nn] = hist3 ([1 8], [10 11]);
555s  exp_c = zeros (10, 11);
555s  exp_c(6, 6) = 1;
555s  exp_nn = {-4:5, 3:13};
555s  assert (c, exp_c)
555s  assert (nn, exp_nn, eps)
555s ***** test
555s  [c, nn] = hist3 ([1 NaN; 2 3; 6 9; 8 NaN]);
555s  exp_c = zeros (10, 10);
555s  exp_c(2, 1) = 1;
555s  exp_c(8, 10) = 1;
555s  exp_nn = {linspace(1.35, 7.65, 10) linspace(3.3, 8.7, 10)};
555s  assert (c, exp_c)
555s  assert (nn, exp_nn, eps*100)
555s ***** test
555s  [c, nn] = hist3 ([1 NaN; 2 NaN; 6 NaN; 8 NaN]);
555s  exp_c = zeros (10, 10);
555s  exp_nn = {linspace(1.35, 7.65, 10) NaN(1, 10)};
555s  assert (c, exp_c)
555s  assert (nn, exp_nn, eps*100)
555s ***** test
555s  [c, nn] = hist3 ([1 NaN; NaN 3; NaN 9; 8 NaN]);
555s  exp_c = zeros (10, 10);
555s  exp_nn = {linspace(1.35, 7.65, 10) linspace(3.3, 8.7, 10)};
555s  assert (c, exp_c)
555s  assert (nn, exp_nn, eps*100)
555s 16 tests, 16 passed, 0 known failure, 0 skipped
555s [inst/anova1.m]
555s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/anova1.m
555s ***** demo
555s  x = meshgrid (1:6);
555s  randn ("seed", 15);    # for reproducibility
555s  x = x + normrnd (0, 1, 6, 6);
555s  anova1 (x, [], 'off');
555s ***** demo
555s  x = meshgrid (1:6);
555s  randn ("seed", 15);    # for reproducibility
555s  x = x + normrnd (0, 1, 6, 6);
555s  [p, atab] = anova1(x);
555s ***** demo
555s  x = ones (50, 4) .* [-2, 0, 1, 5];
555s  randn ("seed", 13);    # for reproducibility
555s  x = x + normrnd (0, 2, 50, 4);
555s  groups = {"A", "B", "C", "D"};
555s  anova1 (x, groups);
555s ***** demo
555s  y = [54 87 45; 23 98 39; 45 64 51; 54 77 49; 45 89 50; 47 NaN 55];
555s  g = [1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ];
555s  anova1 (y(:), g(:), "on", "unequal");
555s ***** test
555s  data = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000, ...
555s          0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988, ...
555s          0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996, ...
555s          1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996, ...
555s          0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996, ...
555s          1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996, ...
555s          0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002, ...
555s          0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006, ...
555s          1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991, ...
555s          0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997];
555s  group = [1:10] .* ones (10,10);
555s  group = group(:);
555s  [p, tbl] = anova1 (data, group, "off");
555s  assert (p, 0.022661, 1e-6);
555s  assert (tbl{2,5}, 2.2969, 1e-4);
555s  assert (tbl{2,3}, 9, 0);
555s  assert (tbl{4,2}, 0.003903, 1e-6);
555s  data = reshape (data, 10, 10);
555s  [p, tbl, stats] = anova1 (data, [], "off");
555s  assert (p, 0.022661, 1e-6);
555s  assert (tbl{2,5}, 2.2969, 1e-4);
555s  assert (tbl{2,3}, 9, 0);
555s  assert (tbl{4,2}, 0.003903, 1e-6);
555s  means = [0.998, 0.9991, 0.9954, 0.9982, 0.9919, 0.9988, 1.0015, 1.0004, 0.9983, 0.9948];
555s  N = 10 * ones (1, 10);
555s  assert (stats.means, means, 1e-6);
555s  assert (length (stats.gnames), 10, 0);
555s  assert (stats.n, N, 0);
555s ***** test
555s  y = [54 87 45; 23 98 39; 45 64 51; 54 77 49; 45 89 50; 47 NaN 55];
555s  g = [1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ; 1  2  3 ];
555s  [p, tbl] = anova1 (y(:), g(:), "off", "equal");
555s  assert (p, 0.00004163, 1e-6);
555s  assert (tbl{2,5}, 22.573418, 1e-6);
555s  assert (tbl{2,3}, 2, 0);
555s  assert (tbl{3,3}, 14, 0);
555s  [p, tbl] = anova1 (y(:), g(:), "off", "unequal");
555s  assert (p, 0.00208877, 1e-8);
555s  assert (tbl{2,5}, 15.523192, 1e-6);
555s  assert (tbl{2,3}, 2, 0);
555s  assert (tbl{2,4}, 7.5786897, 1e-6);
555s 2 tests, 2 passed, 0 known failure, 0 skipped
555s [inst/fullfact.m]
555s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fullfact.m
555s ***** demo
555s  ## Full factorial design with 3 binary variables
555s  fullfact (3)
555s ***** demo
555s  ## Full factorial design with 3 ordinal variables
555s  fullfact ([2, 3, 4])
555s ***** error fullfact ();
555s ***** error fullfact (2, 5);
555s ***** error fullfact (2.5);
555s ***** error fullfact (0);
555s ***** error fullfact (-3);
555s ***** error fullfact (3+2i);
555s ***** error fullfact (Inf);
555s ***** error fullfact (NaN);
555s ***** error fullfact ([1, 2, -3]);
555s ***** error fullfact ([0, 1, 2]);
555s ***** error fullfact ([1, 2, NaN]);
555s ***** error fullfact ([1, 2, Inf]);
555s ***** test
555s  A = fullfact (2);
555s  assert (A, [0, 0; 0, 1; 1, 0; 1, 1]);
555s ***** test
555s  A = fullfact ([1, 2]);
555s  assert (A, [1, 1; 1, 2]);
555s ***** test
555s  A = fullfact ([1, 2, 4]);
555s  A_out = [1, 1, 1; 1, 1, 2; 1, 1, 3; 1, 1, 4; ...
555s           1, 2, 1; 1, 2, 2; 1, 2, 3; 1, 2, 4];
555s  assert (A, A_out);
555s 15 tests, 15 passed, 0 known failure, 0 skipped
555s [inst/regression_ftest.m]
555s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/regression_ftest.m
555s ***** error<Invalid call to regression_ftest.  Correct usage> regression_ftest ();
556s ***** error<Invalid call to regression_ftest.  Correct usage> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]');
556s ***** error<regression_ftest: Y must contain finite real numbers.> ...
556s  regression_ftest ([1 2 NaN]', [2 3 4; 3 4 5]', [1 0.5]);
556s ***** error<regression_ftest: Y must contain finite real numbers.> ...
556s  regression_ftest ([1 2 Inf]', [2 3 4; 3 4 5]', [1 0.5]);
556s ***** error<regression_ftest: Y must contain finite real numbers.> ...
556s  regression_ftest ([1 2 3+i]', [2 3 4; 3 4 5]', [1 0.5]);
556s ***** error<regression_ftest: X must contain finite real numbers.> ...
556s  regression_ftest ([1 2 3]', [2 3 NaN; 3 4 5]', [1 0.5]);
556s ***** error<regression_ftest: X must contain finite real numbers.> ...
556s  regression_ftest ([1 2 3]', [2 3 Inf; 3 4 5]', [1 0.5]);
556s ***** error<regression_ftest: X must contain finite real numbers.> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 3+i]', [1 0.5]);
556s ***** error<regression_ftest: invalid value for alpha.> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", 0);
556s ***** error<regression_ftest: invalid value for alpha.> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", 1.2);
556s ***** error<regression_ftest: invalid value for alpha.> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", [.02 .1]);
556s ***** error<regression_ftest: invalid value for alpha.> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "alpha", "a");
556s ***** error<regression_ftest: invalid Name argument.> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [], "some", 0.05);
556s ***** error<regression_ftest: Y must be a vector of length> ...
556s  regression_ftest ([1 2 3]', [2 3; 3 4]', [1 0.5]);
556s ***** error<regression_ftest: Y must be a vector of length> ...
556s  regression_ftest ([1 2; 3 4]', [2 3; 3 4]', [1 0.5]);
556s ***** error<regression_ftest: reduced model, RM, must be a numeric vector or> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], ones (2));
556s ***** error<regression_ftest: reduced model, RM, must be a numeric vector or> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], "alpha");
556s ***** error<regression_ftest: reduced model, RM, must have smaller length than> ...
556s  regression_ftest ([1 2 3]', [2 3 4; 3 4 5]', [1 0.5], [1 2]);
556s 18 tests, 18 passed, 0 known failure, 0 skipped
556s [inst/pdist2.m]
556s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/pdist2.m
556s ***** shared x, y, xx
556s  x = [1, 1, 1; 2, 2, 2; 3, 3, 3];
556s  y = [0, 0, 0; 1, 2, 3; 0, 2, 4; 4, 7, 1];
556s  xx = [1 2 3; 4 5 6; 7 8 9; 3 2 1];
556s ***** test
556s  d = sqrt([3, 5, 11, 45; 12, 2, 8, 30; 27, 5, 11, 21]);
556s  assert (pdist2 (x, y), d);
556s ***** test
556s  d = [5.1962, 2.2361, 3.3166, 6.7082; ...
556s       3.4641, 2.2361, 3.3166, 5.4772];
556s  i = [3, 1, 1, 1; 2, 3, 3, 2];
556s  [D, I] = pdist2 (x, y, "euclidean", "largest", 2);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  d = [1.7321, 1.4142, 2.8284, 4.5826; ...
556s       3.4641, 2.2361, 3.3166, 5.4772];
556s  i = [1, 2, 2, 3;2, 1, 1, 2];
556s  [D, I] = pdist2 (x, y, "euclidean", "smallest", 2);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  yy = [1 2 3;5 6 7;9 5 1];
556s  d = [0, 6.1644, 5.3852; 1.4142, 6.9282, 8.7750; ...
556s       3.7417, 7.0711, 9.9499; 6.1644, 10.4881, 10.3441];
556s  i = [2, 4, 4; 3, 2, 2; 1, 3, 3; 4, 1, 1];
556s  [D, I] = pdist2 (y, yy, "euclidean", "smallest", 4);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  yy = [1 2 3;5 6 7;9 5 1];
556s  d = [0, 38, 29; 2, 48, 77; 14, 50, 99; 38, 110, 107];
556s  i = [2, 4, 4; 3, 2, 2; 1, 3, 3; 4, 1, 1];
556s  [D, I] = pdist2 (y, yy, "squaredeuclidean", "smallest", 4);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  yy = [1 2 3;5 6 7;9 5 1];
556s  d = [0, 3.3256, 2.7249; 0.7610, 3.3453, 4.4799; ...
556s       1.8514, 3.3869, 5.0703; 2.5525, 5.0709, 5.1297];
556s  i = [2, 2, 4; 3, 4, 2; 1, 3, 1; 4, 1, 3];
556s  [D, I] = pdist2 (y, yy, "seuclidean", "smallest", 4);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  d = [2.1213, 4.2426, 6.3640; 1.2247, 2.4495, 4.4159; ...
556s       3.2404, 4.8990, 6.8191; 2.7386, 4.2426, 6.1237];
556s  assert (pdist2 (y, x, "mahalanobis"), d, 1e-4);
556s ***** test
556s  xx = [1, 3, 4; 3, 5, 4; 8, 7, 6];
556s  d = [1.3053, 1.8257, 15.0499; 1.3053, 3.3665, 16.5680];
556s  i = [2, 2, 2; 3, 4, 4];
556s  [D, I] = pdist2 (y, xx, "mahalanobis", "smallest", 2);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  d = [2.5240, 4.1633, 17.3638; 2.0905, 3.9158, 17.0147];
556s  i = [1, 1, 3; 4, 3, 1];
556s  [D, I] = pdist2 (y, xx, "mahalanobis", "largest", 2);
556s  assert ({D, I}, {d, i}, 1e-4);
556s ***** test
556s  d = [3, 3, 5, 9; 6, 2, 4, 8; 9, 3, 5, 7];
556s  assert (pdist2 (x, y, "cityblock"), d);
556s ***** test
556s  d = [1, 2, 3, 6; 2, 1, 2, 5; 3, 2, 3, 4];
556s  assert (pdist2 (x, y, "chebychev"), d);
556s ***** test
556s  d = repmat ([NaN, 0.0742, 0.2254, 0.1472], [3, 1]);
556s  assert (pdist2 (x, y, "cosine"), d, 1e-4);
556s ***** test
556s  yy = [1 2 3;5 6 7;9 5 1];
556s  d = [0, 0, 0.5; 0, 0, 2; 1.5, 1.5, 2; NaN, NaN, NaN];
556s  i = [2, 2, 4; 3, 3, 2; 4, 4, 3; 1, 1, 1];
556s  [D, I] = pdist2 (y, yy, "correlation", "smallest", 4);
556s  assert ({D, I}, {d, i}, eps);
556s  [D, I] = pdist2 (y, yy, "spearman", "smallest", 4);
556s  assert ({D, I}, {d, i}, eps);
556s ***** test
556s  d = [1, 2/3, 1, 1; 1, 2/3, 1, 1; 1, 2/3, 2/3, 2/3];
556s  i = [1, 1, 1, 2; 2, 2, 3, 3; 3, 3, 2, 1];
556s  [D, I] = pdist2 (x, y, "hamming", "largest", 4);
556s  assert ({D, I}, {d, i}, eps);
556s  [D, I] = pdist2 (x, y, "jaccard", "largest", 4);
556s  assert ({D, I}, {d, i}, eps);
556s ***** test
556s  xx = [1, 2, 3, 4; 2, 3, 4, 5; 3, 4, 5, 6];
556s  yy = [1, 2, 2, 3; 2, 3, 3, 4];
556s  [D, I] = pdist2 (x, y, "euclidean", "Smallest", 4);
556s  eucldist = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
556s  [d, i] = pdist2 (x, y, eucldist, "Smallest", 4);
556s  assert ({D, I}, {d, i});
556s ***** warning<pdist2: matrix is close to singular> ...
556s  pdist2 (xx, xx, "mahalanobis");
556s ***** error<pdist2: too few input arguments.> pdist2 (1)
556s ***** error<pdist2: X and Y must have equal number of columns.> ...
556s  pdist2 (ones (4, 5), ones (4))
556s ***** error<pdist2: X and Y must be 2 dimensional matrices.> ...
556s  pdist2 (ones (4, 2, 3), ones (3, 2))
556s ***** error<pdist2: missing value in optional name/value paired arguments.> ...
556s  pdist2 (ones (3), ones (3), "euclidean", "Largest")
556s ***** error<pdist2: missing value in optional name/value paired arguments.> ...
556s  pdist2 (ones (3), ones (3), "minkowski", 3, "Largest")
556s ***** error<pdist2: invalid NAME in optional pairs of arguments.> ...
556s  pdist2 (ones (3), ones (3), "minkowski", 3, "large", 4)
556s ***** error<pdist2: you can only use either Smallest or Largest.> ...
556s  pdist2 (ones (3), ones (3), "minkowski", 3, "Largest", 4, "smallest", 5)
556s ***** error<pdist2: Smallest or Largest must be specified to compute second output.> ...
556s  [d, i] = pdist2(ones (3), ones (3), "minkowski", 3)
556s ***** error<pdist2: DistParameter for standardized euclidean must be a vector of> ...
556s  pdist2 (ones (3), ones (3), "seuclidean", 3)
556s ***** error<pdist2: DistParameter for standardized euclidean must be a nonnegative> ...
556s  pdist2 (ones (3), ones (3), "seuclidean", [1, -1, 3])
556s ***** error<pdist2: DistParameter for mahalanobis distance must be a covariance> ...
556s  pdist2 (ones (3), eye (3), "mahalanobis", eye(2))
556s ***** error<pdist2: covariance matrix for mahalanobis distance must be symmetric> ...
556s  pdist2 (ones (3), eye (3), "mahalanobis", ones(3))
556s ***** error<pdist2: DistParameter for minkowski distance must be a positive scalar.> ...
556s  pdist2 (ones (3), eye (3), "minkowski", 0)
556s ***** error<pdist2: DistParameter for minkowski distance must be a positive scalar.> ...
556s  pdist2 (ones (3), eye (3), "minkowski", -5)
556s ***** error<pdist2: DistParameter for minkowski distance must be a positive scalar.> ...
556s  pdist2 (ones (3), eye (3), "minkowski", [1, 2])
556s ***** error<pdist2: invalid function handle for distance metric.> ...
556s  pdist2 (ones (3), ones (3), @(v,m) sqrt(repmat(v,rows(m),1)-m,2))
556s ***** error<pdist2: custom distance function produces wrong output size.> ...
556s  pdist2 (ones (3), ones (3), @(v,m) sqrt(sum(sumsq(repmat(v,rows(m),1)-m,2))))
556s 33 tests, 33 passed, 0 known failure, 0 skipped
556s [inst/isoutlier.m]
556s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/isoutlier.m
556s ***** demo
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  TF = isoutlier (A, "mean")
556s ***** demo
556s  ## Use a moving detection method to detect local outliers in a sine wave
556s 
556s  x = -2*pi:0.1:2*pi;
556s  A = sin(x);
556s  A(47) = 0;
556s  time = datenum (2023,1,1,0,0,0) + (1/24)*[0:length(x)-1] - 730485;
556s  TF = isoutlier (A, "movmedian", 5*(1/24), "SamplePoints", time);
556s  plot (time, A)
556s  hold on
556s  plot (time(TF), A(TF), "x")
556s  datetick ('x', 20, 'keepticks')
556s  legend ("Original Data", "Outlier Data")
556s ***** demo
556s  ## Locate an outlier in a vector of data and visualize the outlier
556s 
556s  x = 1:10;
556s  A = [60 59 49 49 58 100 61 57 48 58];
556s  [TF, L, U, C] = isoutlier (A);
556s  plot (x, A);
556s  hold on
556s  plot (x(TF), A(TF), "x");
556s  xlim ([1,10]);
556s  line ([1,10], [L, L], "Linestyle", ":");
556s  text (1.1, L-2, "Lower Threshold");
556s  line ([1,10], [U, U], "Linestyle", ":");
556s  text (1.1, U-2, "Upper Threshold");
556s  line ([1,10], [C, C], "Linestyle", ":");
556s  text (1.1, C-3, "Center Value");
556s  legend ("Original Data", "Outlier Data");
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  assert (isoutlier (A, "mean"), logical([zeros(1,8) 1 zeros(1,6)]))
556s  assert (isoutlier (A, "median"), ...
556s  logical([zeros(1,3) 1 zeros(1,4) 1 zeros(1,6)]))
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "mean");
556s  assert (L, -109.2459044922864, 1e-12)
556s  assert (U, 264.9792378256198, 1e-12)
556s  assert (C, 77.8666666666666, 1e-12)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "median");
556s  assert (L, 50.104386688966386, 1e-12)
556s  assert (U, 67.895613311033610, 1e-12)
556s  assert (C, 59)
556s ***** test
556s  A = magic(5) + diag(200*ones(1,5));
556s  T = logical (eye (5));
556s  assert (isoutlier (A, 2), T)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "movmedian", 5);
556s  l = [54.5522, 52.8283, 54.5522, 54.5522, 54.5522, 53.5522, 53.5522, ...
556s       53.5522, 47.6566, 56.5522, 57.5522, 56.5522, 51.1044, 52.3283, 53.5522];
556s  u = [63.4478, 66.1717, 63.4478, 63.4478, 63.4478, 62.4478, 62.4478, ...
556s       62.4478, 74.3434, 65.4478, 66.4478, 65.4478, 68.8956, 65.6717, 62.4478];
556s  c = [59, 59.5, 59, 59, 59, 58, 58, 58, 61, 61, 62, 61, 60, 59, 58];
556s  assert (L, l, 1e-4)
556s  assert (U, u, 1e-4)
556s  assert (C, c)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "movmedian", 5, "SamplePoints", [1:15]);
556s  l = [54.5522, 52.8283, 54.5522, 54.5522, 54.5522, 53.5522, 53.5522, ...
556s       53.5522, 47.6566, 56.5522, 57.5522, 56.5522, 51.1044, 52.3283, 53.5522];
556s  u = [63.4478, 66.1717, 63.4478, 63.4478, 63.4478, 62.4478, 62.4478, ...
556s       62.4478, 74.3434, 65.4478, 66.4478, 65.4478, 68.8956, 65.6717, 62.4478];
556s  c = [59, 59.5, 59, 59, 59, 58, 58, 58, 61, 61, 62, 61, 60, 59, 58];
556s  assert (L, l, 1e-4)
556s  assert (U, u, 1e-4)
556s  assert (C, c)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "movmean", 5);
556s  l = [54.0841,  6.8872, 11.5608, 12.1518, 11.0210, 10.0112, -218.2840, ...
556s       -217.2375, -215.1239, -213.4890, -211.3264, 55.5800, 52.9589, ...
556s       52.5979, 51.0627];
556s  u = [63.2492, 131.1128, 122.4392, 122.2482, 122.5790, 122.7888, 431.0840, ...
556s       430.8375, 430.3239, 429.8890, 429.3264, 65.6200, 66.6411, 65.9021, ...
556s       66.9373];
556s  c = [58.6667, 69, 67, 67.2, 66.8, 66.4, 106.4, 106.8, 107.6, 108.2, 109, ...
556s       60.6, 59.8, 59.25, 59];
556s  assert (L, l, 1e-4)
556s  assert (U, u, 1e-4)
556s  assert (C, c, 1e-4)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "movmean", 5, "SamplePoints", [1:15]);
556s  l = [54.0841,  6.8872, 11.5608, 12.1518, 11.0210, 10.0112, -218.2840, ...
556s       -217.2375, -215.1239, -213.4890, -211.3264, 55.5800, 52.9589, ...
556s       52.5979, 51.0627];
556s  u = [63.2492, 131.1128, 122.4392, 122.2482, 122.5790, 122.7888, 431.0840, ...
556s       430.8375, 430.3239, 429.8890, 429.3264, 65.6200, 66.6411, 65.9021, ...
556s       66.9373];
556s  c = [58.6667, 69, 67, 67.2, 66.8, 66.4, 106.4, 106.8, 107.6, 108.2, 109, ...
556s       60.6, 59.8, 59.25, 59];
556s  assert (L, l, 1e-4)
556s  assert (U, u, 1e-4)
556s  assert (C, c, 1e-4)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "gesd");
556s  assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0]))
556s  assert (L, 34.235977035439944, 1e-12)
556s  assert (U, 89.764022964560060, 1e-12)
556s  assert (C, 62)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "gesd", "ThresholdFactor", 0.01);
556s  assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0]))
556s  assert (L, 31.489256770616173, 1e-12)
556s  assert (U, 92.510743229383820, 1e-12)
556s  assert (C, 62)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "gesd", "ThresholdFactor", 5e-10);
556s  assert (TF, logical ([0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]))
556s  assert (L, 23.976664158788935, 1e-12)
556s  assert (U, 100.02333584121110, 1e-12)
556s  assert (C, 62)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "grubbs");
556s  assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0]))
556s  assert (L, 54.642809574646606, 1e-12)
556s  assert (U, 63.511036579199555, 1e-12)
556s  assert (C, 59.076923076923080, 1e-12)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A, "grubbs", "ThresholdFactor", 0.01);
556s  assert (TF, logical ([0 0 0 1 0 0 0 0 1 0 0 0 0 0 0]))
556s  assert (L, 54.216083184201850, 1e-12)
556s  assert (U, 63.937762969644310, 1e-12)
556s  assert (C, 59.076923076923080, 1e-12)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A,  "percentiles", [10 90]);
556s  assert (TF, logical ([0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]))
556s  assert (L, 57)
556s  assert (U, 100)
556s  assert (C, 78.5)
556s ***** test
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s  [TF, L, U, C] = isoutlier (A,  "percentiles", [20 80]);
556s  assert (TF, logical ([1 0 0 1 0 0 1 0 1 0 0 0 0 0 1]))
556s  assert (L, 57.5)
556s  assert (U, 62)
556s  assert (C, 59.75)
556s ***** shared A
556s  A = [57 59 60 100 59 58 57 58 300 61 62 60 62 58 57];
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", 0);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", []);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", [2 3 4]);
556s ***** error<isoutlier: WINDOW must be a positive integer> ...
556s  isoutlier (A, "movmedian", 1.4);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", [0 1]);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", [2 -1]);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", {2 3});
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmedian", "char");
556s 
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", 0);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", []);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", [2 3 4]);
556s ***** error<isoutlier: WINDOW must be a positive integer> ...
556s  isoutlier (A, "movmean", 1.4);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", [0 1]);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", [2 -1]);
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", {2 3});
556s ***** error<isoutlier: WINDOW must be a positive scalar> ...
556s  isoutlier (A, "movmean", "char");
556s 
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", [-1 90]);
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", [10 -90]);
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", [90]);
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", [90 20]);
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", [90 20]);
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", [10 20 90]);
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", {10 90});
556s ***** error<isoutlier: THRESHOLD must be a two-element> ...
556s  isoutlier (A, "percentiles", "char");
556s 
556s ***** error<isoutlier: sample points must be a vector.> ...
556s  isoutlier (A, "movmean", 5, "SamplePoints", ones(3,15));
556s ***** error<isoutlier: sample points must be a vector.> ...
556s  isoutlier (A, "movmean", 5, "SamplePoints", 15);
556s ***** error<isoutlier: sample points must be unique.> ...
556s  isoutlier (A, "movmean", 5, "SamplePoints", [1,1:14]);
556s ***** error<isoutlier: sample points must be sorted.> ...
556s  isoutlier (A, "movmean", 5, "SamplePoints", [2,1,3:15]);
556s ***** error<isoutlier: sample points must have the same size> ...
556s  isoutlier (A, "movmean", 5, "SamplePoints", [1:14]);
556s 
556s ***** error<isoutlier: threshold factor must be a nonnegative scalar.> ...
556s  isoutlier (A, "movmean", 5, "ThresholdFactor", [1:14]);
556s ***** error<isoutlier: threshold factor must be a nonnegative scalar.> ...
556s  isoutlier (A, "movmean", 5, "ThresholdFactor", -1);
556s ***** error<isoutlier: threshold factor must must be in> ...
556s  isoutlier (A, "gesd", "ThresholdFactor", 3);
556s ***** error<isoutlier: threshold factor must must be in> ...
556s  isoutlier (A, "grubbs", "ThresholdFactor", 3);
556s 
556s ***** error<isoutlier: maximum outlier count must be a positive integer scalar.> ...
556s  isoutlier (A, "movmean", 5, "MaxNumOutliers", [1:14]);
556s ***** error<isoutlier: maximum outlier count must be a positive integer scalar.> ...
556s  isoutlier (A, "movmean", 5, "MaxNumOutliers", -1);
556s ***** error<isoutlier: maximum outlier count must be a positive integer scalar.> ...
556s  isoutlier (A, "movmean", 5, "MaxNumOutliers", 0);
556s ***** error<isoutlier: maximum outlier count must be a positive integer scalar.> ...
556s  isoutlier (A, "movmean", 5, "MaxNumOutliers", 1.5);
556s 
556s ***** error<isoutlier: invalid input argument.> ...
556s  isoutlier (A, {"movmean"}, 5, "SamplePoints", [1:15]);
556s ***** error<isoutlier: invalid input argument.> isoutlier (A, {1});
556s ***** error<isoutlier: invalid input argument.> isoutlier (A, true);
556s ***** error<isoutlier: invalid input argument.> isoutlier (A, false);
556s ***** error<isoutlier: DIM must be a positive integer scalar.> isoutlier (A, 0);
556s ***** error<isoutlier: DIM must be a positive integer scalar.> isoutlier (A, [1 2]);
556s ***** error<isoutlier: DIM must be a positive integer scalar.> isoutlier (A, -2);
556s 59 tests, 59 passed, 0 known failure, 0 skipped
556s [inst/nanmax.m]
556s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/nanmax.m
556s ***** demo
556s  ## Find the column maximum values and their indices
556s  ## for matrix data with missing values.
556s 
556s  x = magic (3);
556s  x([1, 6:9]) = NaN
556s  [y, ind] = nanmax (x)
556s ***** demo
556s  ## Find the maximum of all the values in an array, ignoring missing values.
556s  ## Create a 2-by-5-by-3 array x with some missing values.
556s 
556s  x = reshape (1:30, [2, 5, 3]);
556s  x([10:12, 25]) = NaN
556s 
556s  ## Find the maximum of the elements of x.
556s 
556s  y = nanmax (x, [], 'all')
556s ***** assert (nanmax ([2, 4, NaN, 7]), 7)
556s ***** assert (nanmax ([2, 4, NaN, Inf]), Inf)
556s ***** assert (nanmax ([1, NaN, 3; NaN, 5, 6; 7, 8, NaN]), [7, 8, 6])
556s ***** assert (nanmax ([1, NaN, 3; NaN, 5, 6; 7, 8, NaN]'), [3, 6, 8])
556s ***** assert (nanmax (single ([1, NaN, 3; NaN, 5, 6; 7, 8, NaN])), single ([7, 8, 6]))
556s ***** shared x, y
556s  x(:,:,1) = [1.77, -0.005, NaN, -2.95; NaN, 0.34, NaN, 0.19];
556s  x(:,:,2) = [1.77, -0.005, NaN, -2.95; NaN, 0.34, NaN, 0.19] + 5;
556s  y = x;
556s  y(2,3,1) = 0.51;
556s ***** assert (nanmax (x, [], [1, 2])(:), [1.77;6.77])
556s ***** assert (nanmax (x, [], [1, 3])(:), [6.77;5.34;NaN;5.19])
556s ***** assert (nanmax (x, [], [2, 3])(:), [6.77;5.34])
556s ***** assert (nanmax (x, [], [1, 2, 3]), 6.77)
556s ***** assert (nanmax (x, [], 'all'), 6.77)
556s ***** assert (nanmax (y, [], [1, 3])(:), [6.77;5.34;0.51;5.19])
556s ***** assert (nanmax (x(1,:,1), x(2,:,1)), [1.77, 0.34, NaN, 0.19])
556s ***** assert (nanmax (x(1,:,2), x(2,:,2)), [6.77, 5.34, NaN, 5.19])
556s ***** assert (nanmax (y(1,:,1), y(2,:,1)), [1.77, 0.34, 0.51, 0.19])
556s ***** assert (nanmax (y(1,:,2), y(2,:,2)), [6.77, 5.34, NaN, 5.19])
556s ***** test
556s  xx = repmat ([1:20;6:25], [5 2 6 3]);
556s  assert (size (nanmax (xx, [], [3, 2])), [10, 1, 1, 3]);
556s  assert (size (nanmax (xx, [], [1, 2])), [1, 1, 6, 3]);
556s  assert (size (nanmax (xx, [], [1, 2, 4])), [1, 1, 6]);
556s  assert (size (nanmax (xx, [], [1, 4, 3])), [1, 40]);
556s  assert (size (nanmax (xx, [], [1, 2, 3, 4])), [1, 1]);
556s ***** assert (nanmax (ones (2), [], 3), ones (2, 2))
556s ***** assert (nanmax (ones (2, 2, 2), [], 99), ones (2, 2, 2))
556s ***** assert (nanmax (magic (3), [], 3), magic (3))
556s ***** assert (nanmax (magic (3), [], [1, 3]), [8, 9, 7])
556s ***** assert (nanmax (magic (3), [], [1, 99]), [8, 9, 7])
556s ***** assert (nanmax (ones (2), 3), 3 * ones (2,2))
556s ***** error <nanmax: VECDIM must contain non-repeating positive integers.> ...
556s  nanmax (y, [], [1, 1, 2])
556s ***** error <nanmax: a second output is not supported with this syntax.> ...
556s  [v, idx] = nanmax(x, y, [1 2])
557s 24 tests, 24 passed, 0 known failure, 0 skipped
557s [inst/kruskalwallis.m]
557s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/kruskalwallis.m
557s ***** demo
557s  x = meshgrid (1:6);
557s  x = x + normrnd (0, 1, 6, 6);
557s  kruskalwallis (x, [], 'off');
557s ***** demo
557s  x = meshgrid (1:6);
557s  x = x + normrnd (0, 1, 6, 6);
557s  [p, atab] = kruskalwallis(x);
557s ***** demo
557s  x = ones (30, 4) .* [-2, 0, 1, 5];
557s  x = x + normrnd (0, 2, 30, 4);
557s  group = {"A", "B", "C", "D"};
557s  kruskalwallis (x, group);
557s ***** test
557s  data = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000, ...
557s          0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988, ...
557s          0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996, ...
557s          1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996, ...
557s          0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996, ...
557s          1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996, ...
557s          0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002, ...
557s          0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006, ...
557s          1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991, ...
557s          0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997];
557s  group = [1:10] .* ones (10,10);
557s  group = group(:);
557s  [p, tbl] = kruskalwallis (data, group, "off");
557s  assert (p, 0.048229, 1e-6);
557s  assert (tbl{2,5}, 17.03124, 1e-5);
557s  assert (tbl{2,3}, 9, 0);
557s  assert (tbl{4,2}, 82655.5, 1e-16);
557s  data = reshape (data, 10, 10);
557s  [p, tbl, stats] = kruskalwallis (data, [], "off");
557s  assert (p, 0.048229, 1e-6);
557s  assert (tbl{2,5}, 17.03124, 1e-5);
557s  assert (tbl{2,3}, 9, 0);
557s  assert (tbl{4,2}, 82655.5, 1e-16);
557s  means = [51.85, 60.45, 37.6, 51.1, 29.5, 54.25, 64.55, 66.7, 53.65, 35.35];
557s  N = 10 * ones (1, 10);
557s  assert (stats.meanranks, means, 1e-6);
557s  assert (length (stats.gnames), 10, 0);
557s  assert (stats.n, N, 0);
557s 1 test, 1 passed, 0 known failure, 0 skipped
557s [inst/gscatter.m]
557s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/gscatter.m
557s ***** demo
557s  load fisheriris;
557s  X = meas(:,3:4);
557s  cidcs = kmeans (X, 3, "Replicates", 5);
557s  gscatter (X(:,1), X(:,2), cidcs, [.75 .75 0; 0 .75 .75; .75 0 .75], "os^");
557s  title ("Fisher's iris data");
557s ***** shared visibility_setting
557s  visibility_setting = get (0, "DefaultFigureVisible");
557s ***** test
557s  hf = figure ("visible", "off");
557s  unwind_protect
557s    load fisheriris;
557s    X = meas(:,3:4);
557s    cidcs = kmeans (X, 3, "Replicates", 5);
557s    gscatter (X(:,1), X(:,2), cidcs, [.75 .75 0; 0 .75 .75; .75 0 .75], "os^");
557s    title ("Fisher's iris data");
557s  unwind_protect_cleanup
557s    close (hf);
557s  end_unwind_protect
557s warning: legend: 'best' not yet implemented for location specifier, using 'northeast' instead
557s ***** error gscatter ();
557s ***** error gscatter ([1]);
557s ***** error gscatter ([1], [2]);
557s ***** error <x must be a numeric vector> gscatter ('abc', [1 2 3], [1]);
557s ***** error <x and y must have the same size> gscatter ([1 2 3], [1 2], [1]);
557s ***** error <y must be a numeric vector> gscatter ([1 2 3], 'abc', [1]);
557s ***** error <g must have the same size as x and y> gscatter ([1 2], [1 2], [1]);
557s ***** error <invalid dolegend> gscatter ([1 2], [1 2], [1 2], 'rb', 'so', 12, 'xxx');
557s 9 tests, 9 passed, 0 known failure, 0 skipped
557s [inst/cholcov.m]
557s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cholcov.m
557s ***** demo
557s  C1 = [2, 1, 1, 2; 1, 2, 1, 2; 1, 1, 2, 2; 2, 2, 2, 3]
557s  T = cholcov (C1)
557s  C2 = T'*T
557s ***** test
557s  C1 = [2, 1, 1, 2; 1, 2, 1, 2; 1, 1, 2, 2; 2, 2, 2, 3];
557s  T = cholcov (C1);
557s  assert (C1, T'*T, 1e-15 * ones (size (C1)));
557s 1 test, 1 passed, 0 known failure, 0 skipped
557s [inst/rmmissing.m]
557s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/rmmissing.m
557s ***** assert (rmmissing ([1,NaN,3]), [1,3])
557s ***** assert (rmmissing ('abcd f'), 'abcdf')
557s ***** assert (rmmissing ({'xxx','','xyz'}), {'xxx','xyz'})
557s ***** assert (rmmissing ({'xxx','';'xyz','yyy'}), {'xyz','yyy'})
557s ***** assert (rmmissing ({'xxx','';'xyz','yyy'}, 2), {'xxx';'xyz'})
557s ***** assert (rmmissing ([1,2;NaN,2]), [1,2])
557s ***** assert (rmmissing ([1,2;NaN,2], 2), [2,2]')
557s ***** assert (rmmissing ([1,2;NaN,4;NaN,NaN],"MinNumMissing", 2), [1,2;NaN,4])
557s ***** test
557s  x = [1:6];
557s  x([2,4]) = NaN;
557s  [~, idx] = rmmissing (x);
557s  assert (idx, logical ([0, 1, 0, 1, 0, 0]));
557s  assert (class(idx), 'logical');
557s  x = reshape (x, [2, 3]);
557s  [~, idx] = rmmissing (x);
557s  assert (idx, logical ([0; 1]));
557s  assert (class(idx), 'logical');
557s  [~, idx] = rmmissing (x, 2);
557s  assert (idx, logical ([1, 1, 0]));
557s  assert (class(idx), 'logical');
557s  [~, idx] = rmmissing (x, 1, "MinNumMissing", 2);
557s  assert (idx, logical ([0; 1]));
557s  assert (class(idx), 'logical');
557s  [~, idx] = rmmissing (x, 2, "MinNumMissing", 2);
557s  assert (idx, logical ([0, 0, 0]));
557s  assert (class(idx), 'logical');
557s ***** assert (rmmissing (single ([1 2 NaN; 3 4 5])), single ([3 4 5]))
557s ***** assert (rmmissing (logical (ones (3))), logical (ones (3)))
557s ***** assert (rmmissing (int32 (ones (3))), int32 (ones (3)))
557s ***** assert (rmmissing (uint32 (ones (3))), uint32 (ones (3)))
557s ***** assert (rmmissing ({1, 2, 3}), {1, 2, 3})
557s ***** assert (rmmissing ([struct, struct, struct]), [struct, struct, struct])
557s ***** assert (rmmissing ([]), [])
557s ***** assert (rmmissing (ones (1,0)), ones (1,0))
557s ***** assert (rmmissing (ones (1,0), 1), ones (1,0))
557s ***** assert (rmmissing (ones (1,0), 2), ones (1,0))
557s ***** assert (rmmissing (ones (0,1)), ones (0,1))
557s ***** assert (rmmissing (ones (0,1), 1), ones (0,1))
557s ***** assert (rmmissing (ones (0,1), 2), ones (0,1))
557s ***** error <input dimension> rmmissing (ones (0,1,2))
557s ***** error rmmissing ()
557s ***** error <input dimension> rmmissing (ones(2,2,2))
557s ***** error <must be either 1 or 2> rmmissing ([1 2; 3 4], 5)
557s ***** error <unknown parameter name> rmmissing ([1 2; 3 4], "XXX", 1)
557s ***** error <'MinNumMissing'> rmmissing ([1 2; 3 4], 2, "MinNumMissing", -2)
557s ***** error <'MinNumMissing'> rmmissing ([1 2; 3 4], "MinNumMissing", 3.8)
557s ***** error <'MinNumMissing'> rmmissing ([1 2; 3 4], "MinNumMissing", [1 2 3])
557s ***** error <'MinNumMissing'> rmmissing ([1 2; 3 4], "MinNumMissing", 'xxx')
557s 31 tests, 31 passed, 0 known failure, 0 skipped
557s [inst/glmfit.m]
557s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/glmfit.m
557s ***** demo
557s  x = [210, 230, 250, 270, 290, 310, 330, 350, 370, 390, 410, 430]';
557s  n = [48, 42, 31, 34, 31, 21, 23, 23, 21, 16, 17, 21]';
557s  y = [1, 2, 0, 3, 8, 8, 14, 17, 19, 15, 17, 21]';
557s  b = glmfit (x, [y n], "binomial", "Link", "probit");
557s  yfit = glmval (b, x, "probit", "Size", n);
557s  plot (x, y./n, 'o', x, yfit ./ n, '-')
557s ***** demo
557s  load fisheriris
557s  X = meas (51:end, :);
557s  y = strcmp ("versicolor", species(51:end));
557s  b = glmfit (X, y, "binomial", "link", "logit")
557s ***** test
557s  load fisheriris;
557s  X = meas(51:end,:);
557s  y = strcmp ("versicolor", species(51:end));
557s  b = glmfit (X, y, "binomial", "link", "logit");
557s  assert (b, [42.6379; 2.4652; 6.6809; -9.4294; -18.2861], 1e-4);
557s ***** test
557s  X = [1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0, 10.1]';
557s  y = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4]';
557s  [Bnew, dev] = glmfit (X, y, "gamma", "link", "log");
557s  b_matlab = [-0.7631; 0.1113];
557s  dev_matlab = 0.0111;
557s  assert (Bnew, b_matlab, 0.001);
557s  assert (dev, dev_matlab, 0.001);
557s ***** test
557s  X = [1.2, 2.3, 3.4, 4.5, 5.6, 6.7, 7.8, 8.9, 9.0, 10.1]';
557s  y = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4]';
557s  p_input = 1;
557s  [Bnew, dev] = glmfit (X, y, "inverse gaussian", "link", p_input);
557s  b_matlab = [0.3813; 0.0950];
557s  dev_matlab = 0.0051;
557s  assert (Bnew, b_matlab, 0.001);
557s  assert (dev, dev_matlab, 0.001);
557s ***** error <glmfit: too few input arguments.> glmfit ()
557s ***** error <glmfit: too few input arguments.> glmfit (1)
557s ***** error <glmfit: too few input arguments.> glmfit (1, 2)
557s ***** error <glmfit: Name-Value arguments must be in pairs.> ...
557s  glmfit (rand (6, 1), rand (6, 1), 'poisson', 'link')
557s ***** error <glmfit: X must be a numeric matrix.> ...
557s  glmfit ('abc', rand (6, 1), 'poisson')
557s ***** error <glmfit: X must be a numeric matrix.> ...
557s  glmfit ([], rand (6, 1), 'poisson')
557s ***** error <glmfit: Y must be either a numeric matrix or a logical vector.> ...
557s  glmfit (rand (5, 2), 'abc', 'poisson')
557s ***** error <glmfit: Y must be either a numeric matrix or a logical vector.> ...
557s  glmfit (rand (5, 2), [], 'poisson')
557s ***** error <glmfit: X and Y must have the same number of observations.> ...
557s  glmfit (rand (5, 2), rand (6, 1), 'poisson')
557s ***** error <glmfit: DISTRIBUTION must be a character vector.> ...
557s  glmfit (rand (6, 2), rand (6, 1), 3)
557s ***** error <glmfit: DISTRIBUTION must be a character vector.> ...
557s  glmfit (rand (6, 2), rand (6, 1), {'poisson'})
557s ***** error <glmfit: for a 'binomial' distribution, Y must be an n-by-1 or n-by-2 matrix.> ...
557s  glmfit (rand (5, 2), rand (5, 3), 'binomial')
557s ***** error <glmfit: n-by-2 matrix Y for 'binomial' distribution must be numeric.> ...
557s  glmfit (rand (2, 2), [true, true; false, false], 'binomial')
557s ***** error <glmfit: for distributions other than 'binomial', Y must be an n-by-1 column vector> ...
557s  glmfit (rand (5, 2), rand (5, 2), 'normal')
557s ***** error <glmfit: unsupported distribution.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'chebychev')
557s ***** error <glmfit: 'B0' must be a numeric vector of the same size as Y.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'B0', [1; 2; 3; 4])
557s ***** error <glmfit: 'Constant' should be either 'on' or 'off'.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'constant', 1)
557s ***** error <glmfit: 'Constant' should be either 'on' or 'off'.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'constant', 'o')
557s ***** error <glmfit: 'Constant' should be either 'on' or 'off'.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'constant', true)
557s ***** error <glmfit: 'EstDisp' should be either 'on' or 'off'.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'estdisp', 1)
557s ***** error <glmfit: 'EstDisp' should be either 'on' or 'off'.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'estdisp', 'o')
557s ***** error <glmfit: 'EstDisp' should be either 'on' or 'off'.> ...
557s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'estdisp', true)
557s ***** error <glmfit: structure with custom link functions must be a scalar.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", {1, 2}))
557s ***** error <glmfit: structure with custom link functions requires the fields 'Link', 'Derivative', and 'Inverse'.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", "norminv"))
557s ***** error <glmfit: bad 'Link' function in custom link function structure.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", "some", "Derivative", @(x)x, "Inverse", "normcdf"))
557s ***** error <glmfit: bad 'Link' function in custom link function structure.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", 1, "Derivative", @(x)x, "Inverse", "normcdf"))
557s ***** error <glmfit: custom 'Link' function must return an output of the same size as input.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x) [x, x], "Derivative", @(x)x, "Inverse", "normcdf"))
557s ***** error <glmfit: invalid custom 'Link' function.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", "what", "Derivative", @(x)x, "Inverse", "normcdf"))
557s ***** error <glmfit: bad 'Derivative' function in custom link function structure.> ...
557s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", "some", "Inverse", "normcdf"))
558s ***** error <glmfit: bad 'Derivative' function in custom link function structure.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", 1, "Inverse", "normcdf"))
558s ***** error <glmfit: custom 'Derivative' function must return an output of the same size as input.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", @(x) [x, x], "Inverse", "normcdf"))
558s ***** error <glmfit: invalid custom 'Derivative' function.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", "what", "Inverse", "normcdf"))
558s ***** error <glmfit: bad 'Inverse' function in custom link function structure.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", "some"))
558s ***** error <glmfit: bad 'Inverse' function in custom link function structure.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", 1))
558s ***** error <glmfit: custom 'Inverse' function must return an output of the same size as input.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", @(x) [x, x]))
558s ***** error <glmfit: invalid custom 'Inverse' function.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', struct ("Link", @(x)x, "Derivative", "normcdf", "Inverse", "what"))
558s ***** error <glmfit: cell array with custom link functions must have three elements.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {'log'})
558s ***** error <glmfit: cell array with custom link functions must have three elements.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {'log', 'hijy'})
558s ***** error <glmfit: cell array with custom link functions must have three elements.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {1, 2, 3, 4})
558s ***** error <glmfit: bad 'Link' function in custom link function cell array.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {"log", "dfv", "dfgvd"})
558s ***** error <glmfit: custom 'Link' function must return an output of the same size as input.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) [x, x], "dfv", "dfgvd"})
558s ***** error <glmfit: invalid custom 'Link' function.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) what (x), "dfv", "dfgvd"})
558s ***** error <glmfit: bad 'Derivative' function in custom link function cell array.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) x, "dfv", "dfgvd"})
558s ***** error <glmfit: custom 'Derivative' function must return an output of the same size as input.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) x, @(x) [x, x], "dfgvd"})
558s ***** error <glmfit: invalid custom 'Derivative' function.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) x, @(x) what (x), "dfgvd"})
558s ***** error <glmfit: bad 'Inverse' function in custom link function cell array.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) x, @(x) x, "dfgvd"})
558s ***** error <glmfit: custom 'Inverse' function must return an output of the same size as input.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) x, @(x) x, @(x) [x, x]})
558s ***** error <glmfit: invalid custom 'Inverse' function.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', {@(x) x, @(x) x, @(x) what (x)})
558s ***** error <glmfit: numeric input for custom link function must be a finite real scalar value.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', NaN)
558s ***** error <glmfit: numeric input for custom link function must be a finite real scalar value.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', [1, 2])
558s ***** error <glmfit: numeric input for custom link function must be a finite real scalar value.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', [1i])
558s ***** error <glmfit: canonical link function name must be a character vector.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', ["log"; "log1"])
558s ***** error <glmfit: canonical link function 'somelinkfunction' is not supported.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', 'somelinkfunction')
558s ***** error <glmfit: invalid value for custom link function.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'link', true)
558s ***** error <glmfit: 'Options' must be a structure containing the fields 'MaxIter', and 'TolX'.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', true)
558s ***** error <glmfit: 'Options' must be a structure containing the fields 'MaxIter', and 'TolX'.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", 100))
558s ***** error <glmfit: 'MaxIter' in 'Options' structure must be a positive integer.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", 4.5, "TolX", 1e-6))
558s ***** error <glmfit: 'MaxIter' in 'Options' structure must be a positive integer.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", 0, "TolX", 1e-6))
558s ***** error <glmfit: 'MaxIter' in 'Options' structure must be a positive integer.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", -100, "TolX", 1e-6))
558s ***** error <glmfit: 'MaxIter' in 'Options' structure must be a positive integer.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", [50 ,50], "TolX", 1e-6))
558s ***** error <glmfit: 'TolX' in 'Options' structure must be a positive scalar.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", 100, "TolX", 0))
558s ***** error <glmfit: 'TolX' in 'Options' structure must be a positive scalar.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", 100, "TolX", -1e-6))
558s ***** error <glmfit: 'TolX' in 'Options' structure must be a positive scalar.> ...
558s  glmfit (rand(5,2), rand(5,1), 'poisson', 'options', struct ("MaxIter", 100, "TolX", [1e-6, 1e-6]))
558s ***** error <glmfit: 'Offset' must be a numeric vector of the same size as Y.> ...
558s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'offset', [1; 2; 3; 4])
558s ***** error <glmfit: 'Offset' must be a numeric vector of the same size as Y.> ...
558s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'offset', 'asdfg')
558s ***** error <glmfit: 'Weights' must be a numeric vector of the same size as Y.> ...
558s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'weights', [1; 2; 3; 4])
558s ***** error <glmfit: 'Weights' must be a numeric vector of the same size as Y.> ...
558s  glmfit (rand (5, 2), rand (5, 1), 'normal', 'weights', 'asdfg')
558s 70 tests, 70 passed, 0 known failure, 0 skipped
558s [inst/boxplot.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/boxplot.m
558s ***** demo
558s  axis ([0, 3]);
558s  randn ("seed", 1);    # for reproducibility
558s  girls = randn (10, 1) * 5 + 140;
558s  randn ("seed", 2);    # for reproducibility
558s  boys = randn (13, 1) * 8 + 135;
558s  boxplot ({girls, boys});
558s  set (gca (), "xtick", [1 2], "xticklabel", {"girls", "boys"})
558s  title ("Grade 3 heights");
558s ***** demo
558s  randn ("seed", 7);    # for reproducibility
558s  A = randn (10, 1) * 5 + 140;
558s  randn ("seed", 8);    # for reproducibility
558s  B = randn (25, 1) * 8 + 135;
558s  randn ("seed", 9);    # for reproducibility
558s  C = randn (20, 1) * 6 + 165;
558s  data = [A; B; C];
558s  groups = [(ones (10, 1)); (ones (25, 1) * 2); (ones (20, 1) * 3)];
558s  labels = {"Team A", "Team B", "Team C"};
558s  pos = [2, 1, 3];
558s  boxplot (data, groups, "Notch", "on", "Labels", labels, "Positions", pos, ...
558s           "OutlierTags", "on", "BoxStyle", "filled");
558s  title ("Example of Group splitting with paired vectors");
558s ***** demo
558s  randn ("seed", 1);    # for reproducibility
558s  data = randn (100, 9);
558s  boxplot (data, "notch", "on", "boxstyle", "filled", ...
558s           "colors", "ygcwkmb", "whisker", 1.2);
558s  title ("Example of different colors specified with characters");
558s ***** demo
558s  randn ("seed", 5);    # for reproducibility
558s  data = randn (100, 13);
558s  colors = [0.7 0.7 0.7; ...
558s            0.0 0.4 0.9; ...
558s            0.7 0.4 0.3; ...
558s            0.7 0.1 0.7; ...
558s            0.8 0.7 0.4; ...
558s            0.1 0.8 0.5; ...
558s            0.9 0.9 0.2];
558s  boxplot (data, "notch", "on", "boxstyle", "filled", ...
558s           "colors", colors, "whisker", 1.3, "boxwidth", "proportional");
558s  title ("Example of different colors specified as RGB values");
558s ***** error <numerical array or cell array containing> boxplot ("a")
558s ***** error <data cells must contain> boxplot ({[1 2 3], "a"})
558s ***** error <grouping vector may only be passed> boxplot ([1 2 3], 1, {2, 3})
558s ***** error <grouping vector must be numerical> boxplot ([1 2 3], {"a", "b"})
558s ***** error <'Notch' input argument accepts> boxplot ([1:10], "notch", "any")
558s ***** error <illegal Notch value> boxplot ([1:10], "notch", i)
558s ***** error <illegal Notch value> boxplot ([1:10], "notch", {})
558s ***** error <must be character> boxplot (1, "symbol", 1)
558s ***** error <'Orientation' input argument accepts only> boxplot (1, "orientation", "diagonal")
558s ***** error <illegal Orientation value> boxplot (1, "orientation", {})
558s ***** error <'Whisker' input argument accepts only> boxplot (1, "whisker", "a")
558s ***** error <'Whisker' input argument accepts only> boxplot (1, "whisker", [1 3])
558s ***** error <'OutlierTags' input argument accepts only> boxplot (3, "OutlierTags", "maybe")
558s ***** error <illegal OutlierTags value> boxplot (3, "OutlierTags", {})
558s ***** error <'Sample_IDs' input argument accepts only> boxplot (1, "sample_IDs", 1)
558s ***** error <'BoxWidth' input argument accepts only> boxplot (1, "boxwidth", 2)
558s ***** error <'BoxWidth' input argument accepts only> boxplot (1, "boxwidth", "anything")
558s ***** error <'Widths' input argument accepts only> boxplot (5, "widths", "a")
558s ***** error <'Widths' input argument accepts only> boxplot (5, "widths", [1:4])
558s ***** error <'Widths' input argument accepts only> boxplot (5, "widths", [])
558s ***** error <'CapWidths' input argument accepts only> boxplot (5, "capwidths", "a")
558s ***** error <'CapWidths' input argument accepts only> boxplot (5, "capwidths", [1:4])
558s ***** error <'CapWidths' input argument accepts only> boxplot (5, "capwidths", [])
558s ***** error <'BoxStyle' input argument accepts only> boxplot (1, "Boxstyle", 1)
558s ***** error <'BoxStyle' input argument accepts only> boxplot (1, "Boxstyle", "garbage")
558s ***** error <'Positions' input argument accepts only> boxplot (1, "positions", "aa")
558s ***** error <'Labels' input argument accepts only> boxplot (3, "labels", [1 5])
558s ***** error <'Colors' input argument accepts only> boxplot (1, "colors", {})
558s ***** error <'Colors' input argument accepts only> boxplot (2, "colors", [1 2 3 4])
558s ***** error <Sample_IDs must match the data> boxplot (randn (10, 3), 'Sample_IDs', {"a", "b"})
558s ***** error <with the formalism> boxplot (rand (3, 3), [1 2])
558s ***** test
558s  hf = figure ("visible", "off");
558s  unwind_protect
558s    [a, b] = boxplot (rand (10, 3));
558s    assert (size (a), [7, 3]);
558s    assert (numel (b.box), 3);
558s    assert (numel (b.whisker), 12);
558s    assert (numel (b.median), 3);
558s  unwind_protect_cleanup
558s    close (hf);
558s  end_unwind_protect
558s ***** test
558s  hf = figure ("visible", "off");
558s  unwind_protect
558s    [~, b] = boxplot (rand (10, 3), "BoxStyle", "filled", "colors", "ybc");
558s    assert (numel (b.box_fill), 3);
558s  unwind_protect_cleanup
558s    close (hf);
558s  end_unwind_protect
558s ***** test
558s  hf = figure ("visible", "off");
558s  unwind_protect
558s    hold on
558s    [a, b] = boxplot (rand (10, 3));
558s    assert (ishold, true);
558s  unwind_protect_cleanup
558s    close (hf);
558s  end_unwind_protect
558s 34 tests, 34 passed, 0 known failure, 0 skipped
558s [inst/friedman.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/friedman.m
558s ***** demo
558s  load popcorn;
558s  friedman (popcorn, 3);
558s ***** demo
558s  load popcorn;
558s  [p, atab] = friedman (popcorn, 3, "off");
558s  disp (p);
558s ***** test
558s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
558s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
558s  [p, atab] = friedman (popcorn, 3, "off");
558s  assert (p, 0.001028853354594794, 1e-14);
558s  assert (atab{2,2}, 99.75, 1e-14);
558s  assert (atab{2,3}, 2, 0);
558s  assert (atab{2,4}, 49.875, 1e-14);
558s  assert (atab{2,5}, 13.75862068965517, 1e-14);
558s  assert (atab{2,6}, 0.001028853354594794, 1e-14);
558s  assert (atab{3,2}, 0.08333333333333215, 1e-14);
558s  assert (atab{3,4}, 0.04166666666666607, 1e-14);
558s  assert (atab{4,3}, 12, 0);
558s ***** test
558s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
558s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
558s  [p, atab, stats] = friedman (popcorn, 3, "off");
558s  assert (atab{5,2}, 116, 0);
558s  assert (atab{5,3}, 17, 0);
558s  assert (stats.source, "friedman");
558s  assert (stats.n, 2);
558s  assert (stats.meanranks, [8, 4.75, 2.25], 0);
558s  assert (stats.sigma, 2.692582403567252, 1e-14);
558s 2 tests, 2 passed, 0 known failure, 0 skipped
558s [inst/randsample.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/randsample.m
558s ***** test
558s  n = 20;
558s  k = 5;
558s  x = randsample(n, k);
558s  assert (size(x), [1 k]);
558s  x = randsample(n, k, true);
558s  assert (size(x), [1 k]);
558s  x = randsample(n, k, false);
558s  assert (size(x), [1 k]);
558s  x = randsample(n, k, true, ones(n, 1));
558s  assert (size(x), [1 k]);
558s  x = randsample(1:n, k);
558s  assert (size(x), [1 k]);
558s  x = randsample(1:n, k, true);
558s  assert (size(x), [1 k]);
558s  x = randsample(1:n, k, false);
558s  assert (size(x), [1 k]);
558s  x = randsample(1:n, k, true, ones(n, 1));
558s  assert (size(x), [1 k]);
558s  x = randsample((1:n)', k);
558s  assert (size(x), [k 1]);
558s  x = randsample((1:n)', k, true);
558s  assert (size(x), [k 1]);
558s  x = randsample((1:n)', k, false);
558s  assert (size(x), [k 1]);
558s  x = randsample((1:n)', k, true, ones(n, 1));
558s  assert (size(x), [k 1]);
558s  n = 10;
558s  k = 100;
558s  x = randsample(n, k, true, 1:n);
558s  assert (size(x), [1 k]);
558s  x = randsample((1:n)', k, true);
558s  assert (size(x), [k 1]);
558s  x = randsample(k, k, false, 1:k);
558s  assert (size(x), [1 k]);
558s 1 test, 1 passed, 0 known failure, 0 skipped
558s [inst/runstest.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/runstest.m
558s ***** test
558s  ## NIST beam deflection data
558s  ## http://www.itl.nist.gov/div898/handbook/eda/section4/eda425.htm
558s  data = [-213, -564, -35, -15, 141, 115, -420, -360, 203, -338, -431, ...
558s           194, -220, -513, 154, -125, -559, 92, -21, -579, -52, 99, -543, ...
558s          -175, 162, -457, -346, 204, -300, -474, 164, -107, -572, -8, 83, ...
558s          -541, -224, 180, -420, -374, 201, -236, -531, 83, 27, -564, -112, ...
558s           131, -507, -254, 199, -311, -495, 143, -46, -579, -90, 136, ...
558s          -472, -338, 202, -287, -477, 169, -124, -568, 17, 48, -568, -135, ...
558s           162, -430, -422, 172, -74, -577, -13, 92, -534, -243, 194, -355, ...
558s          -465, 156, -81, -578, -64, 139, -449, -384, 193, -198, -538, 110, ...
558s           -44, -577, -6, 66, -552, -164, 161, -460, -344, 205, -281, -504, ...
558s           134, -28, -576, -118, 156, -437, -381, 200, -220, -540, 83, 11, ...
558s          -568, -160, 172, -414, -408, 188, -125, -572, -32, 139, -492, ...
558s          -321, 205, -262, -504, 142, -83, -574, 0, 48, -571, -106, 137, ...
558s          -501, -266, 190, -391, -406, 194, -186, -553, 83, -13, -577, -49, ...
558s           103, -515, -280, 201, 300, -506, 131, -45, -578, -80, 138, -462, ...
558s          -361, 201, -211, -554, 32, 74, -533, -235, 187, -372, -442, 182, ...
558s          -147, -566, 25, 68, -535, -244, 194, -351, -463, 174, -125, -570, ...
558s            15, 72, -550, -190, 172, -424, -385, 198, -218, -536, 96];
558s  [h, p, stats] = runstest (data, median (data));
558s  expected_h = 1;
558s  expected_p = 0.008562;
558s  expected_z = 2.6229;
558s  assert (h, expected_h);
558s  assert (p, expected_p, 1E-6);
558s  assert (stats.z, expected_z, 1E-4);
558s ***** shared x
558s  x = [45, -60, 1.225, 55.4, -9 27];
558s ***** test
558s  [h, p, stats] = runstest (x);
558s  assert (h, 0);
558s  assert (p, 0.6, 1e-14);
558s  assert (stats.nruns, 5);
558s  assert (stats.n1, 3);
558s  assert (stats.n0, 3);
558s  assert (stats.z, 0.456435464587638, 1e-14);
558s ***** test
558s  [h, p, stats] = runstest (x, [], "method", "approximate");
558s  assert (h, 0);
558s  assert (p, 0.6481, 1e-4);
558s  assert (stats.z, 0.456435464587638, 1e-14);
558s ***** test
558s  [h, p, stats] = runstest (x, [], "tail", "left");
558s  assert (h, 0);
558s  assert (p, 0.9, 1e-14);
558s  assert (stats.z, 1.369306393762915, 1e-14);
558s ***** error<runstest: X must be a vector a scalar values.> runstest (ones (2,20))
558s ***** error<runstest: X must be a vector a scalar values.> runstest (["asdasda"])
558s ***** error<runstest: V must be either a scalar number or> ...
558s  runstest ([2 3 4 3 2 3 4], "updown")
558s ***** error<runstest: invalid value for alpha.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "alpha", 0)
558s ***** error<runstest: invalid value for alpha.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "alpha", [0.02 0.2])
558s ***** error<runstest: invalid value for alpha.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "alpha", 1.2)
558s ***** error<runstest: invalid value for alpha.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "alpha", -0.05)
558s ***** error<runstest: invalid value for method.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "method", "some")
558s ***** error<runstest: invalid value for tail.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "tail", "some")
558s ***** error<runstest: invalid optional argument.> ...
558s  runstest ([2 3 4 3 2 3 4], [], "option", "some")
558s 14 tests, 14 passed, 0 known failure, 0 skipped
558s [inst/clusterdata.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/clusterdata.m
558s ***** demo
558s  randn ("seed", 1)  # for reproducibility
558s  r1 = randn (10, 2) * 0.25 + 1;
558s  randn ("seed", 5)  # for reproducibility
558s  r2 = randn (20, 2) * 0.5 - 1;
558s  X = [r1; r2];
558s 
558s  wnl = warning ("off", "Octave:linkage_savemem", "local");
558s  T = clusterdata (X, "linkage", "ward", "MaxClust", 2);
558s  scatter (X(:,1), X(:,2), 36, T, "filled");
558s ***** error<clusterdata: function called with too few input arguments.> ...
558s  clusterdata ()
558s ***** error<clusterdata: function called with too few input arguments.> ...
558s  clusterdata (1)
558s ***** error <unknown property .*> clusterdata ([1 1], "Bogus", 1)
558s ***** error <specify .* 'MaxClust' or 'Cutoff' .*> clusterdata ([1 1], "Depth", 1)
558s 4 tests, 4 passed, 0 known failure, 0 skipped
558s [inst/Clustering/ClusterCriterion.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Clustering/ClusterCriterion.m
558s ***** error <ClusterCriterion: 'x' must be a numeric matrix> ...
558s  ClusterCriterion ("1", "kmeans", [1:6])
558s ***** error <ClusterCriterion: unknown clustering algorithm 'k'> ...
558s  ClusterCriterion ([1, 2, 1, 3, 2, 4, 3], "k", [1:6])
558s ***** error <ClusterCriterion: invalid matrix of clustering solutions> ...
558s  ClusterCriterion ([1, 2, 1; 3, 2, 4], 1, [1:6])
558s ***** error <ClusterCriterion: invalid argument> ...
558s  ClusterCriterion ([1, 2, 1; 3, 2, 4], ones (2, 2, 2), [1:6])
558s 4 tests, 4 passed, 0 known failure, 0 skipped
558s [inst/Clustering/GapEvaluation.m]
558s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Clustering/GapEvaluation.m
558s ***** test
558s  load fisheriris
558s  eva = evalclusters (meas([1:50],:), "kmeans", "gap", "KList", [1:3], ...
558s                      "referencedistribution", "uniform");
558s  assert (class (eva), "GapEvaluation");
562s 1 test, 1 passed, 0 known failure, 0 skipped
562s [inst/Clustering/SilhouetteEvaluation.m]
562s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Clustering/SilhouetteEvaluation.m
562s ***** test
562s  load fisheriris
562s  eva = evalclusters (meas, "kmeans", "silhouette", "KList", [1:6]);
562s  assert (class (eva), "SilhouetteEvaluation");
562s 1 test, 1 passed, 0 known failure, 0 skipped
562s [inst/Clustering/DaviesBouldinEvaluation.m]
562s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Clustering/DaviesBouldinEvaluation.m
562s ***** test
562s  load fisheriris
562s  eva = evalclusters (meas, "kmeans", "DaviesBouldin", "KList", [1:6]);
562s  assert (class (eva), "DaviesBouldinEvaluation");
563s 1 test, 1 passed, 0 known failure, 0 skipped
563s [inst/Clustering/CalinskiHarabaszEvaluation.m]
563s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Clustering/CalinskiHarabaszEvaluation.m
563s ***** test
563s  load fisheriris
563s  eva = evalclusters (meas, "kmeans", "calinskiharabasz", "KList", [1:6]);
563s  assert (class (eva), "CalinskiHarabaszEvaluation");
563s 1 test, 1 passed, 0 known failure, 0 skipped
563s [inst/stepwisefit.m]
563s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/stepwisefit.m
563s ***** test
563s  % Sample data from Draper and Smith (n = 13, k = 4)
563s  X = [7 1 11 11 7 11 3 1 2 21 1 11 10; ...
563s      26 29 56 31 52 55 71 31 54 47 40 66 68; ...
563s      6 15 8 8 6 9 17 22 18 4 23 9 8; ...
563s      60 52 20 47 33 22 6 44 22 26 34 12 12]';
563s  y = [78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';
563s  [X_use, b, bint, r, rint, stats] = stepwisefit(y, X);
563s  assert(X_use, [4 1])
563s  assert(b, regress(y, [ones(size(y)) X(:, X_use)], 0.05))
563s  [X_use, b, bint, r, rint, stats] = stepwisefit(y, X, 0.05, 0.1, "corr");
563s  assert(X_use, [4 1])
563s  assert(b, regress(y, [ones(size(y)) X(:, X_use)], 0.05))
563s  [X_use, b, bint, r, rint, stats] = stepwisefit(y, X, [], [], "p");
563s  assert(X_use, [4 1])
563s  assert(b, regress(y, [ones(size(y)) X(:, X_use)], 0.05))
564s 1 test, 1 passed, 0 known failure, 0 skipped
564s [inst/ttest.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ttest.m
564s ***** test
564s  x = 8:0.1:12;
564s  [h, pval, ci] = ttest (x, 10);
564s  assert (h, 0)
564s  assert (pval, 1, 10*eps)
564s  assert (ci, [9.6219 10.3781], 1E-5)
564s  [h, pval, ci0] = ttest (x, 0);
564s  assert (h, 1)
564s  assert (pval, 0)
564s  assert (ci0, ci, 2e-15)
564s  [h, pval, ci] = ttest (x, 10, "tail", "right", "dim", 2, "alpha", 0.05);
564s  assert (h, 0)
564s  assert (pval, 0.5, 10*eps)
564s  assert (ci, [9.68498 Inf], 1E-5)
564s ***** error ttest ([8:0.1:12], 10, "tail", "invalid");
564s ***** error ttest ([8:0.1:12], 10, "tail", 25);
564s 3 tests, 3 passed, 0 known failure, 0 skipped
564s [inst/mcnemar_test.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/mcnemar_test.m
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([101,121;59,33]);
564s  assert (h, 1);
564s  assert (pval, 3.8151e-06, 1e-10);
564s  assert (chisq, 21.356, 1e-3);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80]);
564s  assert (h, 1);
564s  assert (pval, 0.034690, 1e-6);
564s  assert (isempty (chisq), true);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80], 0.01);
564s  assert (h, 0);
564s  assert (pval, 0.034690, 1e-6);
564s  assert (isempty (chisq), true);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80], "mid-p");
564s  assert (h, 1);
564s  assert (pval, 0.034690, 1e-6);
564s  assert (isempty (chisq), true);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80], "asymptotic");
564s  assert (h, 1);
564s  assert (pval, 0.033006, 1e-6);
564s  assert (chisq, 4.5455, 1e-4);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80], "exact");
564s  assert (h, 0);
564s  assert (pval, 0.052479, 1e-6);
564s  assert (isempty (chisq), true);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80], "corrected");
564s  assert (h, 0);
564s  assert (pval, 0.055009, 1e-6);
564s  assert (chisq, 3.6818, 1e-4);
564s ***** test
564s  [h, pval, chisq] = mcnemar_test ([59,6;16,80], 0.1, "corrected");
564s  assert (h, 1);
564s  assert (pval, 0.055009, 1e-6);
564s  assert (chisq, 3.6818, 1e-4);
564s ***** error<mcnemar_test: too many input arguments.> mcnemar_test (59, 6, 16, 80)
564s ***** error<mcnemar_test: X must be a 2x2 matrix.> mcnemar_test (ones (3, 3))
564s ***** error<mcnemar_test: all entries of X must be non-negative integers.> ...
564s  mcnemar_test ([59,6;16,-80])
564s ***** error<mcnemar_test: all entries of X must be non-negative integers.> ...
564s  mcnemar_test ([59,6;16,4.5])
564s ***** error<mcnemar_test: invalid 2nd input argument.> ...
564s  mcnemar_test ([59,6;16,80], {""})
564s ***** error<mcnemar_test: invalid value for ALPHA.> ...
564s  mcnemar_test ([59,6;16,80], -0.2)
564s ***** error<mcnemar_test: invalid value for ALPHA.> ...
564s  mcnemar_test ([59,6;16,80], [0.05, 0.1])
564s ***** error<mcnemar_test: invalid value for ALPHA.> ...
564s  mcnemar_test ([59,6;16,80], 1)
564s ***** error<mcnemar_test: invalid value for TESTTYPE.> ...
564s  mcnemar_test ([59,6;16,80], "")
564s 17 tests, 17 passed, 0 known failure, 0 skipped
564s [inst/hmmviterbi.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/hmmviterbi.m
564s ***** test
564s  sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 3, ...
564s              3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3];
564s  transprob = [0.8, 0.2; 0.4, 0.6];
564s  outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
564s  vpath = hmmviterbi (sequence, transprob, outprob);
564s  expected = [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, ...
564s              1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1];
564s  assert (vpath, expected);
564s ***** test
564s  sequence = {"A", "B", "A", "A", "A", "B", "B", "A", "B", "C", "C", "C", ...
564s              "C", "B", "C", "A", "A", "A", "A", "C", "C", "B", "C", "A", "C"};
564s  transprob = [0.8, 0.2; 0.4, 0.6];
564s  outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
564s  symbols = {"A", "B", "C"};
564s  statenames = {"One", "Two"};
564s  vpath = hmmviterbi (sequence, transprob, outprob, "symbols", symbols, ...
564s                                                    "statenames", statenames);
564s  expected = {"One", "One", "Two", "Two", "Two", "One", "One", "One", ...
564s              "One", "One", "One", "One", "One", "One", "One", "Two", ...
564s              "Two", "Two", "Two", "One", "One", "One", "One", "One", "One"};
564s  assert (vpath, expected);
564s 2 tests, 2 passed, 0 known failure, 0 skipped
564s [inst/sigma_pts.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/sigma_pts.m
564s ***** demo
564s  K      = [1 0.5; 0.5 1]; # covaraince matrix
564s  # calculate and build associated ellipse
564s  [R,S,~] = svd (K);
564s  theta   = atan2 (R(2,1), R(1,1));
564s  v       = sqrt (diag (S));
564s  v       = v .* [cos(theta) sin(theta); -sin(theta) cos(theta)];
564s  t       = linspace (0, 2*pi, 100).';
564s  xe      = v(1,1) * cos (t) + v(2,1) * sin (t);
564s  ye      = v(1,2) * cos (t) + v(2,2) * sin (t);
564s 
564s  figure(1); clf; hold on
564s  # Plot ellipse and axes
564s  line ([0 0; v(:,1).'],[0 0; v(:,2).'])
564s  plot (xe,ye,'-r');
564s 
564s  col = 'rgb';
564s  l     = [-1.8 -1 1.5];
564s  for li = 1:3
564s   p     = sigma_pts (2, [], K, l(li));
564s   tmp   = plot (p(2:end,1), p(2:end,2), ['x' col(li)], ...
564s                p(1,1), p(1,2), ['o' col(li)]);
564s   h(li) = tmp(1);
564s  endfor
564s  hold off
564s  axis image
564s  legend (h, arrayfun (@(x) sprintf ("l:%.2g", x), l, "unif", 0));
564s ***** test
564s  p = sigma_pts (5);
564s  assert (mean (p), zeros(1,5), sqrt(eps));
564s  assert (cov (p), eye(5), sqrt(eps));
564s ***** test
564s  m = randn(1, 5);
564s  p = sigma_pts (5, m);
564s  assert (mean (p), m, sqrt(eps));
564s  assert (cov (p), eye(5), sqrt(eps));
564s ***** test
564s  x = linspace (0,1,5);
564s  K = exp (- (x.' - x).^2/ 0.5);
564s  p = sigma_pts (5, [], K);
564s  assert (mean (p), zeros(1,5), sqrt(eps));
564s  assert (cov (p), K, sqrt(eps));
564s ***** error sigma_pts(2,1);
564s ***** error sigma_pts(2,[],1);
564s ***** error sigma_pts(2,1,1);
564s ***** error sigma_pts(2,[0.5 0.5],[-1 0; 0 0]);
564s 7 tests, 7 passed, 0 known failure, 0 skipped
564s [inst/ztest2.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ztest2.m
564s ***** error ztest2 ();
564s ***** error ztest2 (1);
564s ***** error ztest2 (1, 2);
564s ***** error ztest2 (1, 2, 3);
564s ***** error<ztest2: optional arguments must be in NAME-VALUE pairs.> ...
564s  ztest2 (1, 2, 3, 4, "alpha")
564s ***** error<ztest2: invalid VALUE for alpha.> ...
564s  ztest2 (1, 2, 3, 4, "alpha", 0);
564s ***** error<ztest2: invalid VALUE for alpha.> ...
564s  ztest2 (1, 2, 3, 4, "alpha", 1.2);
564s ***** error<ztest2: invalid VALUE for alpha.> ...
564s  ztest2 (1, 2, 3, 4, "alpha", "val");
564s ***** error<ztest2: invalid VALUE for tail.>  ...
564s  ztest2 (1, 2, 3, 4, "tail", "val");
564s ***** error<ztest2: invalid VALUE for tail.>  ...
564s  ztest2 (1, 2, 3, 4, "alpha", 0.01, "tail", "val");
564s ***** error<ztest2: invalid NAME for optional arguments.> ...
564s  ztest2 (1, 2, 3, 4, "alpha", 0.01, "tail", "both", "badoption", 3);
564s 11 tests, 11 passed, 0 known failure, 0 skipped
564s [inst/nansum.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/nansum.m
564s ***** assert (nansum ([2 4 NaN 7]), 13)
564s ***** assert (nansum ([2 4 NaN Inf]), Inf)
564s ***** assert (nansum ([1 NaN 3; NaN 5 6; 7 8 NaN]), [8 13 9])
564s ***** assert (nansum ([1 NaN 3; NaN 5 6; 7 8 NaN], 2), [4; 11; 15])
564s ***** assert (nansum (single ([1 NaN 3; NaN 5 6; 7 8 NaN])), single ([8 13 9]))
564s ***** assert (nansum (single ([1 NaN 3; NaN 5 6; 7 8 NaN]), "double"), [8 13 9])
564s ***** assert (nansum (uint8 ([2 4 1 7])), 14)
564s ***** assert (nansum (uint8 ([2 4 1 7]), "native"), uint8 (14))
564s ***** assert (nansum (uint8 ([2 4 1 7])), 14)
564s 9 tests, 9 passed, 0 known failure, 0 skipped
564s [inst/kstest.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/kstest.m
564s ***** demo
564s  ## Use the stock return data set to test the null hypothesis that the data
564s  ## come from a standard normal distribution against the alternative
564s  ## hypothesis that the population CDF of the data is larger that the
564s  ## standard normal CDF.
564s 
564s  load stockreturns;
564s  x = stocks(:,2);
564s  [h, p, k, c] = kstest (x, "Tail", "larger")
564s 
564s  ## Compute the empirical CDF and plot against the standard normal CDF
564s  [f, x_values] = ecdf (x);
564s  h1 = plot (x_values, f);
564s  hold on;
564s  h2 = plot (x_values, normcdf (x_values), 'r--');
564s  set (h1, "LineWidth", 2);
564s  set (h2, "LineWidth", 2);
564s  legend ([h1, h2], "Empirical CDF", "Standard Normal CDF", ...
564s          "Location", "southeast");
564s  title ("Empirical CDF of stock return data against standard normal CDF")
564s ***** error<kstest: too few inputs.> kstest ()
564s ***** error<kstest: X must be a vector of real numbers.> kstest (ones (2, 4))
564s ***** error<kstest: X must be a vector of real numbers.> kstest ([2, 3, 5, 3+3i])
564s ***** error<kstest: unknown option 'opt'.> kstest ([2, 3, 4, 5, 6], "opt", 0.51)
564s ***** error<kstest: optional parameters must be in name/value pairs.> ...
564s  kstest ([2, 3, 4, 5, 6], "tail")
564s ***** error<kstest: alpha must be a numeric scalar in the range> ...
564s  kstest ([2,3,4,5,6],"alpha", [0.05, 0.05])
564s ***** error<kstest: alpha must be a numeric scalar in the range> ...
564s  kstest ([2, 3, 4, 5, 6], "alpha", NaN)
564s ***** error<kstest: tail argument must be a string.> ...
564s  kstest ([2, 3, 4, 5, 6], "tail", 0)
564s ***** error<kstest: tail value must be either 'both', right' or 'left'.> ...
564s  kstest ([2,3,4,5,6], "tail", "whatever")
564s ***** error<kstest: invalid function handle.> ...
564s  kstest ([1, 2, 3, 4, 5], "CDF", @(x) repmat (x, 2, 3))
564s ***** error<kstest: 'somedist' is not a supported distribution.> ...
564s  kstest ([1, 2, 3, 4, 5], "CDF", "somedist")
564s ***** error<kstest: 'CDF' must be a probability distribution object.> ...
564s  kstest ([1, 2, 3, 4, 5], "CDF", cvpartition (5))
564s ***** error<kstest: numerical CDF should have only 2 columns.> ...
564s  kstest ([2, 3, 4, 5, 6], "alpha", 0.05, "CDF", [2, 3, 4; 1, 3, 4; 1, 2, 1])
564s ***** error<kstest: numerical CDF should have at least one row.> ...
564s  kstest ([2, 3, 4, 5, 6], "alpha", 0.05, "CDF", nan (5, 2))
564s ***** error<kstest: non-incrementing numerical CDF.> ...
564s  kstest ([2, 3, 4, 5, 6], "CDF", [2, 3; 1, 4; 3, 2])
564s ***** error<kstest: wrong duplicates in numerical CDF.> ...
564s  kstest ([2, 3, 4, 5, 6], "CDF", [2, 3; 2, 4; 3, 5])
564s ***** error<kstest: invalid value parsed as CDF optinonal argument.> ...
564s  kstest ([2, 3, 4, 5, 6], "CDF", {1, 2, 3, 4, 5})
564s ***** test
564s  load examgrades
564s  [h, p] = kstest (grades(:,1));
564s  assert (h, true);
564s  assert (p, 7.58603305206105e-107, 1e-14);
564s ***** test
564s  load examgrades
564s  [h, p] = kstest (grades(:,1), "CDF", @(x) normcdf(x, 75, 10));
564s  assert (h, false);
564s  assert (p, 0.5612, 1e-4);
564s ***** test
564s  load examgrades
564s  x = grades(:,1);
564s  test_cdf = makedist ("tlocationscale", "mu", 75, "sigma", 10, "nu", 1);
564s  [h, p] = kstest (x, "alpha", 0.01, "CDF", test_cdf);
564s  assert (h, true);
564s  assert (p, 0.0021, 1e-4);
564s ***** test
564s  load stockreturns
564s  x = stocks(:,3);
564s  [h,p,k,c] = kstest (x, "Tail", "larger");
564s  assert (h, true);
564s  assert (p, 5.085438806199252e-05, 1e-14);
564s  assert (k, 0.2197, 1e-4);
564s  assert (c, 0.1207, 1e-4);
564s 21 tests, 21 passed, 0 known failure, 0 skipped
564s [inst/histfit.m]
564s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/histfit.m
564s ***** demo
564s  histfit (randn (100, 1))
564s ***** demo
564s  histfit (poissrnd (2, 1000, 1), 10, "Poisson")
564s ***** demo
564s  histfit (betarnd (3, 10, 1000, 1), 10, "beta")
564s ***** test
564s  hf = figure ("visible", "off");
564s  unwind_protect
564s    x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4, 7, 5, 9, 8, 10, 4, 11];
564s    histfit (x);
564s  unwind_protect_cleanup
564s    close (hf);
564s  end_unwind_protect
564s ***** test
564s  hf = figure ("visible", "off");
564s  unwind_protect
564s    x = [2, 4, 3, 2, NaN, 3, 2, 5, 6, 4, 7, 5, 9, 8, 10, 4, 11];
564s    histfit (x);
564s  unwind_protect_cleanup
564s    close (hf);
564s  end_unwind_protect
564s ***** test
564s  hf = figure ("visible", "off");
564s  unwind_protect
564s    x = [2, 4, 3, 2, NaN, 3, 2, 5, 6, 4, 7, 5, 9, 8, 10, 4, 11];
564s    histfit (x, 3);
564s  unwind_protect_cleanup
564s    close (hf);
564s  end_unwind_protect
564s ***** test
564s  hf = figure ("visible", "off");
564s  unwind_protect
564s    histfit (randn (100, 1));
564s  unwind_protect_cleanup
564s    close (hf);
564s  end_unwind_protect
565s ***** test
565s  hf = figure ("visible", "off");
565s  unwind_protect
565s    histfit (poissrnd (2, 1000, 1), 10, "Poisson");
565s  unwind_protect_cleanup
565s    close (hf);
565s  end_unwind_protect
565s ***** test
565s  hf = figure ("visible", "off");
565s  unwind_protect
565s    histfit (betarnd (3, 10, 1000, 1), 10, "beta");
565s  unwind_protect_cleanup
565s    close (hf);
565s  end_unwind_protect
565s ***** test
565s  hf = figure ("visible", "off");
565s  unwind_protect
565s    ax = gca ();
565s    histfit (ax, randn (100, 1));
565s  unwind_protect_cleanup
565s    close (hf);
565s  end_unwind_protect
565s ***** test
565s  hf = figure ("visible", "off");
565s  unwind_protect
565s    ax = gca ();
565s    histfit (ax, poissrnd (2, 1000, 1), 10, "Poisson");
565s  unwind_protect_cleanup
565s    close (hf);
565s  end_unwind_protect
565s ***** test
565s  hf = figure ("visible", "off");
565s  unwind_protect
565s    ax = gca ();
565s    histfit (ax, betarnd (3, 10, 1000, 1), 10, "beta");
565s  unwind_protect_cleanup
565s    close (hf);
565s  end_unwind_protect
565s ***** test
565s  hf = figure ("visible", "off");
565s  unwind_protect
565s    ax = axes ("parent", hf);
565s    fail ("histfit (ax)", "histfit: too few input arguments.");
565s  unwind_protect_cleanup
565s    close (hf);
565s  end_unwind_protect
565s ***** error<histfit: X must be a numeric vector of real numbers.> ...
565s  histfit ('wer')
565s ***** error<histfit: no data in X.> histfit ([NaN, NaN, NaN]);
565s ***** error<histfit: NBINS must be a real scalar integer value.> ...
565s  histfit (randn (100, 1), 5.6)
565s ***** error<histfit: DISTNAME must be a character vector.> ...
565s  histfit (randn (100, 1), 8, 5)
565s ***** error<histfit: DISTNAME must be a character vector.> ...
565s  histfit (randn (100, 1), 8, {'normal'})
565s ***** error<histfit: 'Kernel' distribution is not supported yet.> ...
565s  histfit (randn (100, 1), 8, 'Kernel')
565s ***** error<histfit: unrecognized distribution name.> ...
565s  histfit (randn (100, 1), 8, 'ASDASDASD')
565s 17 tests, 17 passed, 0 known failure, 0 skipped
565s [inst/grpstats.m]
565s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/grpstats.m
565s ***** demo
565s  load carsmall;
565s  [m,p,g] = grpstats (Weight, Model_Year, {"mean", "predci", "gname"})
565s  n = length(m);
565s  errorbar((1:n)',m,p(:,2)-m);
565s  set (gca, "xtick", 1:n, "xticklabel", g);
565s  title ("95% prediction intervals for mean weight by year");
565s ***** demo
565s  load carsmall;
565s  [m,p,g] = grpstats ([Acceleration,Weight/1000],Cylinders, ...
565s                      {"mean", "meanci", "gname"}, 0.05)
565s  [c,r] = size (m);
565s  errorbar((1:c)'.*ones(c,r),m,p(:,[(1:r)])-m);
565s  set (gca, "xtick", 1:c, "xticklabel", g);
565s  title ("95% prediction intervals for mean weight by year");
565s ***** test
565s  load carsmall
565s  means = grpstats (Acceleration, Origin);
565s  assert (means, [14.4377; 18.0500; 15.8867; 16.3778; 16.6000; 15.5000], 0.001);
565s ***** test
565s  load carsmall
565s  [grpMin,grpMax,grp] = grpstats (Acceleration, Origin, {"min","max","gname"});
565s  assert (grpMin, [8.0; 15.3; 13.9; 12.2; 15.7; 15.5]);
565s  assert (grpMax, [22.2; 21.9; 18.2; 24.6; 17.5; 15.5]);
565s ***** test
565s  load carsmall
565s  [grpMin,grpMax,grp] = grpstats (Acceleration, Origin, {"min","max","gname"});
565s  assert (grp', {"USA", "France", "Japan", "Germany", "Sweden", "Italy"});
565s ***** test
565s  load carsmall
565s  [m,p,g] = grpstats ([Acceleration,Weight/1000], Cylinders, ...
565s                      {"mean", "meanci", "gname"}, 0.05);
565s  assert (p(:,1), [11.17621760075134, 16.13845847655224, 16.16222663683362]', ...
565s                  [1e-14, 2e-14, 1e-14]');
565s 4 tests, 4 passed, 0 known failure, 0 skipped
565s [inst/normalise_distribution.m]
565s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/normalise_distribution.m
565s ***** test
565s  v = normalise_distribution ([1 2 3], [], 1);
565s  assert (v, [0 0 0])
565s ***** test
565s  v = normalise_distribution ([1 2 3], [], 2);
565s  assert (v, norminv ([1 3 5] / 6), 3 * eps)
565s ***** test
565s  v = normalise_distribution ([1 2 3]', [], 2);
565s  assert (v, [0 0 0]')
565s ***** test
565s  v = normalise_distribution ([1 2 3]', [], 1);
565s  assert (v, norminv ([1 3 5]' / 6), 3 * eps)
565s ***** test
565s  v = normalise_distribution ([1 1 2 2 3 3], [], 2);
565s  assert (v, norminv ([3 3 7 7 11 11] / 12), 3 * eps)
565s ***** test
565s  v = normalise_distribution ([1 1 2 2 3 3]', [], 1);
565s  assert (v, norminv ([3 3 7 7 11 11]' / 12), 3 * eps)
565s ***** test
565s  A = randn ( 10 );
565s  N = normalise_distribution (A, @normcdf);
565s  assert (A, N, 10000 * eps)
565s ***** test
565s  A = exprnd (1, 100);
565s  N = normalise_distribution (A, @(x)(expcdf (x, 1)));
565s  assert (mean (vec (N)), 0, 0.1)
565s  assert (std (vec (N)), 1, 0.1)
565s ***** test
565s  A = rand (1000,1);
565s  N = normalise_distribution (A, {@(x)(unifcdf (x, 0, 1))});
565s  assert (mean (vec (N)), 0, 0.2)
565s  assert (std (vec (N)), 1, 0.1)
565s ***** test
565s  A = [rand(1000,1), randn(1000, 1)];
565s  N = normalise_distribution (A, {@(x)(unifcdf (x, 0, 1)), @normcdf});
565s  assert (mean (N), [0, 0], 0.2)
565s  assert (std (N), [1, 1], 0.1)
565s ***** test
565s  A = [rand(1000,1), randn(1000, 1), exprnd(1, 1000, 1)]';
565s  N = normalise_distribution  (A, {@(x)(unifcdf (x, 0, 1)); @normcdf; @(x)(expcdf (x, 1))}, 2);
565s  assert (mean (N, 2), [0, 0, 0]', 0.2);
565s  assert (std (N, [], 2), [1, 1, 1]', 0.1);
565s ***** xtest
565s  A = exprnd (1, 1000, 9); A (300:500, 4:6) = 17;
565s  N = normalise_distribution (A);
565s  assert (mean (N), [0 0 0 0.38 0.38 0.38 0 0 0], 0.1);
565s  assert (var (N), [1 1 1 2.59 2.59 2.59 1 1 1], 0.1);
565s ***** test
565s ***** error normalise_distribution (zeros (3, 4), ...
565s  {@(x)(unifcdf (x, 0, 1)); @normcdf; @(x)(expcdf (x,1))});
565s 14 tests, 14 passed, 0 known failure, 0 skipped
565s [inst/cophenet.m]
565s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cophenet.m
565s ***** demo
565s  randn ("seed", 5)  # for reproducibility
565s  X = randn (10,2);
565s  y = pdist (X);
565s  Z = linkage (y, "average");
565s  cophenet (Z, y)
565s ***** error<cophenet: function called with too few input arguments.> cophenet ()
565s ***** error<cophenet: function called with too few input arguments.> cophenet (1)
565s ***** error<cophenet: Z must be a matrix as generated by the linkage function.> ...
565s  cophenet (ones (2,2), 1)
565s ***** error<cophenet: Y must be a vector of euclidean distances.> ...
565s  cophenet ([1 2 1], "a")
565s ***** error<cophenet: Y must be a vector of euclidean distances.> ...
565s  cophenet ([1 2 1], [1 2])
565s 5 tests, 5 passed, 0 known failure, 0 skipped
565s [inst/logit.m]
565s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/logit.m
565s ***** test
565s  p = [0.01:0.01:0.99];
565s  assert (logit (p), log (p ./ (1-p)), 25*eps);
565s ***** assert (logit ([-1, 0, 0.5, 1, 2]), [NaN, -Inf, 0, +Inf, NaN])
565s ***** error logit ()
566s ***** error logit (1, 2)
566s 4 tests, 4 passed, 0 known failure, 0 skipped
566s [inst/fitcsvm.m]
566s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitcsvm.m
566s ***** demo
566s  ## Use a subset of Fisher's iris data set
566s 
566s  load fisheriris
566s  inds = ! strcmp (species, 'setosa');
566s  X = meas(inds, [3,4]);
566s  Y = species(inds);
566s 
566s  ## Train a linear SVM classifier
566s  SVMModel = fitcsvm (X, Y)
566s 
566s  ## Plot a scatter diagram of the data and circle the support vectors.
566s  sv = SVMModel.SupportVectors;
566s  figure
566s  gscatter (X(:,1), X(:,2), Y)
566s  hold on
566s  plot (sv(:,1), sv(:,2), 'ko', 'MarkerSize', 10)
566s  legend ('versicolor', 'virginica', 'Support Vector')
566s  hold off
566s ***** test
566s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
566s  y = {"a"; "a"; "b"; "b"};
566s  a = fitcsvm (x, y);
566s  assert (class (a), "ClassificationSVM");
566s  assert ({a.X, a.Y}, {x, y})
566s  assert (a.NumObservations, 4)
566s  assert ({a.ResponseName, a.PredictorNames}, {"Y", {"x1", "x2", "x3"}})
566s  assert (a.ModelParameters.SVMtype, "c_svc")
566s  assert (a.ClassNames, {"a"; "b"})
566s ***** test
566s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
566s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
566s  a = fitcsvm (x, y);
566s  assert (class (a), "ClassificationSVM");
566s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "linear"})
566s  assert (a.ModelParameters.BoxConstraint, 1)
566s  assert (a.ModelParameters.KernelOffset, 0)
566s  assert (a.ClassNames, [1; -1])
566s ***** test
566s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
566s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
566s  a = fitcsvm (x, y, "KernelFunction", "rbf", "BoxConstraint", 2, ...
566s  "KernelOffset", 2);
566s  assert (class (a), "ClassificationSVM");
566s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "rbf"})
566s  assert (a.ModelParameters.BoxConstraint, 2)
566s  assert (a.ModelParameters.KernelOffset, 2)
566s  assert (isempty (a.Alpha), true)
566s  assert (isempty (a.Beta), false)
566s ***** test
566s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
566s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
566s  a = fitcsvm (x, y, "KernelFunction", "polynomial", "PolynomialOrder", 3);
566s  assert (class (a), "ClassificationSVM");
566s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "polynomial"})
566s  assert (a.ModelParameters.PolynomialOrder, 3)
566s  assert (isempty (a.Alpha), true)
566s  assert (isempty (a.Beta), false)
566s ***** test
566s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
566s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
566s  a = fitcsvm (x, y, "KernelFunction", "linear", "PolynomialOrder", 3);
566s  assert (class (a), "ClassificationSVM");
566s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "linear"})
566s  assert (a.ModelParameters.PolynomialOrder, 3)
566s  assert (isempty (a.Alpha), false)
566s  assert (isempty (a.Beta), true)
566s ***** test
566s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
566s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
566s  a = fitcsvm (x, y, "KernelFunction", "linear", "CrossVal", 'on');
566s  assert (class (a), "ClassificationPartitionedModel");
566s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "linear"})
566s  assert (a.ModelParameters.PolynomialOrder, 3)
566s  assert (isempty (a.Trained{1}.Alpha), false)
566s  assert (isempty (a.Trained{1}.Beta), true)
566s ***** error<fitcsvm: too few arguments.> fitcsvm ()
566s ***** error<fitcsvm: too few arguments.> fitcsvm (ones (4,1))
566s ***** error<fitcsvm: Name-Value arguments must be in pairs.>
566s  fitcsvm (ones (4,2), ones (4, 1), 'KFold')
566s ***** error<fitcsvm: number of rows in X and Y must be equal.>
566s  fitcsvm (ones (4,2), ones (3, 1))
566s ***** error<fitcsvm: number of rows in X and Y must be equal.>
566s  fitcsvm (ones (4,2), ones (3, 1), 'KFold', 2)
566s ***** error <fitcsvm: 'CrossVal' must be either 'off' or 'on'.>
566s  fitcsvm (ones (4,2), ones (4, 1), "CrossVal", 2)
566s ***** error <fitcsvm: 'CrossVal' must be either 'off' or 'on'.>
566s  fitcsvm (ones (4,2), ones (4, 1), "CrossVal", 'a')
566s ***** error <fitcsvm: You can use only one cross-validation name-value pair argument> ...
566s  fitcsvm (ones (4,2), ones (4, 1), "KFold", 10, "Holdout", 0.3)
566s 14 tests, 14 passed, 0 known failure, 0 skipped
566s [inst/pca.m]
566s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/pca.m
566s ***** shared COEFF,SCORE,latent,tsquare,m,x,R,V,lambda,i,S,F
566s ***** test
566s  x=[7 4 3
566s     4 1 8
566s     6 3 5
566s     8 6 1
566s     8 5 7
566s     7 2 9
566s     5 3 3
566s     9 5 8
566s     7 4 5
566s     8 2 2];
566s  R = corrcoef (x);
566s  [V, lambda] = eig (R);
566s  [~, i] = sort(diag(lambda), "descend"); #arrange largest PC first
566s  S = V(:, i) * diag(sqrt(diag(lambda)(i)));
566s ***** assert(diag(S(:, 1:2)*S(:, 1:2)'), [0.8662; 0.8420; 0.9876], 1E-4); #contribution of first 2 PCs to each original variable
566s  B = V(:, i) * diag( 1./ sqrt(diag(lambda)(i)));
566s  F = zscore(x)*B;
566s  [COEFF,SCORE,latent,tsquare] = pca(zscore(x, 1));
566s ***** assert(tsquare,sumsq(F, 2),1E4*eps);
566s ***** test
566s  x=[1,2,3;2,1,3]';
566s  [COEFF,SCORE,latent,tsquare] = pca(x, "Economy", false);
566s  m=[sqrt(2),sqrt(2);sqrt(2),-sqrt(2);-2*sqrt(2),0]/2;
566s  m(:,1) = m(:,1)*sign(COEFF(1,1));
566s  m(:,2) = m(:,2)*sign(COEFF(1,2));
566s ***** assert(COEFF,m(1:2,:),10*eps);
566s ***** assert(SCORE,-m,10*eps);
566s ***** assert(latent,[1.5;.5],10*eps);
566s ***** assert(tsquare,[4;4;4]/3,10*eps);
566s  [COEFF,SCORE,latent,tsquare] = pca(x, "Economy", false, "weights", [1 2 1], "variableweights", "variance");
566s ***** assert(COEFF, [0.632455532033676 -0.632455532033676; 0.741619848709566 0.741619848709566], 10*eps);
566s ***** assert(SCORE, [-0.622019449426284 0.959119380657905; -0.505649896847432 -0.505649896847431; 1.633319243121148 0.052180413036957], 10*eps);
566s ***** assert(latent, [1.783001790889027; 0.716998209110974], 10*eps);
566s ***** xtest assert(tsquare, [1.5; 0.5; 1.5], 10*eps);  #currently, [4; 2; 4]/3 is actually returned; see comments above
566s !!!!! known failure
566s ASSERT errors for:  assert (tsquare,[1.5; 0.5; 1.5],10 * eps)
566s 
566s   Location  |  Observed  |  Expected  |  Reason
566s     (1)         1.3333        1.5        Abs err 0.16667 exceeds tol 2.2204e-15 by 0.2
566s     (2)        0.66667        0.5        Abs err 0.16667 exceeds tol 2.2204e-15 by 0.2
566s     (3)         1.3333        1.5        Abs err 0.16667 exceeds tol 2.2204e-15 by 0.2
566s ***** test
566s  x=x';
566s  [COEFF,SCORE,latent,tsquare] = pca(x, "Economy", false);
566s  m=[sqrt(2),sqrt(2),0;-sqrt(2),sqrt(2),0;0,0,2]/2;
566s  m(:,1) = m(:,1)*sign(COEFF(1,1));
566s  m(:,2) = m(:,2)*sign(COEFF(1,2));
566s  m(:,3) = m(:,3)*sign(COEFF(3,3));
566s ***** assert(COEFF,m,10*eps);
566s ***** assert(SCORE(:,1),-m(1:2,1),10*eps);
566s ***** assert(SCORE(:,2:3),zeros(2),10*eps);
566s ***** assert(latent,[1;0;0],10*eps);
566s ***** assert(tsquare,[0.5;0.5],10*eps)
566s ***** test
566s  [COEFF,SCORE,latent,tsquare] = pca(x);
566s ***** assert(COEFF,m(:, 1),10*eps);
566s ***** assert(SCORE,-m(1:2,1),10*eps);
566s ***** assert(latent,[1],10*eps);
566s ***** assert(tsquare,[0.5;0.5],10*eps)
566s ***** error <invalid algorithm> pca([1 2; 3 4], "Algorithm", "xxx")
566s ***** error <'centered' requires a boolean value> pca([1 2; 3 4], "Centered", "xxx")
566s ***** error <must be a positive integer> pca([1 2; 3 4], "NumComponents", -4)
566s ***** error <invalid value for rows> pca([1 2; 3 4], "Rows", 1)
566s ***** error <weights must be> pca([1 2; 3 4], "Weights", [1 2 3])
566s ***** error <weights must be> pca([1 2; 3 4], "Weights", [-1 2])
566s ***** error <variable weights must be> pca([1 2; 3 4], "VariableWeights", [-1 2])
566s ***** error <variable weights must be> pca([1 2; 3 4], "VariableWeights", "xxx")
566s ***** error <unknown property> pca([1 2; 3 4], "XXX", 1)
566s 32 tests, 31 passed, 1 known failure, 0 skipped
566s [inst/barttest.m]
566s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/barttest.m
566s ***** error<barttest: invalid number of input arguments.> barttest ()
566s ***** error<barttest: NaN values in input are not allowed.> barttest ([2,NaN;3,4])
566s ***** error<barttest: wrong value for alpha.> barttest (ones (30, 4), "alpha")
566s ***** error<barttest: wrong value for alpha.> barttest (ones (30, 4), 0)
566s ***** error<barttest: wrong value for alpha.> barttest (ones (30, 4), 1.2)
566s ***** error<barttest: wrong value for alpha.> barttest (ones (30, 4), [0.2, 0.05])
566s ***** error<barttest: not enough data in X.> barttest (ones (30, 1))
566s ***** error<barttest: not enough data in X.> barttest (ones (30, 1), 0.05)
566s ***** test
566s  x = [2, 3, 4, 5, 6, 7, 8, 9; 1, 2, 3, 4, 5, 6, 7, 8]';
566s  [ndim, pval, chisq] = barttest (x);
566s  assert (ndim, 2);
566s  assert (pval, 0);
566s  ## assert (chisq, 512.0558, 1e-4); Result differs between octave 6 and 7 ?
566s ***** test
566s  x = [0.53767,  0.62702,   -0.10224,   -0.25485,   1.4193,   1.5237  ; ...
566s       1.8339,   1.6452,    -0.24145,   -0.23444,   0.29158,  0.1634  ; ...
566s      -2.2588,  -2.1351,     0.31286,    0.39396,   0.19781,  0.20995 ; ...
566s       0.86217,  1.0835,     0.31286,    0.46499,   1.5877,   1.495   ; ...
566s       0.31877,  0.38454,   -0.86488,   -0.63839,  -0.80447, -0.7536  ; ...
566s      -1.3077,  -1.1487,    -0.030051,  -0.017629,  0.69662,  0.60497 ; ...
566s      -0.43359, -0.32672,   -0.16488,   -0.37364,   0.83509,  0.89586 ; ...
566s       0.34262,  0.29639,    0.62771,    0.51672,  -0.24372, -0.13698 ; ...
566s       3.5784,   3.5841,     1.0933,     0.93258,   0.21567,  0.455   ; ...
566s       2.7694,   2.6307,     1.1093,     1.4298,   -1.1658,  -1.1816  ; ...
566s      -1.3499,  -1.2111,    -0.86365,   -0.94186,  -1.148,   -1.4381  ; ...
566s       3.0349,   2.8428,     0.077359,   0.18211,   0.10487, -0.014613; ...
566s       0.7254,   0.56737,   -1.2141,    -1.2291,    0.72225,  0.90612 ; ...
566s      -0.063055,-0.17662,   -1.1135,    -0.97701,   2.5855,   2.4084  ; ...
566s       0.71474,  0.29225,   -0.0068493, -0.11468,  -0.66689, -0.52466 ; ...
566s      -0.20497, -7.8874e-06, 1.5326,     1.3195,    0.18733,  0.20296 ; ...
566s      -0.12414, -0.077029,  -0.76967,   -0.96262,  -0.082494, 0.121   ; ...
566s       1.4897,   1.3683,     0.37138,    0.43653,  -1.933,   -2.1903  ; ...
566s       1.409,    1.5882,    -0.22558,   -0.24835,  -0.43897, -0.46247 ; ...
566s       1.4172,   1.1616,     1.1174,     1.0785,   -1.7947,  -1.9471  ];
566s  [ndim, pval, chisq] = barttest (x);
566s  assert (ndim, 3);
566s  assert (pval, [0; 0; 0; 0.52063; 0.34314], 1e-5);
566s  chisq_out = [251.6802; 210.2670; 153.1773; 4.2026; 2.1392];
566s  assert (chisq, chisq_out, 1e-4);
566s 10 tests, 10 passed, 0 known failure, 0 skipped
566s [inst/anovan.m]
566s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/anovan.m
566s ***** demo
566s 
566s  # Two-sample unpaired test on independent samples (equivalent to Student's
566s  # t-test). Note that the absolute value of t-statistic can be obtained by
566s  # taking the square root of the reported F statistic. In this example,
566s  # t = sqrt (1.44) = 1.20.
566s 
566s  score = [54 23 45 54 45 43 34 65 77 46 65]';
566s  gender = {"male" "male" "male" "male" "male" "female" "female" "female" ...
566s            "female" "female" "female"}';
566s 
566s  [P, ATAB, STATS] = anovan (score, gender, "display", "on", "varnames", "gender");
566s ***** demo
566s 
566s  # Two-sample paired test on dependent or matched samples equivalent to a
566s  # paired t-test. As for the first example, the t-statistic can be obtained by
566s  # taking the square root of the reported F statistic. Note that the interaction
566s  # between treatment x subject was dropped from the full model by assigning
566s  # subject as a random factor (').
566s 
566s  score = [4.5 5.6; 3.7 6.4; 5.3 6.4; 5.4 6.0; 3.9 5.7]';
566s  treatment = {"before" "after"; "before" "after"; "before" "after";
566s               "before" "after"; "before" "after"}';
566s  subject = {"GS" "GS"; "JM" "JM"; "HM" "HM"; "JW" "JW"; "PS" "PS"}';
566s 
566s  [P, ATAB, STATS] = anovan (score(:), {treatment(:), subject(:)}, ...
566s                             "model", "full", "random", 2, "sstype", 2, ...
566s                             "varnames", {"treatment", "subject"}, ...
566s                             "display", "on");
566s ***** demo
566s 
566s  # One-way ANOVA on the data from a study on the strength of structural beams,
566s  # in Hogg and Ledolter (1987) Engineering Statistics. New York: MacMillan
566s 
566s  strength = [82 86 79 83 84 85 86 87 74 82 ...
566s             78 75 76 77 79 79 77 78 82 79]';
566s  alloy = {"st","st","st","st","st","st","st","st", ...
566s           "al1","al1","al1","al1","al1","al1", ...
566s           "al2","al2","al2","al2","al2","al2"}';
566s 
566s  [P, ATAB, STATS] = anovan (strength, alloy, "display", "on", ...
566s                             "varnames", "alloy");
566s ***** demo
566s 
566s  # One-way repeated measures ANOVA on the data from a study on the number of
566s  # words recalled by 10 subjects for three time condtions, in Loftus & Masson
566s  # (1994) Psychon Bull Rev. 1(4):476-490, Table 2. Note that the interaction
566s  # between seconds x subject was dropped from the full model by assigning
566s  # subject as a random factor (').
566s 
566s  words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ...
566s           15 17 17; 1 1 4; 12 15 17;  9 12 12;  8 9 12];
566s  seconds = [1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5; ...
566s             1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5;];
566s  subject = [ 1  1  1;  2  2  2;  3  3  3;  4  4  4;  5  5  5; ...
566s              6  6  6;  7  7  7;  8  8  8;  9  9  9; 10 10 10];
566s 
566s  [P, ATAB, STATS] = anovan (words(:), {seconds(:), subject(:)}, ...
566s                             "model", "full", "random", 2, "sstype", 2, ...
566s                             "display", "on", "varnames", {"seconds", "subject"});
566s ***** demo
566s 
566s  # Balanced two-way ANOVA with interaction on the data from a study of popcorn
566s  # brands and popper types, in Hogg and Ledolter (1987) Engineering Statistics.
566s  # New York: MacMillan
566s 
566s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
566s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
566s  brands = {"Gourmet", "National", "Generic"; ...
566s            "Gourmet", "National", "Generic"; ...
566s            "Gourmet", "National", "Generic"; ...
566s            "Gourmet", "National", "Generic"; ...
566s            "Gourmet", "National", "Generic"; ...
566s            "Gourmet", "National", "Generic"};
566s  popper = {"oil", "oil", "oil"; "oil", "oil", "oil"; "oil", "oil", "oil"; ...
566s            "air", "air", "air"; "air", "air", "air"; "air", "air", "air"};
566s 
566s  [P, ATAB, STATS] = anovan (popcorn(:), {brands(:), popper(:)}, ...
566s                             "display", "on", "model", "full", ...
566s                             "varnames", {"brands", "popper"});
566s ***** demo
566s 
566s  # Unbalanced two-way ANOVA (2x2) on the data from a study on the effects of
566s  # gender and having a college degree on salaries of company employees,
566s  # in Maxwell, Delaney and Kelly (2018): Chapter 7, Table 15
566s 
566s  salary = [24 26 25 24 27 24 27 23 15 17 20 16, ...
566s            25 29 27 19 18 21 20 21 22 19]';
566s  gender = {"f" "f" "f" "f" "f" "f" "f" "f" "f" "f" "f" "f"...
566s            "m" "m" "m" "m" "m" "m" "m" "m" "m" "m"}';
566s  degree = [1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0]';
566s 
566s  [P, ATAB, STATS] = anovan (salary, {gender, degree}, "model", "full", ...
566s                             "sstype", 3, "display", "on", "varnames", ...
566s                             {"gender", "degree"});
566s ***** demo
566s 
566s  # Unbalanced two-way ANOVA (3x2) on the data from a study of the effect of
566s  # adding sugar and/or milk on the tendency of coffee to make people babble,
566s  # in from Navarro (2019): 16.10
566s 
566s  sugar = {"real" "fake" "fake" "real" "real" "real" "none" "none" "none" ...
566s           "fake" "fake" "fake" "real" "real" "real" "none" "none" "fake"}';
566s  milk = {"yes" "no" "no" "yes" "yes" "no" "yes" "yes" "yes" ...
566s          "no" "no" "yes" "no" "no" "no" "no" "no" "yes"}';
566s  babble = [4.6 4.4 3.9 5.6 5.1 5.5 3.9 3.5 3.7...
566s            5.6 4.7 5.9 6.0 5.4 6.6 5.8 5.3 5.7]';
566s 
566s  [P, ATAB, STATS] = anovan (babble, {sugar, milk}, "model", "full",  ...
566s                             "sstype", 3, "display", "on", ...
566s                             "varnames", {"sugar", "milk"});
566s ***** demo
566s 
566s  # Unbalanced three-way ANOVA (3x2x2) on the data from a study of the effects
566s  # of three different drugs, biofeedback and diet on patient blood pressure,
566s  # adapted* from Maxwell, Delaney and Kelly (2018): Chapter 8, Table 12
566s  # * Missing values introduced to make the sample sizes unequal to test the
566s  #   calculation of different types of sums-of-squares
566s 
566s  drug = {"X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" ...
566s          "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X" "X";
566s          "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" ...
566s          "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y" "Y";
566s          "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" ...
566s          "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z" "Z"};
566s  feedback = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
566s              1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
566s              1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0];
566s  diet = [0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1;
566s          0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1;
566s          0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1];
566s  BP = [170 175 165 180 160 158 161 173 157 152 181 190 ...
566s        173 194 197 190 176 198 164 190 169 164 176 175;
566s        186 194 201 215 219 209 164 166 159 182 187 174 ...
566s        189 194 217 206 199 195 171 173 196 199 180 NaN;
566s        180 187 199 170 204 194 162 184 183 156 180 173 ...
566s        202 228 190 206 224 204 205 199 170 160 NaN NaN];
566s 
566s  [P, ATAB, STATS] = anovan (BP(:), {drug(:), feedback(:), diet(:)}, ...
566s                                     "model", "full", "sstype", 3, ...
566s                                     "display", "on", ...
566s                                     "varnames", {"drug", "feedback", "diet"});
566s ***** demo
566s 
566s  # Balanced three-way ANOVA (2x2x2) with one of the factors being a blocking
566s  # factor. The data is from a randomized block design study on the effects
566s  # of antioxidant treatment on glutathione-S-transferase (GST) levels in
566s  # different mouse strains, from Festing (2014), ILAR Journal, 55(3):427-476.
566s  # Note that all interactions involving block were dropped from the full model
566s  # by assigning block as a random factor (').
566s 
566s  measurement = [444 614 423 625 408  856 447 719 ...
566s                 764 831 586 782 609 1002 606 766]';
566s  strain= {"NIH","NIH","BALB/C","BALB/C","A/J","A/J","129/Ola","129/Ola", ...
566s           "NIH","NIH","BALB/C","BALB/C","A/J","A/J","129/Ola","129/Ola"}';
566s  treatment={"C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T" "C" "T"}';
566s  block = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]';
566s 
566s  [P, ATAB, STATS] = anovan (measurement/10, {strain, treatment, block}, ...
566s                             "sstype", 2, "model", "full", "random", 3, ...
566s                             "display", "on", ...
566s                             "varnames", {"strain", "treatment", "block"});
566s ***** demo
566s 
566s  # One-way ANCOVA on data from a study of the additive effects of species
566s  # and temperature on chirpy pulses of crickets, from Stitch, The Worst Stats
566s  # Text eveR
566s 
566s  pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ...
566s           98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ...
566s           60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]';
566s  temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ...
566s          29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ...
566s          21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]';
566s  species = {"ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" "ex" ...
566s             "ex" "ex" "ex" "niv" "niv" "niv" "niv" "niv" "niv" "niv" ...
566s             "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv" "niv"};
566s 
566s  [P, ATAB, STATS] = anovan (pulse, {species, temp}, "model", "linear", ...
566s                            "continuous", 2, "sstype", "h", "display", "on", ...
566s                            "varnames", {"species", "temp"});
566s ***** demo
566s 
566s  # Factorial ANCOVA on data from a study of the effects of treatment and
566s  # exercise on stress reduction score after adjusting for age. Data from R
566s  # datarium package).
566s 
566s  score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ...
566s           97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ...
566s           81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ...
566s           84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ...
566s           100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ...
566s           91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]';
566s  treatment = {"yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
566s               "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
566s               "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" "yes" ...
566s               "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
566s               "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  ...
566s               "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"  "no"}';
566s  exercise = {"lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
566s              "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
566s              "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  ...
566s              "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  "lo"  ...
566s              "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" "mid" ...
566s              "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"  "hi"}';
566s  age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ...
566s         58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ...
566s         75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]';
566s 
566s  [P, ATAB, STATS] = anovan (score, {treatment, exercise, age}, ...
566s                             "model", [1 0 0; 0 1 0; 0 0 1; 1 1 0], ...
566s                             "continuous", 3, "sstype", "h", "display", "on", ...
566s                             "varnames", {"treatment", "exercise", "age"});
566s ***** demo
566s 
566s  # Unbalanced one-way ANOVA with custom, orthogonal contrasts. The statistics
566s  # relating to the contrasts are shown in the table of model parameters, and
566s  # can be retrieved from the STATS.coeffs output.
566s 
566s  dv =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
566s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
566s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
566s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
566s         25.694 ]';
566s  g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 ...
566s       4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
566s  C = [ 0.4001601  0.3333333  0.5  0.0
566s        0.4001601  0.3333333 -0.5  0.0
566s        0.4001601 -0.6666667  0.0  0.0
566s       -0.6002401  0.0000000  0.0  0.5
566s       -0.6002401  0.0000000  0.0 -0.5];
566s 
566s  [P,ATAB, STATS] = anovan (dv, g, "contrasts", C, "varnames", "score", ...
566s                           "alpha", 0.05, "display", "on");
566s ***** demo
566s 
566s  # One-way ANOVA with the linear model fit by weighted least squares to
566s  # account for heteroskedasticity. In this example, the variance appears
566s  # proportional to the outcome, so weights have been estimated by initially
566s  # fitting the model without weights and regressing the absolute residuals on
566s  # the fitted values. Although this data could have been analysed by Welch's
566s  # ANOVA test, the approach here can generalize to ANOVA models with more than
566s  # one factor.
566s 
566s  g = [1, 1, 1, 1, 1, 1, 1, 1, ...
566s       2, 2, 2, 2, 2, 2, 2, 2, ...
566s       3, 3, 3, 3, 3, 3, 3, 3]';
566s  y = [13, 16, 16,  7, 11,  5,  1,  9, ...
566s       10, 25, 66, 43, 47, 56,  6, 39, ...
566s       11, 39, 26, 35, 25, 14, 24, 17]';
566s 
566s  [P,ATAB,STATS] = anovan(y, g, "display", "off");
566s  fitted = STATS.X * STATS.coeffs(:,1); # fitted values
566s  b = polyfit (fitted, abs (STATS.resid), 1);
566s  v = polyval (b, fitted);  # Variance as a function of the fitted values
566s  figure("Name", "Regression of the absolute residuals on the fitted values");
566s  plot (fitted, abs (STATS.resid),'ob');hold on; plot(fitted,v,'-r'); hold off;
566s  xlabel("Fitted values"); ylabel("Absolute residuals");
566s 
566s  [P,ATAB,STATS] = anovan (y, g, "weights", v.^-1);
566s ***** test
566s  score = [54 23 45 54 45 43 34 65 77 46 65]';
566s  gender = {'male' 'male' 'male' 'male' 'male' 'female' 'female' 'female' ...
566s            'female' 'female' 'female'}';
566s 
566s  [P, T, STATS] = anovan (score,gender,'display','off');
566s  assert (P(1), 0.2612876773271042, 1e-09);              # compared to p calculated by MATLAB anovan
566s  assert (sqrt(T{2,6}), abs(1.198608733288208), 1e-09);  # compared to abs(t) calculated from sqrt(F) by MATLAB anovan
566s  assert (P(1), 0.2612876773271047, 1e-09);              # compared to p calculated by MATLAB ttest2
566s  assert (sqrt(T{2,6}), abs(-1.198608733288208), 1e-09); # compared to abs(t) calculated by MATLAB ttest2
566s ***** test
566s  score = [4.5 5.6; 3.7 6.4; 5.3 6.4; 5.4 6.0; 3.9 5.7]';
566s  treatment = {'before' 'after'; 'before' 'after'; 'before' 'after';
566s               'before' 'after'; 'before' 'after'}';
566s  subject = {'GS' 'GS'; 'JM' 'JM'; 'HM' 'HM'; 'JW' 'JW'; 'PS' 'PS'}';
566s 
566s  [P, ATAB, STATS] = anovan (score(:),{treatment(:),subject(:)},'display','off','sstype',2);
566s  assert (P(1), 0.016004356735364, 1e-09);              # compared to p calculated by MATLAB anovan
566s  assert (sqrt(ATAB{2,6}), abs(4.00941576558195), 1e-09);  # compared to abs(t) calculated from sqrt(F) by MATLAB anovan
566s  assert (P(1), 0.016004356735364, 1e-09);              # compared to p calculated by MATLAB ttest2
566s  assert (sqrt(ATAB{2,6}), abs(-4.00941576558195), 1e-09); # compared to abs(t) calculated by MATLAB ttest2
566s ***** test
566s  strength = [82 86 79 83 84 85 86 87 74 82 ...
566s             78 75 76 77 79 79 77 78 82 79]';
566s  alloy = {'st','st','st','st','st','st','st','st', ...
566s           'al1','al1','al1','al1','al1','al1', ...
566s           'al2','al2','al2','al2','al2','al2'}';
566s 
566s  [P, ATAB, STATS] = anovan (strength,{alloy},'display','off');
566s  assert (P(1), 0.000152643638830491, 1e-09);
566s  assert (ATAB{2,6}, 15.4, 1e-09);
566s ***** test
566s  words = [10 13 13; 6 8 8; 11 14 14; 22 23 25; 16 18 20; ...
566s           15 17 17; 1 1 4; 12 15 17;  9 12 12;  8 9 12];
566s  subject = [ 1  1  1;  2  2  2;  3  3  3;  4  4  4;  5  5  5; ...
566s              6  6  6;  7  7  7;  8  8  8;  9  9  9; 10 10 10];
566s  seconds = [1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5; ...
566s             1 2 5; 1 2 5; 1 2 5; 1 2 5; 1 2 5;];
566s 
566s  [P, ATAB, STATS] = anovan (words(:),{seconds(:),subject(:)},'model','full','random',2,'sstype',2,'display','off');
566s  assert (P(1), 1.51865926758752e-07, 1e-09);
566s  assert (ATAB{2,2}, 52.2666666666667, 1e-09);
566s  assert (ATAB{3,2}, 942.533333333333, 1e-09);
566s  assert (ATAB{4,2}, 11.0666666666667, 1e-09);
566s ***** test
566s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
566s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
566s  brands = {'Gourmet', 'National', 'Generic'; ...
566s            'Gourmet', 'National', 'Generic'; ...
566s            'Gourmet', 'National', 'Generic'; ...
566s            'Gourmet', 'National', 'Generic'; ...
566s            'Gourmet', 'National', 'Generic'; ...
566s            'Gourmet', 'National', 'Generic'};
566s  popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ...
566s            'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'};
566s 
566s  [P, ATAB, STATS] = anovan (popcorn(:),{brands(:),popper(:)},'display','off','model','full');
566s  assert (P(1), 7.67895738278171e-07, 1e-09);
566s  assert (P(2), 0.000100373896304998, 1e-09);
566s  assert (P(3), 0.746215396636649, 1e-09);
566s  assert (ATAB{2,6}, 56.7, 1e-09);
566s  assert (ATAB{3,6}, 32.4, 1e-09);
566s  assert (ATAB{4,6}, 0.29999999999997, 1e-09);
566s ***** test
566s  salary = [24 26 25 24 27 24 27 23 15 17 20 16, ...
566s            25 29 27 19 18 21 20 21 22 19]';
566s  gender = {'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f' 'f'...
566s            'm' 'm' 'm' 'm' 'm' 'm' 'm' 'm' 'm' 'm'}';
566s  degree = [1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0]';
566s 
566s  [P, ATAB, STATS] = anovan (salary,{gender,degree},'model','full','sstype',1,'display','off');
566s  assert (P(1), 0.747462549227232, 1e-09);
566s  assert (P(2), 1.03809316857694e-08, 1e-09);
566s  assert (P(3), 0.523689833702691, 1e-09);
566s  assert (ATAB{2,2}, 0.296969696969699, 1e-09);
566s  assert (ATAB{3,2}, 272.391841491841, 1e-09);
566s  assert (ATAB{4,2}, 1.17482517482512, 1e-09);
566s  assert (ATAB{5,2}, 50.0000000000001, 1e-09);
566s  [P, ATAB, STATS] = anovan (salary,{degree,gender},'model','full','sstype',1,'display','off');
566s  assert (P(1), 2.53445097305047e-08, 1e-09);
566s  assert (P(2), 0.00388133678528749, 1e-09);
566s  assert (P(3), 0.523689833702671, 1e-09);
566s  assert (ATAB{2,2}, 242.227272727273, 1e-09);
566s  assert (ATAB{3,2}, 30.4615384615384, 1e-09);
566s  assert (ATAB{4,2}, 1.17482517482523, 1e-09);
566s  assert (ATAB{5,2}, 50.0000000000001, 1e-09);
566s  [P, ATAB, STATS] = anovan (salary,{gender,degree},'model','full','sstype',2,'display','off');
566s  assert (P(1), 0.00388133678528743, 1e-09);
566s  assert (P(2), 1.03809316857694e-08, 1e-09);
566s  assert (P(3), 0.523689833702691, 1e-09);
566s  assert (ATAB{2,2}, 30.4615384615385, 1e-09);
566s  assert (ATAB{3,2}, 272.391841491841, 1e-09);
566s  assert (ATAB{4,2}, 1.17482517482512, 1e-09);
566s  assert (ATAB{5,2}, 50.0000000000001, 1e-09);
566s  [P, ATAB, STATS] = anovan (salary,{gender,degree},'model','full','sstype',3,'display','off');
566s  assert (P(1), 0.00442898146583742, 1e-09);
566s  assert (P(2), 1.30634252053587e-08, 1e-09);
566s  assert (P(3), 0.523689833702691, 1e-09);
566s  assert (ATAB{2,2}, 29.3706293706294, 1e-09);
566s  assert (ATAB{3,2}, 264.335664335664, 1e-09);
566s  assert (ATAB{4,2}, 1.17482517482512, 1e-09);
566s  assert (ATAB{5,2}, 50.0000000000001, 1e-09);
566s ***** test
566s  sugar = {'real' 'fake' 'fake' 'real' 'real' 'real' 'none' 'none' 'none' ...
566s           'fake' 'fake' 'fake' 'real' 'real' 'real' 'none' 'none' 'fake'}';
566s  milk = {'yes' 'no' 'no' 'yes' 'yes' 'no' 'yes' 'yes' 'yes' ...
566s          'no' 'no' 'yes' 'no' 'no' 'no' 'no' 'no' 'yes'}';
566s  babble = [4.6 4.4 3.9 5.6 5.1 5.5 3.9 3.5 3.7...
566s            5.6 4.7 5.9 6.0 5.4 6.6 5.8 5.3 5.7]';
566s 
566s  [P, ATAB, STATS] = anovan (babble,{sugar,milk},'model','full','sstype',1,'display','off');
566s  assert (P(1), 0.0108632139833963, 1e-09);
566s  assert (P(2), 0.0810606976703546, 1e-09);
566s  assert (P(3), 0.00175433329935627, 1e-09);
566s  assert (ATAB{2,2}, 3.55752380952381, 1e-09);
566s  assert (ATAB{3,2}, 0.956108477471702, 1e-09);
566s  assert (ATAB{4,2}, 5.94386771300448, 1e-09);
566s  assert (ATAB{5,2}, 3.1625, 1e-09);
566s  [P, ATAB, STATS] = anovan (babble,{milk,sugar},'model','full','sstype',1,'display','off');
566s  assert (P(1), 0.0373333189297505, 1e-09);
566s  assert (P(2), 0.017075098787169, 1e-09);
566s  assert (P(3), 0.00175433329935627, 1e-09);
566s  assert (ATAB{2,2}, 1.444, 1e-09);
566s  assert (ATAB{3,2}, 3.06963228699552, 1e-09);
566s  assert (ATAB{4,2}, 5.94386771300448, 1e-09);
566s  assert (ATAB{5,2}, 3.1625, 1e-09);
566s  [P, ATAB, STATS] = anovan (babble,{sugar,milk},'model','full','sstype',2,'display','off');
566s  assert (P(1), 0.017075098787169, 1e-09);
566s  assert (P(2), 0.0810606976703546, 1e-09);
566s  assert (P(3), 0.00175433329935627, 1e-09);
566s  assert (ATAB{2,2}, 3.06963228699552, 1e-09);
566s  assert (ATAB{3,2}, 0.956108477471702, 1e-09);
566s  assert (ATAB{4,2}, 5.94386771300448, 1e-09);
566s  assert (ATAB{5,2}, 3.1625,  1e-09);
566s  [P, ATAB, STATS] = anovan (babble,{sugar,milk},'model','full','sstype',3,'display','off');
566s  assert (P(1), 0.0454263063473954, 1e-09);
566s  assert (P(2), 0.0746719907091438, 1e-09);
566s  assert (P(3), 0.00175433329935627, 1e-09);
566s  assert (ATAB{2,2}, 2.13184977578476, 1e-09);
566s  assert (ATAB{3,2}, 1.00413461538462, 1e-09);
566s  assert (ATAB{4,2}, 5.94386771300448, 1e-09);
566s  assert (ATAB{5,2}, 3.1625, 1e-09);
566s ***** test
566s  drug = {'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' ...
566s          'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X';
566s          'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' ...
566s          'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y' 'Y';
566s          'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' ...
566s          'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z' 'Z'};
566s  feedback = [1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
566s              1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
566s              1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0];
566s  diet = [0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1;
566s          0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1;
566s          0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1];
566s  BP = [170 175 165 180 160 158 161 173 157 152 181 190 ...
566s        173 194 197 190 176 198 164 190 169 164 176 175;
566s        186 194 201 215 219 209 164 166 159 182 187 174 ...
566s        189 194 217 206 199 195 171 173 196 199 180 NaN;
566s        180 187 199 170 204 194 162 184 183 156 180 173 ...
566s        202 228 190 206 224 204 205 199 170 160 NaN NaN];
566s 
566s  [P, ATAB, STATS] = anovan (BP(:),{drug(:),feedback(:),diet(:)},'model','full','sstype', 1,'display','off');
566s  assert (P(1), 7.02561843825325e-05, 1e-09);
566s  assert (P(2), 0.000425806013389362, 1e-09);
566s  assert (P(3), 6.16780773446401e-07, 1e-09);
566s  assert (P(4), 0.261347622678438, 1e-09);
566s  assert (P(5), 0.0542278432357043, 1e-09);
566s  assert (P(6), 0.590353225626655, 1e-09);
566s  assert (P(7), 0.0861628249564267, 1e-09);
566s  assert (ATAB{2,2}, 3614.70355731226, 1e-09);
566s  assert (ATAB{3,2}, 2227.46639771024, 1e-09);
566s  assert (ATAB{4,2}, 5008.25614451819, 1e-09);
566s  assert (ATAB{5,2}, 437.066007908781, 1e-09);
566s  assert (ATAB{6,2}, 976.180770397332, 1e-09);
566s  assert (ATAB{7,2}, 46.616653365254, 1e-09);
566s  assert (ATAB{8,2}, 814.345251396648, 1e-09);
566s  assert (ATAB{9,2}, 9065.8,  1e-09);
566s  [P, ATAB, STATS] = anovan (BP(:),{drug(:),feedback(:),diet(:)},'model','full','sstype',2,'display','off');
566s  assert (P(1), 9.4879638470754e-05, 1e-09);
566s  assert (P(2), 0.00124177666315809, 1e-09);
566s  assert (P(3), 6.86162012732911e-07, 1e-09);
566s  assert (P(4), 0.260856132341256, 1e-09);
566s  assert (P(5), 0.0523758623892078, 1e-09);
566s  assert (P(6), 0.590353225626655, 1e-09);
566s  assert (P(7), 0.0861628249564267, 1e-09);
566s  assert (ATAB{2,2}, 3481.72176560122, 1e-09);
566s  assert (ATAB{3,2}, 1837.08812970469, 1e-09);
566s  assert (ATAB{4,2}, 4957.20277938622, 1e-09);
566s  assert (ATAB{5,2}, 437.693674777847, 1e-09);
566s  assert (ATAB{6,2}, 988.431929811402, 1e-09);
566s  assert (ATAB{7,2}, 46.616653365254, 1e-09);
566s  assert (ATAB{8,2}, 814.345251396648, 1e-09);
566s  assert (ATAB{9,2}, 9065.8,  1e-09);
566s  [P, ATAB, STATS] = anovan (BP(:),{drug(:),feedback(:),diet(:)},'model','full','sstype', 3,'display','off');
566s  assert (P(1), 0.000106518678028207, 1e-09);
566s  assert (P(2), 0.00125371366571508, 1e-09);
566s  assert (P(3), 5.30813260778464e-07, 1e-09);
566s  assert (P(4), 0.308353667232981, 1e-09);
566s  assert (P(5), 0.0562901327343161, 1e-09);
566s  assert (P(6), 0.599091042141092, 1e-09);
566s  assert (P(7), 0.0861628249564267, 1e-09);
566s  assert (ATAB{2,2}, 3430.88156424581, 1e-09);
566s  assert (ATAB{3,2}, 1833.68031496063, 1e-09);
566s  assert (ATAB{4,2}, 5080.48346456693, 1e-09);
566s  assert (ATAB{5,2}, 382.07709497207, 1e-09);
566s  assert (ATAB{6,2}, 963.037988826813, 1e-09);
566s  assert (ATAB{7,2}, 44.4519685039322, 1e-09);
566s  assert (ATAB{8,2}, 814.345251396648, 1e-09);
566s  assert (ATAB{9,2}, 9065.8, 1e-09);
567s ***** test
567s  measurement = [444 614 423 625 408  856 447 719 ...
567s                 764 831 586 782 609 1002 606 766]';
567s  strain= {'NIH','NIH','BALB/C','BALB/C','A/J','A/J','129/Ola','129/Ola', ...
567s           'NIH','NIH','BALB/C','BALB/C','A/J','A/J','129/Ola','129/Ola'}';
567s  treatment={'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T' 'C' 'T'}';
567s  block = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]';
567s 
567s  [P, ATAB, STATS] = anovan (measurement/10,{strain,treatment,block},'model','full','random',3,'display','off');
567s  assert (P(1), 0.0914352969909372, 1e-09);
567s  assert (P(2), 5.04077373924908e-05, 1e-09);
567s  assert (P(4), 0.0283196918836667, 1e-09);
567s  assert (ATAB{2,2}, 286.132500000002, 1e-09);
567s  assert (ATAB{3,2}, 2275.29, 1e-09);
567s  assert (ATAB{4,2}, 1242.5625, 1e-09);
567s  assert (ATAB{5,2}, 495.905000000001, 1e-09);
567s  assert (ATAB{6,2}, 207.007499999999, 1e-09);
567s ***** test
567s  pulse = [67.9 65.1 77.3 78.7 79.4 80.4 85.8 86.6 87.5 89.1 ...
567s           98.6 100.8 99.3 101.7 44.3 47.2 47.6 49.6 50.3 51.8 ...
567s           60 58.5 58.9 60.7 69.8 70.9 76.2 76.1 77 77.7 84.7]';
567s  temp = [20.8 20.8 24 24 24 24 26.2 26.2 26.2 26.2 28.4 ...
567s          29 30.4 30.4 17.2 18.3 18.3 18.3 18.9 18.9 20.4 ...
567s          21 21 22.1 23.5 24.2 25.9 26.5 26.5 26.5 28.6]';
567s  species = {'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' 'ex' ...
567s             'ex' 'ex' 'ex' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' ...
567s             'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv' 'niv'};
567s 
567s  [P, ATAB, STATS] = anovan (pulse,{species,temp},'model','linear','continuous',2,'sstype','h','display','off');
567s  assert (P(1), 6.27153318786007e-14, 1e-09);
567s  assert (P(2), 2.48773241196644e-25, 1e-09);
567s  assert (ATAB{2,2}, 598.003953318404, 1e-09);
567s  assert (ATAB{3,2}, 4376.08256843712, 1e-09);
567s  assert (ATAB{4,2}, 89.3498685376726, 1e-09);
567s  assert (ATAB{2,6}, 187.399388123951, 1e-09);
567s  assert (ATAB{3,6}, 1371.35413763454, 1e-09);
567s ***** test
567s  score = [95.6 82.2 97.2 96.4 81.4 83.6 89.4 83.8 83.3 85.7 ...
567s           97.2 78.2 78.9 91.8 86.9 84.1 88.6 89.8 87.3 85.4 ...
567s           81.8 65.8 68.1 70.0 69.9 75.1 72.3 70.9 71.5 72.5 ...
567s           84.9 96.1 94.6 82.5 90.7 87.0 86.8 93.3 87.6 92.4 ...
567s           100. 80.5 92.9 84.0 88.4 91.1 85.7 91.3 92.3 87.9 ...
567s           91.7 88.6 75.8 75.7 75.3 82.4 80.1 86.0 81.8 82.5]';
567s  treatment = {'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' ...
567s               'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' ...
567s               'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' 'yes' ...
567s               'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  ...
567s               'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  ...
567s               'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'  'no'}';
567s  exercise = {'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  ...
567s              'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' ...
567s              'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  ...
567s              'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  'lo'  ...
567s              'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' 'mid' ...
567s              'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'  'hi'}';
567s  age = [59 65 70 66 61 65 57 61 58 55 62 61 60 59 55 57 60 63 62 57 ...
567s         58 56 57 59 59 60 55 53 55 58 68 62 61 54 59 63 60 67 60 67 ...
567s         75 54 57 62 65 60 58 61 65 57 56 58 58 58 52 53 60 62 61 61]';
567s 
567s  [P, ATAB, STATS] = anovan (score,{treatment,exercise,age},'model','full','continuous',3,'sstype','h','display','off');
567s  assert (P(5), 0.9245630968248468, 1e-09);
567s  assert (P(6), 0.791115159521822, 1e-09);
567s  assert (P(7), 0.9296668751457956, 1e-09);
567s  [P, ATAB, STATS] = anovan (score,{treatment,exercise,age},'model',[1 0 0; 0 1 0; 0 0 1; 1 1 0],'continuous',3,'sstype','h','display','off');
567s  assert (P(1), 0.00158132928938933, 1e-09);
567s  assert (P(2), 2.12537505039986e-07, 1e-09);
567s  assert (P(3), 0.00390292555160047, 1e-09);
567s  assert (P(4), 0.0164086580775543, 1e-09);
567s  assert (ATAB{2,6}, 11.0956027650549, 1e-09);
567s  assert (ATAB{3,6}, 20.8195665467178, 1e-09);
567s  assert (ATAB{4,6}, 9.10966630720186, 1e-09);
567s  assert (ATAB{5,6}, 4.4457923698584, 1e-09);
567s ***** test
567s  dv =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
567s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
567s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
567s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
567s         25.694 ]';
567s  g = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
567s  C = [ 0.4001601  0.3333333  0.5  0.0
567s        0.4001601  0.3333333 -0.5  0.0
567s        0.4001601 -0.6666667  0.0  0.0
567s       -0.6002401  0.0000000  0.0  0.5
567s       -0.6002401  0.0000000  0.0 -0.5];
567s 
567s  [P,ATAB,STATS] = anovan (dv,g,'contrasts',{C},'display','off');
567s  assert (STATS.coeffs(1,1), 19.4001, 1e-04);
567s  assert (STATS.coeffs(2,1), -9.3297, 1e-04);
567s  assert (STATS.coeffs(3,1), -5.0000, 1e-04);
567s  assert (STATS.coeffs(4,1), -8.0000, 1e-04);
567s  assert (STATS.coeffs(5,1), -8.0000, 1e-04);
567s  assert (STATS.coeffs(1,2), 0.4831, 1e-04);
567s  assert (STATS.coeffs(2,2), 0.9694, 1e-04);
567s  assert (STATS.coeffs(3,2), 1.3073, 1e-04);
567s  assert (STATS.coeffs(4,2), 1.6411, 1e-04);
567s  assert (STATS.coeffs(5,2), 1.4507, 1e-04);
567s  assert (STATS.coeffs(1,5), 40.161, 1e-03);
567s  assert (STATS.coeffs(2,5), -9.624, 1e-03);
567s  assert (STATS.coeffs(3,5), -3.825, 1e-03);
567s  assert (STATS.coeffs(4,5), -4.875, 1e-03);
567s  assert (STATS.coeffs(5,5), -5.515, 1e-03);
567s  assert (STATS.coeffs(2,6), 5.74e-11, 1e-12);
567s  assert (STATS.coeffs(3,6), 0.000572, 1e-06);
567s  assert (STATS.coeffs(4,6), 2.86e-05, 1e-07);
567s  assert (STATS.coeffs(5,6), 4.44e-06, 1e-08);
567s 12 tests, 12 passed, 0 known failure, 0 skipped
567s [inst/qrandn.m]
567s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/qrandn.m
567s ***** demo
567s  z = qrandn (-5, 5e6);
567s  [c x] = hist (z,linspace(-1.5,1.5,200),1);
567s  figure(1)
567s  plot(x,c,"r."); axis tight; axis([-1.5,1.5]);
567s 
567s  z = qrandn (-0.14286, 5e6);
567s  [c x] = hist (z,linspace(-2,2,200),1);
567s  figure(2)
567s  plot(x,c,"r."); axis tight; axis([-2,2]);
567s 
567s  z = qrandn (2.75, 5e6);
567s  [c x] = hist (z,linspace(-1e3,1e3,1e3),1);
567s  figure(3)
567s  semilogy(x,c,"r."); axis tight; axis([-100,100]);
567s 
567s  # ---------
567s  # Figures from the reference paper.
567s ***** error<qrandn: the parameter q must be a scalar.> qrandn ([1 2], 1)
567s ***** error<qrandn: the parameter q must be lower than 3.> qrandn (4, 1)
567s ***** error<qrandn: the parameter q must be lower than 3.> qrandn (3, 1)
567s ***** error qrandn (2.5, 1, 2, 3)
567s ***** error qrandn (2.5)
567s ***** test
567s  q = 1.5;
567s  s = [2, 3];
567s  z = qrandn (q, s);
567s  assert (isnumeric (z) && isequal (size (z), s));
567s 6 tests, 6 passed, 0 known failure, 0 skipped
567s [inst/ff2n.m]
567s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ff2n.m
567s ***** error ff2n ();
567s ***** error ff2n (2, 5);
567s ***** error ff2n (2.5);
567s ***** error ff2n (0);
567s ***** error ff2n (-3);
567s ***** error ff2n (3+2i);
567s ***** error ff2n (Inf);
567s ***** error ff2n (NaN);
567s ***** test
567s  A = ff2n (3);
567s  assert (A, fullfact (3));
567s ***** test
567s  A = ff2n (8);
567s  assert (A, fullfact (8));
567s 10 tests, 10 passed, 0 known failure, 0 skipped
567s [inst/cdfplot.m]
567s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cdfplot.m
567s ***** demo
567s  x = randn(100,1);
567s  cdfplot (x);
567s ***** test
567s  hf = figure ("visible", "off");
567s  unwind_protect
567s    x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4];
567s    [hCDF, stats] = cdfplot (x);
567s    assert (stats.min, 2);
567s    assert (stats.max, 6);
567s    assert (stats.median, 3.5);
567s    assert (stats.std, 1.35400640077266, 1e-14);
567s  unwind_protect_cleanup
567s    close (hf);
567s  end_unwind_protect
567s ***** test
567s  hf = figure ("visible", "off");
567s  unwind_protect
567s    x = randn(100,1);
567s    cdfplot (x);
567s  unwind_protect_cleanup
567s    close (hf);
567s  end_unwind_protect
567s ***** error cdfplot ();
567s ***** error cdfplot ([x',x']);
567s ***** error cdfplot ([NaN, NaN, NaN, NaN]);
567s 5 tests, 5 passed, 0 known failure, 0 skipped
567s [inst/regress.m]
567s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/regress.m
567s ***** test
567s  % Longley data from the NIST Statistical Reference Dataset
567s  Z = [  60323    83.0   234289   2356     1590    107608  1947
567s         61122    88.5   259426   2325     1456    108632  1948
567s         60171    88.2   258054   3682     1616    109773  1949
567s         61187    89.5   284599   3351     1650    110929  1950
567s         63221    96.2   328975   2099     3099    112075  1951
567s         63639    98.1   346999   1932     3594    113270  1952
567s         64989    99.0   365385   1870     3547    115094  1953
567s         63761   100.0   363112   3578     3350    116219  1954
567s         66019   101.2   397469   2904     3048    117388  1955
567s         67857   104.6   419180   2822     2857    118734  1956
567s         68169   108.4   442769   2936     2798    120445  1957
567s         66513   110.8   444546   4681     2637    121950  1958
567s         68655   112.6   482704   3813     2552    123366  1959
567s         69564   114.2   502601   3931     2514    125368  1960
567s         69331   115.7   518173   4806     2572    127852  1961
567s         70551   116.9   554894   4007     2827    130081  1962 ];
567s  % Results certified by NIST using 500 digit arithmetic
567s  % b and standard error in b
567s  V = [  -3482258.63459582         890420.383607373
567s          15.0618722713733         84.9149257747669
567s         -0.358191792925910E-01    0.334910077722432E-01
567s         -2.02022980381683         0.488399681651699
567s         -1.03322686717359         0.214274163161675
567s         -0.511041056535807E-01    0.226073200069370
567s          1829.15146461355         455.478499142212 ];
567s  Rsq = 0.995479004577296;
567s  F = 330.285339234588;
567s  y = Z(:,1); X = [ones(rows(Z),1), Z(:,2:end)];
567s  alpha = 0.05;
567s  [b, bint, r, rint, stats] = regress (y, X, alpha);
567s  assert(b,V(:,1),4e-6);
567s  assert(stats(1),Rsq,1e-12);
567s  assert(stats(2),F,3e-8);
567s  assert(((bint(:,1)-bint(:,2))/2)/tinv(alpha/2,9),V(:,2),-1.e-5);
567s warning: matrix singular to machine precision, rcond = 3.50566e-20
567s warning: called from
567s     regress at line 131 column 7
567s     __test__ at line 33 column 28
567s     test at line 682 column 11
567s     /tmp/tmp.yyrYB2ouCU at line 1030 column 31
567s 
567s 1 test, 1 passed, 0 known failure, 0 skipped
567s [inst/slicesample.m]
567s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/slicesample.m
567s ***** demo
567s  ## Define function to sample
567s  d = 2;
567s  mu = [-1; 2];
567s  rand ("seed", 5)  # for reproducibility
567s  Sigma = rand (d);
567s  Sigma = (Sigma + Sigma');
567s  Sigma += eye (d)*abs (eigs (Sigma, 1, "sa")) * 1.1;
567s  pdf = @(x)(2*pi)^(-d/2)*det(Sigma)^-.5*exp(-.5*sum((x.'-mu).*(Sigma\(x.'-mu)),1));
567s 
567s  ## Inputs
567s  start = ones (1,2);
567s  nsamples = 500;
567s  K = 500;
567s  m = 10;
567s  rande ("seed", 4);  rand ("seed", 5)  # for reproducibility
567s  [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "burnin", K, "thin", m, "width", [20, 30]);
567s  figure;
567s  hold on;
567s  plot (smpl(:,1), smpl(:,2), 'x');
567s  [x, y] = meshgrid (linspace (-6,4), linspace(-3,7));
567s  z = reshape (pdf ([x(:), y(:)]), size(x));
567s  mesh (x, y, z, "facecolor", "None");
567s 
567s  ## Using sample points to find the volume of half a sphere with radius of .5
567s  f = @(x) ((.25-(x(:,1)+1).^2-(x(:,2)-2).^2).^.5.*(((x(:,1)+1).^2+(x(:,2)-2).^2)<.25)).';
567s  int = mean (f (smpl) ./ pdf (smpl));
567s  errest = std (f (smpl) ./ pdf (smpl)) / nsamples^.5;
567s  trueerr = abs (2/3*pi*.25^(3/2)-int);
567s  fprintf ("Monte Carlo integral estimate int f(x) dx = %f\n", int);
567s  fprintf ("Monte Carlo integral error estimate %f\n", errest);
567s  fprintf ("The actual error %f\n", trueerr);
567s  mesh (x,y,reshape (f([x(:), y(:)]), size(x)), "facecolor", "None");
567s ***** demo
567s  ## Integrate truncated normal distribution to find normilization constant
567s  pdf = @(x) exp (-.5*x.^2)/(pi^.5*2^.5);
567s  nsamples = 1e3;
567s  rande ("seed", 4);  rand ("seed", 5)  # for reproducibility
567s  [smpl, accept] = slicesample (1, nsamples, "pdf", pdf, "thin", 4);
567s  f = @(x) exp (-.5 * x .^ 2) .* (x >= -2 & x <= 2);
567s  x = linspace (-3, 3, 1000);
567s  area (x, f(x));
567s  xlabel ("x");
567s  ylabel ("f(x)");
567s  int = mean (f (smpl) ./ pdf (smpl));
567s  errest = std (f (smpl) ./ pdf (smpl)) / nsamples ^ 0.5;
567s  trueerr = abs (erf (2 ^ 0.5) * 2 ^ 0.5 * pi ^ 0.5 - int);
567s  fprintf("Monte Carlo integral estimate int f(x) dx = %f\n", int);
567s  fprintf("Monte Carlo integral error estimate %f\n", errest);
567s  fprintf("The actual error %f\n", trueerr);
567s ***** test
567s  start = 0.5;
567s  nsamples = 1e3;
567s  pdf = @(x) exp (-.5*(x-1).^2)/(2*pi)^.5;
567s  [smpl, accept] = slicesample (start, nsamples, "pdf", pdf, "thin", 2, "burnin", 0, "width", 5);
567s  assert (mean (smpl, 1), 1, .15);
567s  assert (var (smpl, 1), 1, .25);
568s ***** error slicesample ();
568s ***** error slicesample (1);
568s ***** error slicesample (1, 1);
568s 4 tests, 4 passed, 0 known failure, 0 skipped
568s [inst/hmmgenerate.m]
568s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/hmmgenerate.m
568s ***** test
568s  len = 25;
568s  transprob = [0.8, 0.2; 0.4, 0.6];
568s  outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
568s  [sequence, states] = hmmgenerate (len, transprob, outprob);
568s  assert (length (sequence), len);
568s  assert (length (states), len);
568s  assert (min (sequence) >= 1);
568s  assert (max (sequence) <= columns (outprob));
568s  assert (min (states) >= 1);
568s  assert (max (states) <= rows (transprob));
568s ***** test
568s  len = 25;
568s  transprob = [0.8, 0.2; 0.4, 0.6];
568s  outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
568s  symbols = {"A", "B", "C"};
568s  statenames = {"One", "Two"};
568s  [sequence, states] = hmmgenerate (len, transprob, outprob, ...
568s                       "symbols", symbols, "statenames", statenames);
568s  assert (length (sequence), len);
568s  assert (length (states), len);
568s  assert (strcmp (sequence, "A") + strcmp (sequence, "B") + ...
568s                                   strcmp (sequence, "C") == ones (1, len));
568s  assert (strcmp (states, "One") + strcmp (states, "Two") == ones (1, len));
568s 2 tests, 2 passed, 0 known failure, 0 skipped
568s [inst/dist_wrap/pdf.m]
568s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/pdf.m
568s ***** shared x
568s  x = [1:5];
568s ***** assert (pdf ("Beta", x, 5, 2), betapdf (x, 5, 2))
568s ***** assert (pdf ("beta", x, 5, 2), betapdf (x, 5, 2))
568s ***** assert (pdf ("Binomial", x, 5, 2), binopdf (x, 5, 2))
568s ***** assert (pdf ("bino", x, 5, 2), binopdf (x, 5, 2))
568s ***** assert (pdf ("Birnbaum-Saunders", x, 5, 2), bisapdf (x, 5, 2))
568s ***** assert (pdf ("bisa", x, 5, 2), bisapdf (x, 5, 2))
568s ***** assert (pdf ("Burr", x, 5, 2, 2), burrpdf (x, 5, 2, 2))
568s ***** assert (pdf ("burr", x, 5, 2, 2), burrpdf (x, 5, 2, 2))
568s ***** assert (pdf ("Cauchy", x, 5, 2), cauchypdf (x, 5, 2))
568s ***** assert (pdf ("cauchy", x, 5, 2), cauchypdf (x, 5, 2))
568s ***** assert (pdf ("Chi-squared", x, 5), chi2pdf (x, 5))
568s ***** assert (pdf ("chi2", x, 5), chi2pdf (x, 5))
568s ***** assert (pdf ("Extreme Value", x, 5, 2), evpdf (x, 5, 2))
568s ***** assert (pdf ("ev", x, 5, 2), evpdf (x, 5, 2))
568s ***** assert (pdf ("Exponential", x, 5), exppdf (x, 5))
568s ***** assert (pdf ("exp", x, 5), exppdf (x, 5))
568s ***** assert (pdf ("F-Distribution", x, 5, 2), fpdf (x, 5, 2))
568s ***** assert (pdf ("f", x, 5, 2), fpdf (x, 5, 2))
568s ***** assert (pdf ("Gamma", x, 5, 2), gampdf (x, 5, 2))
568s ***** assert (pdf ("gam", x, 5, 2), gampdf (x, 5, 2))
568s ***** assert (pdf ("Geometric", x, 5), geopdf (x, 5))
568s ***** assert (pdf ("geo", x, 5), geopdf (x, 5))
568s ***** assert (pdf ("Generalized Extreme Value", x, 5, 2, 2), gevpdf (x, 5, 2, 2))
568s ***** assert (pdf ("gev", x, 5, 2, 2), gevpdf (x, 5, 2, 2))
568s ***** assert (pdf ("Generalized Pareto", x, 5, 2, 2), gppdf (x, 5, 2, 2))
568s ***** assert (pdf ("gp", x, 5, 2, 2), gppdf (x, 5, 2, 2))
568s ***** assert (pdf ("Gumbel", x, 5, 2), gumbelpdf (x, 5, 2))
568s ***** assert (pdf ("gumbel", x, 5, 2), gumbelpdf (x, 5, 2))
568s ***** assert (pdf ("Half-normal", x, 5, 2), hnpdf (x, 5, 2))
568s ***** assert (pdf ("hn", x, 5, 2), hnpdf (x, 5, 2))
568s ***** assert (pdf ("Hypergeometric", x, 5, 2, 2), hygepdf (x, 5, 2, 2))
568s ***** assert (pdf ("hyge", x, 5, 2, 2), hygepdf (x, 5, 2, 2))
568s ***** assert (pdf ("Inverse Gaussian", x, 5, 2), invgpdf (x, 5, 2))
568s ***** assert (pdf ("invg", x, 5, 2), invgpdf (x, 5, 2))
568s ***** assert (pdf ("Laplace", x, 5, 2), laplacepdf (x, 5, 2))
568s ***** assert (pdf ("laplace", x, 5, 2), laplacepdf (x, 5, 2))
568s ***** assert (pdf ("Logistic", x, 5, 2), logipdf (x, 5, 2))
568s ***** assert (pdf ("logi", x, 5, 2), logipdf (x, 5, 2))
568s ***** assert (pdf ("Log-Logistic", x, 5, 2), loglpdf (x, 5, 2))
568s ***** assert (pdf ("logl", x, 5, 2), loglpdf (x, 5, 2))
568s ***** assert (pdf ("Lognormal", x, 5, 2), lognpdf (x, 5, 2))
568s ***** assert (pdf ("logn", x, 5, 2), lognpdf (x, 5, 2))
568s ***** assert (pdf ("Nakagami", x, 5, 2), nakapdf (x, 5, 2))
568s ***** assert (pdf ("naka", x, 5, 2), nakapdf (x, 5, 2))
568s ***** assert (pdf ("Negative Binomial", x, 5, 2), nbinpdf (x, 5, 2))
568s ***** assert (pdf ("nbin", x, 5, 2), nbinpdf (x, 5, 2))
568s ***** assert (pdf ("Noncentral F-Distribution", x, 5, 2, 2), ncfpdf (x, 5, 2, 2))
568s ***** assert (pdf ("ncf", x, 5, 2, 2), ncfpdf (x, 5, 2, 2))
568s ***** assert (pdf ("Noncentral Student T", x, 5, 2), nctpdf (x, 5, 2))
568s ***** assert (pdf ("nct", x, 5, 2), nctpdf (x, 5, 2))
568s ***** assert (pdf ("Noncentral Chi-Squared", x, 5, 2), ncx2pdf (x, 5, 2))
568s ***** assert (pdf ("ncx2", x, 5, 2), ncx2pdf (x, 5, 2))
568s ***** assert (pdf ("Normal", x, 5, 2), normpdf (x, 5, 2))
568s ***** assert (pdf ("norm", x, 5, 2), normpdf (x, 5, 2))
568s ***** assert (pdf ("Poisson", x, 5), poisspdf (x, 5))
568s ***** assert (pdf ("poiss", x, 5), poisspdf (x, 5))
568s ***** assert (pdf ("Rayleigh", x, 5), raylpdf (x, 5))
568s ***** assert (pdf ("rayl", x, 5), raylpdf (x, 5))
568s ***** assert (pdf ("Rician", x, 5, 1), ricepdf (x, 5, 1))
568s ***** assert (pdf ("rice", x, 5, 1), ricepdf (x, 5, 1))
568s ***** assert (pdf ("Student T", x, 5), tpdf (x, 5))
568s ***** assert (pdf ("t", x, 5), tpdf (x, 5))
568s ***** assert (pdf ("location-scale T", x, 5, 1, 2), tlspdf (x, 5, 1, 2))
568s ***** assert (pdf ("tls", x, 5, 1, 2), tlspdf (x, 5, 1, 2))
568s ***** assert (pdf ("Triangular", x, 5, 2, 2), tripdf (x, 5, 2, 2))
568s ***** assert (pdf ("tri", x, 5, 2, 2), tripdf (x, 5, 2, 2))
568s ***** assert (pdf ("Discrete Uniform", x, 5), unidpdf (x, 5))
568s ***** assert (pdf ("unid", x, 5), unidpdf (x, 5))
568s ***** assert (pdf ("Uniform", x, 5, 2), unifpdf (x, 5, 2))
568s ***** assert (pdf ("unif", x, 5, 2), unifpdf (x, 5, 2))
568s ***** assert (pdf ("Von Mises", x, 5, 2), vmpdf (x, 5, 2))
568s ***** assert (pdf ("vm", x, 5, 2), vmpdf (x, 5, 2))
568s ***** assert (pdf ("Weibull", x, 5, 2), wblpdf (x, 5, 2))
568s ***** assert (pdf ("wbl", x, 5, 2), wblpdf (x, 5, 2))
568s ***** error<pdf: distribution NAME must a char string.> pdf (1)
568s ***** error<pdf: distribution NAME must a char string.> pdf ({"beta"})
568s ***** error<pdf: X must be numeric.> pdf ("beta", {[1 2 3 4 5]})
568s ***** error<pdf: X must be numeric.> pdf ("beta", "text")
568s ***** error<pdf: values in X must be real.> pdf ("beta", 1+i)
568s ***** error<pdf: distribution parameters must be numeric.> ...
568s  pdf ("Beta", x, "a", 2)
568s ***** error<pdf: distribution parameters must be numeric.> ...
568s  pdf ("Beta", x, 5, "")
568s ***** error<pdf: distribution parameters must be numeric.> ...
568s  pdf ("Beta", x, 5, {2})
568s ***** error<pdf: chi2 distribution requires 1 parameter.> pdf ("chi2", x)
568s ***** error<pdf: Beta distribution requires 2 parameters.> pdf ("Beta", x, 5)
568s ***** error<pdf: Burr distribution requires 3 parameters.> pdf ("Burr", x, 5)
568s ***** error<pdf: Burr distribution requires 3 parameters.> pdf ("Burr", x, 5, 2)
568s 86 tests, 86 passed, 0 known failure, 0 skipped
568s [inst/dist_wrap/random.m]
568s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/random.m
568s ***** assert (size (random ("Beta", 5, 2, 2, 10)), size (betarnd (5, 2, 2, 10)))
569s ***** assert (size (random ("beta", 5, 2, 2, 10)), size (betarnd (5, 2, 2, 10)))
569s ***** assert (size (random ("Binomial", 5, 2, [10, 20])), size (binornd (5, 2, 10, 20)))
569s ***** assert (size (random ("bino", 5, 2, [10, 20])), size (binornd (5, 2, 10, 20)))
569s ***** assert (size (random ("Birnbaum-Saunders", 5, 2, [10, 20])), size (bisarnd (5, 2, 10, 20)))
569s ***** assert (size (random ("bisa", 5, 2, [10, 20])), size (bisarnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Burr", 5, 2, 2, [10, 20])), size (burrrnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("burr", 5, 2, 2, [10, 20])), size (burrrnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("Cauchy", 5, 2, [10, 20])), size (cauchyrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("cauchy", 5, 2, [10, 20])), size (cauchyrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Chi-squared", 5, [10, 20])), size (chi2rnd (5, 10, 20)))
569s ***** assert (size (random ("chi2", 5, [10, 20])), size (chi2rnd (5, 10, 20)))
569s ***** assert (size (random ("Extreme Value", 5, 2, [10, 20])), size (evrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("ev", 5, 2, [10, 20])), size (evrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Exponential", 5, [10, 20])), size (exprnd (5, 10, 20)))
569s ***** assert (size (random ("exp", 5, [10, 20])), size (exprnd (5, 10, 20)))
569s ***** assert (size (random ("F-Distribution", 5, 2, [10, 20])), size (frnd (5, 2, 10, 20)))
569s ***** assert (size (random ("f", 5, 2, [10, 20])), size (frnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Gamma", 5, 2, [10, 20])), size (gamrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("gam", 5, 2, [10, 20])), size (gamrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Geometric", 5, [10, 20])), size (geornd (5, 10, 20)))
569s ***** assert (size (random ("geo", 5, [10, 20])), size (geornd (5, 10, 20)))
569s ***** assert (size (random ("Generalized Extreme Value", 5, 2, 2, [10, 20])), size (gevrnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("gev", 5, 2, 2, [10, 20])), size (gevrnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("Generalized Pareto", 5, 2, 2, [10, 20])), size (gprnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("gp", 5, 2, 2, [10, 20])), size (gprnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("Gumbel", 5, 2, [10, 20])), size (gumbelrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("gumbel", 5, 2, [10, 20])), size (gumbelrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Half-normal", 5, 2, [10, 20])), size (hnrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("hn", 5, 2, [10, 20])), size (hnrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Hypergeometric", 5, 2, 2, [10, 20])), size (hygernd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("hyge", 5, 2, 2, [10, 20])), size (hygernd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("Inverse Gaussian", 5, 2, [10, 20])), size (invgrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("invg", 5, 2, [10, 20])), size (invgrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Laplace", 5, 2, [10, 20])), size (laplacernd (5, 2, 10, 20)))
569s ***** assert (size (random ("laplace", 5, 2, [10, 20])), size (laplacernd (5, 2, 10, 20)))
569s ***** assert (size (random ("Logistic", 5, 2, [10, 20])), size (logirnd (5, 2, 10, 20)))
569s ***** assert (size (random ("logi", 5, 2, [10, 20])), size (logirnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Log-Logistic", 5, 2, [10, 20])), size (loglrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("logl", 5, 2, [10, 20])), size (loglrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Lognormal", 5, 2, [10, 20])), size (lognrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("logn", 5, 2, [10, 20])), size (lognrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Nakagami", 5, 2, [10, 20])), size (nakarnd (5, 2, 10, 20)))
569s ***** assert (size (random ("naka", 5, 2, [10, 20])), size (nakarnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Negative Binomial", 5, 2, [10, 20])), size (nbinrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("nbin", 5, 2, [10, 20])), size (nbinrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Noncentral F-Distribution", 5, 2, 2, [10, 20])), size (ncfrnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("ncf", 5, 2, 2, [10, 20])), size (ncfrnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("Noncentral Student T", 5, 2, [10, 20])), size (nctrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("nct", 5, 2, [10, 20])), size (nctrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Noncentral Chi-Squared", 5, 2, [10, 20])), size (ncx2rnd (5, 2, 10, 20)))
569s ***** assert (size (random ("ncx2", 5, 2, [10, 20])), size (ncx2rnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Normal", 5, 2, [10, 20])), size (normrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("norm", 5, 2, [10, 20])), size (normrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Poisson", 5, [10, 20])), size (poissrnd (5, 10, 20)))
569s ***** assert (size (random ("poiss", 5, [10, 20])), size (poissrnd (5, 10, 20)))
569s ***** assert (size (random ("Rayleigh", 5, [10, 20])), size (raylrnd (5, 10, 20)))
569s ***** assert (size (random ("rayl", 5, [10, 20])), size (raylrnd (5, 10, 20)))
569s ***** assert (size (random ("Rician", 5, 1, [10, 20])), size (ricernd (5, 1, 10, 20)))
569s ***** assert (size (random ("rice", 5, 1, [10, 20])), size (ricernd (5, 1, 10, 20)))
569s ***** assert (size (random ("Student T", 5, [10, 20])), size (trnd (5, 10, 20)))
569s ***** assert (size (random ("t", 5, [10, 20])), size (trnd (5, 10, 20)))
569s ***** assert (size (random ("location-scale T", 5, 1, 2, [10, 20])), size (tlsrnd (5, 1, 2, 10, 20)))
569s ***** assert (size (random ("tls", 5, 1, 2, [10, 20])), size (tlsrnd (5, 1, 2, 10, 20)))
569s ***** assert (size (random ("Triangular", 5, 2, 2, [10, 20])), size (trirnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("tri", 5, 2, 2, [10, 20])), size (trirnd (5, 2, 2, 10, 20)))
569s ***** assert (size (random ("Discrete Uniform", 5, [10, 20])), size (unidrnd (5, 10, 20)))
569s ***** assert (size (random ("unid", 5, [10, 20])), size (unidrnd (5, 10, 20)))
569s ***** assert (size (random ("Uniform", 5, 2, [10, 20])), size (unifrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("unif", 5, 2, [10, 20])), size (unifrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Von Mises", 5, 2, [10, 20])), size (vmrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("vm", 5, 2, [10, 20])), size (vmrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("Weibull", 5, 2, [10, 20])), size (wblrnd (5, 2, 10, 20)))
569s ***** assert (size (random ("wbl", 5, 2, [10, 20])), size (wblrnd (5, 2, 10, 20)))
569s ***** error<random: distribution NAME must a char string.> random (1)
569s ***** error<random: distribution NAME must a char string.> random ({"beta"})
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", "a", 2)
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", 5, "")
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", 5, {2})
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", "a", 2, 2, 10)
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", 5, "", 2, 10)
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", 5, {2}, 2, 10)
569s ***** error<random: distribution parameters must be numeric.> ...
569s  random ("Beta", 5, "", 2, 10)
569s ***** error<random: chi2 distribution requires 1 parameter.> random ("chi2")
569s ***** error<random: Beta distribution requires 2 parameters.> random ("Beta", 5)
569s ***** error<random: Burr distribution requires 3 parameters.> random ("Burr", 5)
569s ***** error<random: Burr distribution requires 3 parameters.> random ("Burr", 5, 2)
569s 87 tests, 87 passed, 0 known failure, 0 skipped
569s [inst/dist_wrap/mle.m]
569s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/mle.m
569s ***** error <mle: X must be a numeric vector of real values.> mle (ones (2))
569s ***** error <mle: X must be a numeric vector of real values.> mle ("text")
569s ***** error <mle: X must be a numeric vector of real values.> mle ([1, 2, 3, i, 5])
569s ***** error <mle: optional arguments must be in NAME-VALUE pairs.> ...
569s  mle ([1:50], "distribution")
569s ***** error <mle: 'censoring' argument must have the same size as the input data in X.> ...
569s  mle ([1:50], "censoring", logical ([1,0,1,0]))
569s ***** error <mle: 'frequency' argument must have the same size as the input data in X.> ...
569s  mle ([1:50], "frequency", [1,0,1,0])
569s ***** error <mle: 'frequency' argument must contain non-negative integer values.> ...
569s  mle ([1 0 1 0], "frequency", [-1 1 0 0])
569s ***** error <mle: 'frequency' argument must contain non-negative integer values.> ...
569s  mle ([1 0 1 0], "distribution", "nbin", "frequency", [-1 1 0 0])
569s ***** error <mle: invalid value for 'alpha' argument.> mle ([1:50], "alpha", [0.05, 0.01])
569s ***** error <mle: invalid value for 'alpha' argument.> mle ([1:50], "alpha", 1)
569s ***** error <mle: invalid value for 'alpha' argument.> mle ([1:50], "alpha", -1)
569s ***** error <mle: invalid value for 'alpha' argument.> mle ([1:50], "alpha", i)
569s ***** error <mle: 'ntrials' argument must be a positive integer scalar value.> ...
569s  mle ([1:50], "ntrials", -1)
569s ***** error <mle: 'ntrials' argument must be a positive integer scalar value.> ...
569s  mle ([1:50], "ntrials", [20, 50])
569s ***** error <mle: 'ntrials' argument must be a positive integer scalar value.> ...
569s  mle ([1:50], "ntrials", [20.3])
569s ***** error <mle: 'ntrials' argument must be a positive integer scalar value.> ...
569s  mle ([1:50], "ntrials", 3i)
569s ***** error <mle: 'options' argument must be a structure compatible for 'fminsearch'.> ...
569s  mle ([1:50], "options", 4)
569s ***** error <mle: 'options' argument must be a structure compatible for 'fminsearch'.> ...
569s  mle ([1:50], "options", struct ("x", 3))
569s ***** error <mle: unknown parameter name.> mle ([1:50], "NAME", "value")
569s ***** error <mle: censoring is not supported for the Bernoulli distribution.> ...
569s  mle ([1 0 1 0], "distribution", "bernoulli", "censoring", [1 1 0 0])
569s ***** error <mle: invalid data for the Bernoulli distribution.> ...
569s  mle ([1 2 1 0], "distribution", "bernoulli")
569s ***** error <mle: censoring is not supported for the Beta distribution.> ...
569s  mle ([1 0 1 0], "distribution", "beta", "censoring", [1 1 0 0])
569s ***** error <mle: censoring is not supported for the Binomial distribution.> ...
569s  mle ([1 0 1 0], "distribution", "bino", "censoring", [1 1 0 0])
569s ***** error <mle: 'Ntrials' parameter is required for the Binomial distribution.> ...
569s  mle ([1 0 1 0], "distribution", "bino")
569s ***** error <mle: censoring is not supported for the Geometric distribution.> ...
569s  mle ([1 0 1 0], "distribution", "geo", "censoring", [1 1 0 0])
569s ***** error <mle: censoring is not supported for the Generalized Extreme Value distribution.> ...
569s  mle ([1 0 1 0], "distribution", "gev", "censoring", [1 1 0 0])
569s ***** error <mle: censoring is not supported for the Generalized Pareto distribution.> ...
569s  mle ([1 0 1 0], "distribution", "gp", "censoring", [1 1 0 0])
569s ***** error <mle: invalid 'theta' location parameter for the Generalized Pareto distribution.> ...
569s  mle ([1 0 -1 0], "distribution", "gp")
569s ***** error <mle: censoring is not supported for the Half Normal distribution.> ...
569s  mle ([1 0 1 0], "distribution", "hn", "censoring", [1 1 0 0])
569s ***** error <mle: invalid 'mu' location parameter for the Half Normal distribution.> ...
569s  mle ([1 0 -1 0], "distribution", "hn")
569s ***** error <mle: censoring is not supported for the Negative Binomial distribution.> ...
569s  mle ([1 0 1 0], "distribution", "nbin", "censoring", [1 1 0 0])
569s ***** error <mle: censoring is not supported for the Poisson distribution.> ...
569s  mle ([1 0 1 0], "distribution", "poisson", "censoring", [1 1 0 0])
569s ***** error <mle: censoring is not supported for the Discrete Uniform distribution.> ...
569s  mle ([1 0 1 0], "distribution", "unid", "censoring", [1 1 0 0])
569s ***** error <mle: censoring is not supported for the Continuous Uniform distribution.> ...
569s  mle ([1 0 1 0], "distribution", "unif", "censoring", [1 1 0 0])
569s ***** error <mle: unrecognized distribution name.> mle ([1:50], "distribution", "value")
569s ***** error <mle: censoring is not supported for the Continuous Uniform distribution.> ...
569s  mle ([1 0 1 0], "distribution", "unif", "censoring", [1 1 0 0])
569s 36 tests, 36 passed, 0 known failure, 0 skipped
569s [inst/dist_wrap/cdf.m]
569s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/cdf.m
569s ***** shared x
569s  x = [1:5];
569s ***** assert (cdf ("Beta", x, 5, 2), betacdf (x, 5, 2))
569s ***** assert (cdf ("beta", x, 5, 2, "upper"), betacdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Binomial", x, 5, 2), binocdf (x, 5, 2))
569s ***** assert (cdf ("bino", x, 5, 2, "upper"), binocdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Birnbaum-Saunders", x, 5, 2), bisacdf (x, 5, 2))
569s ***** assert (cdf ("bisa", x, 5, 2, "upper"), bisacdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Burr", x, 5, 2, 2), burrcdf (x, 5, 2, 2))
569s ***** assert (cdf ("burr", x, 5, 2, 2, "upper"), burrcdf (x, 5, 2, 2, "upper"))
569s ***** assert (cdf ("Cauchy", x, 5, 2), cauchycdf (x, 5, 2))
569s ***** assert (cdf ("cauchy", x, 5, 2, "upper"), cauchycdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Chi-squared", x, 5), chi2cdf (x, 5))
569s ***** assert (cdf ("chi2", x, 5, "upper"), chi2cdf (x, 5, "upper"))
569s ***** assert (cdf ("Extreme Value", x, 5, 2), evcdf (x, 5, 2))
569s ***** assert (cdf ("ev", x, 5, 2, "upper"), evcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Exponential", x, 5), expcdf (x, 5))
569s ***** assert (cdf ("exp", x, 5, "upper"), expcdf (x, 5, "upper"))
569s ***** assert (cdf ("F-Distribution", x, 5, 2), fcdf (x, 5, 2))
569s ***** assert (cdf ("f", x, 5, 2, "upper"), fcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Gamma", x, 5, 2), gamcdf (x, 5, 2))
569s ***** assert (cdf ("gam", x, 5, 2, "upper"), gamcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Geometric", x, 5), geocdf (x, 5))
569s ***** assert (cdf ("geo", x, 5, "upper"), geocdf (x, 5, "upper"))
569s ***** assert (cdf ("Generalized Extreme Value", x, 5, 2, 2), gevcdf (x, 5, 2, 2))
569s ***** assert (cdf ("gev", x, 5, 2, 2, "upper"), gevcdf (x, 5, 2, 2, "upper"))
569s ***** assert (cdf ("Generalized Pareto", x, 5, 2, 2), gpcdf (x, 5, 2, 2))
569s ***** assert (cdf ("gp", x, 5, 2, 2, "upper"), gpcdf (x, 5, 2, 2, "upper"))
569s ***** assert (cdf ("Gumbel", x, 5, 2), gumbelcdf (x, 5, 2))
569s ***** assert (cdf ("gumbel", x, 5, 2, "upper"), gumbelcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Half-normal", x, 5, 2), hncdf (x, 5, 2))
569s ***** assert (cdf ("hn", x, 5, 2, "upper"), hncdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Hypergeometric", x, 5, 2, 2), hygecdf (x, 5, 2, 2))
569s ***** assert (cdf ("hyge", x, 5, 2, 2, "upper"), hygecdf (x, 5, 2, 2, "upper"))
569s ***** assert (cdf ("Inverse Gaussian", x, 5, 2), invgcdf (x, 5, 2))
569s ***** assert (cdf ("invg", x, 5, 2, "upper"), invgcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Laplace", x, 5, 2), laplacecdf (x, 5, 2))
569s ***** assert (cdf ("laplace", x, 5, 2, "upper"), laplacecdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Logistic", x, 5, 2), logicdf (x, 5, 2))
569s ***** assert (cdf ("logi", x, 5, 2, "upper"), logicdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Log-Logistic", x, 5, 2), loglcdf (x, 5, 2))
569s ***** assert (cdf ("logl", x, 5, 2, "upper"), loglcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Lognormal", x, 5, 2), logncdf (x, 5, 2))
569s ***** assert (cdf ("logn", x, 5, 2, "upper"), logncdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Nakagami", x, 5, 2), nakacdf (x, 5, 2))
569s ***** assert (cdf ("naka", x, 5, 2, "upper"), nakacdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Negative Binomial", x, 5, 2), nbincdf (x, 5, 2))
569s ***** assert (cdf ("nbin", x, 5, 2, "upper"), nbincdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Noncentral F-Distribution", x, 5, 2, 2), ncfcdf (x, 5, 2, 2))
569s ***** assert (cdf ("ncf", x, 5, 2, 2, "upper"), ncfcdf (x, 5, 2, 2, "upper"))
569s ***** assert (cdf ("Noncentral Student T", x, 5, 2), nctcdf (x, 5, 2))
569s ***** assert (cdf ("nct", x, 5, 2, "upper"), nctcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Noncentral Chi-Squared", x, 5, 2), ncx2cdf (x, 5, 2))
569s ***** assert (cdf ("ncx2", x, 5, 2, "upper"), ncx2cdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Normal", x, 5, 2), normcdf (x, 5, 2))
569s ***** assert (cdf ("norm", x, 5, 2, "upper"), normcdf (x, 5, 2, "upper"))
569s ***** assert (cdf ("Poisson", x, 5), poisscdf (x, 5))
569s ***** assert (cdf ("poiss", x, 5, "upper"), poisscdf (x, 5, "upper"))
569s ***** assert (cdf ("Rayleigh", x, 5), raylcdf (x, 5))
569s ***** assert (cdf ("rayl", x, 5, "upper"), raylcdf (x, 5, "upper"))
569s ***** assert (cdf ("Rician", x, 5, 1), ricecdf (x, 5, 1))
569s ***** assert (cdf ("rice", x, 5, 1, "upper"), ricecdf (x, 5, 1, "upper"))
569s ***** assert (cdf ("Student T", x, 5), tcdf (x, 5))
569s ***** assert (cdf ("t", x, 5, "upper"), tcdf (x, 5, "upper"))
569s ***** assert (cdf ("location-scale T", x, 5, 1, 2), tlscdf (x, 5, 1, 2))
569s ***** assert (cdf ("tls", x, 5, 1, 2, "upper"), tlscdf (x, 5, 1, 2, "upper"))
569s ***** assert (cdf ("Triangular", x, 5, 2, 2), tricdf (x, 5, 2, 2))
569s ***** assert (cdf ("tri", x, 5, 2, 2, "upper"), tricdf (x, 5, 2, 2, "upper"))
569s ***** assert (cdf ("Discrete Uniform", x, 5), unidcdf (x, 5))
569s ***** assert (cdf ("unid", x, 5, "upper"), unidcdf (x, 5, "upper"))
570s ***** assert (cdf ("Uniform", x, 5, 2), unifcdf (x, 5, 2))
570s ***** assert (cdf ("unif", x, 5, 2, "upper"), unifcdf (x, 5, 2, "upper"))
570s ***** assert (cdf ("Von Mises", x, 5, 2), vmcdf (x, 5, 2))
570s ***** assert (cdf ("vm", x, 5, 2, "upper"), vmcdf (x, 5, 2, "upper"))
570s ***** assert (cdf ("Weibull", x, 5, 2), wblcdf (x, 5, 2))
570s ***** assert (cdf ("wbl", x, 5, 2, "upper"), wblcdf (x, 5, 2, "upper"))
570s ***** error<cdf: distribution NAME must a char string.> cdf (1)
570s ***** error<cdf: distribution NAME must a char string.> cdf ({"beta"})
570s ***** error<cdf: X must be numeric.> cdf ("beta", {[1 2 3 4 5]})
570s ***** error<cdf: X must be numeric.> cdf ("beta", "text")
570s ***** error<cdf: values in X must be real.> cdf ("beta", 1+i)
570s ***** error<cdf: distribution parameters must be numeric.> ...
570s  cdf ("Beta", x, "a", 2)
570s ***** error<cdf: distribution parameters must be numeric.> ...
570s  cdf ("Beta", x, 5, "")
570s ***** error<cdf: distribution parameters must be numeric.> ...
570s  cdf ("Beta", x, 5, {2})
570s ***** error<cdf: chi2 distribution requires 1 parameter.> cdf ("chi2", x)
570s ***** error<cdf: Beta distribution requires 2 parameters.> cdf ("Beta", x, 5)
570s ***** error<cdf: Burr distribution requires 3 parameters.> cdf ("Burr", x, 5)
570s ***** error<cdf: Burr distribution requires 3 parameters.> cdf ("Burr", x, 5, 2)
570s 86 tests, 86 passed, 0 known failure, 0 skipped
570s [inst/dist_wrap/makedist.m]
570s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/makedist.m
570s ***** test
570s  pd = makedist ("beta");
570s  assert (class (pd), "BetaDistribution");
570s  assert (pd.a, 1);
570s  assert (pd.b, 1);
570s ***** test
570s  pd = makedist ("beta", "a", 5);
570s  assert (pd.a, 5);
570s  assert (pd.b, 1);
570s ***** test
570s  pd = makedist ("beta", "b", 5);
570s  assert (pd.a, 1);
570s  assert (pd.b, 5);
570s ***** test
570s  pd = makedist ("beta", "a", 3, "b", 5);
570s  assert (pd.a, 3);
570s  assert (pd.b, 5);
570s ***** test
570s  pd = makedist ("binomial");
570s  assert (class (pd), "BinomialDistribution");
570s  assert (pd.N, 1);
570s  assert (pd.p, 0.5);
570s ***** test
570s  pd = makedist ("binomial", "N", 5);
570s  assert (pd.N, 5);
570s  assert (pd.p, 0.5);
570s ***** test
570s  pd = makedist ("binomial", "p", 0.2);
570s  assert (pd.N, 1);
570s  assert (pd.p, 0.2);
570s ***** test
570s  pd = makedist ("binomial", "N", 3, "p", 0.3);
570s  assert (pd.N, 3);
570s  assert (pd.p, 0.3);
570s ***** test
570s  pd = makedist ("birnbaumsaunders");
570s  assert (class (pd), "BirnbaumSaundersDistribution");
570s  assert (pd.beta, 1);
570s  assert (pd.gamma, 1);
570s ***** test
570s  pd = makedist ("birnbaumsaunders", "beta", 5);
570s  assert (pd.beta, 5);
570s  assert (pd.gamma, 1);
570s ***** test
570s  pd = makedist ("birnbaumsaunders", "gamma", 5);
570s  assert (pd.beta, 1);
570s  assert (pd.gamma, 5);
570s ***** test
570s  pd = makedist ("birnbaumsaunders", "beta", 3, "gamma", 5);
570s  assert (pd.beta, 3);
570s  assert (pd.gamma, 5);
570s ***** test
570s  pd = makedist ("burr");
570s  assert (class (pd), "BurrDistribution");
570s  assert (pd.alpha, 1);
570s  assert (pd.c, 1);
570s  assert (pd.k, 1);
570s ***** test
570s  pd = makedist ("burr", "k", 5);
570s  assert (pd.alpha, 1);
570s  assert (pd.c, 1);
570s  assert (pd.k, 5);
570s ***** test
570s  pd = makedist ("burr", "c", 5);
570s  assert (pd.alpha, 1);
570s  assert (pd.c, 5);
570s  assert (pd.k, 1);
570s ***** test
570s  pd = makedist ("burr", "alpha", 3, "c", 5);
570s  assert (pd.alpha, 3);
570s  assert (pd.c, 5);
570s  assert (pd.k, 1);
570s ***** test
570s  pd = makedist ("burr", "k", 3, "c", 5);
570s  assert (pd.alpha, 1);
570s  assert (pd.c, 5);
570s  assert (pd.k, 3);
570s ***** test
570s  pd = makedist ("exponential");
570s  assert (class (pd), "ExponentialDistribution");
570s  assert (pd.mu, 1);
570s ***** test
570s  pd = makedist ("exponential", "mu", 5);
570s  assert (pd.mu, 5);
570s ***** test
570s  pd = makedist ("extremevalue");
570s  assert (class (pd), "ExtremeValueDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("extremevalue", "mu", 5);
570s  assert (class (pd), "ExtremeValueDistribution");
570s  assert (pd.mu, 5);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("ev", "sigma", 5);
570s  assert (class (pd), "ExtremeValueDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("ev", "mu", -3, "sigma", 5);
570s  assert (class (pd), "ExtremeValueDistribution");
570s  assert (pd.mu, -3);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("gamma");
570s  assert (class (pd), "GammaDistribution");
570s  assert (pd.a, 1);
570s  assert (pd.b, 1);
570s ***** test
570s  pd = makedist ("gamma", "a", 5);
570s  assert (pd.a, 5);
570s  assert (pd.b, 1);
570s ***** test
570s  pd = makedist ("gamma", "b", 5);
570s  assert (pd.a, 1);
570s  assert (pd.b, 5);
570s ***** test
570s  pd = makedist ("gamma", "a", 3, "b", 5);
570s  assert (pd.a, 3);
570s  assert (pd.b, 5);
570s ***** test
570s  pd = makedist ("GeneralizedExtremeValue");
570s  assert (class (pd), "GeneralizedExtremeValueDistribution");
570s  assert (pd.k, 0);
570s  assert (pd.sigma, 1);
570s  assert (pd.mu, 0);
570s ***** test
570s  pd = makedist ("GeneralizedExtremeValue", "k", 5);
570s  assert (pd.k, 5);
570s  assert (pd.sigma, 1);
570s  assert (pd.mu, 0);
570s ***** test
570s  pd = makedist ("GeneralizedExtremeValue", "sigma", 5);
570s  assert (pd.k, 0);
570s  assert (pd.sigma, 5);
570s  assert (pd.mu, 0);
570s ***** test
570s  pd = makedist ("GeneralizedExtremeValue", "k", 3, "sigma", 5);
570s  assert (pd.k, 3);
570s  assert (pd.sigma, 5);
570s  assert (pd.mu, 0);
570s ***** test
570s  pd = makedist ("GeneralizedExtremeValue", "mu", 3, "sigma", 5);
570s  assert (pd.k, 0);
570s  assert (pd.sigma, 5);
570s  assert (pd.mu, 3);
570s ***** test
570s  pd = makedist ("GeneralizedPareto");
570s  assert (class (pd), "GeneralizedParetoDistribution");
570s  assert (pd.k, 1);
570s  assert (pd.sigma, 1);
570s  assert (pd.theta, 1);
570s ***** test
570s  pd = makedist ("GeneralizedPareto", "k", 5);
570s  assert (pd.k, 5);
570s  assert (pd.sigma, 1);
570s  assert (pd.theta, 1);
570s ***** test
570s  pd = makedist ("GeneralizedPareto", "sigma", 5);
570s  assert (pd.k, 1);
570s  assert (pd.sigma, 5);
570s  assert (pd.theta, 1);
570s ***** test
570s  pd = makedist ("GeneralizedPareto", "k", 3, "sigma", 5);
570s  assert (pd.k, 3);
570s  assert (pd.sigma, 5);
570s  assert (pd.theta, 1);
570s ***** test
570s  pd = makedist ("GeneralizedPareto", "theta", 3, "sigma", 5);
570s  assert (pd.k, 1);
570s  assert (pd.sigma, 5);
570s  assert (pd.theta, 3);
570s ***** test
570s  pd = makedist ("HalfNormal");
570s  assert (class (pd), "HalfNormalDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("HalfNormal", "mu", 5);
570s  assert (pd.mu, 5);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("HalfNormal", "sigma", 5);
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("HalfNormal", "mu", 3, "sigma", 5);
570s  assert (pd.mu, 3);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("InverseGaussian");
570s  assert (class (pd), "InverseGaussianDistribution");
570s  assert (pd.mu, 1);
570s  assert (pd.lambda, 1);
570s ***** test
570s  pd = makedist ("InverseGaussian", "mu", 5);
570s  assert (pd.mu, 5);
570s  assert (pd.lambda, 1);
570s ***** test
570s  pd = makedist ("InverseGaussian", "lambda", 5);
570s  assert (pd.mu, 1);
570s  assert (pd.lambda, 5);
570s ***** test
570s  pd = makedist ("InverseGaussian", "mu", 3, "lambda", 5);
570s  assert (pd.mu, 3);
570s  assert (pd.lambda, 5);
570s ***** test
570s  pd = makedist ("logistic");
570s  assert (class (pd), "LogisticDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("logistic", "mu", 5);
570s  assert (pd.mu, 5);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("logistic", "sigma", 5);
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("logistic", "mu", 3, "sigma", 5);
570s  assert (pd.mu, 3);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("loglogistic");
570s  assert (class (pd), "LoglogisticDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("loglogistic", "mu", 5);
570s  assert (pd.mu, 5);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("loglogistic", "sigma", 5);
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("loglogistic", "mu", 3, "sigma", 5);
570s  assert (pd.mu, 3);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("Lognormal");
570s  assert (class (pd), "LognormalDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Lognormal", "mu", 5);
570s  assert (pd.mu, 5);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Lognormal", "sigma", 5);
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("Lognormal", "mu", -3, "sigma", 5);
570s  assert (pd.mu, -3);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("Loguniform");
570s  assert (class (pd), "LoguniformDistribution");
570s  assert (pd.Lower, 1);
570s  assert (pd.Upper, 4);
570s ***** test
570s  pd = makedist ("Loguniform", "Lower", 2);
570s  assert (pd.Lower, 2);
570s  assert (pd.Upper, 4);
570s ***** test
570s  pd = makedist ("Loguniform", "Lower", 1, "Upper", 3);
570s  assert (pd.Lower, 1);
570s  assert (pd.Upper, 3);
570s ***** test
570s  pd = makedist ("Multinomial");
570s  assert (class (pd), "MultinomialDistribution");
570s  assert (pd.Probabilities, [0.5, 0.5]);
570s ***** test
570s  pd = makedist ("Multinomial", "Probabilities", [0.2, 0.3, 0.1, 0.4]);
570s  assert (class (pd), "MultinomialDistribution");
570s  assert (pd.Probabilities, [0.2, 0.3, 0.1, 0.4]);
570s ***** test
570s  pd = makedist ("Nakagami");
570s  assert (class (pd), "NakagamiDistribution");
570s  assert (pd.mu, 1);
570s  assert (pd.omega, 1);
570s ***** test
570s  pd = makedist ("Nakagami", "mu", 5);
570s  assert (class (pd), "NakagamiDistribution");
570s  assert (pd.mu, 5);
570s  assert (pd.omega, 1);
570s ***** test
570s  pd = makedist ("Nakagami", "omega", 0.3);
570s  assert (class (pd), "NakagamiDistribution");
570s  assert (pd.mu, 1);
570s  assert (pd.omega, 0.3);
570s ***** test
570s  pd = makedist ("NegativeBinomial");
570s  assert (class (pd), "NegativeBinomialDistribution");
570s  assert (pd.R, 1);
570s  assert (pd.P, 0.5);
570s ***** test
570s  pd = makedist ("NegativeBinomial", "R", 5);
570s  assert (class (pd), "NegativeBinomialDistribution");
570s  assert (pd.R, 5);
570s  assert (pd.P, 0.5);
570s ***** test
570s  pd = makedist ("NegativeBinomial", "p", 0.3);
570s  assert (class (pd), "NegativeBinomialDistribution");
570s  assert (pd.R, 1);
570s  assert (pd.P, 0.3);
570s ***** test
570s  pd = makedist ("Normal");
570s  assert (class (pd), "NormalDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Normal", "mu", 5);
570s  assert (class (pd), "NormalDistribution");
570s  assert (pd.mu, 5);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Normal", "sigma", 5);
570s  assert (class (pd), "NormalDistribution");
570s  assert (pd.mu, 0);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("Normal", "mu", -3, "sigma", 5);
570s  assert (class (pd), "NormalDistribution");
570s  assert (pd.mu, -3);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("PiecewiseLinear");
570s  assert (class (pd), "PiecewiseLinearDistribution");
570s  assert (pd.x, [0; 1]);
570s  assert (pd.Fx, [0; 1]);
570s ***** test
570s  pd = makedist ("PiecewiseLinear", "x", [0, 1, 2], "Fx", [0, 0.5, 1]);
570s  assert (pd.x, [0; 1; 2]);
570s  assert (pd.Fx, [0; 0.5; 1]);
570s ***** test
570s  pd = makedist ("Poisson");
570s  assert (class (pd), "PoissonDistribution");
570s  assert (pd.lambda, 1);
570s ***** test
570s  pd = makedist ("Poisson", "lambda", 5);
570s  assert (pd.lambda, 5);
570s ***** test
570s  pd = makedist ("Rayleigh");
570s  assert (class (pd), "RayleighDistribution");
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Rayleigh", "sigma", 5);
570s  assert (pd.sigma, 5);
570s ***** test
570s  pd = makedist ("Rician");
570s  assert (class (pd), "RicianDistribution");
570s  assert (pd.s, 1);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Rician", "s", 3);
570s  assert (pd.s, 3);
570s  assert (pd.sigma, 1);
570s ***** test
570s  pd = makedist ("Rician", "sigma", 3);
570s  assert (pd.s, 1);
570s  assert (pd.sigma, 3);
570s ***** test
570s  pd = makedist ("Rician", "s", 2, "sigma", 3);
570s  assert (pd.s, 2);
570s  assert (pd.sigma, 3);
571s ***** warning
571s  pd = makedist ("stable");
571s  assert (class (pd), "double");
571s  assert (isempty (pd), true);
571s ***** test
571s  pd = makedist ("tlocationscale");
571s  assert (class (pd), "tLocationScaleDistribution");
571s  assert (pd.mu, 0);
571s  assert (pd.sigma, 1);
571s  assert (pd.nu, 5);
571s ***** test
571s  pd = makedist ("tlocationscale", "mu", 5);
571s  assert (pd.mu, 5);
571s  assert (pd.sigma, 1);
571s  assert (pd.nu, 5);
571s ***** test
571s  pd = makedist ("tlocationscale", "sigma", 2);
571s  assert (pd.mu, 0);
571s  assert (pd.sigma, 2);
571s  assert (pd.nu, 5);
571s ***** test
571s  pd = makedist ("tlocationscale", "mu", 5, "sigma", 2);
571s  assert (pd.mu, 5);
571s  assert (pd.sigma, 2);
571s  assert (pd.nu, 5);
571s ***** test
571s  pd = makedist ("tlocationscale", "nu", 1, "sigma", 2);
571s  assert (pd.mu, 0);
571s  assert (pd.sigma, 2);
571s  assert (pd.nu, 1);
571s ***** test
571s  pd = makedist ("tlocationscale", "mu", -2, "sigma", 3, "nu", 1);
571s  assert (pd.mu, -2);
571s  assert (pd.sigma, 3);
571s  assert (pd.nu, 1);
571s ***** test
571s  pd = makedist ("Triangular");
571s  assert (class (pd), "TriangularDistribution");
571s  assert (pd.A, 0);
571s  assert (pd.B, 0.5);
571s  assert (pd.C, 1);
571s ***** test
571s  pd = makedist ("Triangular", "A", -2);
571s  assert (pd.A, -2);
571s  assert (pd.B, 0.5);
571s  assert (pd.C, 1);
571s ***** test
571s  pd = makedist ("Triangular", "A", 0.5, "B", 0.9);
571s  assert (pd.A, 0.5);
571s  assert (pd.B, 0.9);
571s  assert (pd.C, 1);
571s ***** test
571s  pd = makedist ("Triangular", "A", 1, "B", 2, "C", 5);
571s  assert (pd.A, 1);
571s  assert (pd.B, 2);
571s  assert (pd.C, 5);
571s ***** test
571s  pd = makedist ("Uniform");
571s  assert (class (pd), "UniformDistribution");
571s  assert (pd.Lower, 0);
571s  assert (pd.Upper, 1);
571s ***** test
571s  pd = makedist ("Uniform", "Lower", -2);
571s  assert (pd.Lower, -2);
571s  assert (pd.Upper, 1);
571s ***** test
571s  pd = makedist ("Uniform", "Lower", 1, "Upper", 3);
571s  assert (pd.Lower, 1);
571s  assert (pd.Upper, 3);
571s ***** test
571s  pd = makedist ("Weibull");
571s  assert (class (pd), "WeibullDistribution");
571s  assert (pd.lambda, 1);
571s  assert (pd.k, 1);
571s ***** test
571s  pd = makedist ("Weibull", "lambda", 3);
571s  assert (pd.lambda, 3);
571s  assert (pd.k, 1);
571s ***** test
571s  pd = makedist ("Weibull", "lambda", 3, "k", 2);
571s  assert (pd.lambda, 3);
571s  assert (pd.k, 2);
571s ***** error <makedist: DISTNAME must be a character vector.> makedist (1)
571s ***** error <makedist: DISTNAME must be a character vector.> makedist (["as";"sd"])
571s ***** error <makedist: unrecognized distribution name.> makedist ("some")
571s ***** error <makedist: optional arguments must be in NAME-VALUE pairs.> ...
571s  makedist ("Beta", "a")
571s ***** error <makedist: unknown parameter for 'Beta' distribution.> ...
571s  makedist ("Beta", "a", 1, "Q", 23)
571s ***** error <makedist: unknown parameter for 'Binomial' distribution.> ...
571s  makedist ("Binomial", "N", 1, "Q", 23)
571s ***** error <makedist: unknown parameter for 'BirnbaumSaunders' distribution.> ...
571s  makedist ("BirnbaumSaunders", "N", 1)
571s ***** error <makedist: unknown parameter for 'Burr' distribution.> ...
571s  makedist ("Burr", "lambda", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'ExtremeValue' distribution.> ...
571s  makedist ("extremevalue", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Exponential' distribution.> ...
571s  makedist ("exponential", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Gamma' distribution.> ...
571s  makedist ("Gamma", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'GeneralizedExtremeValue' distribution.> ...
571s  makedist ("GeneralizedExtremeValue", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'GeneralizedPareto' distribution.> ...
571s  makedist ("GeneralizedPareto", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'HalfNormal' distribution.> ...
571s  makedist ("HalfNormal", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'InverseGaussian' distribution.> ...
571s  makedist ("InverseGaussian", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Logistic' distribution.> ...
571s  makedist ("Logistic", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Loglogistic' distribution.> ...
571s  makedist ("Loglogistic", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Lognormal' distribution.> ...
571s  makedist ("Lognormal", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Loguniform' distribution.> ...
571s  makedist ("Loguniform", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Multinomial' distribution.> ...
571s  makedist ("Multinomial", "k", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Nakagami' distribution.> ...
571s  makedist ("Nakagami", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'NegativeBinomial' distribution.> ...
571s  makedist ("NegativeBinomial", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Normal' distribution.> ...
571s  makedist ("Normal", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'PiecewiseLinear' distribution.> ...
571s  makedist ("PiecewiseLinear", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Poisson' distribution.> ...
571s  makedist ("Poisson", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Rayleigh' distribution.> ...
571s  makedist ("Rayleigh", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Rician' distribution.> ...
571s  makedist ("Rician", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Stable' distribution.> ...
571s  makedist ("Stable", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'tLocationScale' distribution.> ...
571s  makedist ("tLocationScale", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Triangular' distribution.> ...
571s  makedist ("Triangular", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Uniform' distribution.> ...
571s  makedist ("Uniform", "mu", 1, "sdfs", 34)
571s ***** error <makedist: unknown parameter for 'Weibull' distribution.> ...
571s  makedist ("Weibull", "mu", 1, "sdfs", 34)
571s 131 tests, 131 passed, 0 known failure, 0 skipped
571s [inst/dist_wrap/icdf.m]
571s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/icdf.m
571s ***** shared p
571s  p = [0.05:0.05:0.5];
571s ***** assert (icdf ("Beta", p, 5, 2), betainv (p, 5, 2))
571s ***** assert (icdf ("beta", p, 5, 2), betainv (p, 5, 2))
571s ***** assert (icdf ("Binomial", p, 5, 2), binoinv (p, 5, 2))
571s ***** assert (icdf ("bino", p, 5, 2), binoinv (p, 5, 2))
571s ***** assert (icdf ("Birnbaum-Saunders", p, 5, 2), bisainv (p, 5, 2))
571s ***** assert (icdf ("bisa", p, 5, 2), bisainv (p, 5, 2))
571s ***** assert (icdf ("Burr", p, 5, 2, 2), burrinv (p, 5, 2, 2))
571s ***** assert (icdf ("burr", p, 5, 2, 2), burrinv (p, 5, 2, 2))
571s ***** assert (icdf ("Cauchy", p, 5, 2), cauchyinv (p, 5, 2))
571s ***** assert (icdf ("cauchy", p, 5, 2), cauchyinv (p, 5, 2))
571s ***** assert (icdf ("Chi-squared", p, 5), chi2inv (p, 5))
571s ***** assert (icdf ("chi2", p, 5), chi2inv (p, 5))
571s ***** assert (icdf ("Extreme Value", p, 5, 2), evinv (p, 5, 2))
571s ***** assert (icdf ("ev", p, 5, 2), evinv (p, 5, 2))
571s ***** assert (icdf ("Exponential", p, 5), expinv (p, 5))
571s ***** assert (icdf ("exp", p, 5), expinv (p, 5))
571s ***** assert (icdf ("F-Distribution", p, 5, 2), finv (p, 5, 2))
571s ***** assert (icdf ("f", p, 5, 2), finv (p, 5, 2))
571s ***** assert (icdf ("Gamma", p, 5, 2), gaminv (p, 5, 2))
571s ***** assert (icdf ("gam", p, 5, 2), gaminv (p, 5, 2))
571s ***** assert (icdf ("Geometric", p, 5), geoinv (p, 5))
571s ***** assert (icdf ("geo", p, 5), geoinv (p, 5))
571s ***** assert (icdf ("Generalized Extreme Value", p, 5, 2, 2), gevinv (p, 5, 2, 2))
571s ***** assert (icdf ("gev", p, 5, 2, 2), gevinv (p, 5, 2, 2))
571s ***** assert (icdf ("Generalized Pareto", p, 5, 2, 2), gpinv (p, 5, 2, 2))
571s ***** assert (icdf ("gp", p, 5, 2, 2), gpinv (p, 5, 2, 2))
571s ***** assert (icdf ("Gumbel", p, 5, 2), gumbelinv (p, 5, 2))
571s ***** assert (icdf ("gumbel", p, 5, 2), gumbelinv (p, 5, 2))
571s ***** assert (icdf ("Half-normal", p, 5, 2), hninv (p, 5, 2))
571s ***** assert (icdf ("hn", p, 5, 2), hninv (p, 5, 2))
571s ***** assert (icdf ("Hypergeometric", p, 5, 2, 2), hygeinv (p, 5, 2, 2))
571s ***** assert (icdf ("hyge", p, 5, 2, 2), hygeinv (p, 5, 2, 2))
571s ***** assert (icdf ("Inverse Gaussian", p, 5, 2), invginv (p, 5, 2))
571s ***** assert (icdf ("invg", p, 5, 2), invginv (p, 5, 2))
571s ***** assert (icdf ("Laplace", p, 5, 2), laplaceinv (p, 5, 2))
571s ***** assert (icdf ("laplace", p, 5, 2), laplaceinv (p, 5, 2))
571s ***** assert (icdf ("Logistic", p, 5, 2), logiinv (p, 5, 2))
571s ***** assert (icdf ("logi", p, 5, 2), logiinv (p, 5, 2))
571s ***** assert (icdf ("Log-Logistic", p, 5, 2), loglinv (p, 5, 2))
571s ***** assert (icdf ("logl", p, 5, 2), loglinv (p, 5, 2))
571s ***** assert (icdf ("Lognormal", p, 5, 2), logninv (p, 5, 2))
571s ***** assert (icdf ("logn", p, 5, 2), logninv (p, 5, 2))
571s ***** assert (icdf ("Nakagami", p, 5, 2), nakainv (p, 5, 2))
571s ***** assert (icdf ("naka", p, 5, 2), nakainv (p, 5, 2))
571s ***** assert (icdf ("Negative Binomial", p, 5, 2), nbininv (p, 5, 2))
571s ***** assert (icdf ("nbin", p, 5, 2), nbininv (p, 5, 2))
571s ***** assert (icdf ("Noncentral F-Distribution", p, 5, 2, 2), ncfinv (p, 5, 2, 2))
571s ***** assert (icdf ("ncf", p, 5, 2, 2), ncfinv (p, 5, 2, 2))
571s ***** assert (icdf ("Noncentral Student T", p, 5, 2), nctinv (p, 5, 2))
572s ***** assert (icdf ("nct", p, 5, 2), nctinv (p, 5, 2))
572s ***** assert (icdf ("Noncentral Chi-Squared", p, 5, 2), ncx2inv (p, 5, 2))
572s ***** assert (icdf ("ncx2", p, 5, 2), ncx2inv (p, 5, 2))
573s ***** assert (icdf ("Normal", p, 5, 2), norminv (p, 5, 2))
573s ***** assert (icdf ("norm", p, 5, 2), norminv (p, 5, 2))
573s ***** assert (icdf ("Poisson", p, 5), poissinv (p, 5))
573s ***** assert (icdf ("poiss", p, 5), poissinv (p, 5))
573s ***** assert (icdf ("Rayleigh", p, 5), raylinv (p, 5))
573s ***** assert (icdf ("rayl", p, 5), raylinv (p, 5))
573s ***** assert (icdf ("Rician", p, 5, 1), riceinv (p, 5, 1))
573s ***** assert (icdf ("rice", p, 5, 1), riceinv (p, 5, 1))
574s ***** assert (icdf ("Student T", p, 5), tinv (p, 5))
574s ***** assert (icdf ("t", p, 5), tinv (p, 5))
574s ***** assert (icdf ("location-scale T", p, 5, 1, 2), tlsinv (p, 5, 1, 2))
574s ***** assert (icdf ("tls", p, 5, 1, 2), tlsinv (p, 5, 1, 2))
574s ***** assert (icdf ("Triangular", p, 5, 2, 2), triinv (p, 5, 2, 2))
574s ***** assert (icdf ("tri", p, 5, 2, 2), triinv (p, 5, 2, 2))
574s ***** assert (icdf ("Discrete Uniform", p, 5), unidinv (p, 5))
574s ***** assert (icdf ("unid", p, 5), unidinv (p, 5))
574s ***** assert (icdf ("Uniform", p, 5, 2), unifinv (p, 5, 2))
574s ***** assert (icdf ("unif", p, 5, 2), unifinv (p, 5, 2))
574s ***** assert (icdf ("Von Mises", p, 5, 2), vminv (p, 5, 2))
579s ***** assert (icdf ("vm", p, 5, 2), vminv (p, 5, 2))
584s ***** assert (icdf ("Weibull", p, 5, 2), wblinv (p, 5, 2))
584s ***** assert (icdf ("wbl", p, 5, 2), wblinv (p, 5, 2))
584s ***** error<icdf: distribution NAME must a char string.> icdf (1)
584s ***** error<icdf: distribution NAME must a char string.> icdf ({"beta"})
584s ***** error<icdf: P must be numeric.> icdf ("beta", {[1 2 3 4 5]})
584s ***** error<icdf: P must be numeric.> icdf ("beta", "text")
584s ***** error<icdf: values in P must be real.> icdf ("beta", 1+i)
584s ***** error<icdf: distribution parameters must be numeric.> ...
584s  icdf ("Beta", p, "a", 2)
584s ***** error<icdf: distribution parameters must be numeric.> ...
584s  icdf ("Beta", p, 5, "")
584s ***** error<icdf: distribution parameters must be numeric.> ...
584s  icdf ("Beta", p, 5, {2})
584s ***** error<icdf: chi2 distribution requires 1 parameter.> icdf ("chi2", p)
584s ***** error<icdf: Beta distribution requires 2 parameters.> icdf ("Beta", p, 5)
584s ***** error<icdf: Burr distribution requires 3 parameters.> icdf ("Burr", p, 5)
584s ***** error<icdf: Burr distribution requires 3 parameters.> icdf ("Burr", p, 5, 2)
584s 86 tests, 86 passed, 0 known failure, 0 skipped
584s [inst/dist_wrap/fitdist.m]
584s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_wrap/fitdist.m
584s ***** test
584s  x = betarnd (1, 1, 100, 1);
584s  pd = fitdist (x, "Beta");
584s  [phat, pci] = betafit (x);
584s  assert ([pd.a, pd.b], phat);
584s  assert (paramci (pd), pci);
584s ***** test
584s  x1 = betarnd (1, 1, 100, 1);
584s  x2 = betarnd (5, 2, 100, 1);
584s  pd = fitdist ([x1; x2], "Beta", "By", [ones(100,1); 2*ones(100,1)]);
584s  [phat, pci] = betafit (x1);
584s  assert ([pd(1).a, pd(1).b], phat);
584s  assert (paramci (pd(1)), pci);
584s  [phat, pci] = betafit (x2);
584s  assert ([pd(2).a, pd(2).b], phat);
584s  assert (paramci (pd(2)), pci);
584s ***** test
584s  N = 1;
584s  x = binornd (N, 0.5, 100, 1);
584s  pd = fitdist (x, "binomial");
584s  [phat, pci] = binofit (sum (x), numel (x));
584s  assert ([pd.N, pd.p], [N, phat]);
584s  assert (paramci (pd), pci);
584s ***** test
584s  N = 3;
584s  x = binornd (N, 0.4, 100, 1);
584s  pd = fitdist (x, "binomial", "ntrials", N);
584s  [phat, pci] = binofit (sum (x), numel (x) * N);
584s  assert ([pd.N, pd.p], [N, phat]);
584s  assert (paramci (pd), pci);
584s ***** test
584s  N = 1;
584s  x1 = binornd (N, 0.5, 100, 1);
584s  x2 = binornd (N, 0.7, 100, 1);
584s  pd = fitdist ([x1; x2], "binomial", "By", [ones(100,1); 2*ones(100,1)]);
584s  [phat, pci] = binofit (sum (x1), numel (x1));
584s  assert ([pd(1).N, pd(1).p], [N, phat]);
584s  assert (paramci (pd(1)), pci);
584s  [phat, pci] = binofit (sum (x2), numel (x2));
584s  assert ([pd(2).N, pd(2).p], [N, phat]);
584s  assert (paramci (pd(2)), pci);
584s ***** test
584s  N = 5;
584s  x1 = binornd (N, 0.5, 100, 1);
584s  x2 = binornd (N, 0.8, 100, 1);
584s  pd = fitdist ([x1; x2], "binomial", "ntrials", N, ...
584s                "By", [ones(100,1); 2*ones(100,1)]);
584s  [phat, pci] = binofit (sum (x1), numel (x1) * N);
584s  assert ([pd(1).N, pd(1).p], [N, phat]);
584s  assert (paramci (pd(1)), pci);
584s  [phat, pci] = binofit (sum (x2), numel (x2) * N);
584s  assert ([pd(2).N, pd(2).p], [N, phat]);
584s  assert (paramci (pd(2)), pci);
584s ***** test
584s  x = bisarnd (1, 1, 100, 1);
584s  pd = fitdist (x, "BirnbaumSaunders");
584s  [phat, pci] = bisafit (x);
584s  assert ([pd.beta, pd.gamma], phat);
584s  assert (paramci (pd), pci);
585s ***** test
585s  x1 = bisarnd (1, 1, 100, 1);
585s  x2 = bisarnd (5, 2, 100, 1);
585s  pd = fitdist ([x1; x2], "bisa", "By", [ones(100,1); 2*ones(100,1)]);
585s  [phat, pci] = bisafit (x1);
585s  assert ([pd(1).beta, pd(1).gamma], phat);
585s  assert (paramci (pd(1)), pci);
585s  [phat, pci] = bisafit (x2);
585s  assert ([pd(2).beta, pd(2).gamma], phat);
585s  assert (paramci (pd(2)), pci);
585s ***** test
585s  x = burrrnd (1, 2, 1, 100, 1);
585s  pd = fitdist (x, "Burr");
585s  [phat, pci] = burrfit (x);
585s  assert ([pd.alpha, pd.c, pd.k], phat);
585s  assert (paramci (pd), pci);
585s ***** xtest
585s  x1 = burrrnd (1, 2, 1, 100, 1);
585s  x2 = burrrnd (1, 0.5, 2, 100, 1);
585s  pd = fitdist ([x1; x2], "burr", "By", [ones(100,1); 2*ones(100,1)]);
585s  [phat, pci] = burrfit (x1);
585s  assert ([pd(1).alpha, pd(1).c, pd(1).k], phat);
585s  assert (paramci (pd(1)), pci);
585s  [phat, pci] = burrfit (x2);
585s  assert ([pd(2).alpha, pd(2).c, pd(2).k], phat);
585s  assert (paramci (pd(2)), pci);
586s ***** test
586s  x = exprnd (1, 100, 1);
586s  pd = fitdist (x, "exponential");
586s  [muhat, muci] = expfit (x);
586s  assert ([pd.mu], muhat);
586s  assert (paramci (pd), muci);
586s ***** test
586s  x1 = exprnd (1, 100, 1);
586s  x2 = exprnd (5, 100, 1);
586s  pd = fitdist ([x1; x2], "exponential", "By", [ones(100,1); 2*ones(100,1)]);
586s  [muhat, muci] = expfit (x1);
586s  assert ([pd(1).mu], muhat);
586s  assert (paramci (pd(1)), muci);
586s  [muhat, muci] = expfit (x2);
586s  assert ([pd(2).mu], muhat);
586s  assert (paramci (pd(2)), muci);
586s ***** test
586s  x = evrnd (1, 1, 100, 1);
586s  pd = fitdist (x, "ev");
586s  [phat, pci] = evfit (x);
586s  assert ([pd.mu, pd.sigma], phat);
586s  assert (paramci (pd), pci);
586s ***** test
586s  x1 = evrnd (1, 1, 100, 1);
586s  x2 = evrnd (5, 2, 100, 1);
586s  pd = fitdist ([x1; x2], "extremevalue", "By", [ones(100,1); 2*ones(100,1)]);
586s  [phat, pci] = evfit (x1);
586s  assert ([pd(1).mu, pd(1).sigma], phat);
586s  assert (paramci (pd(1)), pci);
586s  [phat, pci] = evfit (x2);
586s  assert ([pd(2).mu, pd(2).sigma], phat);
586s  assert (paramci (pd(2)), pci);
586s ***** test
586s  x = gamrnd (1, 1, 100, 1);
586s  pd = fitdist (x, "Gamma");
586s  [phat, pci] = gamfit (x);
586s  assert ([pd.a, pd.b], phat);
586s  assert (paramci (pd), pci);
586s ***** test
586s  x1 = gamrnd (1, 1, 100, 1);
586s  x2 = gamrnd (5, 2, 100, 1);
586s  pd = fitdist ([x1; x2], "Gamma", "By", [ones(100,1); 2*ones(100,1)]);
586s  [phat, pci] = gamfit (x1);
586s  assert ([pd(1).a, pd(1).b], phat);
586s  assert (paramci (pd(1)), pci);
586s  [phat, pci] = gamfit (x2);
586s  assert ([pd(2).a, pd(2).b], phat);
586s  assert (paramci (pd(2)), pci);
586s ***** test
586s  rand ("seed", 4);   # for reproducibility
586s  x = gevrnd (-0.5, 1, 2, 1000, 1);
586s  pd = fitdist (x, "generalizedextremevalue");
586s  [phat, pci] = gevfit (x);
586s  assert ([pd.k, pd.sigma, pd.mu], phat);
586s  assert (paramci (pd), pci);
586s ***** test
586s  rand ("seed", 5);   # for reproducibility
586s  x1 = gevrnd (-0.5, 1, 2, 1000, 1);
586s  rand ("seed", 9);   # for reproducibility
586s  x2 = gevrnd (0, 1, -4, 1000, 1);
586s  pd = fitdist ([x1; x2], "gev", "By", [ones(1000,1); 2*ones(1000,1)]);
586s  [phat, pci] = gevfit (x1);
586s  assert ([pd(1).k, pd(1).sigma, pd(1).mu], phat);
586s  assert (paramci (pd(1)), pci);
586s  [phat, pci] = gevfit (x2);
586s  assert ([pd(2).k, pd(2).sigma, pd(2).mu], phat);
586s  assert (paramci (pd(2)), pci);
587s ***** test
587s  x = gprnd (1, 1, 1, 100, 1);
587s  pd = fitdist (x, "GeneralizedPareto");
587s  [phat, pci] = gpfit (x, 1);
587s  assert ([pd.k, pd.sigma, pd.theta], phat);
587s  assert (paramci (pd), pci);
587s ***** test
587s  x = gprnd (1, 1, 2, 100, 1);
587s  pd = fitdist (x, "GeneralizedPareto", "theta", 2);
587s  [phat, pci] = gpfit (x, 2);
587s  assert ([pd.k, pd.sigma, pd.theta], phat);
587s  assert (paramci (pd), pci);
587s ***** test
587s  x1 = gprnd (1, 1, 1, 100, 1);
587s  x2 = gprnd (0, 2, 1, 100, 1);
587s  pd = fitdist ([x1; x2], "gp", "By", [ones(100,1); 2*ones(100,1)]);
587s  [phat, pci] = gpfit (x1, 1);
587s  assert ([pd(1).k, pd(1).sigma, pd(1).theta], phat);
587s  assert (paramci (pd(1)), pci);
587s  [phat, pci] = gpfit (x2, 1);
587s  assert ([pd(2).k, pd(2).sigma, pd(2).theta], phat);
587s  assert (paramci (pd(2)), pci);
587s ***** test
587s  x1 = gprnd (3, 2, 2, 100, 1);
587s  x2 = gprnd (2, 3, 2, 100, 1);
587s  pd = fitdist ([x1; x2], "GeneralizedPareto", "theta", 2, ...
587s                "By", [ones(100,1); 2*ones(100,1)]);
587s  [phat, pci] = gpfit (x1, 2);
587s  assert ([pd(1).k, pd(1).sigma, pd(1).theta], phat);
587s  assert (paramci (pd(1)), pci);
587s  [phat, pci] = gpfit (x2, 2);
587s  assert ([pd(2).k, pd(2).sigma, pd(2).theta], phat);
587s  assert (paramci (pd(2)), pci);
587s ***** test
587s  x = hnrnd (0, 1, 100, 1);
587s  pd = fitdist (x, "HalfNormal");
587s  [phat, pci] = hnfit (x, 0);
587s  assert ([pd.mu, pd.sigma], phat);
587s  assert (paramci (pd), pci);
587s ***** test
587s  x = hnrnd (1, 1, 100, 1);
587s  pd = fitdist (x, "HalfNormal", "mu", 1);
587s  [phat, pci] = hnfit (x, 1);
587s  assert ([pd.mu, pd.sigma], phat);
587s  assert (paramci (pd), pci);
588s ***** test
588s  x1 = hnrnd (0, 1, 100, 1);
588s  x2 = hnrnd (0, 2, 100, 1);
588s  pd = fitdist ([x1; x2], "HalfNormal", "By", [ones(100,1); 2*ones(100,1)]);
588s  [phat, pci] = hnfit (x1, 0);
588s  assert ([pd(1).mu, pd(1).sigma], phat);
588s  assert (paramci (pd(1)), pci);
588s  [phat, pci] = hnfit (x2, 0);
588s  assert ([pd(2).mu, pd(2).sigma], phat);
588s  assert (paramci (pd(2)), pci);
588s ***** test
588s  x1 = hnrnd (2, 1, 100, 1);
588s  x2 = hnrnd (2, 2, 100, 1);
588s  pd = fitdist ([x1; x2], "HalfNormal", "mu", 2, ...
588s                "By", [ones(100,1); 2*ones(100,1)]);
588s  [phat, pci] = hnfit (x1, 2);
588s  assert ([pd(1).mu, pd(1).sigma], phat);
588s  assert (paramci (pd(1)), pci);
588s  [phat, pci] = hnfit (x2, 2);
588s  assert ([pd(2).mu, pd(2).sigma], phat);
588s  assert (paramci (pd(2)), pci);
588s ***** test
588s  x = invgrnd (1, 1, 100, 1);
588s  pd = fitdist (x, "InverseGaussian");
588s  [phat, pci] = invgfit (x);
588s  assert ([pd.mu, pd.lambda], phat);
588s  assert (paramci (pd), pci);
588s ***** test
588s  x1 = invgrnd (1, 1, 100, 1);
588s  x2 = invgrnd (5, 2, 100, 1);
588s  pd = fitdist ([x1; x2], "InverseGaussian", "By", [ones(100,1); 2*ones(100,1)]);
588s  [phat, pci] = invgfit (x1);
588s  assert ([pd(1).mu, pd(1).lambda], phat);
588s  assert (paramci (pd(1)), pci);
588s  [phat, pci] = invgfit (x2);
588s  assert ([pd(2).mu, pd(2).lambda], phat);
588s  assert (paramci (pd(2)), pci);
588s ***** test
588s  x = logirnd (1, 1, 100, 1);
588s  pd = fitdist (x, "logistic");
588s  [phat, pci] = logifit (x);
588s  assert ([pd.mu, pd.sigma], phat);
588s  assert (paramci (pd), pci);
588s ***** test
588s  x1 = logirnd (1, 1, 100, 1);
588s  x2 = logirnd (5, 2, 100, 1);
588s  pd = fitdist ([x1; x2], "logistic", "By", [ones(100,1); 2*ones(100,1)]);
588s  [phat, pci] = logifit (x1);
588s  assert ([pd(1).mu, pd(1).sigma], phat);
588s  assert (paramci (pd(1)), pci);
588s  [phat, pci] = logifit (x2);
588s  assert ([pd(2).mu, pd(2).sigma], phat);
588s  assert (paramci (pd(2)), pci);
588s ***** test
588s  x = loglrnd (1, 1, 100, 1);
588s  pd = fitdist (x, "loglogistic");
588s  [phat, pci] = loglfit (x);
588s  assert ([pd.mu, pd.sigma], phat);
588s  assert (paramci (pd), pci);
589s ***** test
589s  x1 = loglrnd (1, 1, 100, 1);
589s  x2 = loglrnd (5, 2, 100, 1);
589s  pd = fitdist ([x1; x2], "loglogistic", "By", [ones(100,1); 2*ones(100,1)]);
589s  [phat, pci] = loglfit (x1);
589s  assert ([pd(1).mu, pd(1).sigma], phat);
589s  assert (paramci (pd(1)), pci);
589s  [phat, pci] = loglfit (x2);
589s  assert ([pd(2).mu, pd(2).sigma], phat);
589s  assert (paramci (pd(2)), pci);
589s ***** test
589s  x = lognrnd (1, 1, 100, 1);
589s  pd = fitdist (x, "lognormal");
589s  [phat, pci] = lognfit (x);
589s  assert ([pd.mu, pd.sigma], phat);
589s  assert (paramci (pd), pci);
589s ***** test
589s  x1 = lognrnd (1, 1, 100, 1);
589s  x2 = lognrnd (5, 2, 100, 1);
589s  pd = fitdist ([x1; x2], "lognormal", "By", [ones(100,1); 2*ones(100,1)]);
589s  [phat, pci] = lognfit (x1);
589s  assert ([pd(1).mu, pd(1).sigma], phat);
589s  assert (paramci (pd(1)), pci);
589s  [phat, pci] = lognfit (x2);
589s  assert ([pd(2).mu, pd(2).sigma], phat);
589s  assert (paramci (pd(2)), pci);
589s ***** test
589s  x = nakarnd (2, 0.5, 100, 1);
589s  pd = fitdist (x, "Nakagami");
589s  [phat, pci] = nakafit (x);
589s  assert ([pd.mu, pd.omega], phat);
589s  assert (paramci (pd), pci);
589s ***** test
589s  x1 = nakarnd (2, 0.5, 100, 1);
589s  x2 = nakarnd (5, 0.8, 100, 1);
589s  pd = fitdist ([x1; x2], "Nakagami", "By", [ones(100,1); 2*ones(100,1)]);
589s  [phat, pci] = nakafit (x1);
589s  assert ([pd(1).mu, pd(1).omega], phat);
589s  assert (paramci (pd(1)), pci);
589s  [phat, pci] = nakafit (x2);
589s  assert ([pd(2).mu, pd(2).omega], phat);
589s  assert (paramci (pd(2)), pci);
590s ***** test
590s  randp ("seed", 123);
590s  randg ("seed", 321);
590s  x = nbinrnd (2, 0.5, 100, 1);
590s  pd = fitdist (x, "negativebinomial");
590s  [phat, pci] = nbinfit (x);
590s  assert ([pd.R, pd.P], phat);
590s  assert (paramci (pd), pci);
590s ***** test
590s  randp ("seed", 345);
590s  randg ("seed", 543);
590s  x1 = nbinrnd (2, 0.5, 100, 1);
590s  randp ("seed", 432);
590s  randg ("seed", 234);
590s  x2 = nbinrnd (5, 0.8, 100, 1);
590s  pd = fitdist ([x1; x2], "nbin", "By", [ones(100,1); 2*ones(100,1)]);
590s  [phat, pci] = nbinfit (x1);
590s  assert ([pd(1).R, pd(1).P], phat);
590s  assert (paramci (pd(1)), pci);
590s  [phat, pci] = nbinfit (x2);
590s  assert ([pd(2).R, pd(2).P], phat);
590s  assert (paramci (pd(2)), pci);
590s ***** test
590s  x = normrnd (1, 1, 100, 1);
590s  pd = fitdist (x, "normal");
590s  [muhat, sigmahat, muci, sigmaci] = normfit (x);
590s  assert ([pd.mu, pd.sigma], [muhat, sigmahat]);
590s  assert (paramci (pd), [muci, sigmaci]);
590s ***** test
590s  x1 = normrnd (1, 1, 100, 1);
590s  x2 = normrnd (5, 2, 100, 1);
590s  pd = fitdist ([x1; x2], "normal", "By", [ones(100,1); 2*ones(100,1)]);
590s  [muhat, sigmahat, muci, sigmaci] = normfit (x1);
590s  assert ([pd(1).mu, pd(1).sigma], [muhat, sigmahat]);
590s  assert (paramci (pd(1)), [muci, sigmaci]);
590s  [muhat, sigmahat, muci, sigmaci] = normfit (x2);
590s  assert ([pd(2).mu, pd(2).sigma], [muhat, sigmahat]);
590s  assert (paramci (pd(2)), [muci, sigmaci]);
590s ***** test
590s  x = poissrnd (1, 100, 1);
590s  pd = fitdist (x, "poisson");
590s  [phat, pci] = poissfit (x);
590s  assert (pd.lambda, phat);
590s  assert (paramci (pd), pci);
590s ***** test
590s  x1 = poissrnd (1, 100, 1);
590s  x2 = poissrnd (5, 100, 1);
590s  pd = fitdist ([x1; x2], "poisson", "By", [ones(100,1); 2*ones(100,1)]);
590s  [phat, pci] = poissfit (x1);
590s  assert (pd(1).lambda, phat);
590s  assert (paramci (pd(1)), pci);
590s  [phat, pci] = poissfit (x2);
590s  assert (pd(2).lambda, phat);
590s  assert (paramci (pd(2)), pci);
591s ***** test
591s  x = raylrnd (1, 100, 1);
591s  pd = fitdist (x, "rayleigh");
591s  [phat, pci] = raylfit (x);
591s  assert (pd.sigma, phat);
591s  assert (paramci (pd), pci);
591s ***** test
591s  x1 = raylrnd (1, 100, 1);
591s  x2 = raylrnd (5, 100, 1);
591s  pd = fitdist ([x1; x2], "rayleigh", "By", [ones(100,1); 2*ones(100,1)]);
591s  [phat, pci] = raylfit (x1);
591s  assert ( pd(1).sigma, phat);
591s  assert (paramci (pd(1)), pci);
591s  [phat, pci] = raylfit (x2);
591s  assert (pd(2).sigma, phat);
591s  assert (paramci (pd(2)), pci);
591s ***** test
591s  x = ricernd (1, 1, 100, 1);
591s  pd = fitdist (x, "rician");
591s  [phat, pci] = ricefit (x);
591s  assert ([pd.s, pd.sigma], phat);
591s  assert (paramci (pd), pci);
591s ***** test
591s  x1 = ricernd (1, 1, 100, 1);
591s  x2 = ricernd (5, 2, 100, 1);
591s  pd = fitdist ([x1; x2], "rician", "By", [ones(100,1); 2*ones(100,1)]);
591s  [phat, pci] = ricefit (x1);
591s  assert ([pd(1).s, pd(1).sigma], phat);
591s  assert (paramci (pd(1)), pci);
591s  [phat, pci] = ricefit (x2);
591s  assert ([pd(2).s, pd(2).sigma], phat);
591s  assert (paramci (pd(2)), pci);
591s ***** warning <fitdist: 'Stable' distribution not supported yet.> ...
591s  fitdist ([1 2 3 4 5], "Stable");
591s ***** test
591s  x = tlsrnd (0, 1, 1, 100, 1);
591s  pd = fitdist (x, "tlocationscale");
591s  [phat, pci] = tlsfit (x);
591s  assert ([pd.mu, pd.sigma, pd.nu], phat);
591s  assert (paramci (pd), pci);
591s ***** test
591s  x1 = tlsrnd (0, 1, 1, 100, 1);
591s  x2 = tlsrnd (5, 2, 1, 100, 1);
591s  pd = fitdist ([x1; x2], "tlocationscale", "By", [ones(100,1); 2*ones(100,1)]);
591s  [phat, pci] = tlsfit (x1);
591s  assert ([pd(1).mu, pd(1).sigma, pd(1).nu], phat);
591s  assert (paramci (pd(1)), pci);
591s  [phat, pci] = tlsfit (x2);
591s  assert ([pd(2).mu, pd(2).sigma, pd(2).nu], phat);
591s  assert (paramci (pd(2)), pci);
592s ***** test
592s  x = [1 2 3 4 5];
592s  pd = fitdist (x, "weibull");
592s  [phat, pci] = wblfit (x);
592s  assert ([pd.lambda, pd.k], phat);
592s  assert (paramci (pd), pci);
592s ***** test
592s  x = [1 2 3 4 5 6 7 8 9 10];
592s  pd = fitdist (x, "weibull", "By", [1 1 1 1 1 2 2 2 2 2]);
592s  [phat, pci] = wblfit (x(1:5));
592s  assert ([pd(1).lambda, pd(1).k], phat);
592s  assert (paramci (pd(1)), pci);
592s  [phat, pci] = wblfit (x(6:10));
592s  assert ([pd(2).lambda, pd(2).k], phat);
592s  assert (paramci (pd(2)), pci);
592s ***** error <fitdist: DISTNAME is required.> fitdist (1)
592s ***** error <fitdist: DISTNAME must be a character vector.> fitdist (1, ["as";"sd"])
592s ***** error <fitdist: unrecognized distribution name.> fitdist (1, "some")
592s ***** error <fitdist: X must be a numeric vector of real values.> ...
592s  fitdist (ones (2), "normal")
592s ***** error <fitdist: X must be a numeric vector of real values.> ...
592s  fitdist ([i, 2, 3], "normal")
592s ***** error <fitdist: X must be a numeric vector of real values.> ...
592s  fitdist (["a", "s", "d"], "normal")
592s ***** error <fitdist: optional arguments must be in NAME-VALUE pairs.> ...
592s  fitdist ([1, 2, 3], "normal", "By")
592s ***** error <fitdist: GROUPVAR argument must have the same size as the input data in X.> ...
592s  fitdist ([1, 2, 3], "normal", "By", [1, 2])
592s ***** error <fitdist: 'censoring' argument must have the same size as the input data in X.> ...
592s  fitdist ([1, 2, 3], "normal", "Censoring", [1, 2])
592s ***** error <fitdist: 'frequency' argument must have the same size as the input data in X.> ...
592s  fitdist ([1, 2, 3], "normal", "frequency", [1, 2])
592s ***** error <fitdist: 'frequency' argument must contain non-negative integer values.> ...
592s  fitdist ([1, 2, 3], "negativebinomial", "frequency", [1, -2, 3])
592s ***** error <fitdist: invalid value for 'alpha' argument.> ...
592s  fitdist ([1, 2, 3], "normal", "alpha", [1, 2])
592s ***** error <fitdist: invalid value for 'alpha' argument.> ...
592s  fitdist ([1, 2, 3], "normal", "alpha", i)
592s ***** error <fitdist: invalid value for 'alpha' argument.> ...
592s  fitdist ([1, 2, 3], "normal", "alpha", -0.5)
592s ***** error <fitdist: invalid value for 'alpha' argument.> ...
592s  fitdist ([1, 2, 3], "normal", "alpha", 1.5)
592s ***** error <fitdist: 'ntrials' argument must be a positive integer scalar value.> ...
592s  fitdist ([1, 2, 3], "normal", "ntrials", [1, 2])
592s ***** error <fitdist: 'ntrials' argument must be a positive integer scalar value.> ...
592s  fitdist ([1, 2, 3], "normal", "ntrials", 0)
592s ***** error <fitdist: 'options' argument must be a structure compatible for 'fminsearch'.> ...
592s  fitdist ([1, 2, 3], "normal", "options", 0)
592s ***** error <fitdist: 'options' argument must be a structure compatible for 'fminsearch'.> ...
592s  fitdist ([1, 2, 3], "normal", "options", struct ("options", 1))
592s ***** warning fitdist ([1, 2, 3], "kernel", "kernel", "normal");
592s ***** warning fitdist ([1, 2, 3], "kernel", "support", "positive");
592s ***** warning fitdist ([1, 2, 3], "kernel", "width", 1);
592s ***** error <fitdist: unknown parameter name.> ...
592s  fitdist ([1, 2, 3], "normal", "param", struct ("options", 1))
592s ***** error <fitdist: must define GROUPVAR for more than one output arguments.> ...
592s  [pdca, gn, gl] = fitdist ([1, 2, 3], "normal");
592s ***** error <fitdist: invalid THETA value for generalized Pareto distribution.> ...
592s  fitdist ([1, 2, 3], "generalizedpareto", "theta", 2);
592s ***** error <fitdist: invalid MU value for half-normal distribution.> ...
592s  fitdist ([1, 2, 3], "halfnormal", "mu", 2);
592s 77 tests, 77 passed, 0 known failure, 0 skipped
592s [inst/fitcnet.m]
592s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitcnet.m
592s ***** demo
592s  ## Train a Neural Network on the Fisher's Iris data set and display
592s  ## a confusion chart with the classification results.
592s 
592s  load fisheriris
592s  Mdl = fitcnet (meas, species);
592s  pred_species = resubPredict (Mdl);
592s  confusionchart (species, pred_species);
592s ***** test
592s  load fisheriris
592s  x = meas;
592s  y = grp2idx (species);
592s  Mdl = fitcnet (x, y, "IterationLimit", 50);
592s  assert (class (Mdl), "ClassificationNeuralNetwork");
592s  assert (numel (Mdl.ModelParameters.LayerWeights), 2);
592s  assert (size (Mdl.ModelParameters.LayerWeights{1}), [10, 5]);
592s  assert (size (Mdl.ModelParameters.LayerWeights{2}), [3, 11]);
592s ***** error<fitcnet: too few arguments.> fitcnet ()
592s ***** error<fitcnet: too few arguments.> fitcnet (ones (4,1))
592s ***** error<fitcnet: Name-Value arguments must be in pairs.>
592s  fitcnet (ones (4,2), ones (4, 1), 'LayerSizes')
592s ***** error<fitcnet: number of rows in X and Y must be equal.>
592s  fitcnet (ones (4,2), ones (3, 1))
592s ***** error<fitcnet: number of rows in X and Y must be equal.>
592s  fitcnet (ones (4,2), ones (3, 1), 'LayerSizes', 2)
592s 6 tests, 6 passed, 0 known failure, 0 skipped
592s [inst/bar3h.m]
592s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/bar3h.m
592s ***** demo
592s  ## Ploting 5 bars in the same series.
592s 
592s  y = [50; 40; 30; 20; 10];
592s  bar3h (y);
592s ***** demo
592s  ## Ploting 5 bars in different groups.
592s 
592s  y = [50, 40, 30, 20, 10];
592s  bar3h (y);
592s ***** demo
592s  ## A 3D bar graph with each series corresponding to a column in y.
592s 
592s  y = [1, 4, 7; 2, 5, 8; 3, 6, 9; 4, 7, 10];
592s  bar3h (y);
592s ***** demo
592s  ## Specify z-axis locations as tick names. z must be a column vector!
592s 
592s  z = [1950, 1960, 1970, 1980, 1990]';
592s  y = [16, 8, 4, 2, 1]';
592s  bar3h (z, y);
592s ***** demo
592s  ## Plot 3 series as a grouped plot without any space between the grouped bars
592s 
592s  y = [70 50 33 10; 75 55 35 15; 80 60 40 20];
592s  bar3h (y, 1, 'grouped');
592s ***** demo
592s  ## Plot a stacked style 3D bar graph
592s 
592s  y = [19, 30, 21, 30; 40, 16, 32, 12];
592s  b = bar3h (y, 0.5, 'stacked');
592s ***** error <bar3h: Z must be numeric.> bar3h ("A")
592s ***** error <bar3h: Z must be numeric.> bar3h ({2,3,4,5})
592s ***** error <bar3h: inconsistent size in Y and Z input arguments.> ...
592s  bar3h ([1,2,3]', ones (2))
592s ***** error <bar3h: WIDTH must be a scalar in the range> ...
592s  bar3h ([1:5], 1.2)
592s ***** error <bar3h: WIDTH must be a scalar in the range> ...
592s  bar3h ([1:5]', ones (5), 1.2)
592s ***** error <bar3h: numeric COLOR must be a 1x3 vector of an Nx3 matrix> ...
592s  bar3h ([1:5]', ones (5), [0.8, 0.7])
592s ***** error <bar3h: missing value for optional argument 'width'.> ...
592s  bar3h (ones (5), 'width')
592s ***** error <bar3h: invalid value for optional argument 'width'.> ...
592s  bar3h (ones (5), 'width', 1.2)
592s ***** error <bar3h: invalid value for optional argument 'width'.> ...
592s  bar3h (ones (5), 'width', [0.8, 0.8, 0.8])
592s ***** error <bar3h: missing value for optional argument 'color'.> ...
592s  bar3h (ones (5), 'color')
592s ***** error <bar3h: numeric COLOR must be a 1x3 vector of an Nx3 matrix> ...
592s  bar3h (ones (5), 'color', [0.8, 0.8])
592s ***** error <bar3h: invalid value for optional argument 'color'.> ...
592s  bar3h (ones (5), 'color', "brown")
592s ***** error <bar3h: invalid value for optional argument 'color'.> ...
592s  bar3h (ones (5), 'color', {"r", "k", "c", "m", "brown"})
592s ***** error <bar3h: missing value for optional argument 'xlabel'.> ...
592s  bar3h (ones (5), 'xlabel')
592s ***** error <bar3h: invalid value for optional argument 'xlabel'.> ...
592s  bar3h (ones (5), 'xlabel', 4)
592s ***** error <bar3h: missing value for optional argument 'zlabel'.> ...
592s  bar3h (ones (5), 'zlabel')
592s ***** error <bar3h: invalid value for optional argument 'zlabel'.> ...
592s  bar3h (ones (5), 'zlabel', 4)
592s ***** error <bar3h: invalid optional argument.> bar3h (ones (5), 'this', 4)
592s ***** error <bar3h: the elements in 'xlabel' must equal the columns in Z.> ...
592s  bar3h (ones (5), 'xlabel', {"A", "B", "C"})
592s ***** error <bar3h: the elements in 'zlabel' must equal the rows in Z.> ...
592s  bar3h (ones (5), 'zlabel', {"A", "B", "C"})
592s 20 tests, 20 passed, 0 known failure, 0 skipped
592s [inst/trimmean.m]
592s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/trimmean.m
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  assert (trimmean (x, 10, "all"), 19.4722, 1e-4);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  out = trimmean (x, 10, [1, 2]);
592s  assert (out(1,1,1), 10.3889, 1e-4);
592s  assert (out(1,1,2), 29.6111, 1e-4);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  assert (trimmean (x, 10, "all"), 19.3824, 1e-4);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  out = trimmean (x, 10, 1);
592s  assert (out(:,:,1), [-17.6, 8, 13, 18]);
592s  assert (out(:,:,2), [23, 28, 33, 10.6]);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, 1);
592s  assert (out(:,:,1), [-23, 8, 13, 18]);
592s  assert (out(:,:,2), [23, 28, 33, 3.75]);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  out = trimmean (x, 10, 2);
592s  assert (out(:,:,1), [8.5; 9.5; -15.25; 11.5; 12.5]);
592s  assert (out(:,:,2), [28.5; -4.75; 30.5; 31.5; 32.5]);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, 2);
592s  assert (out(:,:,1), [8.5; 9.5; -15.25; 14; 12.5]);
592s  assert (out(:,:,2), [28.5; -4.75; 28; 31.5; 32.5]);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  out = trimmean (x, 10, [1, 2, 3]);
592s  assert (out, trimmean (x, 10, "all"));
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, [1, 2]);
592s  assert (out(1,1,1), 10.7647, 1e-4);
592s  assert (out(1,1,2), 29.1176, 1e-4);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, [1, 3]);
592s  assert (out, [2.5556, 18, 23, 11.6667], 1e-4);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, [2, 3]);
592s  assert (out, [18.5; 2.3750; 3.2857; 24; 22.5], 1e-4);
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, [1, 2, 3]);
592s  assert (out, trimmean (x, 10, "all"));
592s ***** test
592s  x = reshape (1:40, [5, 4, 2]);
592s  x([3, 37]) = -100;
592s  x([4, 38]) = NaN;
592s  out = trimmean (x, 10, [2, 3, 5]);
592s  assert (out, [18.5; 2.3750; 3.2857; 24; 22.5], 1e-4);
592s ***** assert (trimmean (reshape (1:40, [5, 4, 2]), 10, 4), reshape(1:40, [5, 4, 2]))
592s ***** assert (trimmean ([], 10), NaN)
592s ***** assert (trimmean ([1;2;3;4;5], 10, 2), [1;2;3;4;5])
592s ***** error<Invalid call to trimmean.  Correct usage is:> trimmean (1)
592s ***** error<Invalid call to trimmean.  Correct usage is:> trimmean (1,2,3,4,5)
592s ***** error<trimmean: invalid percent.> trimmean ([1 2 3 4], -10)
592s ***** error<trimmean: invalid percent.> trimmean ([1 2 3 4], 100)
592s ***** error<trimmean: invalid FLAG argument.> trimmean ([1 2 3 4], 10, "flag")
592s ***** error<trimmean: invalid FLAG argument.> trimmean ([1 2 3 4], 10, "flag", 1)
592s ***** error<trimmean: DIM must be a positive integer scalar or vector.> ...
592s  trimmean ([1 2 3 4], 10, -1)
592s ***** error<trimmean: DIM must be a positive integer scalar or vector.> ...
592s  trimmean ([1 2 3 4], 10, "floor", -1)
592s ***** error<trimmean: DIM must be a positive integer scalar or vector.> ...
592s  trimmean (reshape (1:40, [5, 4, 2]), 10, [-1, 2])
592s ***** error<trimmean: VECDIM must contain non-repeating positive integers.> ...
592s  trimmean (reshape (1:40, [5, 4, 2]), 10, [1, 2, 2])
592s 26 tests, 26 passed, 0 known failure, 0 skipped
592s [inst/pdist.m]
592s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/pdist.m
592s ***** shared xy, t, eucl, x
592s  xy = [0 1; 0 2; 7 6; 5 6];
592s  t = 1e-3;
592s  eucl = @(v,m) sqrt(sumsq(repmat(v,rows(m),1)-m,2));
592s  x = [1 2 3; 4 5 6; 7 8 9; 3 2 1];
592s ***** assert (pdist (xy),                 [1.000 8.602 7.071 8.062 6.403 2.000], t);
592s ***** assert (pdist (xy, eucl),           [1.000 8.602 7.071 8.062 6.403 2.000], t);
592s ***** assert (pdist (xy, "euclidean"),    [1.000 8.602 7.071 8.062 6.403 2.000], t);
592s ***** assert (pdist (xy, "seuclidean"),   [0.380 2.735 2.363 2.486 2.070 0.561], t);
592s ***** assert (pdist (xy, "mahalanobis"),  [1.384 1.967 2.446 2.384 1.535 2.045], t);
592s ***** assert (pdist (xy, "cityblock"),    [1.000 12.00 10.00 11.00 9.000 2.000], t);
592s ***** assert (pdist (xy, "minkowski"),    [1.000 8.602 7.071 8.062 6.403 2.000], t);
592s ***** assert (pdist (xy, "minkowski", 3), [1.000 7.763 6.299 7.410 5.738 2.000], t);
592s ***** assert (pdist (xy, "cosine"),       [0.000 0.349 0.231 0.349 0.231 0.013], t);
592s ***** assert (pdist (xy, "correlation"),  [0.000 2.000 0.000 2.000 0.000 2.000], t);
592s ***** assert (pdist (xy, "spearman"),     [0.000 2.000 0.000 2.000 0.000 2.000], t);
592s ***** assert (pdist (xy, "hamming"),      [0.500 1.000 1.000 1.000 1.000 0.500], t);
592s ***** assert (pdist (xy, "jaccard"),      [1.000 1.000 1.000 1.000 1.000 0.500], t);
592s ***** assert (pdist (xy, "chebychev"),    [1.000 7.000 5.000 7.000 5.000 2.000], t);
592s ***** assert (pdist (x), [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4);
592s ***** assert (pdist (x, "euclidean"), ...
592s         [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4);
592s ***** assert (pdist (x, eucl), ...
592s         [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4);
593s ***** assert (pdist (x, "squaredeuclidean"), [27, 108, 8, 27, 35, 116]);
593s ***** assert (pdist (x, "seuclidean"), ...
593s         [1.8071, 3.6142, 0.9831, 1.8071, 1.8143, 3.4854], 1e-4);
593s ***** warning<pdist: matrix is close to singular> ...
593s  pdist (x, "mahalanobis");
593s ***** assert (pdist (x, "cityblock"), [9, 18, 4, 9, 9, 18]);
593s ***** assert (pdist (x, "minkowski"), ...
593s         [5.1962, 10.3923, 2.8284, 5.1962, 5.9161, 10.7703], 1e-4);
593s ***** assert (pdist (x, "minkowski", 3), ...
593s         [4.3267, 8.6535, 2.5198, 4.3267, 5.3485, 9.2521], 1e-4);
593s ***** assert (pdist (x, "cosine"), ...
593s         [0.0254, 0.0406, 0.2857, 0.0018, 0.1472, 0.1173], 1e-4);
593s ***** assert (pdist (x, "correlation"), [0, 0, 2, 0, 2, 2], 1e-14);
593s ***** assert (pdist (x, "spearman"), [0, 0, 2, 0, 2, 2], 1e-14);
593s ***** assert (pdist (x, "hamming"), [1, 1, 2/3, 1, 1, 1]);
593s ***** assert (pdist (x, "jaccard"), [1, 1, 2/3, 1, 1, 1]);
593s ***** assert (pdist (x, "chebychev"), [3, 6, 2, 3, 5, 8]);
593s 29 tests, 29 passed, 0 known failure, 0 skipped
593s [inst/logistic_regression.m]
593s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/logistic_regression.m
593s ***** test
593s  # Output compared to following MATLAB commands
593s  # [B, DEV, STATS] = mnrfit(X,Y+1,'model','ordinal');
593s  # P = mnrval(B,X)
593s  X = [1.489381332449196, 1.1534152241851305; ...
593s       1.8110085304863965, 0.9449666896938425; ...
593s       -0.04453299665130296, 0.34278203449678646; ...
593s       -0.36616019468850347, 1.130254275908322; ...
593s        0.15339143291005095, -0.7921044310668951; ...
593s       -1.6031878794469698, -1.8343471035233376; ...
593s       -0.14349521143198166, -0.6762996896828459; ...
593s       -0.4403818557740143, -0.7921044310668951; ...
593s       -0.7372685001160434, -0.027793137932169563; ...
593s       -0.11875465773681024, 0.5512305689880763];
593s  Y = [1,1,1,1,1,0,0,0,0,0]';
593s  [INTERCEPT, SLOPE, DEV, DL, D2L, P] = logistic_regression (Y, X, false);
593s ***** test
593s  # Output compared to following MATLAB commands
593s  # [B, DEV, STATS] = mnrfit(X,Y+1,'model','ordinal');
593s  load carbig
593s  X = [Acceleration Displacement Horsepower Weight];
593s  miles = [1,1,1,1,1,1,1,1,1,1,NaN,NaN,NaN,NaN,NaN,1,1,NaN,1,1,2,2,1,2,2,2, ...
593s           2,2,2,2,2,1,1,1,1,2,2,2,2,NaN,2,1,1,2,1,1,1,1,1,1,1,1,1,2,2,1,2, ...
593s           2,3,3,3,3,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,2,2,2, ...
593s           2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,2,2,2,1,2,2, ...
593s           2,1,1,3,2,2,2,1,2,2,1,2,2,2,1,3,2,3,2,1,1,1,1,1,1,1,1,3,2,2,3,3, ...
593s           2,2,2,2,2,3,2,1,1,1,1,1,1,1,1,1,1,1,2,2,1,3,2,2,2,2,2,2,1,3,2,2, ...
593s           2,2,2,3,2,2,2,2,2,1,1,1,1,2,2,2,2,3,2,3,3,2,1,1,1,3,3,2,2,2,1,2, ...
593s           2,1,1,1,1,1,3,3,3,2,3,1,1,1,1,1,2,2,1,1,1,1,1,3,2,2,2,3,3,3,3,2, ...
593s           2,2,4,3,3,4,3,2,2,2,2,2,2,2,2,2,2,2,1,1,2,1,1,1,3,2,2,3,2,2,2,2, ...
593s           2,1,2,1,3,3,2,2,2,2,2,1,1,1,1,1,1,2,1,3,3,3,2,2,2,2,2,3,3,3,3,2, ...
593s           2,2,3,4,3,3,3,2,2,2,2,3,3,3,3,3,4,2,4,4,4,3,3,4,4,3,3,3,2,3,2,3, ...
593s           2,2,2,2,3,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,NaN,3,2,2,2,2,2,1,2, ...
593s           2,3,3,3,2,2,2,3,3,3,3,3,3,3,3,3,3,3,2,3,2,2,3,3,2,2,4,3,2,3]';
593s  [INTERCEPT, SLOPE, DEV, DL, D2L, P] = logistic_regression (miles, X, false);
593s  assert (DEV, 433.197174495549, 1e-05);
593s  assert (INTERCEPT(1), -16.6895155618903, 1e-05);
593s  assert (INTERCEPT(2), -11.7207818178493, 1e-05);
593s  assert (INTERCEPT(3), -8.0605768506075, 1e-05);
593s  assert (SLOPE(1), 0.104762463756714, 1e-05);
593s  assert (SLOPE(2), 0.0103357623191891, 1e-05);
593s  assert (SLOPE(3), 0.0645199313242276, 1e-05);
593s  assert (SLOPE(4), 0.00166377028388103, 1e-05);
593s 2 tests, 2 passed, 0 known failure, 0 skipped
593s [inst/qqplot.m]
593s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/qqplot.m
593s ***** test
593s  hf = figure ("visible", "off");
593s  unwind_protect
593s    qqplot ([2 3 3 4 4 5 6 5 6 7 8 9 8 7 8 9 0 8 7 6 5 4 6 13 8 15 9 9]);
593s  unwind_protect_cleanup
593s    close (hf);
593s  end_unwind_protect
593s ***** error qqplot ()
593s ***** error <qqplot: X must be a numeric vector> qqplot ({1})
593s ***** error <qqplot: X must be a numeric vector> qqplot (ones (2,2))
593s ***** error <qqplot: X must be a numeric vecto> qqplot (1, "foobar")
593s ***** error <qqplot: no inverse CDF found> qqplot ([1 2 3], "foobar")
593s 6 tests, 6 passed, 0 known failure, 0 skipped
593s [inst/standardizeMissing.m]
593s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/standardizeMissing.m
593s ***** assert (standardizeMissing (1, 1), NaN)
593s ***** assert (standardizeMissing (1, 0), 1)
593s ***** assert (standardizeMissing (eye(2), 1), [NaN 0;0 NaN])
593s ***** assert (standardizeMissing ([1:3;4:6], [2 3; 4 5]), [1, NaN, NaN; NaN, NaN, 6])
593s ***** assert (standardizeMissing (cat (3,1,2,3,4), 3), cat (3,1,2,NaN,4))
593s ***** assert (standardizeMissing ('foo', 'a'), 'foo')
593s ***** assert (standardizeMissing ('foo', 'f'), ' oo')
593s ***** assert (standardizeMissing ('foo', 'o'), 'f  ')
593s ***** assert (standardizeMissing ('foo', 'oo'), 'f  ')
593s ***** assert (standardizeMissing ({'foo'}, 'f'), {'foo'})
593s ***** assert (standardizeMissing ({'foo'}, {'f'}), {'foo'})
593s ***** assert (standardizeMissing ({'foo'}, 'test'), {'foo'})
593s ***** assert (standardizeMissing ({'foo'}, {'test'}), {'foo'})
593s ***** assert (standardizeMissing ({'foo'}, 'foo'), {''})
593s ***** assert (standardizeMissing ({'foo'}, {'foo'}), {''})
593s ***** assert (standardizeMissing (['foo';'bar'], 'oar'), ['f  ';'b  '])
593s ***** assert (standardizeMissing (['foo';'bar'], ['o';'a';'r']), ['f  ';'b  '])
593s ***** assert (standardizeMissing (['foo';'bar'], ['o ';'ar']), ['f  ';'b  '])
593s ***** assert (standardizeMissing ({'foo','bar'}, 'foo'), {'','bar'})
593s ***** assert (standardizeMissing ({'foo','bar'}, 'f'), {'foo','bar'})
593s ***** assert (standardizeMissing ({'foo','bar'}, {'foo', 'a'}), {'','bar'})
593s ***** assert (standardizeMissing ({'foo'}, {'f', 'oo'}), {'foo'})
593s ***** assert (standardizeMissing ({'foo','bar'}, {'foo'}), {'','bar'})
593s ***** assert (standardizeMissing ({'foo','bar'}, {'foo', 'a'}), {'','bar'})
593s ***** assert (standardizeMissing (double (1), single (1)), double (NaN))
593s ***** assert (standardizeMissing (single (1), single (1)), single (NaN))
593s ***** assert (standardizeMissing (single (1), double (1)), single (NaN))
593s ***** assert (standardizeMissing (single (1), true), single (NaN))
593s ***** assert (standardizeMissing (double (1), int32(1)), double (NaN))
593s ***** assert (standardizeMissing (true, true), true)
593s ***** assert (standardizeMissing (true, 1), true)
593s ***** assert (standardizeMissing (int32 (1), int32 (1)), int32 (1))
593s ***** assert (standardizeMissing (int32 (1), 1), int32 (1))
593s ***** assert (standardizeMissing (uint32 (1), uint32 (1)), uint32 (1))
593s ***** assert (standardizeMissing (uint32 (1), 1), uint32 (1))
593s ***** error standardizeMissing ();
593s ***** error standardizeMissing (1);
593s ***** error standardizeMissing (1,2,3);
593s ***** error <only cells of strings> standardizeMissing ({'abc', 1}, 1);
593s ***** error <unsupported data type> standardizeMissing (struct ('a','b'), 1);
593s ***** error <'indicator' and 'A' must have > standardizeMissing ([1 2 3], {1});
593s ***** error <'indicator' and 'A' must have > standardizeMissing ([1 2 3], 'a');
593s ***** error <'indicator' and 'A' must have > standardizeMissing ([1 2 3], struct ('a', 1));
593s ***** error <'indicator' and 'A' must have > standardizeMissing ('foo', 1);
593s ***** error <'indicator' and 'A' must have > standardizeMissing ('foo', {1});
593s ***** error <'indicator' and 'A' must have > standardizeMissing ('foo', {'f'});
593s ***** error <'indicator' and 'A' must have > standardizeMissing ('foo', struct ('a', 1));
593s ***** error <'indicator' and 'A' must have > standardizeMissing ({'foo'}, 1);
593s ***** error <'indicator' and 'A' must have > standardizeMissing ({'foo'}, 1);
593s 49 tests, 49 passed, 0 known failure, 0 skipped
593s [inst/loadmodel.m]
593s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/loadmodel.m
593s ***** error<loadmodel: too few arguments.> loadmodel ()
593s ***** error<loadmodel: 'fisheriris.mat' does not contain a Classification or Regression object.> ...
593s  loadmodel ("fisheriris.mat")
593s ***** error<loadmodel: 'ClassificationModel' is not supported.> ...
593s  loadmodel ("fail_loadmodel.mdl")
593s ***** error<ClassificationKNN.load_model: invalid model in 'fail_load_model.mdl'.> ...
593s  loadmodel ("fail_load_model.mdl")
593s 4 tests, 4 passed, 0 known failure, 0 skipped
593s [inst/correlation_test.m]
593s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/correlation_test.m
593s ***** error<Invalid call to correlation_test.  Correct usage> correlation_test ();
593s ***** error<Invalid call to correlation_test.  Correct usage> correlation_test (1);
594s ***** error<correlation_test: X must contain finite real numbers.> ...
594s  correlation_test ([1 2 NaN]', [2 3 4]');
594s ***** error<correlation_test: X must contain finite real numbers.> ...
594s  correlation_test ([1 2 Inf]', [2 3 4]');
594s ***** error<correlation_test: X must contain finite real numbers.> ...
594s  correlation_test ([1 2 3+i]', [2 3 4]');
594s ***** error<correlation_test: Y must contain finite real numbers.> ...
594s  correlation_test ([1 2 3]', [2 3 NaN]');
594s ***** error<correlation_test: Y must contain finite real numbers.> ...
594s  correlation_test ([1 2 3]', [2 3 Inf]');
594s ***** error<correlation_test: Y must contain finite real numbers.> ...
594s  correlation_test ([1 2 3]', [3 4 3+i]');
594s ***** error<correlation_test: X and Y must be vectors of equal length.> ...
594s  correlation_test ([1 2 3]', [3 4 4 5]');
594s ***** error<correlation_test: invalid value for alpha.> ...
594s  correlation_test ([1 2 3]', [2 3 4]', "alpha", 0);
594s ***** error<correlation_test: invalid value for alpha.> ...
594s  correlation_test ([1 2 3]', [2 3 4]', "alpha", 1.2);
594s ***** error<correlation_test: invalid value for alpha.> ...
594s  correlation_test ([1 2 3]', [2 3 4]', "alpha", [.02 .1]);
594s ***** error<correlation_test: invalid value for alpha.> ...
594s  correlation_test ([1 2 3]', [2 3 4]', "alpha", "a");
594s ***** error<correlation_test: invalid Name argument.> ...
594s  correlation_test ([1 2 3]', [2 3 4]', "some", 0.05);
594s ***** error<correlation_test: invalid value for tail.>  ...
594s  correlation_test ([1 2 3]', [2 3 4]', "tail", "val");
594s ***** error<correlation_test: invalid value for tail.>  ...
594s  correlation_test ([1 2 3]', [2 3 4]', "alpha", 0.01, "tail", "val");
594s ***** error<correlation_test: invalid value for method.>  ...
594s  correlation_test ([1 2 3]', [2 3 4]', "method", 0.01);
594s ***** error<correlation_test: invalid value for method.>  ...
594s  correlation_test ([1 2 3]', [2 3 4]', "method", "some");
594s ***** test
594s  x = [6 7 7 9 10 12 13 14 15 17];
594s  y = [19 22 27 25 30 28 30 29 25 32];
594s  [h, pval, stats] = correlation_test (x, y);
594s  assert (stats.corrcoef, corr (x', y'), 1e-14);
594s  assert (pval, 0.0223, 1e-4);
594s ***** test
594s  x = [6 7 7 9 10 12 13 14 15 17]';
594s  y = [19 22 27 25 30 28 30 29 25 32]';
594s  [h, pval, stats] = correlation_test (x, y);
594s  assert (stats.corrcoef, corr (x, y), 1e-14);
594s  assert (pval, 0.0223, 1e-4);
594s 20 tests, 20 passed, 0 known failure, 0 skipped
594s [inst/mahal.m]
594s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/mahal.m
594s ***** error mahal ()
594s ***** error mahal (1, 2, 3)
594s ***** error mahal ("A", "B")
594s ***** error <must be numeric> mahal ([1, 2], ["A", "B"])
594s ***** error mahal (ones (2, 2, 2))
594s ***** error <must be 2-D matrices> mahal (ones (2, 2), ones (2, 2, 2))
594s ***** error <same number of columns> mahal (ones (2, 2), ones (2, 3))
594s ***** test
594s  X = [1 0; 0 1; 1 1; 0 0];
594s  assert (mahal (X, X), [1.5; 1.5; 1.5; 1.5], 10*eps)
594s  assert (mahal (X, X+1), [7.5; 7.5; 1.5; 13.5], 10*eps)
594s ***** assert (mahal ([true; true], [false; true]), [0.5; 0.5], eps)
594s 9 tests, 9 passed, 0 known failure, 0 skipped
594s [inst/levene_test.m]
594s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/levene_test.m
594s ***** error<levene_test: invalid number of input arguments.> levene_test ()
594s ***** error<levene_test: invalid number of input arguments.> ...
594s  levene_test (1, 2, 3, 4, 5);
594s ***** error<levene_test: wrong value for alpha.> levene_test (randn (50, 2), 0);
594s ***** error<levene_test: GROUP and X mismatch.> ...
594s  levene_test (randn (50, 2), [1, 2, 3]);
594s ***** error<levene_test: GROUP and X mismatch.> ...
594s  levene_test (randn (50, 1), ones (55, 1));
594s ***** error<levene_test: invalid second input argument.> ...
594s  levene_test (randn (50, 1), ones (50, 2));
594s ***** error<levene_test: wrong value for alpha.> ...
594s  levene_test (randn (50, 2), [], 1.2);
594s ***** error<levene_test: GROUP and X mismatch.> ...
594s  levene_test (randn (50, 2), "some_string");
594s ***** error<levene_test: invalid third input argument.> ...
594s  levene_test (randn (50, 2), [], "alpha");
594s ***** error<levene_test: wrong value for alpha.> ...
594s  levene_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], 1.2);
594s ***** error<levene_test: invalid third input argument.> ...
594s  levene_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], "err");
594s ***** error<levene_test: invalid option for TESTTYPE as 4th argument.> ...
594s  levene_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], 0.05, "type");
594s ***** warning<levene_test: GROUP> ...
594s  levene_test (randn (50, 1), [ones(24, 1); 2*ones(25, 1); 3]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades);
594s  assert (h, 1);
594s  assert (pval, 9.523239714592791e-07, 1e-14);
594s  assert (W, 8.59529, 1e-5);
594s  assert (df, [4, 595]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades, [], "quadratic");
594s  assert (h, 1);
594s  assert (pval, 9.523239714592791e-07, 1e-14);
594s  assert (W, 8.59529, 1e-5);
594s  assert (df, [4, 595]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades, [], "median");
594s  assert (h, 1);
594s  assert (pval, 1.312093241723211e-06, 1e-14);
594s  assert (W, 8.415969, 1e-6);
594s  assert (df, [4, 595]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades(:,[1:3]));
594s  assert (h, 1);
594s  assert (pval, 0.004349390980463497, 1e-14);
594s  assert (W, 5.52139, 1e-5);
594s  assert (df, [2, 357]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades(:,[1:3]), "median");
594s  assert (h, 1);
594s  assert (pval, 0.004355216763951453, 1e-14);
594s  assert (W, 5.52001, 1e-5);
594s  assert (df, [2, 357]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades(:,[3,4]), "quadratic");
594s  assert (h, 0);
594s  assert (pval, 0.1807494957440653, 2e-14);
594s  assert (W, 1.80200, 1e-5);
594s  assert (df, [1, 238]);
594s ***** test
594s  load examgrades
594s  [h, pval, W, df] = levene_test (grades(:,[3,4]), "median");
594s  assert (h, 0);
594s  assert (pval, 0.1978225622063785, 2e-14);
594s  assert (W, 1.66768, 1e-5);
594s  assert (df, [1, 238]);
594s 20 tests, 20 passed, 0 known failure, 0 skipped
594s [inst/monotone_smooth.m]
594s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/monotone_smooth.m
594s ***** error<Invalid call to monotone_smooth.  Correct usage is> ...
594s  monotone_smooth (1)
594s ***** error<monotone_smooth: X must be a numeric vector.> ...
594s  monotone_smooth ("char", 1)
594s ***** error<monotone_smooth: X must be a numeric vector.> ...
594s  monotone_smooth ({1,2,3}, 1)
594s ***** error<monotone_smooth: X must be a numeric vector.> ...
594s  monotone_smooth (ones(20,3), 1)
594s ***** error<monotone_smooth: Y must be a numeric vector.> ...
594s  monotone_smooth (1, "char")
594s ***** error<monotone_smooth: Y must be a numeric vector.> ...
594s  monotone_smooth (1, {1,2,3})
594s ***** error<monotone_smooth: Y must be a numeric vector.> ...
594s  monotone_smooth (1, ones(20,3))
594s ***** error<monotone_smooth: H>  monotone_smooth (ones (10,1), ones(10,1), [1, 2])
594s ***** error<monotone_smooth: H>  monotone_smooth (ones (10,1), ones(10,1), {2})
594s ***** error<monotone_smooth: H>  monotone_smooth (ones (10,1), ones(10,1), "char")
594s 10 tests, 10 passed, 0 known failure, 0 skipped
594s [inst/plsregress.m]
594s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/plsregress.m
594s ***** demo
594s  ## Perform Partial Least-Squares Regression
594s 
594s  ## Load the spectra data set and use the near infrared (NIR) spectral
594s  ## intensities (NIR) as the predictor and the corresponding octave
594s  ## ratings (octave) as the response.
594s  load spectra
594s 
594s  ## Perform PLS regression with 10 components
594s  [xload, yload, xscore, yscore, coef, ptcVar] = plsregress (NIR, octane, 10);
594s 
594s  ## Plot the percentage of explained variance in the response variable
594s  ## (PCTVAR) as a function of the number of components.
594s  plot (1:10, cumsum (100 * ptcVar(2,:)), "-ro");
594s  xlim ([1, 10]);
594s  xlabel ("Number of PLS components");
594s  ylabel ("Percentage of Explained Variance in octane");
594s  title ("Explained Variance per PLS components");
594s 
594s  ## Compute the fitted response and display the residuals.
594s  octane_fitted = [ones(size(NIR,1),1), NIR] * coef;
594s  residuals = octane - octane_fitted;
594s  figure
594s  stem (residuals, "color", "r", "markersize", 4, "markeredgecolor", "r")
594s  xlabel ("Observations");
594s  ylabel ("Residuals");
594s  title ("Residuals in octane's fitted responce");
594s ***** demo
594s  ## Calculate Variable Importance in Projection (VIP) for PLS Regression
594s 
594s  ## Load the spectra data set and use the near infrared (NIR) spectral
594s  ## intensities (NIR) as the predictor and the corresponding octave
594s  ## ratings (octave) as the response.  Variables with a VIP score greater than
594s  ## 1 are considered important for the projection of the PLS regression model.
594s  load spectra
594s 
594s  ## Perform PLS regression with 10 components
594s  [xload, yload, xscore, yscore, coef, pctVar, mse, stats] = ...
594s                                                  plsregress (NIR, octane, 10);
594s 
594s  ## Calculate the normalized PLS weights
594s  W0 = stats.W ./ sqrt(sum(stats.W.^2,1));
594s 
594s  ## Calculate the VIP scores for 10 components
594s  nobs = size (xload, 1);
594s  SS = sum (xscore .^ 2, 1) .* sum (yload .^ 2, 1);
594s  VIPscore = sqrt (nobs * sum (SS .* (W0 .^ 2), 2) ./ sum (SS, 2));
594s 
594s  ## Find variables with a VIP score greater than or equal to 1
594s  VIPidx = find (VIPscore >= 1);
594s 
594s  ## Plot the VIP scores
594s  scatter (1:length (VIPscore), VIPscore, "xb");
594s  hold on
594s  scatter (VIPidx, VIPscore (VIPidx), "xr");
594s  plot ([1, length(VIPscore)], [1, 1], "--k");
594s  hold off
594s  axis ("tight");
594s  xlabel ("Predictor Variables");
594s  ylabel ("VIP scores");
594s  title ("VIP scores for each predictror variable with 10 components");
594s ***** test
594s  load spectra
594s  [xload, yload, xscore, yscore, coef, pctVar] = plsregress (NIR, octane, 10);
594s  xload1_out = [-0.0170, 0.0039, 0.0095,  0.0258, 0.0025, ...
594s                -0.0075, 0.0000, 0.0018, -0.0027, 0.0020];
594s  yload_out = [6.6384, 9.3106, 2.0505, 0.6471, 0.9625, ...
594s               0.5905, 0.4244, 0.2437, 0.3516, 0.2548];
594s  xscore1_out = [-0.0401, -0.1764, -0.0340, 0.1669,  0.1041, ...
594s                 -0.2067,  0.0457,  0.1565, 0.0706, -0.1471];
594s  yscore1_out = [-12.4635, -15.0003,  0.0638,  0.0652, -0.0070, ...
594s                  -0.0634,   0.0062, -0.0012, -0.0151, -0.0173];
594s  assert (xload(1,:), xload1_out, 1e-4);
594s  assert (yload, yload_out, 1e-4);
594s  assert (xscore(1,:), xscore1_out, 1e-4);
594s  assert (yscore(1,:), yscore1_out, 1e-4);
594s ***** test
594s  load spectra
594s  [xload, yload, xscore, yscore, coef, pctVar] = plsregress (NIR, octane, 5);
594s  xload1_out = [-0.0170, 0.0039, 0.0095, 0.0258, 0.0025];
594s  yload_out = [6.6384, 9.3106, 2.0505, 0.6471, 0.9625];
594s  xscore1_out = [-0.0401, -0.1764, -0.0340, 0.1669, 0.1041];
594s  yscore1_out = [-12.4635, -15.0003, 0.0638, 0.0652, -0.0070];
594s  assert (xload(1,:), xload1_out, 1e-4);
594s  assert (yload, yload_out, 1e-4);
594s  assert (xscore(1,:), xscore1_out, 1e-4);
594s  assert (yscore(1,:), yscore1_out, 1e-4);
594s ***** error<plsregress: function called with too few input arguments.>
594s  plsregress (1)
594s ***** error<plsregress: X and Y must be real matrices.> plsregress (1, "asd")
594s ***** error<plsregress: X and Y must be real matrices.> plsregress (1, {1,2,3})
594s ***** error<plsregress: X and Y must be real matrices.> plsregress ("asd", 1)
594s ***** error<plsregress: X and Y must be real matrices.> plsregress ({1,2,3}, 1)
594s ***** error<plsregress: X and Y observations mismatch.> ...
594s  plsregress (ones (20,3), ones (15,1))
594s ***** error<plsregress: invalid value for NCOMP.> ...
594s  plsregress (ones (20,3), ones (20,1), 0)
594s ***** error<plsregress: invalid value for NCOMP.> ...
594s  plsregress (ones (20,3), ones (20,1), -5)
594s ***** error<plsregress: invalid value for NCOMP.> ...
594s  plsregress (ones (20,3), ones (20,1), 3.2)
594s ***** error<plsregress: invalid value for NCOMP.> ...
594s  plsregress (ones (20,3), ones (20,1), [2, 3])
594s ***** error<plsregress: NCOMP exceeds maximum components for X.> ...
594s  plsregress (ones (20,3), ones (20,1), 4)
594s ***** error<plsregress: invalid VALUE for 'cv' optional argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", 4.5)
594s ***** error<plsregress: invalid VALUE for 'cv' optional argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", -1)
594s ***** error<plsregress: invalid VALUE for 'cv' optional argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", "somestring")
594s ***** error<plsregress: invalid VALUE for 'mcreps' optional argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "mcreps", 2.2)
594s ***** error<plsregress: invalid VALUE for 'mcreps' optional argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "mcreps", -2)
594s ***** error<plsregress: invalid VALUE for 'mcreps' optional argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "mcreps", [1, 2])
594s ***** error<plsregress: invalid NAME argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "Name", 3, "mcreps", 1)
594s ***** error<plsregress: invalid NAME argument.> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", 3, "Name", 1)
594s ***** error<plsregress: 'mcreps' must be 1 when 'resubstitution' is specified> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "mcreps", 2)
594s ***** error<plsregress: 'mcreps' must be 1 when 'resubstitution' is specified> ...
594s  plsregress (ones (20,3), ones (20,1), 3, "cv", "resubstitution", "mcreps", 2)
594s ***** error<Invalid call to plsregress.  Correct usage is:> plsregress (1, 2)
595s 24 tests, 24 passed, 0 known failure, 0 skipped
595s [inst/hotelling_t2test.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/hotelling_t2test.m
595s ***** error<Invalid call to hotelling_t2test.  Correct usage> hotelling_t2test ();
595s ***** error<hotelling_t2test: X must be a vector or a 2D matrix.> ...
595s  hotelling_t2test (1);
595s ***** error<hotelling_t2test: X must be a vector or a 2D matrix.> ...
595s  hotelling_t2test (ones(2,2,2));
595s ***** error<hotelling_t2test: invalid value for alpha.> ...
595s  hotelling_t2test (ones(20,2), [0, 0], "alpha", 1);
595s ***** error<hotelling_t2test: invalid value for alpha.> ...
595s  hotelling_t2test (ones(20,2), [0, 0], "alpha", -0.2);
595s ***** error<hotelling_t2test: invalid value for alpha.> ...
595s  hotelling_t2test (ones(20,2), [0, 0], "alpha", "a");
595s ***** error<hotelling_t2test: invalid value for alpha.> ...
595s  hotelling_t2test (ones(20,2), [0, 0], "alpha", [0.01, 0.05]);
595s ***** error<hotelling_t2test: invalid Name argument.> ...
595s  hotelling_t2test (ones(20,2), [0, 0], "name", 0.01);
595s ***** error<hotelling_t2test: if X is a vector, M must be a scalar.> ...
595s  hotelling_t2test (ones(20,1), [0, 0]);
595s ***** error<hotelling_t2test: X must have more rows than columns.> ...
595s  hotelling_t2test (ones(4,5), [0, 0, 0, 0, 0]);
595s ***** error<hotelling_t2test: if X is a matrix, M must be a vector of length> ...
595s  hotelling_t2test (ones(20,5), [0, 0, 0, 0]);
595s ***** test
595s  randn ("seed", 1);
595s  x = randn (50000, 5);
595s  [h, pval, stats] = hotelling_t2test (x);
595s  assert (h, 0);
595s  assert (stats.df1, 5);
595s  assert (stats.df2, 49995);
595s ***** test
595s  randn ("seed", 1);
595s  x = randn (50000, 5);
595s  [h, pval, stats] = hotelling_t2test (x, ones (1, 5) * 10);
595s  assert (h, 1);
595s  assert (stats.df1, 5);
595s  assert (stats.df2, 49995);
595s 13 tests, 13 passed, 0 known failure, 0 skipped
595s [inst/manovacluster.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/manovacluster.m
595s ***** demo
595s  load carbig
595s  X = [MPG Acceleration Weight Displacement];
595s  [d, p, stats] = manova1 (X, Origin);
595s  manovacluster (stats)
595s ***** test
595s  hf = figure ("visible", "off");
595s  unwind_protect
595s    load carbig
595s    X = [MPG Acceleration Weight Displacement];
595s    [d, p, stats] = manova1 (X, Origin);
595s    manovacluster (stats);
595s  unwind_protect_cleanup
595s    close (hf);
595s  end_unwind_protect
595s ***** error manovacluster (stats, "some");
595s 2 tests, 2 passed, 0 known failure, 0 skipped
595s [inst/mnrfit.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/mnrfit.m
595s ***** error<mnrfit: too few input arguments.> mnrfit (ones (50,1))
595s ***** error<mnrfit: Predictors must be numeric.> ...
595s  mnrfit ({1 ;2 ;3 ;4 ;5}, ones (5,1))
595s ***** error<mnrfit: Predictors must be a vector or a 2D matrix.> ...
595s  mnrfit (ones (50, 4, 2), ones (50, 1))
595s ***** error<mnrfit: Response must be a vector or a 2D matrix.> ...
595s  mnrfit (ones (50, 4), ones (50, 1, 3))
595s ***** error<mnrfit: Y must have the same number of rows as X.> ...
595s  mnrfit (ones (50, 4), ones (45,1))
595s ***** error<mnrfit: Response labels must be a character array, a cell vector> ...
595s  mnrfit (ones (5, 4), {1 ;2 ;3 ;4 ;5})
595s ***** error<mnrfit: optional arguments must be in pairs.> ...
595s  mnrfit (ones (5, 4), ones (5, 1), "model")
595s ***** error<mnrfit: Y must be a column vector when given as cellstr.> ...
595s  mnrfit (ones (5, 4), {"q","q";"w","w";"q","q";"w","w";"q","q"})
595s ***** error<mnrfit: Y must contain only 1 and 0 when given as a 2D matrix.> ...
595s  mnrfit (ones (5, 4), [1, 2; 1, 2; 1, 2; 1, 2; 1, 2])
595s ***** error<mnrfit: Y must contain positive integer category numbers.> ...
595s  mnrfit (ones (5, 4), [1; -1; 1; 2; 1])
595s ***** error<mnrfit: fitting more than 2 nominal responses not supported.> ...
595s  mnrfit (ones (5, 4), [1; 2; 3; 2; 1], "model", "nominal")
595s ***** error<mnrfit: fitting hierarchical responses not supported.> ...
595s  mnrfit (ones (5, 4), [1; 2; 3; 2; 1], "model", "hierarchical")
595s ***** error<mnrfit: model type not recognised.> ...
595s  mnrfit (ones (5, 4), [1; 2; 3; 2; 1], "model", "whatever")
595s 13 tests, 13 passed, 0 known failure, 0 skipped
595s [inst/princomp.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/princomp.m
595s ***** shared COEFF,SCORE,latent,tsquare,m,x,R,V,lambda,i,S,F
595s ***** test
595s  x=[7 4 3
595s     4 1 8
595s     6 3 5
595s     8 6 1
595s     8 5 7
595s     7 2 9
595s     5 3 3
595s     9 5 8
595s     7 4 5
595s     8 2 2];
595s  R = corrcoef (x);
595s  [V, lambda] = eig (R);
595s  [~, i] = sort(diag(lambda), "descend"); #arrange largest PC first
595s  S = V(:, i) * diag(sqrt(diag(lambda)(i)));
595s  ## contribution of first 2 PCs to each original variable
595s ***** assert(diag(S(:, 1:2)*S(:, 1:2)'), [0.8662; 0.8420; 0.9876], 1E-4);
595s  B = V(:, i) * diag( 1./ sqrt(diag(lambda)(i)));
595s  F = zscore(x)*B;
595s  [COEFF,SCORE,latent,tsquare] = princomp(zscore(x, 1));
595s ***** assert(tsquare,sumsq(F, 2),1E4*eps);
595s ***** test
595s  x=[1,2,3;2,1,3]';
595s  [COEFF,SCORE,latent,tsquare] = princomp(x);
595s  m=[sqrt(2),sqrt(2);sqrt(2),-sqrt(2);-2*sqrt(2),0]/2;
595s  m(:,1) = m(:,1)*sign(COEFF(1,1));
595s  m(:,2) = m(:,2)*sign(COEFF(1,2));
595s ***** assert(COEFF,m(1:2,:),10*eps);
595s ***** assert(SCORE,-m,10*eps);
595s ***** assert(latent,[1.5;.5],10*eps);
595s ***** assert(tsquare,[4;4;4]/3,10*eps);
595s ***** test
595s  x=x';
595s  [COEFF,SCORE,latent,tsquare] = princomp(x);
595s  m=[sqrt(2),sqrt(2),0;-sqrt(2),sqrt(2),0;0,0,2]/2;
595s  m(:,1) = m(:,1)*sign(COEFF(1,1));
595s  m(:,2) = m(:,2)*sign(COEFF(1,2));
595s  m(:,3) = m(:,3)*sign(COEFF(3,3));
595s ***** assert(COEFF,m,10*eps);
595s ***** assert(SCORE(:,1),-m(1:2,1),10*eps);
595s ***** assert(SCORE(:,2:3),zeros(2),10*eps);
595s ***** assert(latent,[1;0;0],10*eps);
595s ***** assert(tsquare,[0.5;0.5],10*eps)
595s ***** test
595s  [COEFF,SCORE,latent,tsquare] = princomp(x, "econ");
595s ***** assert(COEFF,m(:, 1),10*eps);
595s ***** assert(SCORE,-m(1:2,1),10*eps);
595s ***** assert(latent,[1],10*eps);
595s ***** assert(tsquare,[0.5;0.5],10*eps)
595s 19 tests, 19 passed, 0 known failure, 0 skipped
595s [inst/dist_fun/loglcdf.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/loglcdf.m
595s ***** demo
595s  ## Plot various CDFs from the log-logistic distribution
595s  x = 0:0.001:2;
595s  p1 = loglcdf (x, log (1), 1/0.5);
595s  p2 = loglcdf (x, log (1), 1);
595s  p3 = loglcdf (x, log (1), 1/2);
595s  p4 = loglcdf (x, log (1), 1/4);
595s  p5 = loglcdf (x, log (1), 1/8);
595s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
595s  legend ({"σ = 2 (β = 0.5)", "σ = 1 (β = 1)", "σ = 0.5 (β = 2)", ...
595s           "σ = 0.25 (β = 4)", "σ = 0.125 (β = 8)"}, "location", "northwest")
595s  grid on
595s  title ("Log-logistic CDF")
595s  xlabel ("values in x")
595s  ylabel ("probability")
595s  text (0.05, 0.64, "μ = 0 (α = 1), values of σ (β) as shown in legend")
595s ***** shared out1, out2
595s  out1 = [0, 0.5, 0.66666667, 0.75, 0.8, 0.83333333];
595s  out2 = [0, 0.4174, 0.4745, 0.5082, 0.5321, 0.5506];
595s ***** assert (loglcdf ([0:5], 0, 1), out1, 1e-8)
595s ***** assert (loglcdf ([0:5], 0, 1, "upper"), 1 - out1, 1e-8)
595s ***** assert (loglcdf ([0:5], 0, 1), out1, 1e-8)
595s ***** assert (loglcdf ([0:5], 0, 1, "upper"), 1 - out1, 1e-8)
595s ***** assert (loglcdf ([0:5], 1, 3), out2, 1e-4)
595s ***** assert (loglcdf ([0:5], 1, 3, "upper"), 1 - out2, 1e-4)
595s ***** assert (class (loglcdf (single (1), 2, 3)), "single")
595s ***** assert (class (loglcdf (1, single (2), 3)), "single")
595s ***** assert (class (loglcdf (1, 2, single (3))), "single")
595s ***** error<loglcdf: function called with too few input arguments.> loglcdf (1)
595s ***** error<loglcdf: function called with too few input arguments.> loglcdf (1, 2)
595s ***** error<loglcdf: invalid argument for upper tail.> ...
595s  loglcdf (1, 2, 3, 4)
595s ***** error<loglcdf: invalid argument for upper tail.> ...
595s  loglcdf (1, 2, 3, "uper")
595s ***** error<loglcdf: X, MU, and SIGMA must be of common size or scalars.> ...
595s  loglcdf (1, ones (2), ones (3))
595s ***** error<loglcdf: X, MU, and SIGMA must be of common size or scalars.> ...
595s  loglcdf (1, ones (2), ones (3), "upper")
595s ***** error<loglcdf: X, MU, and SIGMA must be of common size or scalars.> ...
595s  loglcdf (ones (2), 1, ones (3))
595s ***** error<loglcdf: X, MU, and SIGMA must be of common size or scalars.> ...
595s  loglcdf (ones (2), 1, ones (3), "upper")
595s ***** error<loglcdf: X, MU, and SIGMA must be of common size or scalars.> ...
595s  loglcdf (ones (2), ones (3), 1)
595s ***** error<loglcdf: X, MU, and SIGMA must be of common size or scalars.> ...
595s  loglcdf (ones (2), ones (3), 1, "upper")
595s ***** error<loglcdf: X, MU, and SIGMA must not be complex.> loglcdf (i, 2, 3)
595s ***** error<loglcdf: X, MU, and SIGMA must not be complex.> loglcdf (i, 2, 3, "upper")
595s ***** error<loglcdf: X, MU, and SIGMA must not be complex.> loglcdf (1, i, 3)
595s ***** error<loglcdf: X, MU, and SIGMA must not be complex.> loglcdf (1, i, 3, "upper")
595s ***** error<loglcdf: X, MU, and SIGMA must not be complex.> loglcdf (1, 2, i)
595s ***** error<loglcdf: X, MU, and SIGMA must not be complex.> loglcdf (1, 2, i, "upper")
595s 25 tests, 25 passed, 0 known failure, 0 skipped
595s [inst/dist_fun/betapdf.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/betapdf.m
595s ***** demo
595s  ## Plot various PDFs from the Beta distribution
595s  x = 0.001:0.001:0.999;
595s  y1 = betapdf (x, 0.5, 0.5);
595s  y2 = betapdf (x, 5, 1);
595s  y3 = betapdf (x, 1, 3);
595s  y4 = betapdf (x, 2, 2);
595s  y5 = betapdf (x, 2, 5);
595s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
595s  grid on
595s  ylim ([0, 2.5])
595s  legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ...
595s           "α = 2, β = 2", "α = 2, β = 5"}, "location", "north")
595s  title ("Beta PDF")
595s  xlabel ("values in x")
595s  ylabel ("density")
595s ***** shared x, y
595s  x = [-1 0 0.5 1 2];
595s  y = [0 2 1 0 0];
595s ***** assert (betapdf (x, ones (1, 5), 2 * ones (1, 5)), y)
595s ***** assert (betapdf (x, 1, 2 * ones (1, 5)), y)
595s ***** assert (betapdf (x, ones (1, 5), 2), y)
595s ***** assert (betapdf (x, [0 NaN 1 1 1], 2), [NaN NaN y(3:5)])
595s ***** assert (betapdf (x, 1, 2 * [0 NaN 1 1 1]), [NaN NaN y(3:5)])
595s ***** assert (betapdf ([x, NaN], 1, 2), [y, NaN])
595s ***** assert (betapdf (single ([x, NaN]), 1, 2), single ([y, NaN]))
595s ***** assert (betapdf ([x, NaN], single (1), 2), single ([y, NaN]))
595s ***** assert (betapdf ([x, NaN], 1, single (2)), single ([y, NaN]))
595s ***** test
595s  x = rand (10,1);
595s  y = 1 ./ (pi * sqrt (x .* (1 - x)));
595s  assert (betapdf (x, 1/2, 1/2), y, 1e-12);
595s ***** assert (betapdf (0.5, 1000, 1000), 35.678, 1e-3)
595s ***** error<betapdf: function called with too few input arguments.> betapdf ()
595s ***** error<betapdf: function called with too few input arguments.> betapdf (1)
595s ***** error<betapdf: function called with too few input arguments.> betapdf (1,2)
595s ***** error<betapdf: function called with too many inputs> betapdf (1,2,3,4)
595s ***** error<betapdf: X, A, and B must be of common size or scalars.> ...
595s  betapdf (ones (3), ones (2), ones (2))
595s ***** error<betapdf: X, A, and B must be of common size or scalars.> ...
595s  betapdf (ones (2), ones (3), ones (2))
595s ***** error<betapdf: X, A, and B must be of common size or scalars.> ...
595s  betapdf (ones (2), ones (2), ones (3))
595s ***** error<betapdf: X, A, and B must not be complex.> betapdf (i, 2, 2)
595s ***** error<betapdf: X, A, and B must not be complex.> betapdf (2, i, 2)
595s ***** error<betapdf: X, A, and B must not be complex.> betapdf (2, 2, i)
595s 21 tests, 21 passed, 0 known failure, 0 skipped
595s [inst/dist_fun/logiinv.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/logiinv.m
595s ***** demo
595s  ## Plot various iCDFs from the logistic distribution
595s  p = 0.001:0.001:0.999;
595s  x1 = logiinv (p, 5, 2);
595s  x2 = logiinv (p, 9, 3);
595s  x3 = logiinv (p, 9, 4);
595s  x4 = logiinv (p, 6, 2);
595s  x5 = logiinv (p, 2, 1);
595s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
595s  grid on
595s  legend ({"μ = 5, σ = 2", "μ = 9, σ = 3", "μ = 9, σ = 4", ...
595s           "μ = 6, σ = 2", "μ = 2, σ = 1"}, "location", "southeast")
595s  title ("Logistic iCDF")
595s  xlabel ("probability")
595s  ylabel ("x")
595s ***** test
595s  p = [0.01:0.01:0.99];
595s  assert (logiinv (p, 0, 1), log (p ./ (1-p)), 25*eps);
595s ***** shared p
595s  p = [-1 0 0.5 1 2];
595s ***** assert (logiinv (p, 0, 1), [NaN -Inf 0 Inf NaN])
595s ***** assert (logiinv (p, 0, [-1, 0, 1, 2, 3]), [NaN NaN 0 Inf NaN])
595s ***** assert (logiinv ([p, NaN], 0, 1), [NaN -Inf 0 Inf NaN NaN])
595s ***** assert (logiinv (single ([p, NaN]), 0, 1), single ([NaN -Inf 0 Inf NaN NaN]))
595s ***** assert (logiinv ([p, NaN], single (0), 1), single ([NaN -Inf 0 Inf NaN NaN]))
595s ***** assert (logiinv ([p, NaN], 0, single (1)), single ([NaN -Inf 0 Inf NaN NaN]))
595s ***** error<logiinv: function called with too few input arguments.> logiinv ()
595s ***** error<logiinv: function called with too few input arguments.> logiinv (1)
595s ***** error<logiinv: function called with too few input arguments.> ...
595s  logiinv (1, 2)
595s ***** error<logiinv: P, MU, and SIGMA must be of common size or scalars.> ...
595s  logiinv (1, ones (2), ones (3))
595s ***** error<logiinv: P, MU, and SIGMA must be of common size or scalars.> ...
595s  logiinv (ones (2), 1, ones (3))
595s ***** error<logiinv: P, MU, and SIGMA must be of common size or scalars.> ...
595s  logiinv (ones (2), ones (3), 1)
595s ***** error<logiinv: P, MU, and SIGMA must not be complex.> logiinv (i, 2, 3)
595s ***** error<logiinv: P, MU, and SIGMA must not be complex.> logiinv (1, i, 3)
595s ***** error<logiinv: P, MU, and SIGMA must not be complex.> logiinv (1, 2, i)
595s 16 tests, 16 passed, 0 known failure, 0 skipped
595s [inst/dist_fun/gevinv.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gevinv.m
595s ***** demo
595s  ## Plot various iCDFs from the generalized extreme value distribution
595s  p = 0.001:0.001:0.999;
595s  x1 = gevinv (p, 1, 1, 1);
595s  x2 = gevinv (p, 0.5, 1, 1);
595s  x3 = gevinv (p, 1, 1, 5);
595s  x4 = gevinv (p, 1, 2, 5);
595s  x5 = gevinv (p, 1, 5, 5);
595s  x6 = gevinv (p, 1, 0.5, 5);
595s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
595s        p, x4, "-c", p, x5, "-m", p, x6, "-k")
595s  grid on
595s  ylim ([-1, 10])
595s  legend ({"k = 1, σ = 1, μ = 1", "k = 0.5, σ = 1, μ = 1", ...
595s           "k = 1, σ = 1, μ = 5", "k = 1, σ = 2, μ = 5", ...
595s           "k = 1, σ = 5, μ = 5", "k = 1, σ = 0.5, μ = 5"}, ...
595s          "location", "northwest")
595s  title ("Generalized extreme value iCDF")
595s  xlabel ("probability")
595s  ylabel ("values in x")
595s ***** test
595s  p = 0.1:0.1:0.9;
595s  k = 0;
595s  sigma = 1;
595s  mu = 0;
595s  x = gevinv (p, k, sigma, mu);
595s  c = gevcdf(x, k, sigma, mu);
595s  assert (c, p, 0.001);
595s ***** test
595s  p = 0.1:0.1:0.9;
595s  k = 1;
595s  sigma = 1;
595s  mu = 0;
595s  x = gevinv (p, k, sigma, mu);
595s  c = gevcdf(x, k, sigma, mu);
595s  assert (c, p, 0.001);
595s ***** test
595s  p = 0.1:0.1:0.9;
595s  k = 0.3;
595s  sigma = 1;
595s  mu = 0;
595s  x = gevinv (p, k, sigma, mu);
595s  c = gevcdf(x, k, sigma, mu);
595s  assert (c, p, 0.001);
595s ***** error<gevinv: function called with too few input arguments.> gevinv ()
595s ***** error<gevinv: function called with too few input arguments.> gevinv (1)
595s ***** error<gevinv: function called with too few input arguments.> gevinv (1, 2)
595s ***** error<gevinv: function called with too few input arguments.> gevinv (1, 2, 3)
595s ***** error<gevinv: P, K, SIGMA, and MU must be of common size or scalars.> ...
595s  gevinv (ones (3), ones (2), ones(2), ones(2))
595s ***** error<gevinv: P, K, SIGMA, and MU must be of common size or scalars.> ...
595s  gevinv (ones (2), ones (3), ones(2), ones(2))
595s ***** error<gevinv: P, K, SIGMA, and MU must be of common size or scalars.> ...
595s  gevinv (ones (2), ones (2), ones(3), ones(2))
595s ***** error<gevinv: P, K, SIGMA, and MU must be of common size or scalars.> ...
595s  gevinv (ones (2), ones (2), ones(2), ones(3))
595s ***** error<gevinv: P, K, SIGMA, and MU must not be complex.> gevinv (i, 2, 3, 4)
595s ***** error<gevinv: P, K, SIGMA, and MU must not be complex.> gevinv (1, i, 3, 4)
595s ***** error<gevinv: P, K, SIGMA, and MU must not be complex.> gevinv (1, 2, i, 4)
595s ***** error<gevinv: P, K, SIGMA, and MU must not be complex.> gevinv (1, 2, 3, i)
595s 15 tests, 15 passed, 0 known failure, 0 skipped
595s [inst/dist_fun/plinv.m]
595s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/plinv.m
595s ***** demo
595s  ## Plot various iCDFs from the Piecewise linear distribution
595s  p = 0.001:0.001:0.999;
595s  x1 = [0, 1, 3, 4, 7, 10];
595s  Fx1 = [0, 0.2, 0.5, 0.6, 0.7, 1];
595s  x2 = [0, 2, 5, 6, 7, 8];
595s  Fx2 = [0, 0.1, 0.3, 0.6, 0.9, 1];
595s  data1 = plinv (p, x1, Fx1);
595s  data2 = plinv (p, x2, Fx2);
595s  plot (p, data1, "-b", p, data2, "-g")
595s  grid on
595s  legend ({"x1, Fx1", "x2, Fx2"}, "location", "northwest")
595s  title ("Piecewise linear iCDF")
595s  xlabel ("probability")
595s  ylabel ("values in data")
595s ***** test
595s  p = 0:0.2:1;
595s  data = plinv (p, [0, 1], [0, 1]);
595s  assert (data, p);
595s ***** test
595s  p = 0:0.2:1;
595s  data = plinv (p, [0, 2], [0, 1]);
595s  assert (data, 2 * p);
595s ***** test
595s  p = 0:0.2:1;
595s  data_out = 1:6;
595s  data = plinv (p, [0, 1], [0, 0.5]);
595s  assert (data, [0, 0.4, 0.8, NA, NA, NA]);
595s ***** test
595s  p = 0:0.2:1;
595s  data_out = 1:6;
595s  data = plinv (p, [0, 0.5], [0, 1]);
595s  assert (data, [0:0.1:0.5]);
596s ***** error<plinv: function called with too few input arguments.> plinv ()
596s ***** error<plinv: function called with too few input arguments.> plinv (1)
596s ***** error<plinv: function called with too few input arguments.> plinv (1, 2)
596s ***** error<plinv: X and FX must be vectors of equal size.> ...
596s  plinv (1, [0, 1, 2], [0, 1])
596s ***** error<plinv: X and FX must be at least two-elements long.> ...
596s  plinv (1, [0], [1])
596s ***** error<plinv: FX must be bounded in the range> ...
596s  plinv (1, [0, 1, 2], [0, 1, 1.5])
596s ***** error<plinv: FX must be bounded in the range> ...
596s  plinv (1, [0, 1, 2], [0, i, 1])
596s ***** error<plinv: P, X, and FX must not be complex.> ...
596s  plinv (i, [0, 1, 2], [0, 0.5, 1])
596s ***** error<plinv: P, X, and FX must not be complex.> ...
596s  plinv (1, [0, i, 2], [0, 0.5, 1])
596s ***** error<plinv: P, X, and FX must not be complex.> ...
596s  plinv (1, [0, 1, 2], [0, 0.5i, 1])
596s 14 tests, 14 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/bisapdf.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/bisapdf.m
596s ***** demo
596s  ## Plot various PDFs from the Birnbaum-Saunders distribution
596s  x = 0.01:0.01:4;
596s  y1 = bisapdf (x, 1, 0.5);
596s  y2 = bisapdf (x, 1, 1);
596s  y3 = bisapdf (x, 1, 2);
596s  y4 = bisapdf (x, 1, 5);
596s  y5 = bisapdf (x, 1, 10);
596s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
596s  grid on
596s  ylim ([0, 1.5])
596s  legend ({"β = 1 ,γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ...
596s           "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "northeast")
596s  title ("Birnbaum-Saunders PDF")
596s  xlabel ("values in x")
596s  ylabel ("density")
596s ***** demo
596s  ## Plot various PDFs from the Birnbaum-Saunders distribution
596s  x = 0.01:0.01:6;
596s  y1 = bisapdf (x, 1, 0.3);
596s  y2 = bisapdf (x, 2, 0.3);
596s  y3 = bisapdf (x, 1, 0.5);
596s  y4 = bisapdf (x, 3, 0.5);
596s  y5 = bisapdf (x, 5, 0.5);
596s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
596s  grid on
596s  ylim ([0, 1.5])
596s  legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ...
596s           "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "northeast")
596s  title ("Birnbaum-Saunders CDF")
596s  xlabel ("values in x")
596s  ylabel ("density")
596s ***** shared x, y
596s  x = [-1, 0, 1, 2, Inf];
596s  y = [0, 0, 0.3989422804014327, 0.1647717335503959, 0];
596s ***** assert (bisapdf (x, ones (1,5), ones (1,5)), y, eps)
596s ***** assert (bisapdf (x, 1, 1), y, eps)
596s ***** assert (bisapdf (x, 1, ones (1,5)), y, eps)
596s ***** assert (bisapdf (x, ones (1,5), 1), y, eps)
596s ***** assert (bisapdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps)
596s ***** assert (bisapdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps)
596s ***** assert (bisapdf ([x, NaN], 1, 1), [y, NaN], eps)
596s ***** assert (bisapdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single"))
596s ***** assert (bisapdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single"))
596s ***** assert (bisapdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single"))
596s ***** error<bisapdf: function called with too few input arguments.> bisapdf ()
596s ***** error<bisapdf: function called with too few input arguments.> bisapdf (1)
596s ***** error<bisapdf: function called with too few input arguments.> bisapdf (1, 2)
596s ***** error<bisapdf: function called with too many inputs> bisapdf (1, 2, 3, 4)
596s ***** error<bisapdf: X, BETA, and GAMMA must be of common size or scalars.> ...
596s  bisapdf (ones (3), ones (2), ones(2))
596s ***** error<bisapdf: X, BETA, and GAMMA must be of common size or scalars.> ...
596s  bisapdf (ones (2), ones (3), ones(2))
596s ***** error<bisapdf: X, BETA, and GAMMA must be of common size or scalars.> ...
596s  bisapdf (ones (2), ones (2), ones(3))
596s ***** error<bisapdf: X, BETA, and GAMMA must not be complex.> bisapdf (i, 4, 3)
596s ***** error<bisapdf: X, BETA, and GAMMA must not be complex.> bisapdf (1, i, 3)
596s ***** error<bisapdf: X, BETA, and GAMMA must not be complex.> bisapdf (1, 4, i)
596s 20 tests, 20 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/cauchypdf.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/cauchypdf.m
596s ***** demo
596s  ## Plot various PDFs from the Cauchy distribution
596s  x = -5:0.01:5;
596s  y1 = cauchypdf (x, 0, 0.5);
596s  y2 = cauchypdf (x, 0, 1);
596s  y3 = cauchypdf (x, 0, 2);
596s  y4 = cauchypdf (x, -2, 1);
596s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
596s  grid on
596s  xlim ([-5, 5])
596s  ylim ([0, 0.7])
596s  legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ...
596s           "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "northeast")
596s  title ("Cauchy PDF")
596s  xlabel ("values in x")
596s  ylabel ("density")
596s ***** shared x, y
596s  x = [-1 0 0.5 1 2];
596s  y = 1/pi * ( 2 ./ ((x-1).^2 + 2^2) );
596s ***** assert (cauchypdf (x, ones (1,5), 2*ones (1,5)), y)
596s ***** assert (cauchypdf (x, 1, 2*ones (1,5)), y)
596s ***** assert (cauchypdf (x, ones (1,5), 2), y)
596s ***** assert (cauchypdf (x, [-Inf 1 NaN 1 Inf], 2), [NaN y(2) NaN y(4) NaN])
596s ***** assert (cauchypdf (x, 1, 2*[0 1 NaN 1 Inf]), [NaN y(2) NaN y(4) NaN])
596s ***** assert (cauchypdf ([x, NaN], 1, 2), [y, NaN])
596s ***** assert (cauchypdf (single ([x, NaN]), 1, 2), single ([y, NaN]), eps ("single"))
596s ***** assert (cauchypdf ([x, NaN], single (1), 2), single ([y, NaN]), eps ("single"))
596s ***** assert (cauchypdf ([x, NaN], 1, single (2)), single ([y, NaN]), eps ("single"))
596s ***** test
596s  x = rand (10, 1);
596s  assert (cauchypdf (x, 0, 1), tpdf (x, 1), eps);
596s ***** error<cauchypdf: function called with too few input arguments.> cauchypdf ()
596s ***** error<cauchypdf: function called with too few input arguments.> cauchypdf (1)
596s ***** error<cauchypdf: function called with too few input arguments.> ...
596s  cauchypdf (1, 2)
596s ***** error<cauchypdf: function called with too many inputs> cauchypdf (1, 2, 3, 4)
596s ***** error<cauchypdf: X, X0, and GAMMA must be of common size or scalars.> ...
596s  cauchypdf (ones (3), ones (2), ones(2))
596s ***** error<cauchypdf: X, X0, and GAMMA must be of common size or scalars.> ...
596s  cauchypdf (ones (2), ones (3), ones(2))
596s ***** error<cauchypdf: X, X0, and GAMMA must be of common size or scalars.> ...
596s  cauchypdf (ones (2), ones (2), ones(3))
596s ***** error<cauchypdf: X, X0, and GAMMA must not be complex.> cauchypdf (i, 4, 3)
596s ***** error<cauchypdf: X, X0, and GAMMA must not be complex.> cauchypdf (1, i, 3)
596s ***** error<cauchypdf: X, X0, and GAMMA must not be complex.> cauchypdf (1, 4, i)
596s 20 tests, 20 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/logncdf.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/logncdf.m
596s ***** demo
596s  ## Plot various CDFs from the log-normal distribution
596s  x = 0:0.01:3;
596s  p1 = logncdf (x, 0, 1);
596s  p2 = logncdf (x, 0, 0.5);
596s  p3 = logncdf (x, 0, 0.25);
596s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r")
596s  grid on
596s  legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ...
596s          "location", "southeast")
596s  title ("Log-normal CDF")
596s  xlabel ("values in x")
596s  ylabel ("probability")
596s ***** shared x, y
596s  x = [-1, 0, 1, e, Inf];
596s  y = [0, 0, 0.5, 1/2+1/2*erf(1/2), 1];
596s ***** assert (logncdf (x, zeros (1,5), sqrt(2)*ones (1,5)), y, eps)
596s ***** assert (logncdf (x, zeros (1,5), sqrt(2)*ones (1,5), []), y, eps)
596s ***** assert (logncdf (x, 0, sqrt(2)*ones (1,5)), y, eps)
596s ***** assert (logncdf (x, zeros (1,5), sqrt(2)), y, eps)
596s ***** assert (logncdf (x, [0 1 NaN 0 1], sqrt(2)), [0 0 NaN y(4:5)], eps)
596s ***** assert (logncdf (x, 0, sqrt(2)*[0 NaN Inf 1 1]), [NaN NaN y(3:5)], eps)
596s ***** assert (logncdf ([x(1:3) NaN x(5)], 0, sqrt(2)), [y(1:3) NaN y(5)], eps)
596s ***** assert (logncdf ([x, NaN], 0, sqrt(2)), [y, NaN], eps)
596s ***** assert (logncdf (single ([x, NaN]), 0, sqrt(2)), single ([y, NaN]), eps ("single"))
596s ***** assert (logncdf ([x, NaN], single (0), sqrt(2)), single ([y, NaN]), eps ("single"))
596s ***** assert (logncdf ([x, NaN], 0, single (sqrt(2))), single ([y, NaN]), eps ("single"))
596s ***** error<logncdf: invalid number of input arguments.> logncdf ()
596s ***** error<logncdf: invalid number of input arguments.> logncdf (1,2,3,4,5,6,7)
596s ***** error<logncdf: invalid argument for upper tail.> logncdf (1, 2, 3, 4, "uper")
596s ***** error<logncdf: X, MU, and SIGMA must be of common size or scalars.> ...
596s  logncdf (ones (3), ones (2), ones (2))
596s ***** error<logncdf: invalid size of covariance matrix.> logncdf (2, 3, 4, [1, 2])
596s ***** error<logncdf: covariance matrix is required for confidence bounds.> ...
596s  [p, plo, pup] = logncdf (1, 2, 3)
596s ***** error<logncdf: invalid value for alpha.> [p, plo, pup] = ...
596s  logncdf (1, 2, 3, [1, 0; 0, 1], 0)
596s ***** error<logncdf: invalid value for alpha.> [p, plo, pup] = ...
596s  logncdf (1, 2, 3, [1, 0; 0, 1], 1.22)
596s ***** error<logncdf: invalid value for alpha.> [p, plo, pup] = ...
596s  logncdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper")
596s ***** error<logncdf: X, MU, and SIGMA must not be complex.> logncdf (i, 2, 2)
596s ***** error<logncdf: X, MU, and SIGMA must not be complex.> logncdf (2, i, 2)
596s ***** error<logncdf: X, MU, and SIGMA must not be complex.> logncdf (2, 2, i)
596s ***** error<logncdf: bad covariance matrix.> ...
596s  [p, plo, pup] =logncdf (1, 2, 3, [1, 0; 0, -inf], 0.04)
596s 24 tests, 24 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/gppdf.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gppdf.m
596s ***** demo
596s  ## Plot various PDFs from the generalized Pareto distribution
596s  x = 0:0.001:5;
596s  y1 = gppdf (x, 1, 1, 0);
596s  y2 = gppdf (x, 5, 1, 0);
596s  y3 = gppdf (x, 20, 1, 0);
596s  y4 = gppdf (x, 1, 2, 0);
596s  y5 = gppdf (x, 5, 2, 0);
596s  y6 = gppdf (x, 20, 2, 0);
596s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
596s        x, y4, "-c", x, y5, "-m", x, y6, "-k")
596s  grid on
596s  xlim ([0, 5])
596s  ylim ([0, 1])
596s  legend ({"k = 1, σ = 1, θ = 0", "k = 5, σ = 1, θ = 0", ...
596s           "k = 20, σ = 1, θ = 0", "k = 1, σ = 2, θ = 0", ...
596s           "k = 5, σ = 2, θ = 0", "k = 20, σ = 2, θ = 0"}, ...
596s          "location", "northeast")
596s  title ("Generalized Pareto PDF")
596s  xlabel ("values in x")
596s  ylabel ("density")
596s ***** shared x, y1, y2, y3
596s  x = [-Inf, -1, 0, 1/2, 1, Inf];
596s  y1 = [0, 0, 1, 0.6065306597126334, 0.36787944117144233, 0];
596s  y2 = [0, 0, 1, 4/9, 1/4, 0];
596s  y3 = [0, 0, 1, 1, 1, 0];
596s ***** assert (gppdf (x, zeros (1,6), ones (1,6), zeros (1,6)), y1, eps)
596s ***** assert (gppdf (x, 0, 1, zeros (1,6)), y1, eps)
596s ***** assert (gppdf (x, 0, ones (1,6), 0), y1, eps)
596s ***** assert (gppdf (x, zeros (1,6), 1, 0), y1, eps)
596s ***** assert (gppdf (x, 0, 1, 0), y1, eps)
596s ***** assert (gppdf (x, 0, 1, [0, 0, 0, NaN, 0, 0]), [y1(1:3), NaN, y1(5:6)])
596s ***** assert (gppdf (x, 0, [1, 1, 1, NaN, 1, 1], 0), [y1(1:3), NaN, y1(5:6)])
596s ***** assert (gppdf (x, [0, 0, 0, NaN, 0, 0], 1, 0), [y1(1:3), NaN, y1(5:6)])
596s ***** assert (gppdf ([x(1:3), NaN, x(5:6)], 0, 1, 0), [y1(1:3), NaN, y1(5:6)])
596s ***** assert (gppdf (x, ones (1,6), ones (1,6), zeros (1,6)), y2, eps)
596s ***** assert (gppdf (x, 1, 1, zeros (1,6)), y2, eps)
596s ***** assert (gppdf (x, 1, ones (1,6), 0), y2, eps)
596s ***** assert (gppdf (x, ones (1,6), 1, 0), y2, eps)
596s ***** assert (gppdf (x, 1, 1, 0), y2, eps)
596s ***** assert (gppdf (x, 1, 1, [0, 0, 0, NaN, 0, 0]), [y2(1:3), NaN, y2(5:6)])
596s ***** assert (gppdf (x, 1, [1, 1, 1, NaN, 1, 1], 0), [y2(1:3), NaN, y2(5:6)])
596s ***** assert (gppdf (x, [1, 1, 1, NaN, 1, 1], 1, 0), [y2(1:3), NaN, y2(5:6)])
596s ***** assert (gppdf ([x(1:3), NaN, x(5:6)], 1, 1, 0), [y2(1:3), NaN, y2(5:6)])
596s ***** assert (gppdf (x, -ones (1,6), ones (1,6), zeros (1,6)), y3, eps)
596s ***** assert (gppdf (x, -1, 1, zeros (1,6)), y3, eps)
596s ***** assert (gppdf (x, -1, ones (1,6), 0), y3, eps)
596s ***** assert (gppdf (x, -ones (1,6), 1, 0), y3, eps)
596s ***** assert (gppdf (x, -1, 1, 0), y3, eps)
596s ***** assert (gppdf (x, -1, 1, [0, 0, 0, NaN, 0, 0]), [y3(1:3), NaN, y3(5:6)])
596s ***** assert (gppdf (x, -1, [1, 1, 1, NaN, 1, 1], 0), [y3(1:3), NaN, y3(5:6)])
596s ***** assert (gppdf (x, [-1, -1, -1, NaN, -1, -1], 1, 0), [y3(1:3), NaN, y3(5:6)])
596s ***** assert (gppdf ([x(1:3), NaN, x(5:6)], -1, 1, 0), [y3(1:3), NaN, y3(5:6)])
596s ***** assert (gppdf (single ([x, NaN]), 0, 1, 0), single ([y1, NaN]))
596s ***** assert (gppdf ([x, NaN], 0, 1, single (0)), single ([y1, NaN]))
596s ***** assert (gppdf ([x, NaN], 0, single (1), 0), single ([y1, NaN]))
596s ***** assert (gppdf ([x, NaN], single (0), 1, 0), single ([y1, NaN]))
596s ***** assert (gppdf (single ([x, NaN]), 1, 1, 0), single ([y2, NaN]))
596s ***** assert (gppdf ([x, NaN], 1, 1, single (0)), single ([y2, NaN]))
596s ***** assert (gppdf ([x, NaN], 1, single (1), 0), single ([y2, NaN]))
596s ***** assert (gppdf ([x, NaN], single (1), 1, 0), single ([y2, NaN]))
596s ***** assert (gppdf (single ([x, NaN]), -1, 1, 0), single ([y3, NaN]))
596s ***** assert (gppdf ([x, NaN], -1, 1, single (0)), single ([y3, NaN]))
596s ***** assert (gppdf ([x, NaN], -1, single (1), 0), single ([y3, NaN]))
596s ***** assert (gppdf ([x, NaN], single (-1), 1, 0), single ([y3, NaN]))
596s ***** error<gpcdf: function called with too few input arguments.> gpcdf ()
596s ***** error<gpcdf: function called with too few input arguments.> gpcdf (1)
596s ***** error<gpcdf: function called with too few input arguments.> gpcdf (1, 2)
596s ***** error<gpcdf: function called with too few input arguments.> gpcdf (1, 2, 3)
596s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
596s  gpcdf (ones (3), ones (2), ones(2), ones(2))
596s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
596s  gpcdf (ones (2), ones (3), ones(2), ones(2))
596s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
596s  gpcdf (ones (2), ones (2), ones(3), ones(2))
596s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
596s  gpcdf (ones (2), ones (2), ones(2), ones(3))
596s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (i, 2, 3, 4)
596s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (1, i, 3, 4)
596s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (1, 2, i, 4)
596s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (1, 2, 3, i)
596s 51 tests, 51 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/betarnd.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/betarnd.m
596s ***** assert (size (betarnd (2, 1/2)), [1 1])
596s ***** assert (size (betarnd (2 * ones (2, 1), 1/2)), [2, 1])
596s ***** assert (size (betarnd (2 * ones (2, 2), 1/2)), [2, 2])
596s ***** assert (size (betarnd (2, 1/2 * ones (2, 1))), [2, 1])
596s ***** assert (size (betarnd (1, 1/2 * ones (2, 2))), [2, 2])
596s ***** assert (size (betarnd (ones (2, 1), 1)), [2, 1])
596s ***** assert (size (betarnd (ones (2, 2), 1)), [2, 2])
596s ***** assert (size (betarnd (2, 1/2, 3)), [3, 3])
596s ***** assert (size (betarnd (1, 1, [4, 1])), [4, 1])
596s ***** assert (size (betarnd (1, 1, 4, 1)), [4, 1])
596s ***** assert (size (betarnd (1, 1, 4, 1, 5)), [4, 1, 5])
596s ***** assert (size (betarnd (1, 1, 0, 1)), [0, 1])
596s ***** assert (size (betarnd (1, 1, 1, 0)), [1, 0])
596s ***** assert (size (betarnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
596s ***** assert (class (betarnd (1, 1)), "double")
596s ***** assert (class (betarnd (1, single (0))), "single")
596s ***** assert (class (betarnd (1, single ([0, 0]))), "single")
596s ***** assert (class (betarnd (1, single (1), 2)), "single")
596s ***** assert (class (betarnd (1, single ([1, 1]), 1, 2)), "single")
596s ***** assert (class (betarnd (single (1), 1, 2)), "single")
596s ***** assert (class (betarnd (single ([1, 1]), 1, 1, 2)), "single")
596s ***** error<betarnd: function called with too few input arguments.> betarnd ()
596s ***** error<betarnd: function called with too few input arguments.> betarnd (1)
596s ***** error<betarnd: A and B must be of common size or scalars.> ...
596s  betarnd (ones (3), ones (2))
596s ***** error<betarnd: A and B must be of common size or scalars.> ...
596s  betarnd (ones (2), ones (3))
596s ***** error<betarnd: A and B must not be complex.> betarnd (i, 2)
596s ***** error<betarnd: A and B must not be complex.> betarnd (1, i)
596s ***** error<betarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  betarnd (1, 1/2, -1)
596s ***** error<betarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  betarnd (1, 1/2, 1.2)
596s ***** error<betarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  betarnd (1, 1/2, ones (2))
596s ***** error<betarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  betarnd (1, 1/2, [2 -1 2])
596s ***** error<betarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  betarnd (1, 1/2, [2 0 2.5])
596s ***** error<betarnd: dimensions must be non-negative integers.> ...
596s  betarnd (1, 1/2, 2, -1, 5)
596s ***** error<betarnd: dimensions must be non-negative integers.> ...
596s  betarnd (1, 1/2, 2, 1.5, 5)
596s ***** error<betarnd: A and B must be scalars or of size SZ.> ...
596s  betarnd (2, 1/2 * ones (2), 3)
596s ***** error<betarnd: A and B must be scalars or of size SZ.> ...
596s  betarnd (2, 1/2 * ones (2), [3, 2])
596s ***** error<betarnd: A and B must be scalars or of size SZ.> ...
596s  betarnd (2, 1/2 * ones (2), 3, 2)
596s ***** error<betarnd: A and B must be scalars or of size SZ.> ...
596s  betarnd (2 * ones (2), 1/2, 3)
596s ***** error<betarnd: A and B must be scalars or of size SZ.> ...
596s  betarnd (2 * ones (2), 1/2, [3, 2])
596s ***** error<betarnd: A and B must be scalars or of size SZ.> ...
596s  betarnd (2 * ones (2), 1/2, 3, 2)
596s 40 tests, 40 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/binocdf.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/binocdf.m
596s ***** demo
596s  ## Plot various CDFs from the binomial distribution
596s  x = 0:40;
596s  p1 = binocdf (x, 20, 0.5);
596s  p2 = binocdf (x, 20, 0.7);
596s  p3 = binocdf (x, 40, 0.5);
596s  plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
596s  grid on
596s  legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ...
596s           "n = 40, ps = 0.5"}, "location", "southeast")
596s  title ("Binomial CDF")
596s  xlabel ("values in x (number of successes)")
596s  ylabel ("probability")
596s ***** shared x, p, p1
596s  x = [-1 0 1 2 3];
596s  p = [0 1/4 3/4 1 1];
596s  p1 = 1 - p;
596s ***** assert (binocdf (x, 2 * ones (1, 5), 0.5 * ones (1, 5)), p, eps)
596s ***** assert (binocdf (x, 2, 0.5 * ones (1, 5)), p, eps)
596s ***** assert (binocdf (x, 2 * ones (1, 5), 0.5), p, eps)
596s ***** assert (binocdf (x, 2 * [0 -1 NaN 1.1 1], 0.5), [0 NaN NaN NaN 1])
596s ***** assert (binocdf (x, 2, 0.5 * [0 -1 NaN 3 1]), [0 NaN NaN NaN 1])
596s ***** assert (binocdf ([x(1:2) NaN x(4:5)], 2, 0.5), [p(1:2) NaN p(4:5)], eps)
596s ***** assert (binocdf (99, 100, 0.1, "upper"), 1e-100, 1e-112);
596s ***** assert (binocdf (x, 2 * ones (1, 5), 0.5*ones (1,5), "upper"), p1, eps)
596s ***** assert (binocdf (x, 2, 0.5 * ones (1, 5), "upper"), p1, eps)
596s ***** assert (binocdf (x, 2 * ones (1, 5), 0.5, "upper"), p1, eps)
596s ***** assert (binocdf (x, 2 * [0 -1 NaN 1.1 1], 0.5, "upper"), [1 NaN NaN NaN 0])
596s ***** assert (binocdf (x, 2, 0.5 * [0 -1 NaN 3 1], "upper"), [1 NaN NaN NaN 0])
596s ***** assert (binocdf ([x(1:2) NaN x(4:5)], 2, 0.5, "upper"), [p1(1:2) NaN p1(4:5)])
596s ***** assert (binocdf ([x, NaN], 2, 0.5), [p, NaN], eps)
596s ***** assert (binocdf (single ([x, NaN]), 2, 0.5), single ([p, NaN]))
596s ***** assert (binocdf ([x, NaN], single (2), 0.5), single ([p, NaN]))
596s ***** assert (binocdf ([x, NaN], 2, single (0.5)), single ([p, NaN]))
596s ***** error<binocdf: function called with too few input arguments.> binocdf ()
596s ***** error<binocdf: function called with too few input arguments.> binocdf (1)
596s ***** error<binocdf: function called with too few input arguments.> binocdf (1, 2)
596s ***** error<binocdf: function called with too many inputs> binocdf (1, 2, 3, 4, 5)
596s ***** error<binocdf: invalid argument for upper tail.> binocdf (1, 2, 3, "tail")
596s ***** error<binocdf: invalid argument for upper tail.> binocdf (1, 2, 3, 4)
596s ***** error<binocdf: X, N, and PS must be of common size or scalars.> ...
596s  binocdf (ones (3), ones (2), ones (2))
596s ***** error<binocdf: X, N, and PS must be of common size or scalars.> ...
596s  binocdf (ones (2), ones (3), ones (2))
596s ***** error<binocdf: X, N, and PS must be of common size or scalars.> ...
596s  binocdf (ones (2), ones (2), ones (3))
596s ***** error<binocdf: X, N, and PS must not be complex.> binocdf (i, 2, 2)
596s ***** error<binocdf: X, N, and PS must not be complex.> binocdf (2, i, 2)
596s ***** error<binocdf: X, N, and PS must not be complex.> binocdf (2, 2, i)
596s 29 tests, 29 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/poissrnd.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/poissrnd.m
596s ***** assert (size (poissrnd (2)), [1, 1])
596s ***** assert (size (poissrnd (ones (2,1))), [2, 1])
596s ***** assert (size (poissrnd (ones (2,2))), [2, 2])
596s ***** assert (size (poissrnd (1, 3)), [3, 3])
596s ***** assert (size (poissrnd (1, [4 1])), [4, 1])
596s ***** assert (size (poissrnd (1, 4, 1)), [4, 1])
596s ***** assert (size (poissrnd (1, 4, 1)), [4, 1])
596s ***** assert (size (poissrnd (1, 4, 1, 5)), [4, 1, 5])
596s ***** assert (size (poissrnd (1, 0, 1)), [0, 1])
596s ***** assert (size (poissrnd (1, 1, 0)), [1, 0])
596s ***** assert (size (poissrnd (1, 1, 2, 0, 5)), [1, 2, 0, 5])
596s ***** assert (poissrnd (0, 1, 1), 0)
596s ***** assert (poissrnd ([0, 0, 0], [1, 3]), [0 0 0])
596s ***** assert (class (poissrnd (2)), "double")
596s ***** assert (class (poissrnd (single (2))), "single")
596s ***** assert (class (poissrnd (single ([2 2]))), "single")
596s ***** error<poissrnd: function called with too few input arguments.> poissrnd ()
596s ***** error<poissrnd: LAMBDA must not be complex.> poissrnd (i)
596s ***** error<poissrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  poissrnd (1, -1)
596s ***** error<poissrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  poissrnd (1, 1.2)
596s ***** error<poissrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  poissrnd (1, ones (2))
596s ***** error<poissrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  poissrnd (1, [2 -1 2])
596s ***** error<poissrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  poissrnd (1, [2 0 2.5])
596s ***** error<poissrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  poissrnd (ones (2), ones (2))
596s ***** error<poissrnd: dimensions must be non-negative integers.> ...
596s  poissrnd (1, 2, -1, 5)
596s ***** error<poissrnd: dimensions must be non-negative integers.> ...
596s  poissrnd (1, 2, 1.5, 5)
596s ***** error<poissrnd: LAMBDA must be scalar or of size SZ.> poissrnd (ones (2,2), 3)
596s ***** error<poissrnd: LAMBDA must be scalar or of size SZ.> poissrnd (ones (2,2), [3, 2])
596s ***** error<poissrnd: LAMBDA must be scalar or of size SZ.> poissrnd (ones (2,2), 2, 3)
596s 29 tests, 29 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/gumbelrnd.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gumbelrnd.m
596s ***** assert (size (gumbelrnd (1, 1)), [1 1])
596s ***** assert (size (gumbelrnd (1, ones (2,1))), [2, 1])
596s ***** assert (size (gumbelrnd (1, ones (2,2))), [2, 2])
596s ***** assert (size (gumbelrnd (ones (2,1), 1)), [2, 1])
596s ***** assert (size (gumbelrnd (ones (2,2), 1)), [2, 2])
596s ***** assert (size (gumbelrnd (1, 1, 3)), [3, 3])
596s ***** assert (size (gumbelrnd (1, 1, [4, 1])), [4, 1])
596s ***** assert (size (gumbelrnd (1, 1, 4, 1)), [4, 1])
596s ***** assert (size (gumbelrnd (1, 1, 4, 1, 5)), [4, 1, 5])
596s ***** assert (size (gumbelrnd (1, 1, 0, 1)), [0, 1])
596s ***** assert (size (gumbelrnd (1, 1, 1, 0)), [1, 0])
596s ***** assert (size (gumbelrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
596s ***** assert (class (gumbelrnd (1, 1)), "double")
596s ***** assert (class (gumbelrnd (1, single (1))), "single")
596s ***** assert (class (gumbelrnd (1, single ([1, 1]))), "single")
596s ***** assert (class (gumbelrnd (single (1), 1)), "single")
596s ***** assert (class (gumbelrnd (single ([1, 1]), 1)), "single")
596s ***** error<gumbelrnd: function called with too few input arguments.> gumbelrnd ()
596s ***** error<gumbelrnd: function called with too few input arguments.> gumbelrnd (1)
596s ***** error<gumbelrnd: MU and BETA must be of common size or scalars.> ...
596s  gumbelrnd (ones (3), ones (2))
596s ***** error<gumbelrnd: MU and BETA must be of common size or scalars.> ...
596s  gumbelrnd (ones (2), ones (3))
596s ***** error<gumbelrnd: MU and BETA must not be complex.> gumbelrnd (i, 2, 3)
596s ***** error<gumbelrnd: MU and BETA must not be complex.> gumbelrnd (1, i, 3)
596s ***** error<gumbelrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  gumbelrnd (1, 2, -1)
596s ***** error<gumbelrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  gumbelrnd (1, 2, 1.2)
596s ***** error<gumbelrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  gumbelrnd (1, 2, ones (2))
596s ***** error<gumbelrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  gumbelrnd (1, 2, [2 -1 2])
596s ***** error<gumbelrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  gumbelrnd (1, 2, [2 0 2.5])
596s ***** error<gumbelrnd: dimensions must be non-negative integers.> ...
596s  gumbelrnd (1, 2, 2, -1, 5)
596s ***** error<gumbelrnd: dimensions must be non-negative integers.> ...
596s  gumbelrnd (1, 2, 2, 1.5, 5)
596s ***** error<gumbelrnd: MU and BETA must be scalars or of size SZ.> ...
596s  gumbelrnd (2, ones (2), 3)
596s ***** error<gumbelrnd: MU and BETA must be scalars or of size SZ.> ...
596s  gumbelrnd (2, ones (2), [3, 2])
596s ***** error<gumbelrnd: MU and BETA must be scalars or of size SZ.> ...
596s  gumbelrnd (2, ones (2), 3, 2)
596s 33 tests, 33 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/norminv.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/norminv.m
596s ***** demo
596s  ## Plot various iCDFs from the normal distribution
596s  p = 0.001:0.001:0.999;
596s  x1 = norminv (p, 0, 0.5);
596s  x2 = norminv (p, 0, 1);
596s  x3 = norminv (p, 0, 2);
596s  x4 = norminv (p, -2, 0.8);
596s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
596s  grid on
596s  ylim ([-5, 5])
596s  legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ...
596s           "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "northwest")
596s  title ("Normal iCDF")
596s  xlabel ("probability")
596s  ylabel ("values in x")
596s ***** shared p
596s  p = [-1 0 0.5 1 2];
596s ***** assert (norminv (p, ones (1,5), ones (1,5)), [NaN -Inf 1 Inf NaN])
596s ***** assert (norminv (p, 1, ones (1,5)), [NaN -Inf 1 Inf NaN])
596s ***** assert (norminv (p, ones (1,5), 1), [NaN -Inf 1 Inf NaN])
596s ***** assert (norminv (p, [1 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN NaN])
596s ***** assert (norminv (p, 1, [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN])
596s ***** assert (norminv ([p(1:2) NaN p(4:5)], 1, 1), [NaN -Inf NaN Inf NaN])
596s ***** assert (norminv (p), probit (p))
596s ***** assert (norminv (0.31254), probit (0.31254))
596s ***** assert (norminv ([p, NaN], 1, 1), [NaN -Inf 1 Inf NaN NaN])
596s ***** assert (norminv (single ([p, NaN]), 1, 1), single ([NaN -Inf 1 Inf NaN NaN]))
596s ***** assert (norminv ([p, NaN], single (1), 1), single ([NaN -Inf 1 Inf NaN NaN]))
596s ***** assert (norminv ([p, NaN], 1, single (1)), single ([NaN -Inf 1 Inf NaN NaN]))
596s ***** error<norminv: function called with too few input arguments.> norminv ()
596s ***** error<norminv: P, MU, and SIGMA must be of common size or scalars.> ...
596s  norminv (ones (3), ones (2), ones (2))
596s ***** error<norminv: P, MU, and SIGMA must be of common size or scalars.> ...
596s  norminv (ones (2), ones (3), ones (2))
596s ***** error<norminv: P, MU, and SIGMA must be of common size or scalars.> ...
596s  norminv (ones (2), ones (2), ones (3))
596s ***** error<norminv: P, MU, and SIGMA must not be complex.> norminv (i, 2, 2)
596s ***** error<norminv: P, MU, and SIGMA must not be complex.> norminv (2, i, 2)
596s ***** error<norminv: P, MU, and SIGMA must not be complex.> norminv (2, 2, i)
596s 19 tests, 19 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/geoinv.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/geoinv.m
596s ***** demo
596s  ## Plot various iCDFs from the geometric distribution
596s  p = 0.001:0.001:0.999;
596s  x1 = geoinv (p, 0.2);
596s  x2 = geoinv (p, 0.5);
596s  x3 = geoinv (p, 0.7);
596s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
596s  grid on
596s  ylim ([0, 10])
596s  legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "northwest")
596s  title ("Geometric iCDF")
596s  xlabel ("probability")
596s  ylabel ("values in x (number of failures)")
596s ***** shared p
596s  p = [-1 0 0.75 1 2];
596s ***** assert (geoinv (p, 0.5*ones (1,5)), [NaN 0 1 Inf NaN])
596s ***** assert (geoinv (p, 0.5), [NaN 0 1 Inf NaN])
596s ***** assert (geoinv (p, 0.5*[1 -1 NaN 4 1]), [NaN NaN NaN NaN NaN])
596s ***** assert (geoinv ([p(1:2) NaN p(4:5)], 0.5), [NaN 0 NaN Inf NaN])
596s ***** assert (geoinv ([p, NaN], 0.5), [NaN 0 1 Inf NaN NaN])
596s ***** assert (geoinv (single ([p, NaN]), 0.5), single ([NaN 0 1 Inf NaN NaN]))
596s ***** assert (geoinv ([p, NaN], single (0.5)), single ([NaN 0 1 Inf NaN NaN]))
596s ***** error<geoinv: function called with too few input arguments.> geoinv ()
596s ***** error<geoinv: function called with too few input arguments.> geoinv (1)
596s ***** error<geoinv: P and PS must be of common size or scalars.> ...
596s  geoinv (ones (3), ones (2))
596s ***** error<geoinv: P and PS must be of common size or scalars.> ...
596s  geoinv (ones (2), ones (3))
596s ***** error<geoinv: P and PS must not be complex.> ...
596s  geoinv (i, 2)
596s ***** error<geoinv: P and PS must not be complex.> ...
596s  geoinv (2, i)
596s 13 tests, 13 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/nakarnd.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nakarnd.m
596s ***** assert (size (nakarnd (1, 1)), [1 1])
596s ***** assert (size (nakarnd (1, ones (2,1))), [2, 1])
596s ***** assert (size (nakarnd (1, ones (2,2))), [2, 2])
596s ***** assert (size (nakarnd (ones (2,1), 1)), [2, 1])
596s ***** assert (size (nakarnd (ones (2,2), 1)), [2, 2])
596s ***** assert (size (nakarnd (1, 1, 3)), [3, 3])
596s ***** assert (size (nakarnd (1, 1, [4, 1])), [4, 1])
596s ***** assert (size (nakarnd (1, 1, 4, 1)), [4, 1])
596s ***** assert (size (nakarnd (1, 1, 4, 1, 5)), [4, 1, 5])
596s ***** assert (size (nakarnd (1, 1, 0, 1)), [0, 1])
596s ***** assert (size (nakarnd (1, 1, 1, 0)), [1, 0])
596s ***** assert (size (nakarnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
596s ***** assert (class (nakarnd (1, 1)), "double")
596s ***** assert (class (nakarnd (1, single (1))), "single")
596s ***** assert (class (nakarnd (1, single ([1, 1]))), "single")
596s ***** assert (class (nakarnd (single (1), 1)), "single")
596s ***** assert (class (nakarnd (single ([1, 1]), 1)), "single")
596s ***** error<nakarnd: function called with too few input arguments.> nakarnd ()
596s ***** error<nakarnd: function called with too few input arguments.> nakarnd (1)
596s ***** error<nakarnd: MU and OMEGA must be of common size or scalars.> ...
596s  nakarnd (ones (3), ones (2))
596s ***** error<nakarnd: MU and OMEGA must be of common size or scalars.> ...
596s  nakarnd (ones (2), ones (3))
596s ***** error<nakarnd: MU and OMEGA must not be complex.> nakarnd (i, 2, 3)
596s ***** error<nakarnd: MU and OMEGA must not be complex.> nakarnd (1, i, 3)
596s ***** error<nakarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  nakarnd (1, 2, -1)
596s ***** error<nakarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  nakarnd (1, 2, 1.2)
596s ***** error<nakarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  nakarnd (1, 2, ones (2))
596s ***** error<nakarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  nakarnd (1, 2, [2 -1 2])
596s ***** error<nakarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
596s  nakarnd (1, 2, [2 0 2.5])
596s ***** error<nakarnd: dimensions must be non-negative integers.> ...
596s  nakarnd (1, 2, 2, -1, 5)
596s ***** error<nakarnd: dimensions must be non-negative integers.> ...
596s  nakarnd (1, 2, 2, 1.5, 5)
596s ***** error<nakarnd: MU and OMEGA must be scalars or of size SZ.> ...
596s  nakarnd (2, ones (2), 3)
596s ***** error<nakarnd: MU and OMEGA must be scalars or of size SZ.> ...
596s  nakarnd (2, ones (2), [3, 2])
596s ***** error<nakarnd: MU and OMEGA must be scalars or of size SZ.> ...
596s  nakarnd (2, ones (2), 3, 2)
596s 33 tests, 33 passed, 0 known failure, 0 skipped
596s [inst/dist_fun/hncdf.m]
596s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hncdf.m
596s ***** demo
596s  ## Plot various CDFs from the half-normal distribution
596s  x = 0:0.001:10;
596s  p1 = hncdf (x, 0, 1);
596s  p2 = hncdf (x, 0, 2);
596s  p3 = hncdf (x, 0, 3);
596s  p4 = hncdf (x, 0, 5);
596s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
596s  grid on
596s  xlim ([0, 10])
596s  legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ...
596s           "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "southeast")
596s  title ("Half-normal CDF")
596s  xlabel ("values in x")
596s  ylabel ("probability")
596s ***** demo
596s  ## Plot half-normal against normal cumulative distribution function
596s  x = -5:0.001:5;
596s  p1 = hncdf (x, 0, 1);
596s  p2 = normcdf (x);
596s  plot (x, p1, "-b", x, p2, "-g")
596s  grid on
596s  xlim ([-5, 5])
596s  legend ({"half-normal with μ = 0, σ = 1", ...
596s           "standart normal (μ = 0, σ = 1)"}, "location", "southeast")
596s  title ("Half-normal against standard normal CDF")
596s  xlabel ("values in x")
596s  ylabel ("probability")
596s ***** shared x, p1, p1u, y2, y2u, y3, y3u
596s  x = [-Inf, -1, 0, 1/2, 1, Inf];
596s  p1 = [0, 0, 0, 0.3829, 0.6827, 1];
596s  p1u = [1, 1, 1, 0.6171, 0.3173, 0];
596s ***** assert (hncdf (x, zeros (1,6), ones (1,6)), p1, 1e-4)
596s ***** assert (hncdf (x, 0, 1), p1, 1e-4)
596s ***** assert (hncdf (x, 0, ones (1,6)), p1, 1e-4)
596s ***** assert (hncdf (x, zeros (1,6), 1), p1, 1e-4)
596s ***** assert (hncdf (x, 0, [1, 1, 1, NaN, 1, 1]), [p1(1:3), NaN, p1(5:6)], 1e-4)
596s ***** assert (hncdf (x, [0, 0, 0, NaN, 0, 0], 1), [p1(1:3), NaN, p1(5:6)], 1e-4)
596s ***** assert (hncdf ([x(1:3), NaN, x(5:6)], 0, 1), [p1(1:3), NaN, p1(5:6)], 1e-4)
596s ***** assert (hncdf (x, zeros (1,6), ones (1,6), "upper"), p1u, 1e-4)
596s ***** assert (hncdf (x, 0, 1, "upper"), p1u, 1e-4)
596s ***** assert (hncdf (x, 0, ones (1,6), "upper"), p1u, 1e-4)
596s ***** assert (hncdf (x, zeros (1,6), 1, "upper"), p1u, 1e-4)
596s ***** assert (class (hncdf (single ([x, NaN]), 0, 1)), "single")
596s ***** assert (class (hncdf ([x, NaN], 0, single (1))), "single")
596s ***** assert (class (hncdf ([x, NaN], single (0), 1)), "single")
596s ***** error<hncdf: function called with too few input arguments.> hncdf ()
596s ***** error<hncdf: function called with too few input arguments.> hncdf (1)
596s ***** error<hncdf: function called with too few input arguments.> hncdf (1, 2)
596s ***** error<hncdf: invalid argument for upper tail.> hncdf (1, 2, 3, "tail")
596s ***** error<hncdf: invalid argument for upper tail.> hncdf (1, 2, 3, 5)
596s ***** error<hncdf: X, MU, and SIGMA must be of common size or scalars.> ...
596s  hncdf (ones (3), ones (2), ones(2))
596s ***** error<hncdf: X, MU, and SIGMA must be of common size or scalars.> ...
596s  hncdf (ones (2), ones (3), ones(2))
596s ***** error<hncdf: X, MU, and SIGMA must be of common size or scalars.> ...
596s  hncdf (ones (2), ones (2), ones(3))
596s ***** error<hncdf: X, MU, and SIGMA must not be complex.> hncdf (i, 2, 3)
597s ***** error<hncdf: X, MU, and SIGMA must not be complex.> hncdf (1, i, 3)
597s ***** error<hncdf: X, MU, and SIGMA must not be complex.> hncdf (1, 2, i)
597s 25 tests, 25 passed, 0 known failure, 0 skipped
597s [inst/dist_fun/mvtcdf.m]
597s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvtcdf.m
597s ***** demo
597s  ## Compute the cdf of a multivariate Student's t distribution with
597s  ## correlation parameters rho = [1, 0.4; 0.4, 1] and 2 degrees of freedom.
597s 
597s  rho = [1, 0.4; 0.4, 1];
597s  df = 2;
597s  [X1, X2] = meshgrid (linspace (-2, 2, 25)', linspace (-2, 2, 25)');
597s  X = [X1(:), X2(:)];
597s  p = mvtcdf (X, rho, df);
597s  surf (X1, X2, reshape (p, 25, 25));
597s  title ("Bivariate Student's t cummulative distribution function");
597s ***** test
597s  x = [1, 2];
597s  rho = [1, 0.5; 0.5, 1];
597s  df = 4;
597s  a = [-1, 0];
597s  assert (mvtcdf(a, x, rho, df), 0.294196905339283, 1e-14);
597s ***** test
597s  x = [1, 2;2, 4;1, 5];
597s  rho = [1, 0.5; 0.5, 1];
597s  df = 4;
597s  p =[0.790285178602166; 0.938703291727784; 0.81222737321336];
597s  assert (mvtcdf(x, rho, df), p, 1e-14);
597s ***** test
597s  x = [1, 2, 2, 4, 1, 5];
597s  rho = eye (6);
597s  rho(rho == 0) = 0.5;
597s  df = 4;
597s  assert (mvtcdf(x, rho, df), 0.6874, 1e-4);
608s ***** error mvtcdf (1)
608s ***** error mvtcdf (1, 2)
608s ***** error<mvtcdf: correlation matrix RHO does not match dimensions in data.> ...
608s  mvtcdf (1, [2, 3; 3, 2], 1)
608s ***** error<mvtcdf: correlation matrix RHO does not match dimensions in data.> ...
608s  mvtcdf ([2, 3, 4], ones (2), 1)
608s ***** error<mvtcdf: X_LO and X_UP must be of the same size.> ...
608s  mvtcdf ([1, 2, 3], [2, 3], ones (2), 1)
608s ***** error<mvtcdf: correlation matrix RHO must be positive semi-definite.> ...
608s  mvtcdf ([2, 3], ones (2), [1, 2, 3])
608s ***** error<mvtcdf: DF must be a scalar or a vector with the same samples as in> ...
608s  mvtcdf ([2, 3], [1, 0.5; 0.5, 1], [1, 2, 3])
608s 10 tests, 10 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/geopdf.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/geopdf.m
608s ***** demo
608s  ## Plot various PDFs from the geometric distribution
608s  x = 0:10;
608s  y1 = geopdf (x, 0.2);
608s  y2 = geopdf (x, 0.5);
608s  y3 = geopdf (x, 0.7);
608s  plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
608s  grid on
608s  ylim ([0, 0.8])
608s  legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "northeast")
608s  title ("Geometric PDF")
608s  xlabel ("values in x (number of failures)")
608s  ylabel ("density")
608s ***** shared x, y
608s  x = [-1 0 1 Inf];
608s  y = [0, 1/2, 1/4, NaN];
608s ***** assert (geopdf (x, 0.5*ones (1,4)), y)
608s ***** assert (geopdf (x, 0.5), y)
608s ***** assert (geopdf (x, 0.5*[-1 NaN 4 1]), [NaN NaN NaN y(4)])
608s ***** assert (geopdf ([x, NaN], 0.5), [y, NaN])
608s ***** assert (geopdf (single ([x, NaN]), 0.5), single ([y, NaN]), 5*eps ("single"))
608s ***** assert (geopdf ([x, NaN], single (0.5)), single ([y, NaN]), 5*eps ("single"))
608s ***** error geopdf ()
608s ***** error geopdf (1)
608s ***** error geopdf (1,2,3)
608s ***** error geopdf (ones (3), ones (2))
608s ***** error geopdf (ones (2), ones (3))
608s ***** error geopdf (i, 2)
608s ***** error geopdf (2, i)
608s 13 tests, 13 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/logipdf.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/logipdf.m
608s ***** demo
608s  ## Plot various PDFs from the logistic distribution
608s  x = -5:0.01:20;
608s  y1 = logipdf (x, 5, 2);
608s  y2 = logipdf (x, 9, 3);
608s  y3 = logipdf (x, 9, 4);
608s  y4 = logipdf (x, 6, 2);
608s  y5 = logipdf (x, 2, 1);
608s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
608s  grid on
608s  ylim ([0, 0.3])
608s  legend ({"μ = 5, σ = 2", "μ = 9, σ = 3", "μ = 9, σ = 4", ...
608s           "μ = 6, σ = 2", "μ = 2, σ = 1"}, "location", "northeast")
608s  title ("Logistic PDF")
608s  xlabel ("values in x")
608s  ylabel ("density")
608s ***** shared x, y
608s  x = [-Inf -log(4) 0 log(4) Inf];
608s  y = [0, 0.16, 1/4, 0.16, 0];
608s ***** assert (logipdf ([x, NaN], 0, 1), [y, NaN], eps)
608s ***** assert (logipdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), y([4:5])], eps)
608s ***** assert (logipdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single"))
608s ***** assert (logipdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single"))
608s ***** assert (logipdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single"))
608s ***** error<logipdf: function called with too few input arguments.> logipdf ()
608s ***** error<logipdf: function called with too few input arguments.> logipdf (1)
608s ***** error<logipdf: function called with too few input arguments.> ...
608s  logipdf (1, 2)
608s ***** error<logipdf: X, MU, and SIGMA must be of common size or scalars.> ...
608s  logipdf (1, ones (2), ones (3))
608s ***** error<logipdf: X, MU, and SIGMA must be of common size or scalars.> ...
608s  logipdf (ones (2), 1, ones (3))
608s ***** error<logipdf: X, MU, and SIGMA must be of common size or scalars.> ...
608s  logipdf (ones (2), ones (3), 1)
608s ***** error<logipdf: X, MU, and SIGMA must not be complex.> logipdf (i, 2, 3)
608s ***** error<logipdf: X, MU, and SIGMA must not be complex.> logipdf (1, i, 3)
608s ***** error<logipdf: X, MU, and SIGMA must not be complex.> logipdf (1, 2, i)
608s 14 tests, 14 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/copulapdf.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/copulapdf.m
608s ***** test
608s  x = [0.2:0.2:0.6; 0.2:0.2:0.6];
608s  theta = [1; 2];
608s  y = copulapdf ("Clayton", x, theta);
608s  expected_p = [0.9872; 0.7295];
608s  assert (y, expected_p, 0.001);
608s ***** test
608s  x = [0.2:0.2:0.6; 0.2:0.2:0.6];
608s  y = copulapdf ("Gumbel", x, 2);
608s  expected_p = [0.9468; 0.9468];
608s  assert (y, expected_p, 0.001);
608s ***** test
608s  x = [0.2, 0.6; 0.2, 0.6];
608s  theta = [1; 2];
608s  y = copulapdf ("Frank", x, theta);
608s  expected_p = [0.9378; 0.8678];
608s  assert (y, expected_p, 0.001);
608s ***** test
608s  x = [0.2, 0.6; 0.2, 0.6];
608s  theta = [0.3; 0.7];
608s  y = copulapdf ("AMH", x, theta);
608s  expected_p = [0.9540; 0.8577];
608s  assert (y, expected_p, 0.001);
608s 4 tests, 4 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/mnpdf.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mnpdf.m
608s ***** test
608s  x = [1, 4, 2];
608s  pk = [0.2, 0.5, 0.3];
608s  y = mnpdf (x, pk);
608s  assert (y, 0.11812, 0.001);
608s ***** test
608s  x = [1, 4, 2; 1, 0, 9];
608s  pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
608s  y = mnpdf (x, pk);
608s  assert (y, [0.11812; 0.13422], 0.001);
608s 2 tests, 2 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/nakainv.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nakainv.m
608s ***** demo
608s  ## Plot various iCDFs from the Nakagami distribution
608s  p = 0.001:0.001:0.999;
608s  x1 = nakainv (p, 0.5, 1);
608s  x2 = nakainv (p, 1, 1);
608s  x3 = nakainv (p, 1, 2);
608s  x4 = nakainv (p, 1, 3);
608s  x5 = nakainv (p, 2, 1);
608s  x6 = nakainv (p, 2, 2);
608s  x7 = nakainv (p, 5, 1);
608s  plot (p, x1, "-r", p, x2, "-g", p, x3, "-y", p, x4, "-m", ...
608s        p, x5, "-k", p, x6, "-b", p, x7, "-c")
608s  grid on
608s  ylim ([0, 3])
608s  legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ...
608s           "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ...
608s           "μ = 5, ω = 1"}, "location", "northwest")
608s  title ("Nakagami iCDF")
608s  xlabel ("probability")
608s  ylabel ("values in x")
608s ***** shared p, y
608s  p = [-Inf, -1, 0, 1/2, 1, 2, Inf];
608s  y = [NaN, NaN, 0, 0.83255461115769769, Inf, NaN, NaN];
608s ***** assert (nakainv (p, ones (1,7), ones (1,7)), y, eps)
608s ***** assert (nakainv (p, 1, 1), y, eps)
608s ***** assert (nakainv (p, [1, 1, 1, NaN, 1, 1, 1], 1), [y(1:3), NaN, y(5:7)], eps)
608s ***** assert (nakainv (p, 1, [1, 1, 1, NaN, 1, 1, 1]), [y(1:3), NaN, y(5:7)], eps)
608s ***** assert (nakainv ([p, NaN], 1, 1), [y, NaN], eps)
608s ***** assert (nakainv (single ([p, NaN]), 1, 1), single ([y, NaN]))
608s ***** assert (nakainv ([p, NaN], single (1), 1), single ([y, NaN]))
608s ***** assert (nakainv ([p, NaN], 1, single (1)), single ([y, NaN]))
608s ***** error<nakainv: function called with too few input arguments.> nakainv ()
608s ***** error<nakainv: function called with too few input arguments.> nakainv (1)
608s ***** error<nakainv: function called with too few input arguments.> nakainv (1, 2)
608s ***** error<nakainv: P, MU, and OMEGA must be of common size or scalars.> ...
608s  nakainv (ones (3), ones (2), ones(2))
608s ***** error<nakainv: P, MU, and OMEGA must be of common size or scalars.> ...
608s  nakainv (ones (2), ones (3), ones(2))
608s ***** error<nakainv: P, MU, and OMEGA must be of common size or scalars.> ...
608s  nakainv (ones (2), ones (2), ones(3))
608s ***** error<nakainv: P, MU, and OMEGA must not be complex.> nakainv (i, 4, 3)
608s ***** error<nakainv: P, MU, and OMEGA must not be complex.> nakainv (1, i, 3)
608s ***** error<nakainv: P, MU, and OMEGA must not be complex.> nakainv (1, 4, i)
608s 17 tests, 17 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/mnrnd.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mnrnd.m
608s ***** test
608s  n = 10;
608s  pk = [0.2, 0.5, 0.3];
608s  r = mnrnd (n, pk);
608s  assert (size (r), size (pk));
608s  assert (all (r >= 0));
608s  assert (all (round (r) == r));
608s  assert (sum (r) == n);
608s ***** test
608s  n = 10 * ones (3, 1);
608s  pk = [0.2, 0.5, 0.3];
608s  r = mnrnd (n, pk);
608s  assert (size (r), [length(n), length(pk)]);
608s  assert (all (r >= 0));
608s  assert (all (round (r) == r));
608s  assert (all (sum (r, 2) == n));
608s ***** test
608s  n = (1:2)';
608s  pk = [0.2, 0.5, 0.3; 0.1, 0.1, 0.8];
608s  r = mnrnd (n, pk);
608s  assert (size (r), size (pk));
608s  assert (all (r >= 0));
608s  assert (all (round (r) == r));
608s  assert (all (sum (r, 2) == n));
608s 3 tests, 3 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/unidcdf.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unidcdf.m
608s ***** demo
608s  ## Plot various CDFs from the discrete uniform distribution
608s  x = 0:10;
608s  p1 = unidcdf (x, 5);
608s  p2 = unidcdf (x, 9);
608s  plot (x, p1, "*b", x, p2, "*g")
608s  grid on
608s  xlim ([0, 10])
608s  ylim ([0, 1])
608s  legend ({"N = 5", "N = 9"}, "location", "southeast")
608s  title ("Discrete uniform CDF")
608s  xlabel ("values in x")
608s  ylabel ("probability")
608s ***** shared x, y
608s  x = [0 1 2.5 10 11];
608s  y = [0, 0.1 0.2 1.0 1.0];
608s ***** assert (unidcdf (x, 10*ones (1,5)), y)
608s ***** assert (unidcdf (x, 10*ones (1,5), "upper"), 1 - y)
608s ***** assert (unidcdf (x, 10), y)
608s ***** assert (unidcdf (x, 10, "upper"), 1 - y)
608s ***** assert (unidcdf (x, 10*[0 1 NaN 1 1]), [NaN 0.1 NaN y(4:5)])
608s ***** assert (unidcdf ([x(1:2) NaN Inf x(5)], 10), [y(1:2) NaN 1 y(5)])
608s ***** assert (unidcdf ([x, NaN], 10), [y, NaN])
608s ***** assert (unidcdf (single ([x, NaN]), 10), single ([y, NaN]))
608s ***** assert (unidcdf ([x, NaN], single (10)), single ([y, NaN]))
608s ***** error<unidcdf: function called with too few input arguments.> unidcdf ()
608s ***** error<unidcdf: function called with too few input arguments.> unidcdf (1)
608s ***** error<unidcdf: invalid argument for upper tail.> unidcdf (1, 2, 3)
608s ***** error<unidcdf: invalid argument for upper tail.> unidcdf (1, 2, "tail")
608s ***** error<unidcdf: X and N must be of common size or scalars.> ...
608s  unidcdf (ones (3), ones (2))
608s ***** error<unidcdf: X and N must be of common size or scalars.> ...
608s  unidcdf (ones (2), ones (3))
608s ***** error<unidcdf: X and N must not be complex.> unidcdf (i, 2)
608s ***** error<unidcdf: X and N must not be complex.> unidcdf (2, i)
608s 17 tests, 17 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/cauchyinv.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/cauchyinv.m
608s ***** demo
608s  ## Plot various iCDFs from the Cauchy distribution
608s  p = 0.001:0.001:0.999;
608s  x1 = cauchyinv (p, 0, 0.5);
608s  x2 = cauchyinv (p, 0, 1);
608s  x3 = cauchyinv (p, 0, 2);
608s  x4 = cauchyinv (p, -2, 1);
608s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
608s  grid on
608s  ylim ([-5, 5])
608s  legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ...
608s           "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "northwest")
608s  title ("Cauchy iCDF")
608s  xlabel ("probability")
608s  ylabel ("values in x")
608s ***** shared p
608s  p = [-1 0 0.5 1 2];
608s ***** assert (cauchyinv (p, ones (1,5), 2 * ones (1,5)), [NaN -Inf 1 Inf NaN], eps)
608s ***** assert (cauchyinv (p, 1, 2 * ones (1,5)), [NaN -Inf 1 Inf NaN], eps)
608s ***** assert (cauchyinv (p, ones (1,5), 2), [NaN -Inf 1 Inf NaN], eps)
608s ***** assert (cauchyinv (p, [1 -Inf NaN Inf 1], 2), [NaN NaN NaN NaN NaN])
608s ***** assert (cauchyinv (p, 1, 2 * [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN])
608s ***** assert (cauchyinv ([p(1:2) NaN p(4:5)], 1, 2), [NaN -Inf NaN Inf NaN])
608s ***** assert (cauchyinv ([p, NaN], 1, 2), [NaN -Inf 1 Inf NaN NaN], eps)
608s ***** assert (cauchyinv (single ([p, NaN]), 1, 2), ...
608s  single ([NaN -Inf 1 Inf NaN NaN]), eps ("single"))
608s ***** assert (cauchyinv ([p, NaN], single (1), 2), ...
608s  single ([NaN -Inf 1 Inf NaN NaN]), eps ("single"))
608s ***** assert (cauchyinv ([p, NaN], 1, single (2)), ...
608s  single ([NaN -Inf 1 Inf NaN NaN]), eps ("single"))
608s ***** error<cauchyinv: function called with too few input arguments.> cauchyinv ()
608s ***** error<cauchyinv: function called with too few input arguments.> cauchyinv (1)
608s ***** error<cauchyinv: function called with too few input arguments.> ...
608s  cauchyinv (1, 2)
608s ***** error<cauchyinv: function called with too many inputs> cauchyinv (1, 2, 3, 4)
608s ***** error<cauchyinv: P, X0, and GAMMA must be of common size or scalars.> ...
608s  cauchyinv (ones (3), ones (2), ones(2))
608s ***** error<cauchyinv: P, X0, and GAMMA must be of common size or scalars.> ...
608s  cauchyinv (ones (2), ones (3), ones(2))
608s ***** error<cauchyinv: P, X0, and GAMMA must be of common size or scalars.> ...
608s  cauchyinv (ones (2), ones (2), ones(3))
608s ***** error<cauchyinv: P, X0, and GAMMA must not be complex.> cauchyinv (i, 4, 3)
608s ***** error<cauchyinv: P, X0, and GAMMA must not be complex.> cauchyinv (1, i, 3)
608s ***** error<cauchyinv: P, X0, and GAMMA must not be complex.> cauchyinv (1, 4, i)
608s 20 tests, 20 passed, 0 known failure, 0 skipped
608s [inst/dist_fun/burrcdf.m]
608s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/burrcdf.m
608s ***** demo
608s  ## Plot various CDFs from the Burr type XII distribution
608s  x = 0.001:0.001:5;
608s  p1 = burrcdf (x, 1, 1, 1);
608s  p2 = burrcdf (x, 1, 1, 2);
608s  p3 = burrcdf (x, 1, 1, 3);
608s  p4 = burrcdf (x, 1, 2, 1);
608s  p5 = burrcdf (x, 1, 3, 1);
608s  p6 = burrcdf (x, 1, 0.5, 2);
608s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
608s        x, p4, "-c", x, p5, "-m", x, p6, "-k")
608s  grid on
608s  legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ...
608s           "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ...
608s           "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ...
608s          "location", "southeast")
608s  title ("Burr type XII CDF")
608s  xlabel ("values in x")
609s  ylabel ("probability")
609s ***** shared x, y
609s  x = [-1, 0, 1, 2, Inf];
609s  y = [0, 0, 1/2, 2/3, 1];
609s ***** assert (burrcdf (x, ones(1,5), ones (1,5), ones (1,5)), y, eps)
609s ***** assert (burrcdf (x, 1, 1, 1), y, eps)
609s ***** assert (burrcdf (x, [1, 1, NaN, 1, 1], 1, 1), [y(1:2), NaN, y(4:5)], eps)
609s ***** assert (burrcdf (x, 1, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps)
609s ***** assert (burrcdf (x, 1, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps)
609s ***** assert (burrcdf ([x, NaN], 1, 1, 1), [y, NaN], eps)
609s ***** assert (burrcdf (single ([x, NaN]), 1, 1, 1), single ([y, NaN]), eps("single"))
609s ***** assert (burrcdf ([x, NaN], single (1), 1, 1), single ([y, NaN]), eps("single"))
609s ***** assert (burrcdf ([x, NaN], 1, single (1), 1), single ([y, NaN]), eps("single"))
609s ***** assert (burrcdf ([x, NaN], 1, 1, single (1)), single ([y, NaN]), eps("single"))
609s ***** error<burrcdf: function called with too few input arguments.> burrcdf ()
609s ***** error<burrcdf: function called with too few input arguments.> burrcdf (1)
609s ***** error<burrcdf: function called with too few input arguments.> burrcdf (1, 2)
609s ***** error<burrcdf: function called with too few input arguments.> burrcdf (1, 2, 3)
609s ***** error<burrcdf: function called with too many inputs> ...
609s  burrcdf (1, 2, 3, 4, 5, 6)
609s ***** error<burrcdf: invalid argument for upper tail.> burrcdf (1, 2, 3, 4, "tail")
609s ***** error<burrcdf: invalid argument for upper tail.> burrcdf (1, 2, 3, 4, 5)
609s ***** error<burrcdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
609s  burrcdf (ones (3), ones (2), ones(2), ones(2))
609s ***** error<burrcdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
609s  burrcdf (ones (2), ones (3), ones(2), ones(2))
609s ***** error<burrcdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
609s  burrcdf (ones (2), ones (2), ones(3), ones(2))
609s ***** error<burrcdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
609s  burrcdf (ones (2), ones (2), ones(2), ones(3))
609s ***** error<burrcdf: X, LAMBDA, C, and K must not be complex.> burrcdf (i, 2, 3, 4)
609s ***** error<burrcdf: X, LAMBDA, C, and K must not be complex.> burrcdf (1, i, 3, 4)
609s ***** error<burrcdf: X, LAMBDA, C, and K must not be complex.> burrcdf (1, 2, i, 4)
609s ***** error<burrcdf: X, LAMBDA, C, and K must not be complex.> burrcdf (1, 2, 3, i)
609s 25 tests, 25 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/triinv.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/triinv.m
609s ***** demo
609s  ## Plot various iCDFs from the triangular distribution
609s  p = 0.001:0.001:0.999;
609s  x1 = triinv (p, 3, 6, 4);
609s  x2 = triinv (p, 1, 5, 2);
609s  x3 = triinv (p, 2, 9, 3);
609s  x4 = triinv (p, 2, 9, 5);
609s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
609s  grid on
609s  ylim ([0, 10])
609s  legend ({"a = 3, b = 6, c = 4", "a = 1, b = 5, c = 2", ...
609s           "a = 2, b = 9, c = 3", "a = 2, b = 9, c = 5"}, ...
609s          "location", "northwest")
609s  title ("Triangular CDF")
609s  xlabel ("probability")
609s  ylabel ("values in x")
609s ***** shared p, y
609s  p = [-1, 0, 0.02, 0.5, 0.98, 1, 2];
609s  y = [NaN, 0, 0.1, 0.5, 0.9, 1, NaN] + 1;
609s ***** assert (triinv (p, ones (1, 7), 1.5 * ones (1, 7), 2 * ones (1, 7)), y, eps)
609s ***** assert (triinv (p, 1 * ones (1, 7), 1.5, 2), y, eps)
609s ***** assert (triinv (p, 1, 1.5, 2 * ones (1, 7)), y, eps)
609s ***** assert (triinv (p, 1, 1.5*ones (1,7), 2), y, eps)
609s ***** assert (triinv (p, 1, 1.5, 2), y, eps)
609s ***** assert (triinv (p, [1, 1, NaN, 1, 1, 1, 1], 1.5, 2), [y(1:2), NaN, y(4:7)], eps)
609s ***** assert (triinv (p, 1, 1.5 * [1, 1, NaN, 1, 1, 1, 1], 2), [y(1:2), NaN, y(4:7)], eps)
609s ***** assert (triinv (p, 1, 1.5, 2 * [1, 1, NaN, 1, 1, 1, 1]), [y(1:2), NaN, y(4:7)], eps)
609s ***** assert (triinv ([p, NaN], 1, 1.5, 2), [y, NaN], eps)
609s ***** assert (triinv (single ([p, NaN]), 1, 1.5, 2), single ([y, NaN]), eps('single'))
609s ***** assert (triinv ([p, NaN], single (1), 1.5, 2), single ([y, NaN]), eps('single'))
609s ***** assert (triinv ([p, NaN], 1, single (1.5), 2), single ([y, NaN]), eps('single'))
609s ***** assert (triinv ([p, NaN], 1, 1.5, single (2)), single ([y, NaN]), eps('single'))
609s ***** error<triinv: function called with too few input arguments.> triinv ()
609s ***** error<triinv: function called with too few input arguments.> triinv (1)
609s ***** error<triinv: function called with too few input arguments.> triinv (1, 2)
609s ***** error<triinv: function called with too few input arguments.> triinv (1, 2, 3)
609s ***** error<triinv: function called with too many inputs> ...
609s  triinv (1, 2, 3, 4, 5)
609s ***** error<triinv: P, A, B, and C must be of common size or scalars.> ...
609s  triinv (ones (3), ones (2), ones(2), ones(2))
609s ***** error<triinv: P, A, B, and C must be of common size or scalars.> ...
609s  triinv (ones (2), ones (3), ones(2), ones(2))
609s ***** error<triinv: P, A, B, and C must be of common size or scalars.> ...
609s  triinv (ones (2), ones (2), ones(3), ones(2))
609s ***** error<triinv: P, A, B, and C must be of common size or scalars.> ...
609s  triinv (ones (2), ones (2), ones(2), ones(3))
609s ***** error<triinv: P, A, B, and C must not be complex.> triinv (i, 2, 3, 4)
609s ***** error<triinv: P, A, B, and C must not be complex.> triinv (1, i, 3, 4)
609s ***** error<triinv: P, A, B, and C must not be complex.> triinv (1, 2, i, 4)
609s ***** error<triinv: P, A, B, and C must not be complex.> triinv (1, 2, 3, i)
609s 26 tests, 26 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/ricecdf.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ricecdf.m
609s ***** demo
609s  ## Plot various CDFs from the Rician distribution
609s  x = 0:0.01:10;
609s  p1 = ricecdf (x, 0, 1);
609s  p2 = ricecdf (x, 0.5, 1);
609s  p3 = ricecdf (x, 1, 1);
609s  p4 = ricecdf (x, 2, 1);
609s  p5 = ricecdf (x, 4, 1);
609s  plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k")
609s  grid on
609s  ylim ([0, 1])
609s  xlim ([0, 8])
609s  legend ({"s = 0, σ = 1", "s = 0.5, σ = 1", "s = 1, σ = 1", ...
609s           "s = 2, σ = 1", "s = 4, σ = 1"}, "location", "southeast")
609s  title ("Rician CDF")
609s  xlabel ("values in x")
609s  ylabel ("probability")
609s ***** demo
609s  ## Plot various CDFs from the Rician distribution
609s  x = 0:0.01:10;
609s  p1 = ricecdf (x, 0, 0.5);
609s  p2 = ricecdf (x, 0, 2);
609s  p3 = ricecdf (x, 0, 3);
609s  p4 = ricecdf (x, 2, 2);
609s  p5 = ricecdf (x, 4, 2);
609s  plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k")
609s  grid on
609s  ylim ([0, 1])
609s  xlim ([0, 8])
609s  legend ({"ν = 0, σ = 0.5", "ν = 0, σ = 2", "ν = 0, σ = 3", ...
609s           "ν = 2, σ = 2", "ν = 4, σ = 2"}, "location", "southeast")
609s  title ("Rician CDF")
609s  xlabel ("values in x")
609s  ylabel ("probability")
609s ***** test
609s  x = 0:0.5:2.5;
609s  s = 1:6;
609s  p = ricecdf (x, s, 1);
609s  expected_p = [0.0000, 0.0179, 0.0108, 0.0034, 0.0008, 0.0001];
609s  assert (p, expected_p, 0.001);
609s ***** test
609s  x = 0:0.5:2.5;
609s  sigma = 1:6;
609s  p = ricecdf (x, 1, sigma);
609s  expected_p = [0.0000, 0.0272, 0.0512, 0.0659, 0.0754, 0.0820];
609s  assert (p, expected_p, 0.001);
609s ***** test
609s  x = 0:0.5:2.5;
609s  p = ricecdf (x, 0, 1);
609s  expected_p = [0.0000, 0.1175, 0.3935, 0.6753, 0.8647, 0.9561];
609s  assert (p, expected_p, 0.001);
609s ***** test
609s  x = 0:0.5:2.5;
609s  p = ricecdf (x, 1, 1);
609s  expected_p = [0.0000, 0.0735, 0.2671, 0.5120, 0.7310, 0.8791];
609s  assert (p, expected_p, 0.001);
609s ***** shared x, p
609s  x = [-1, 0, 1, 2, Inf];
609s  p = [0, 0, 0.26712019620318, 0.73098793996409, 1];
609s ***** assert (ricecdf (x, 1, 1), p, 1e-14)
609s ***** assert (ricecdf (x, 1, 1, "upper"), 1 - p, 1e-14)
609s ***** error<ricecdf: function called with too few input arguments.> ricecdf ()
609s ***** error<ricecdf: function called with too few input arguments.> ricecdf (1)
609s ***** error<ricecdf: function called with too few input arguments.> ricecdf (1, 2)
609s ***** error<ricecdf: invalid argument for upper tail.> ricecdf (1, 2, 3, "uper")
609s ***** error<ricecdf: invalid argument for upper tail.> ricecdf (1, 2, 3, 4)
609s ***** error<ricecdf: X, S, and SIGMA must be of common size or scalars.> ...
609s  ricecdf (ones (3), ones (2), ones (2))
609s ***** error<ricecdf: X, S, and SIGMA must be of common size or scalars.> ...
609s  ricecdf (ones (2), ones (3), ones (2))
609s ***** error<ricecdf: X, S, and SIGMA must be of common size or scalars.> ...
609s  ricecdf (ones (2), ones (2), ones (3))
609s ***** error<ricecdf: X, S, and SIGMA must not be complex.> ricecdf (i, 2, 3)
609s ***** error<ricecdf: X, S, and SIGMA must not be complex.> ricecdf (2, i, 3)
609s ***** error<ricecdf: X, S, and SIGMA must not be complex.> ricecdf (2, 2, i)
609s 17 tests, 17 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/nakapdf.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nakapdf.m
609s ***** demo
609s  ## Plot various PDFs from the Nakagami distribution
609s  x = 0:0.01:3;
609s  y1 = nakapdf (x, 0.5, 1);
609s  y2 = nakapdf (x, 1, 1);
609s  y3 = nakapdf (x, 1, 2);
609s  y4 = nakapdf (x, 1, 3);
609s  y5 = nakapdf (x, 2, 1);
609s  y6 = nakapdf (x, 2, 2);
609s  y7 = nakapdf (x, 5, 1);
609s  plot (x, y1, "-r", x, y2, "-g", x, y3, "-y", x, y4, "-m", ...
609s        x, y5, "-k", x, y6, "-b", x, y7, "-c")
609s  grid on
609s  xlim ([0, 3])
609s  ylim ([0, 2])
609s  legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ...
609s           "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ...
609s           "μ = 5, ω = 1"}, "location", "northeast")
609s  title ("Nakagami PDF")
609s  xlabel ("values in x")
609s  ylabel ("density")
609s ***** shared x, y
609s  x = [-1, 0, 1, 2, Inf];
609s  y = [0, 0, 0.73575888234288467, 0.073262555554936715, 0];
609s ***** assert (nakapdf (x, ones (1,5), ones (1,5)), y, eps)
609s ***** assert (nakapdf (x, 1, 1), y, eps)
609s ***** assert (nakapdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps)
609s ***** assert (nakapdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps)
609s ***** assert (nakapdf ([x, NaN], 1, 1), [y, NaN], eps)
609s ***** assert (nakapdf (single ([x, NaN]), 1, 1), single ([y, NaN]))
609s ***** assert (nakapdf ([x, NaN], single (1), 1), single ([y, NaN]))
609s ***** assert (nakapdf ([x, NaN], 1, single (1)), single ([y, NaN]))
609s ***** error<nakapdf: function called with too few input arguments.> nakapdf ()
609s ***** error<nakapdf: function called with too few input arguments.> nakapdf (1)
609s ***** error<nakapdf: function called with too few input arguments.> nakapdf (1, 2)
609s ***** error<nakapdf: X, MU, and OMEGA must be of common size or scalars.> ...
609s  nakapdf (ones (3), ones (2), ones(2))
609s ***** error<nakapdf: X, MU, and OMEGA must be of common size or scalars.> ...
609s  nakapdf (ones (2), ones (3), ones(2))
609s ***** error<nakapdf: X, MU, and OMEGA must be of common size or scalars.> ...
609s  nakapdf (ones (2), ones (2), ones(3))
609s ***** error<nakapdf: X, MU, and OMEGA must not be complex.> nakapdf (i, 4, 3)
609s ***** error<nakapdf: X, MU, and OMEGA must not be complex.> nakapdf (1, i, 3)
609s ***** error<nakapdf: X, MU, and OMEGA must not be complex.> nakapdf (1, 4, i)
609s 17 tests, 17 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/raylrnd.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/raylrnd.m
609s ***** assert (size (raylrnd (2)), [1, 1])
609s ***** assert (size (raylrnd (ones (2,1))), [2, 1])
609s ***** assert (size (raylrnd (ones (2,2))), [2, 2])
609s ***** assert (size (raylrnd (1, 3)), [3, 3])
609s ***** assert (size (raylrnd (1, [4 1])), [4, 1])
609s ***** assert (size (raylrnd (1, 4, 1)), [4, 1])
609s ***** assert (size (raylrnd (1, 4, 1)), [4, 1])
609s ***** assert (size (raylrnd (1, 4, 1, 5)), [4, 1, 5])
609s ***** assert (size (raylrnd (1, 0, 1)), [0, 1])
609s ***** assert (size (raylrnd (1, 1, 0)), [1, 0])
609s ***** assert (size (raylrnd (1, 1, 2, 0, 5)), [1, 2, 0, 5])
609s ***** assert (raylrnd (0, 1, 1), NaN)
609s ***** assert (raylrnd ([0, 0, 0], [1, 3]), [NaN, NaN, NaN])
609s ***** assert (class (raylrnd (2)), "double")
609s ***** assert (class (raylrnd (single (2))), "single")
609s ***** assert (class (raylrnd (single ([2 2]))), "single")
609s ***** error<raylrnd: function called with too few input arguments.> raylrnd ()
609s ***** error<raylrnd: SIGMA must not be complex.> raylrnd (i)
609s ***** error<raylrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
609s  raylrnd (1, -1)
609s ***** error<raylrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
609s  raylrnd (1, 1.2)
609s ***** error<raylrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
609s  raylrnd (1, ones (2))
609s ***** error<raylrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
609s  raylrnd (1, [2 -1 2])
609s ***** error<raylrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
609s  raylrnd (1, [2 0 2.5])
609s ***** error<raylrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
609s  raylrnd (ones (2), ones (2))
609s ***** error<raylrnd: dimensions must be non-negative integers.> ...
609s  raylrnd (1, 2, -1, 5)
609s ***** error<raylrnd: dimensions must be non-negative integers.> ...
609s  raylrnd (1, 2, 1.5, 5)
609s ***** error<raylrnd: SIGMA must be scalar or of size SZ.> raylrnd (ones (2,2), 3)
609s ***** error<raylrnd: SIGMA must be scalar or of size SZ.> raylrnd (ones (2,2), [3, 2])
609s ***** error<raylrnd: SIGMA must be scalar or of size SZ.> raylrnd (ones (2,2), 2, 3)
609s 29 tests, 29 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/invginv.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/invginv.m
609s ***** demo
609s  ## Plot various iCDFs from the inverse Gaussian distribution
609s  p = 0.001:0.001:0.999;
609s  x1 = invginv (p, 1, 0.2);
609s  x2 = invginv (p, 1, 1);
609s  x3 = invginv (p, 1, 3);
609s  x4 = invginv (p, 3, 0.2);
609s  x5 = invginv (p, 3, 1);
609s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-y")
609s  grid on
609s  ylim ([0, 3])
609s  legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ...
609s           "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "northwest")
609s  title ("Inverse Gaussian iCDF")
609s  xlabel ("probability")
609s  ylabel ("x")
609s ***** shared p, x
609s  p = [0, 0.3829, 0.6827, 1];
609s  x = [0, 0.5207, 1.0376, Inf];
609s ***** assert (invginv (p, 1, 1), x, 1e-4);
609s ***** assert (invginv (p, 1, ones (1,4)), x, 1e-4);
609s ***** assert (invginv (p, 1, [-1, 0, 1, 1]), [NaN, NaN, x(3:4)], 1e-4)
609s ***** assert (invginv (p, [-1, 0, 1, 1], 1), [NaN, NaN, x(3:4)], 1e-4)
609s ***** assert (class (invginv (single ([p, NaN]), 0, 1)), "single")
609s ***** assert (class (invginv ([p, NaN], single (0), 1)), "single")
609s ***** assert (class (invginv ([p, NaN], 0, single (1))), "single")
609s ***** error<invginv: function called with too few input arguments.> invginv (1)
609s ***** error<invginv: function called with too few input arguments.> invginv (1, 2)
609s ***** error<invginv: P, MU, and LAMBDA must be of common size or scalars.> ...
609s  invginv (1, ones (2), ones (3))
609s ***** error<invginv: P, MU, and LAMBDA must be of common size or scalars.> ...
609s  invginv (ones (2), 1, ones (3))
609s ***** error<invginv: P, MU, and LAMBDA must be of common size or scalars.> ...
609s  invginv (ones (2), ones (3), 1)
609s ***** error<invginv: P, MU, and LAMBDA must not be complex.> invginv (i, 2, 3)
609s ***** error<invginv: P, MU, and LAMBDA must not be complex.> invginv (1, i, 3)
609s ***** error<invginv: P, MU, and LAMBDA must not be complex.> invginv (1, 2, i)
609s 15 tests, 15 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/wienrnd.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wienrnd.m
609s ***** error wienrnd (0)
609s ***** error wienrnd (1, 3, -50)
609s ***** error wienrnd (5, 0)
609s ***** error wienrnd (0.4, 3, 5)
609s ***** error wienrnd ([1 4], 3, 5)
609s 5 tests, 5 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/betainv.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/betainv.m
609s ***** demo
609s  ## Plot various iCDFs from the Beta distribution
609s  p = 0.001:0.001:0.999;
609s  x1 = betainv (p, 0.5, 0.5);
609s  x2 = betainv (p, 5, 1);
609s  x3 = betainv (p, 1, 3);
609s  x4 = betainv (p, 2, 2);
609s  x5 = betainv (p, 2, 5);
609s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
609s  grid on
609s  legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ...
609s           "α = 2, β = 2", "α = 2, β = 5"}, "location", "southeast")
609s  title ("Beta iCDF")
609s  xlabel ("probability")
609s  ylabel ("values in x")
609s ***** shared p
609s  p = [-1 0 0.75 1 2];
609s ***** assert (betainv (p, ones (1,5), 2*ones (1,5)), [NaN 0 0.5 1 NaN], eps)
609s ***** assert (betainv (p, 1, 2*ones (1,5)), [NaN 0 0.5 1 NaN], eps)
609s ***** assert (betainv (p, ones (1,5), 2), [NaN 0 0.5 1 NaN], eps)
609s ***** assert (betainv (p, [1 0 NaN 1 1], 2), [NaN NaN NaN 1 NaN])
609s ***** assert (betainv (p, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN 1 NaN])
609s ***** assert (betainv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 0 NaN 1 NaN])
609s ***** assert (betainv ([p, NaN], 1, 2), [NaN 0 0.5 1 NaN NaN], eps)
609s ***** assert (betainv (single ([p, NaN]), 1, 2), single ([NaN 0 0.5 1 NaN NaN]))
609s ***** assert (betainv ([p, NaN], single (1), 2), single ([NaN 0 0.5 1 NaN NaN]), eps("single"))
609s ***** assert (betainv ([p, NaN], 1, single (2)), single ([NaN 0 0.5 1 NaN NaN]), eps("single"))
609s ***** error<betainv: function called with too few input arguments.> betainv ()
609s ***** error<betainv: function called with too few input arguments.> betainv (1)
609s ***** error<betainv: function called with too few input arguments.> betainv (1,2)
609s ***** error<betainv: function called with too many inputs> betainv (1,2,3,4)
609s ***** error<betainv: P, A, and B must be of common size or scalars.> ...
609s  betainv (ones (3), ones (2), ones (2))
609s ***** error<betainv: P, A, and B must be of common size or scalars.> ...
609s  betainv (ones (2), ones (3), ones (2))
609s ***** error<betainv: P, A, and B must be of common size or scalars.> ...
609s  betainv (ones (2), ones (2), ones (3))
609s ***** error<betainv: P, A, and B must not be complex.> betainv (i, 2, 2)
609s ***** error<betainv: P, A, and B must not be complex.> betainv (2, i, 2)
609s ***** error<betainv: P, A, and B must not be complex.> betainv (2, 2, i)
609s 20 tests, 20 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/nbinpdf.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nbinpdf.m
609s ***** demo
609s  ## Plot various PDFs from the negative binomial distribution
609s  x = 0:40;
609s  y1 = nbinpdf (x, 2, 0.15);
609s  y2 = nbinpdf (x, 5, 0.2);
609s  y3 = nbinpdf (x, 4, 0.4);
609s  y4 = nbinpdf (x, 10, 0.3);
609s  plot (x, y1, "*r", x, y2, "*g", x, y3, "*k", x, y4, "*m")
609s  grid on
609s  xlim ([0, 40])
609s  ylim ([0, 0.12])
609s  legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ...
609s           "r = 10, ps = 0.3"}, "location", "northeast")
609s  title ("Negative binomial PDF")
609s  xlabel ("values in x (number of failures)")
609s  ylabel ("density")
609s ***** shared x, y
609s  x = [-1 0 1 2 Inf];
609s  y = [0 1/2 1/4 1/8 NaN];
609s ***** assert (nbinpdf (x, ones (1,5), 0.5*ones (1,5)), y)
609s ***** assert (nbinpdf (x, 1, 0.5*ones (1,5)), y)
609s ***** assert (nbinpdf (x, ones (1,5), 0.5), y)
609s ***** assert (nbinpdf (x, [0 1 NaN 1.5 Inf], 0.5), [NaN 1/2 NaN 1.875*0.5^1.5/4 NaN], eps)
609s ***** assert (nbinpdf (x, 1, 0.5*[-1 NaN 4 1 1]), [NaN NaN NaN y(4:5)])
609s ***** assert (nbinpdf ([x, NaN], 1, 0.5), [y, NaN])
609s ***** assert (nbinpdf (single ([x, NaN]), 1, 0.5), single ([y, NaN]))
609s ***** assert (nbinpdf ([x, NaN], single (1), 0.5), single ([y, NaN]))
609s ***** assert (nbinpdf ([x, NaN], 1, single (0.5)), single ([y, NaN]))
609s ***** error<nbinpdf: function called with too few input arguments.> nbinpdf ()
609s ***** error<nbinpdf: function called with too few input arguments.> nbinpdf (1)
609s ***** error<nbinpdf: function called with too few input arguments.> nbinpdf (1, 2)
609s ***** error<nbinpdf: X, R, and PS must be of common size or scalars.> ...
609s  nbinpdf (ones (3), ones (2), ones (2))
609s ***** error<nbinpdf: X, R, and PS must be of common size or scalars.> ...
609s  nbinpdf (ones (2), ones (3), ones (2))
609s ***** error<nbinpdf: X, R, and PS must be of common size or scalars.> ...
609s  nbinpdf (ones (2), ones (2), ones (3))
609s ***** error<nbinpdf: X, R, and PS must not be complex.> nbinpdf (i, 2, 2)
609s ***** error<nbinpdf: X, R, and PS must not be complex.> nbinpdf (2, i, 2)
609s ***** error<nbinpdf: X, R, and PS must not be complex.> nbinpdf (2, 2, i)
609s 18 tests, 18 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/riceinv.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/riceinv.m
609s ***** demo
609s  ## Plot various iCDFs from the Rician distribution
609s  p = 0.001:0.001:0.999;
609s  x1 = riceinv (p, 0, 1);
609s  x2 = riceinv (p, 0.5, 1);
609s  x3 = riceinv (p, 1, 1);
609s  x4 = riceinv (p, 2, 1);
609s  x5 = riceinv (p, 4, 1);
609s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m", p, x5, "-k")
609s  grid on
609s  legend ({"s = 0, σ = 1", "s = 0.5, σ = 1", "s = 1, σ = 1", ...
609s           "s = 2, σ = 1", "s = 4, σ = 1"}, "location", "northwest")
609s  title ("Rician iCDF")
609s  xlabel ("probability")
609s  ylabel ("values in x")
609s ***** shared p
609s  p = [-1 0 0.75 1 2];
609s ***** assert (riceinv (p, ones (1,5), 2*ones (1,5)), [NaN 0 3.5354 Inf NaN], 1e-4)
609s ***** assert (riceinv (p, 1, 2*ones (1,5)), [NaN 0 3.5354 Inf NaN], 1e-4)
609s ***** assert (riceinv (p, ones (1,5), 2), [NaN 0 3.5354 Inf NaN], 1e-4)
609s ***** assert (riceinv (p, [1 0 NaN 1 1], 2), [NaN 0 NaN Inf NaN])
609s ***** assert (riceinv (p, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN Inf NaN])
609s ***** assert (riceinv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 0 NaN Inf NaN])
609s ***** assert (riceinv ([p, NaN], 1, 2), [NaN 0 3.5354 Inf NaN NaN], 1e-4)
609s ***** assert (riceinv (single ([p, NaN]), 1, 2), ...
609s         single ([NaN 0 3.5354 Inf NaN NaN]), 1e-4)
609s ***** assert (riceinv ([p, NaN], single (1), 2), ...
609s         single ([NaN 0 3.5354 Inf NaN NaN]), 1e-4)
609s ***** assert (riceinv ([p, NaN], 1, single (2)), ...
609s         single ([NaN 0 3.5354 Inf NaN NaN]), 1e-4)
609s ***** error<riceinv: function called with too few input arguments.> riceinv ()
609s ***** error<riceinv: function called with too few input arguments.> riceinv (1)
609s ***** error<riceinv: function called with too few input arguments.> riceinv (1,2)
609s ***** error<riceinv: function called with too many inputs> riceinv (1,2,3,4)
609s ***** error<riceinv: P, S, and B must be of common size or scalars.> ...
609s  riceinv (ones (3), ones (2), ones (2))
609s ***** error<riceinv: P, S, and B must be of common size or scalars.> ...
609s  riceinv (ones (2), ones (3), ones (2))
609s ***** error<riceinv: P, S, and B must be of common size or scalars.> ...
609s  riceinv (ones (2), ones (2), ones (3))
609s ***** error<riceinv: P, S, and B must not be complex.> riceinv (i, 2, 2)
609s ***** error<riceinv: P, S, and B must not be complex.> riceinv (2, i, 2)
609s ***** error<riceinv: P, S, and B must not be complex.> riceinv (2, 2, i)
609s 20 tests, 20 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/chi2cdf.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/chi2cdf.m
609s ***** demo
609s  ## Plot various CDFs from the chi-squared distribution
609s  x = 0:0.01:8;
609s  p1 = chi2cdf (x, 1);
609s  p2 = chi2cdf (x, 2);
609s  p3 = chi2cdf (x, 3);
609s  p4 = chi2cdf (x, 4);
609s  p5 = chi2cdf (x, 6);
609s  p6 = chi2cdf (x, 9);
609s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
609s        x, p4, "-c", x, p5, "-m", x, p6, "-y")
609s  grid on
609s  xlim ([0, 8])
609s  legend ({"df = 1", "df = 2", "df = 3", ...
609s           "df = 4", "df = 6", "df = 9"}, "location", "southeast")
609s  title ("Chi-squared CDF")
609s  xlabel ("values in x")
609s  ylabel ("probability")
609s ***** shared x, p, u
609s  x = [-1, 0, 0.5, 1, 2];
609s  p = [0, (1 - exp (-x(2:end) / 2))];
609s  u = [1, 0, NaN, 0.3934693402873666, 0.6321205588285577];
609s ***** assert (chi2cdf (x, 2 * ones (1,5)), p, eps)
609s ***** assert (chi2cdf (x, 2), p, eps)
609s ***** assert (chi2cdf (x, 2 * [1, 0, NaN, 1, 1]), [p(1), 1, NaN, p(4:5)], eps)
609s ***** assert (chi2cdf (x, 2 * [1, 0, NaN, 1, 1], "upper"), ...
609s                         [p(1), 1, NaN, u(4:5)], eps)
609s ***** assert (chi2cdf ([x(1:2), NaN, x(4:5)], 2), [p(1:2), NaN, p(4:5)], eps)
609s ***** assert (chi2cdf ([x, NaN], 2), [p, NaN], eps)
609s ***** assert (chi2cdf (single ([x, NaN]), 2), single ([p, NaN]), eps ("single"))
609s ***** assert (chi2cdf ([x, NaN], single (2)), single ([p, NaN]), eps ("single"))
609s ***** error<chi2cdf: function called with too few input arguments.> chi2cdf ()
609s ***** error<chi2cdf: function called with too few input arguments.> chi2cdf (1)
609s ***** error<chi2cdf: function called with too many inputs> chi2cdf (1, 2, 3, 4)
609s ***** error<chi2cdf: invalid argument for upper tail.> chi2cdf (1, 2, 3)
609s ***** error<chi2cdf: invalid argument for upper tail.> chi2cdf (1, 2, "uper")
609s ***** error<chi2cdf: X and DF must be of common size or scalars.> ...
609s  chi2cdf (ones (3), ones (2))
609s ***** error<chi2cdf: X and DF must be of common size or scalars.> ...
609s  chi2cdf (ones (2), ones (3))
609s ***** error<chi2cdf: X and DF must not be complex.> chi2cdf (i, 2)
609s ***** error<chi2cdf: X and DF must not be complex.> chi2cdf (2, i)
609s 17 tests, 17 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/plpdf.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/plpdf.m
609s ***** demo
609s  ## Plot various PDFs from the Piecewise linear distribution
609s  data = 0:0.01:10;
609s  x1 = [0, 1, 3, 4, 7, 10];
609s  Fx1 = [0, 0.2, 0.5, 0.6, 0.7, 1];
609s  x2 = [0, 2, 5, 6, 7, 8];
609s  Fx2 = [0, 0.1, 0.3, 0.6, 0.9, 1];
609s  y1 = plpdf (data, x1, Fx1);
609s  y2 = plpdf (data, x2, Fx2);
609s  plot (data, y1, "-b", data, y2, "g")
609s  grid on
609s  ylim ([0, 0.6])
609s  xlim ([0, 10])
609s  legend ({"x1, Fx1", "x2, Fx2"}, "location", "northeast")
609s  title ("Piecewise linear CDF")
609s  xlabel ("values in data")
609s  ylabel ("density")
609s ***** shared x, Fx
609s  x = [0, 1, 3, 4, 7, 10];
609s  Fx = [0, 0.2, 0.5, 0.6, 0.7, 1];
609s ***** assert (plpdf (0.5, x, Fx), 0.2, eps);
609s ***** assert (plpdf (1.5, x, Fx), 0.15, eps);
609s ***** assert (plpdf (3.5, x, Fx), 0.1, eps);
609s ***** assert (plpdf (5, x, Fx), 0.1/3, eps);
609s ***** assert (plpdf (8, x, Fx), 0.1, eps);
609s ***** error<plpdf: function called with too few input arguments.> plpdf ()
609s ***** error<plpdf: function called with too few input arguments.> plpdf (1)
609s ***** error<plpdf: function called with too few input arguments.> plpdf (1, 2)
609s ***** error<plpdf: X and FX must be vectors of equal size.> ...
609s  plpdf (1, [0, 1, 2], [0, 1])
609s ***** error<plpdf: X and FX must be at least two-elements long.> ...
609s  plpdf (1, [0], [1])
609s ***** error<plpdf: FX must be bounded in the range> ...
609s  plpdf (1, [0, 1, 2], [0, 1, 1.5])
609s ***** error<plpdf: FX must be bounded in the range> ...
609s  plpdf (1, [0, 1, 2], [0, i, 1])
609s ***** error<plpdf: DATA, X, and FX must not be complex.> ...
609s  plpdf (i, [0, 1, 2], [0, 0.5, 1])
609s ***** error<plpdf: DATA, X, and FX must not be complex.> ...
609s  plpdf (1, [0, i, 2], [0, 0.5, 1])
609s ***** error<plpdf: DATA, X, and FX must not be complex.> ...
609s  plpdf (1, [0, 1, 2], [0, 0.5i, 1])
609s 15 tests, 15 passed, 0 known failure, 0 skipped
609s [inst/dist_fun/hnrnd.m]
609s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hnrnd.m
609s ***** assert (size (hnrnd (1, 1, 1)), [1, 1])
610s ***** assert (size (hnrnd (1, 1, 2)), [2, 2])
610s ***** assert (size (hnrnd (1, 1, [2, 1])), [2, 1])
610s ***** assert (size (hnrnd (1, zeros (2, 2))), [2, 2])
610s ***** assert (size (hnrnd (1, ones (2, 1))), [2, 1])
610s ***** assert (size (hnrnd (1, ones (2, 2))), [2, 2])
610s ***** assert (size (hnrnd (ones (2, 1), 1)), [2, 1])
610s ***** assert (size (hnrnd (ones (2, 2), 1)), [2, 2])
610s ***** assert (size (hnrnd (1, 1, 3)), [3, 3])
610s ***** assert (size (hnrnd (1, 1, [4 1])), [4, 1])
610s ***** assert (size (hnrnd (1, 1, 4, 1)), [4, 1])
610s ***** test
610s  r =  hnrnd (1, [1, 0, -1]);
610s  assert (r([2:3]), [NaN, NaN])
610s ***** assert (class (hnrnd (1, 0)), "double")
610s ***** assert (class (hnrnd (1, single (0))), "single")
610s ***** assert (class (hnrnd (1, single ([0 0]))), "single")
610s ***** assert (class (hnrnd (1, single (1))), "single")
610s ***** assert (class (hnrnd (1, single ([1 1]))), "single")
610s ***** assert (class (hnrnd (single (1), 1)), "single")
610s ***** assert (class (hnrnd (single ([1 1]), 1)), "single")
610s ***** error<hnrnd: function called with too few input arguments.> hnrnd ()
610s ***** error<hnrnd: function called with too few input arguments.> hnrnd (1)
610s ***** error<hnrnd: MU and SIGMA must be of common size or scalars.> ...
610s  hnrnd (ones (3), ones (2))
610s ***** error<hnrnd: MU and SIGMA must be of common size or scalars.> ...
610s  hnrnd (ones (2), ones (3))
610s ***** error<hnrnd: MU and SIGMA must not be complex.> hnrnd (i, 2, 3)
610s ***** error<hnrnd: MU and SIGMA must not be complex.> hnrnd (1, i, 3)
610s ***** error<hnrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
610s  hnrnd (1, 2, -1)
610s ***** error<hnrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
610s  hnrnd (1, 2, 1.2)
610s ***** error<hnrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
610s  hnrnd (1, 2, ones (2))
610s ***** error<hnrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
610s  hnrnd (1, 2, [2 -1 2])
610s ***** error<hnrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
610s  hnrnd (1, 2, [2 0 2.5])
610s ***** error<hnrnd: dimensions must be non-negative integers.> ...
610s  hnrnd (1, 2, 2, -1, 5)
610s ***** error<hnrnd: dimensions must be non-negative integers.> ...
610s  hnrnd (1, 2, 2, 1.5, 5)
610s ***** error<hnrnd: MU and SIGMA must be scalars or of size SZ.> ...
610s  hnrnd (2, ones (2), 3)
610s ***** error<hnrnd: MU and SIGMA must be scalars or of size SZ.> ...
610s  hnrnd (2, ones (2), [3, 2])
610s ***** error<hnrnd: MU and SIGMA must be scalars or of size SZ.> ...
610s  hnrnd (2, ones (2), 3, 2)
610s 35 tests, 35 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/raylinv.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/raylinv.m
610s ***** demo
610s  ## Plot various iCDFs from the Rayleigh distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = raylinv (p, 0.5);
610s  x2 = raylinv (p, 1);
610s  x3 = raylinv (p, 2);
610s  x4 = raylinv (p, 3);
610s  x5 = raylinv (p, 4);
610s  plot (p, x1, "-b", p, x2, "g", p, x3, "-r", p, x4, "-m", p, x5, "-k")
610s  grid on
610s  ylim ([0, 10])
610s  legend ({"σ = 0,5", "σ = 1", "σ = 2", ...
610s           "σ = 3", "σ = 4"}, "location", "northwest")
610s  title ("Rayleigh iCDF")
610s  xlabel ("probability")
610s  ylabel ("values in x")
610s ***** test
610s  p = 0:0.1:0.5;
610s  sigma = 1:6;
610s  x = raylinv (p, sigma);
610s  expected_x = [0.0000, 0.9181, 2.0041, 3.3784, 5.0538, 7.0645];
610s  assert (x, expected_x, 0.001);
610s ***** test
610s  p = 0:0.1:0.5;
610s  x = raylinv (p, 0.5);
610s  expected_x = [0.0000, 0.2295, 0.3340, 0.4223, 0.5054, 0.5887];
610s  assert (x, expected_x, 0.001);
610s ***** error<raylinv: function called with too few input arguments.> raylinv ()
610s ***** error<raylinv: function called with too few input arguments.> raylinv (1)
610s ***** error<raylinv: P and SIGMA must be of common size or scalars.> ...
610s  raylinv (ones (3), ones (2))
610s ***** error<raylinv: P and SIGMA must be of common size or scalars.> ...
610s  raylinv (ones (2), ones (3))
610s ***** error<raylinv: P and SIGMA must not be complex.> raylinv (i, 2)
610s ***** error<raylinv: P and SIGMA must not be complex.> raylinv (2, i)
610s 8 tests, 8 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/invgcdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/invgcdf.m
610s ***** demo
610s  ## Plot various CDFs from the inverse Gaussian distribution
610s  x = 0:0.001:3;
610s  p1 = invgcdf (x, 1, 0.2);
610s  p2 = invgcdf (x, 1, 1);
610s  p3 = invgcdf (x, 1, 3);
610s  p4 = invgcdf (x, 3, 0.2);
610s  p5 = invgcdf (x, 3, 1);
610s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-y")
610s  grid on
610s  xlim ([0, 3])
610s  legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ...
610s           "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "southeast")
610s  title ("Inverse Gaussian CDF")
610s  xlabel ("values in x")
610s  ylabel ("probability")
610s ***** shared x, p1, p1u, y2, y2u, y3, y3u
610s  x = [-Inf, -1, 0, 1/2, 1, Inf];
610s  p1 = [0, 0, 0, 0.3650, 0.6681, 1];
610s  p1u = [1, 1, 1, 0.6350, 0.3319, 0];
610s ***** assert (invgcdf (x, ones (1,6), ones (1,6)), p1, 1e-4)
610s ***** assert (invgcdf (x, 1, 1), p1, 1e-4)
610s ***** assert (invgcdf (x, 1, ones (1,6)), p1, 1e-4)
610s ***** assert (invgcdf (x, ones (1,6), 1), p1, 1e-4)
610s ***** assert (invgcdf (x, 1, [1, 1, 1, NaN, 1, 1]), [p1(1:3), NaN, p1(5:6)], 1e-4)
610s ***** assert (invgcdf (x, [1, 1, 1, NaN, 1, 1], 1), [p1(1:3), NaN, p1(5:6)], 1e-4)
610s ***** assert (invgcdf ([x(1:3), NaN, x(5:6)], 1, 1), [p1(1:3), NaN, p1(5:6)], 1e-4)
610s ***** assert (invgcdf (x, ones (1,6), ones (1,6), "upper"), p1u, 1e-4)
610s ***** assert (invgcdf (x, 1, 1, "upper"), p1u, 1e-4)
610s ***** assert (invgcdf (x, 1, ones (1,6), "upper"), p1u, 1e-4)
610s ***** assert (invgcdf (x, ones (1,6), 1, "upper"), p1u, 1e-4)
610s ***** assert (class (invgcdf (single ([x, NaN]), 1, 1)), "single")
610s ***** assert (class (invgcdf ([x, NaN], 1, single (1))), "single")
610s ***** assert (class (invgcdf ([x, NaN], single (1), 1)), "single")
610s ***** error<invgcdf: function called with too few input arguments.> invgcdf ()
610s ***** error<invgcdf: function called with too few input arguments.> invgcdf (1)
610s ***** error<invgcdf: function called with too few input arguments.> invgcdf (1, 2)
610s ***** error<invgcdf: invalid argument for upper tail.> invgcdf (1, 2, 3, "tail")
610s ***** error<invgcdf: invalid argument for upper tail.> invgcdf (1, 2, 3, 5)
610s ***** error<invgcdf: X, MU, and LAMBDA must be of common size or scalars.> ...
610s  invgcdf (ones (3), ones (2), ones(2))
610s ***** error<invgcdf: X, MU, and LAMBDA must be of common size or scalars.> ...
610s  invgcdf (ones (2), ones (3), ones(2))
610s ***** error<invgcdf: X, MU, and LAMBDA must be of common size or scalars.> ...
610s  invgcdf (ones (2), ones (2), ones(3))
610s ***** error<invgcdf: X, MU, and LAMBDA must not be complex.> invgcdf (i, 2, 3)
610s ***** error<invgcdf: X, MU, and LAMBDA must not be complex.> invgcdf (1, i, 3)
610s ***** error<invgcdf: X, MU, and LAMBDA must not be complex.> invgcdf (1, 2, i)
610s 25 tests, 25 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/gumbelcdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gumbelcdf.m
610s ***** demo
610s  ## Plot various CDFs from the Gumbel distribution
610s  x = -5:0.01:20;
610s  p1 = gumbelcdf (x, 0.5, 2);
610s  p2 = gumbelcdf (x, 1.0, 2);
610s  p3 = gumbelcdf (x, 1.5, 3);
610s  p4 = gumbelcdf (x, 3.0, 4);
610s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
610s  grid on
610s  legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ...
610s           "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "southeast")
610s  title ("Gumbel CDF")
610s  xlabel ("values in x")
610s  ylabel ("probability")
610s ***** shared x, y
610s  x = [-Inf, 1, 2, Inf];
610s  y = [0, 0.3679, 0.6922, 1];
610s ***** assert (gumbelcdf (x, ones (1,4), ones (1,4)), y, 1e-4)
610s ***** assert (gumbelcdf (x, 1, ones (1,4)), y, 1e-4)
610s ***** assert (gumbelcdf (x, ones (1,4), 1), y, 1e-4)
610s ***** assert (gumbelcdf (x, [0, -Inf, NaN, Inf], 1), [0, 1, NaN, NaN], 1e-4)
610s ***** assert (gumbelcdf (x, 1, [Inf, NaN, -1, 0]), [NaN, NaN, NaN, NaN], 1e-4)
610s ***** assert (gumbelcdf ([x(1:2), NaN, x(4)], 1, 1), [y(1:2), NaN, y(4)], 1e-4)
610s ***** assert (gumbelcdf (x, "upper"), [1, 0.3078, 0.1266, 0], 1e-4)
610s ***** assert (gumbelcdf ([x, NaN], 1, 1), [y, NaN], 1e-4)
610s ***** assert (gumbelcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), 1e-4)
610s ***** assert (gumbelcdf ([x, NaN], single (1), 1), single ([y, NaN]), 1e-4)
610s ***** assert (gumbelcdf ([x, NaN], 1, single (1)), single ([y, NaN]), 1e-4)
610s ***** error<gumbelcdf: invalid number of input arguments.> gumbelcdf ()
610s ***** error<gumbelcdf: invalid number of input arguments.> gumbelcdf (1,2,3,4,5,6,7)
610s ***** error<gumbelcdf: invalid argument for upper tail.> gumbelcdf (1, 2, 3, 4, "uper")
610s ***** error<gumbelcdf: X, MU, and BETA must be of common size or scalars.> ...
610s  gumbelcdf (ones (3), ones (2), ones (2))
610s ***** error<gumbelcdf: invalid size of covariance matrix.> gumbelcdf (2, 3, 4, [1, 2])
610s ***** error<gumbelcdf: covariance matrix is required for confidence bounds.> ...
610s  [p, plo, pup] = gumbelcdf (1, 2, 3)
610s ***** error<gumbelcdf: invalid value for alpha.> [p, plo, pup] = ...
610s  gumbelcdf (1, 2, 3, [1, 0; 0, 1], 0)
610s ***** error<gumbelcdf: invalid value for alpha.> [p, plo, pup] = ...
610s  gumbelcdf (1, 2, 3, [1, 0; 0, 1], 1.22)
610s ***** error<gumbelcdf: invalid value for alpha.> [p, plo, pup] = ...
610s  gumbelcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper")
610s ***** error<gumbelcdf: X, MU, and BETA must not be complex.> gumbelcdf (i, 2, 2)
610s ***** error<gumbelcdf: X, MU, and BETA must not be complex.> gumbelcdf (2, i, 2)
610s ***** error<gumbelcdf: X, MU, and BETA must not be complex.> gumbelcdf (2, 2, i)
610s ***** error<gumbelcdf: bad covariance matrix.> ...
610s  [p, plo, pup] = gumbelcdf (1, 2, 3, [1, 0; 0, -inf], 0.04)
610s 24 tests, 24 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/evcdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/evcdf.m
610s ***** demo
610s  ## Plot various CDFs from the extreme value distribution
610s  x = -10:0.01:10;
610s  p1 = evcdf (x, 0.5, 2);
610s  p2 = evcdf (x, 1.0, 2);
610s  p3 = evcdf (x, 1.5, 3);
610s  p4 = evcdf (x, 3.0, 4);
610s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
610s  grid on
610s  legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ...
610s           "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "southeast")
610s  title ("Extreme value CDF")
610s  xlabel ("values in x")
610s  ylabel ("probability")
610s ***** shared x, y
610s  x = [-Inf, 1, 2, Inf];
610s  y = [0, 0.6321, 0.9340, 1];
610s ***** assert (evcdf (x, ones (1,4), ones (1,4)), y, 1e-4)
610s ***** assert (evcdf (x, 1, ones (1,4)), y, 1e-4)
610s ***** assert (evcdf (x, ones (1,4), 1), y, 1e-4)
610s ***** assert (evcdf (x, [0, -Inf, NaN, Inf], 1), [0, 1, NaN, NaN], 1e-4)
610s ***** assert (evcdf (x, 1, [Inf, NaN, -1, 0]), [NaN, NaN, NaN, NaN], 1e-4)
610s ***** assert (evcdf ([x(1:2), NaN, x(4)], 1, 1), [y(1:2), NaN, y(4)], 1e-4)
610s ***** assert (evcdf (x, "upper"), [1, 0.0660, 0.0006, 0], 1e-4)
610s ***** assert (evcdf ([x, NaN], 1, 1), [y, NaN], 1e-4)
610s ***** assert (evcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), 1e-4)
610s ***** assert (evcdf ([x, NaN], single (1), 1), single ([y, NaN]), 1e-4)
610s ***** assert (evcdf ([x, NaN], 1, single (1)), single ([y, NaN]), 1e-4)
610s ***** error<evcdf: invalid number of input arguments.> evcdf ()
610s ***** error<evcdf: invalid number of input arguments.> evcdf (1,2,3,4,5,6,7)
610s ***** error<evcdf: invalid argument for upper tail.> evcdf (1, 2, 3, 4, "uper")
610s ***** error<evcdf: X, MU, and SIGMA must be of common size or scalars.> ...
610s  evcdf (ones (3), ones (2), ones (2))
610s ***** error<evcdf: invalid size of covariance matrix.> evcdf (2, 3, 4, [1, 2])
610s ***** error<evcdf: covariance matrix is required for confidence bounds.> ...
610s  [p, plo, pup] = evcdf (1, 2, 3)
610s ***** error<evcdf: invalid value for alpha.> [p, plo, pup] = ...
610s  evcdf (1, 2, 3, [1, 0; 0, 1], 0)
610s ***** error<evcdf: invalid value for alpha.> [p, plo, pup] = ...
610s  evcdf (1, 2, 3, [1, 0; 0, 1], 1.22)
610s ***** error<evcdf: invalid value for alpha.> [p, plo, pup] = ...
610s  evcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper")
610s ***** error<evcdf: X, MU, and SIGMA must not be complex.> evcdf (i, 2, 2)
610s ***** error<evcdf: X, MU, and SIGMA must not be complex.> evcdf (2, i, 2)
610s ***** error<evcdf: X, MU, and SIGMA must not be complex.> evcdf (2, 2, i)
610s ***** error<evcdf: bad covariance matrix.> ...
610s  [p, plo, pup] = evcdf (1, 2, 3, [1, 0; 0, -inf], 0.04)
610s 24 tests, 24 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/vmpdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/vmpdf.m
610s ***** demo
610s  ## Plot various PDFs from the von Mises distribution
610s  x1 = [-pi:0.1:pi];
610s  y1 = vmpdf (x1, 0, 0.5);
610s  y2 = vmpdf (x1, 0, 1);
610s  y3 = vmpdf (x1, 0, 2);
610s  y4 = vmpdf (x1, 0, 4);
610s  plot (x1, y1, "-r", x1, y2, "-g", x1, y3, "-b", x1, y4, "-c")
610s  grid on
610s  xlim ([-pi, pi])
610s  ylim ([0, 0.8])
610s  legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ...
610s           "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest")
610s  title ("Von Mises PDF")
610s  xlabel ("values in x")
610s  ylabel ("density")
610s ***** shared x, y0, y1
610s  x = [-pi:pi/2:pi];
610s  y0 = [0.046245, 0.125708, 0.341710, 0.125708, 0.046245];
610s  y1 = [0.046245, 0.069817, 0.654958, 0.014082, 0.000039];
610s ***** assert (vmpdf (x, 0, 1), y0, 1e-5)
610s ***** assert (vmpdf (x, zeros (1,5), ones (1,5)), y0, 1e-6)
610s ***** assert (vmpdf (x, 0, [1 2 3 4 5]), y1, 1e-6)
610s ***** assert (isa (vmpdf (single (pi), 0, 1), "single"), true)
610s ***** assert (isa (vmpdf (pi, single (0), 1), "single"), true)
610s ***** assert (isa (vmpdf (pi, 0, single (1)), "single"), true)
610s ***** error<vmpdf: function called with too few input arguments.> vmpdf ()
610s ***** error<vmpdf: function called with too few input arguments.> vmpdf (1)
610s ***** error<vmpdf: function called with too few input arguments.> vmpdf (1, 2)
610s ***** error<vmpdf: X, MU, and K must be of common size or scalars.> ...
610s  vmpdf (ones (3), ones (2), ones (2))
610s ***** error<vmpdf: X, MU, and K must be of common size or scalars.> ...
610s  vmpdf (ones (2), ones (3), ones (2))
610s ***** error<vmpdf: X, MU, and K must be of common size or scalars.> ...
610s  vmpdf (ones (2), ones (2), ones (3))
610s ***** error<vmpdf: X, MU, and K must not be complex.> vmpdf (i, 2, 2)
610s ***** error<vmpdf: X, MU, and K must not be complex.> vmpdf (2, i, 2)
610s ***** error<vmpdf: X, MU, and K must not be complex.> vmpdf (2, 2, i)
610s 15 tests, 15 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/hygeinv.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hygeinv.m
610s ***** demo
610s  ## Plot various iCDFs from the hypergeometric distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = hygeinv (p, 500, 50, 100);
610s  x2 = hygeinv (p, 500, 60, 200);
610s  x3 = hygeinv (p, 500, 70, 300);
610s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
610s  grid on
610s  ylim ([0, 60])
610s  legend ({"m = 500, k = 50, n = 100", "m = 500, k = 60, n = 200", ...
610s           "m = 500, k = 70, n = 300"}, "location", "northwest")
610s  title ("Hypergeometric iCDF")
610s  xlabel ("probability")
610s  ylabel ("values in p (number of successes)")
610s ***** shared p
610s  p = [-1 0 0.5 1 2];
610s ***** assert (hygeinv (p, 4*ones (1,5), 2*ones (1,5), 2*ones (1,5)), [NaN 0 1 2 NaN])
610s ***** assert (hygeinv (p, 4*ones (1,5), 2, 2), [NaN 0 1 2 NaN])
610s ***** assert (hygeinv (p, 4, 2*ones (1,5), 2), [NaN 0 1 2 NaN])
610s ***** assert (hygeinv (p, 4, 2, 2*ones (1,5)), [NaN 0 1 2 NaN])
610s ***** assert (hygeinv (p, 4*[1 -1 NaN 1.1 1], 2, 2), [NaN NaN NaN NaN NaN])
610s ***** assert (hygeinv (p, 4, 2*[1 -1 NaN 1.1 1], 2), [NaN NaN NaN NaN NaN])
610s ***** assert (hygeinv (p, 4, 5, 2), [NaN NaN NaN NaN NaN])
610s ***** assert (hygeinv (p, 4, 2, 2*[1 -1 NaN 1.1 1]), [NaN NaN NaN NaN NaN])
610s ***** assert (hygeinv (p, 4, 2, 5), [NaN NaN NaN NaN NaN])
610s ***** assert (hygeinv ([p(1:2) NaN p(4:5)], 4, 2, 2), [NaN 0 NaN 2 NaN])
610s ***** assert (hygeinv ([p, NaN], 4, 2, 2), [NaN 0 1 2 NaN NaN])
610s ***** assert (hygeinv (single ([p, NaN]), 4, 2, 2), single ([NaN 0 1 2 NaN NaN]))
610s ***** assert (hygeinv ([p, NaN], single (4), 2, 2), single ([NaN 0 1 2 NaN NaN]))
610s ***** assert (hygeinv ([p, NaN], 4, single (2), 2), single ([NaN 0 1 2 NaN NaN]))
610s ***** assert (hygeinv ([p, NaN], 4, 2, single (2)), single ([NaN 0 1 2 NaN NaN]))
610s ***** error<hygeinv: function called with too few input arguments.> hygeinv ()
610s ***** error<hygeinv: function called with too few input arguments.> hygeinv (1)
610s ***** error<hygeinv: function called with too few input arguments.> hygeinv (1,2)
610s ***** error<hygeinv: function called with too few input arguments.> hygeinv (1,2,3)
610s ***** error<hygeinv: P, T, M, and N must be of common size or scalars.> ...
610s  hygeinv (ones (2), ones (3), 1, 1)
610s ***** error<hygeinv: P, T, M, and N must be of common size or scalars.> ...
610s  hygeinv (1, ones (2), ones (3), 1)
610s ***** error<hygeinv: P, T, M, and N must be of common size or scalars.> ...
610s  hygeinv (1, 1, ones (2), ones (3))
610s ***** error<hygeinv: P, T, M, and N must not be complex.> hygeinv (i, 2, 2, 2)
610s ***** error<hygeinv: P, T, M, and N must not be complex.> hygeinv (2, i, 2, 2)
610s ***** error<hygeinv: P, T, M, and N must not be complex.> hygeinv (2, 2, i, 2)
610s ***** error<hygeinv: P, T, M, and N must not be complex.> hygeinv (2, 2, 2, i)
610s 26 tests, 26 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/nbincdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nbincdf.m
610s ***** demo
610s  ## Plot various CDFs from the negative binomial distribution
610s  x = 0:50;
610s  p1 = nbincdf (x, 2, 0.15);
610s  p2 = nbincdf (x, 5, 0.2);
610s  p3 = nbincdf (x, 4, 0.4);
610s  p4 = nbincdf (x, 10, 0.3);
610s  plot (x, p1, "*r", x, p2, "*g", x, p3, "*k", x, p4, "*m")
610s  grid on
610s  xlim ([0, 40])
610s  legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ...
610s           "r = 10, ps = 0.3"}, "location", "southeast")
610s  title ("Negative binomial CDF")
610s  xlabel ("values in x (number of failures)")
610s  ylabel ("probability")
610s ***** shared x, y
610s  x = [-1 0 1 2 Inf];
610s  y = [0 1/2 3/4 7/8 1];
610s ***** assert (nbincdf (x, ones (1,5), 0.5*ones (1,5)), y)
610s ***** assert (nbincdf (x, 1, 0.5*ones (1,5)), y)
610s ***** assert (nbincdf (x, ones (1,5), 0.5), y)
610s ***** assert (nbincdf (x, ones (1,5), 0.5, "upper"), 1 - y, eps)
610s ***** assert (nbincdf ([x(1:3) 0 x(5)], [0 1 NaN 1.5 Inf], 0.5), ...
610s  [NaN 1/2 NaN nbinpdf(0,1.5,0.5) NaN], eps)
610s ***** assert (nbincdf (x, 1, 0.5*[-1 NaN 4 1 1]), [NaN NaN NaN y(4:5)])
610s ***** assert (nbincdf ([x(1:2) NaN x(4:5)], 1, 0.5), [y(1:2) NaN y(4:5)])
610s ***** assert (nbincdf ([x, NaN], 1, 0.5), [y, NaN])
610s ***** assert (nbincdf (single ([x, NaN]), 1, 0.5), single ([y, NaN]))
610s ***** assert (nbincdf ([x, NaN], single (1), 0.5), single ([y, NaN]))
610s ***** assert (nbincdf ([x, NaN], 1, single (0.5)), single ([y, NaN]))
610s ***** error<nbincdf: function called with too few input arguments.> nbincdf ()
610s ***** error<nbincdf: function called with too few input arguments.> nbincdf (1)
610s ***** error<nbincdf: function called with too few input arguments.> nbincdf (1, 2)
610s ***** error<nbincdf: invalid argument for upper tail.> nbincdf (1, 2, 3, 4)
610s ***** error<nbincdf: invalid argument for upper tail.> nbincdf (1, 2, 3, "some")
610s ***** error<nbincdf: X, R, and PS must be of common size or scalars.> ...
610s  nbincdf (ones (3), ones (2), ones (2))
610s ***** error<nbincdf: X, R, and PS must be of common size or scalars.> ...
610s  nbincdf (ones (2), ones (3), ones (2))
610s ***** error<nbincdf: X, R, and PS must be of common size or scalars.> ...
610s  nbincdf (ones (2), ones (2), ones (3))
610s ***** error<nbincdf: X, R, and PS must not be complex.> nbincdf (i, 2, 2)
610s ***** error<nbincdf: X, R, and PS must not be complex.> nbincdf (2, i, 2)
610s ***** error<nbincdf: X, R, and PS must not be complex.> nbincdf (2, 2, i)
610s 22 tests, 22 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/copularnd.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/copularnd.m
610s ***** test
610s  theta = 0.5;
610s  r = copularnd ("Gaussian", theta);
610s  assert (size (r), [1, 2]);
610s  assert (all ((r >= 0) & (r <= 1)));
610s ***** test
610s  theta = 0.5;
610s  df = 2;
610s  r = copularnd ("t", theta, df);
610s  assert (size (r), [1, 2]);
610s  assert (all ((r >= 0) & (r <= 1)));
610s ***** test
610s  theta = 0.5;
610s  r = copularnd ("Clayton", theta);
610s  assert (size (r), [1, 2]);
610s  assert (all ((r >= 0) & (r <= 1)));
610s ***** test
610s  theta = 0.5;
610s  n = 2;
610s  r = copularnd ("Clayton", theta, n);
610s  assert (size (r), [n, 2]);
610s  assert (all ((r >= 0) & (r <= 1)));
610s ***** test
610s  theta = [1; 2];
610s  n = 2;
610s  d = 3;
610s  r = copularnd ("Clayton", theta, n, d);
610s  assert (size (r), [n, d]);
610s  assert (all ((r >= 0) & (r <= 1)));
610s 5 tests, 5 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/unifpdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unifpdf.m
610s ***** demo
610s  ## Plot various PDFs from the continuous uniform distribution
610s  x = 0:0.001:10;
610s  y1 = unifpdf (x, 2, 5);
610s  y2 = unifpdf (x, 3, 9);
610s  plot (x, y1, "-b", x, y2, "-g")
610s  grid on
610s  xlim ([0, 10])
610s  ylim ([0, 0.4])
610s  legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "northeast")
610s  title ("Continuous uniform PDF")
610s  xlabel ("values in x")
610s  ylabel ("density")
610s ***** shared x, y
610s  x = [-1 0 0.5 1 2] + 1;
610s  y = [0 1 1 1 0];
610s ***** assert (unifpdf (x, ones (1,5), 2*ones (1,5)), y)
610s ***** assert (unifpdf (x, 1, 2*ones (1,5)), y)
610s ***** assert (unifpdf (x, ones (1,5), 2), y)
610s ***** assert (unifpdf (x, [2 NaN 1 1 1], 2), [NaN NaN y(3:5)])
610s ***** assert (unifpdf (x, 1, 2*[0 NaN 1 1 1]), [NaN NaN y(3:5)])
610s ***** assert (unifpdf ([x, NaN], 1, 2), [y, NaN])
610s ***** assert (unifpdf (x, 0, 1), [1 1 0 0 0])
610s ***** assert (unifpdf (single ([x, NaN]), 1, 2), single ([y, NaN]))
610s ***** assert (unifpdf (single ([x, NaN]), single (1), 2), single ([y, NaN]))
610s ***** assert (unifpdf ([x, NaN], 1, single (2)), single ([y, NaN]))
610s ***** error<unifpdf: function called with too few input arguments.> unifpdf ()
610s ***** error<unifpdf: function called with too few input arguments.> unifpdf (1)
610s ***** error<unifpdf: function called with too few input arguments.> unifpdf (1, 2)
610s ***** error<unifpdf: X, A, and B must be of common size or scalars.> ...
610s  unifpdf (ones (3), ones (2), ones (2))
610s ***** error<unifpdf: X, A, and B must be of common size or scalars.> ...
610s  unifpdf (ones (2), ones (3), ones (2))
610s ***** error<unifpdf: X, A, and B must be of common size or scalars.> ...
610s  unifpdf (ones (2), ones (2), ones (3))
610s ***** error<unifpdf: X, A, and B must not be complex.> unifpdf (i, 2, 2)
610s ***** error<unifpdf: X, A, and B must not be complex.> unifpdf (2, i, 2)
610s ***** error<unifpdf: X, A, and B must not be complex.> unifpdf (2, 2, i)
610s 19 tests, 19 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/bisainv.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/bisainv.m
610s ***** demo
610s  ## Plot various iCDFs from the Birnbaum-Saunders distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = bisainv (p, 1, 0.5);
610s  x2 = bisainv (p, 1, 1);
610s  x3 = bisainv (p, 1, 2);
610s  x4 = bisainv (p, 1, 5);
610s  x5 = bisainv (p, 1, 10);
610s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
610s  grid on
610s  ylim ([0, 10])
610s  legend ({"β = 1, γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ...
610s           "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "northwest")
610s  title ("Birnbaum-Saunders iCDF")
610s  xlabel ("probability")
610s  ylabel ("values in x")
610s ***** demo
610s  ## Plot various iCDFs from the Birnbaum-Saunders distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = bisainv (p, 1, 0.3);
610s  x2 = bisainv (p, 2, 0.3);
610s  x3 = bisainv (p, 1, 0.5);
610s  x4 = bisainv (p, 3, 0.5);
610s  x5 = bisainv (p, 5, 0.5);
610s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
610s  grid on
610s  ylim ([0, 10])
610s  legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ...
610s           "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "northwest")
610s  title ("Birnbaum-Saunders iCDF")
610s  xlabel ("probability")
610s  ylabel ("values in x")
610s ***** shared p, y, f
610s  f = @(p,b,c) (b * (c * norminv (p) + sqrt (4 + (c * norminv(p))^2))^2) / 4;
610s  p = [-1, 0, 1/4, 1/2, 1, 2];
610s  y = [NaN, 0, f(1/4, 1, 1), 1, Inf, NaN];
610s ***** assert (bisainv (p, ones (1,6), ones (1,6)), y)
610s ***** assert (bisainv (p, 1, ones (1,6)), y)
610s ***** assert (bisainv (p, ones (1,6), 1), y)
610s ***** assert (bisainv (p, 1, 1), y)
610s ***** assert (bisainv (p, 1, [1, 1, 1, NaN, 1, 1]), [y(1:3), NaN, y(5:6)])
610s ***** assert (bisainv (p, [1, 1, 1, NaN, 1, 1], 1), [y(1:3), NaN, y(5:6)])
610s ***** assert (bisainv ([p, NaN], 1, 1), [y, NaN])
610s ***** assert (bisainv (single ([p, NaN]), 1, 1), single ([y, NaN]), eps ("single"))
610s ***** assert (bisainv ([p, NaN], 1, single (1)), single ([y, NaN]), eps ("single"))
610s ***** assert (bisainv ([p, NaN], single (1), 1), single ([y, NaN]), eps ("single"))
610s ***** error<bisainv: function called with too few input arguments.> bisainv ()
610s ***** error<bisainv: function called with too few input arguments.> bisainv (1)
610s ***** error<bisainv: function called with too few input arguments.> bisainv (1, 2)
610s ***** error<bisainv: function called with too many inputs> bisainv (1, 2, 3, 4)
610s ***** error<bisainv: P, BETA, and GAMMA must be of common size or scalars.> ...
610s  bisainv (ones (3), ones (2), ones(2))
610s ***** error<bisainv: P, BETA, and GAMMA must be of common size or scalars.> ...
610s  bisainv (ones (2), ones (3), ones(2))
610s ***** error<bisainv: P, BETA, and GAMMA must be of common size or scalars.> ...
610s  bisainv (ones (2), ones (2), ones(3))
610s ***** error<bisainv: P, BETA, and GAMMA must not be complex.> bisainv (i, 4, 3)
610s ***** error<bisainv: P, BETA, and GAMMA must not be complex.> bisainv (1, i, 3)
610s ***** error<bisainv: P, BETA, and GAMMA must not be complex.> bisainv (1, 4, i)
610s 20 tests, 20 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/ricepdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ricepdf.m
610s ***** demo
610s  ## Plot various PDFs from the Rician distribution
610s  x = 0:0.01:8;
610s  y1 = ricepdf (x, 0, 1);
610s  y2 = ricepdf (x, 0.5, 1);
610s  y3 = ricepdf (x, 1, 1);
610s  y4 = ricepdf (x, 2, 1);
610s  y5 = ricepdf (x, 4, 1);
610s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m", x, y5, "-k")
610s  grid on
610s  ylim ([0, 0.65])
610s  xlim ([0, 8])
610s  legend ({"s = 0, σ = 1", "s = 0.5, σ = 1", "s = 1, σ = 1", ...
610s           "s = 2, σ = 1", "s = 4, σ = 1"}, "location", "northeast")
610s  title ("Rician PDF")
610s  xlabel ("values in x")
610s  ylabel ("density")
610s ***** shared x, y
610s  x = [-1 0 0.5 1 2];
610s  y = [0 0 0.1073 0.1978 0.2846];
610s ***** assert (ricepdf (x, ones (1, 5), 2 * ones (1, 5)), y, 1e-4)
610s ***** assert (ricepdf (x, 1, 2 * ones (1, 5)), y, 1e-4)
610s ***** assert (ricepdf (x, ones (1, 5), 2), y, 1e-4)
610s ***** assert (ricepdf (x, [0 NaN 1 1 1], 2), [0 NaN y(3:5)], 1e-4)
610s ***** assert (ricepdf (x, 1, 2 * [0 NaN 1 1 1]), [0 NaN y(3:5)], 1e-4)
610s ***** assert (ricepdf ([x, NaN], 1, 2), [y, NaN], 1e-4)
610s ***** assert (ricepdf (single ([x, NaN]), 1, 2), single ([y, NaN]), 1e-4)
610s ***** assert (ricepdf ([x, NaN], single (1), 2), single ([y, NaN]), 1e-4)
610s ***** assert (ricepdf ([x, NaN], 1, single (2)), single ([y, NaN]), 1e-4)
610s ***** error<ricepdf: function called with too few input arguments.> ricepdf ()
610s ***** error<ricepdf: function called with too few input arguments.> ricepdf (1)
610s ***** error<ricepdf: function called with too few input arguments.> ricepdf (1,2)
610s ***** error<ricepdf: function called with too many inputs> ricepdf (1,2,3,4)
610s ***** error<ricepdf: X, S, and SIGMA must be of common size or scalars.> ...
610s  ricepdf (ones (3), ones (2), ones (2))
610s ***** error<ricepdf: X, S, and SIGMA must be of common size or scalars.> ...
610s  ricepdf (ones (2), ones (3), ones (2))
610s ***** error<ricepdf: X, S, and SIGMA must be of common size or scalars.> ...
610s  ricepdf (ones (2), ones (2), ones (3))
610s ***** error<ricepdf: X, S, and SIGMA must not be complex.> ricepdf (i, 2, 2)
610s ***** error<ricepdf: X, S, and SIGMA must not be complex.> ricepdf (2, i, 2)
610s ***** error<ricepdf: X, S, and SIGMA must not be complex.> ricepdf (2, 2, i)
610s 19 tests, 19 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/poissinv.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/poissinv.m
610s ***** demo
610s  ## Plot various iCDFs from the Poisson distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = poissinv (p, 13);
610s  x2 = poissinv (p, 4);
610s  x3 = poissinv (p, 10);
610s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
610s  grid on
610s  ylim ([0, 20])
610s  legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "northwest")
610s  title ("Poisson iCDF")
610s  xlabel ("probability")
610s  ylabel ("values in x (number of occurences)")
610s ***** shared p
610s  p = [-1 0 0.5 1 2];
610s ***** assert (poissinv (p, ones (1,5)), [NaN 0 1 Inf NaN])
610s ***** assert (poissinv (p, 1), [NaN 0 1 Inf NaN])
610s ***** assert (poissinv (p, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN])
610s ***** assert (poissinv ([p(1:2) NaN p(4:5)], 1), [NaN 0 NaN Inf NaN])
610s ***** assert (poissinv ([p, NaN], 1), [NaN 0 1 Inf NaN NaN])
610s ***** assert (poissinv (single ([p, NaN]), 1), single ([NaN 0 1 Inf NaN NaN]))
610s ***** assert (poissinv ([p, NaN], single (1)), single ([NaN 0 1 Inf NaN NaN]))
610s ***** error<poissinv: function called with too few input arguments.> poissinv ()
610s ***** error<poissinv: function called with too few input arguments.> poissinv (1)
610s ***** error<poissinv: P and LAMBDA must be of common size or scalars.> ...
610s  poissinv (ones (3), ones (2))
610s ***** error<poissinv: P and LAMBDA must be of common size or scalars.> ...
610s  poissinv (ones (2), ones (3))
610s ***** error<poissinv: P and LAMBDA must not be complex.> poissinv (i, 2)
610s ***** error<poissinv: P and LAMBDA must not be complex.> poissinv (2, i)
610s 13 tests, 13 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/normpdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/normpdf.m
610s ***** demo
610s  ## Plot various PDFs from the normal distribution
610s  x = -5:0.01:5;
610s  y1 = normpdf (x, 0, 0.5);
610s  y2 = normpdf (x, 0, 1);
610s  y3 = normpdf (x, 0, 2);
610s  y4 = normpdf (x, -2, 0.8);
610s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
610s  grid on
610s  xlim ([-5, 5])
610s  ylim ([0, 0.9])
610s  legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ...
610s           "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "northeast")
610s  title ("Normal PDF")
610s  xlabel ("values in x")
610s  ylabel ("density")
610s ***** shared x, y
610s  x = [-Inf, 1, 2, Inf];
610s  y = 1 / sqrt (2 * pi) * exp (-(x - 1) .^ 2 / 2);
610s ***** assert (normpdf (x, ones (1,4), ones (1,4)), y, eps)
610s ***** assert (normpdf (x, 1, ones (1,4)), y, eps)
610s ***** assert (normpdf (x, ones (1,4), 1), y, eps)
610s ***** assert (normpdf (x, [0 -Inf NaN Inf], 1), [y(1) NaN NaN NaN], eps)
610s ***** assert (normpdf (x, 1, [Inf NaN -1 0]), [NaN NaN NaN NaN], eps)
610s ***** assert (normpdf ([x, NaN], 1, 1), [y, NaN], eps)
610s ***** assert (normpdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single"))
610s ***** assert (normpdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single"))
610s ***** assert (normpdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single"))
610s ***** error<normpdf: function called with too few input arguments.> normpdf ()
610s ***** error<normpdf: X, MU, and SIGMA must be of common size or scalars.> ...
610s  normpdf (ones (3), ones (2), ones (2))
610s ***** error<normpdf: X, MU, and SIGMA must be of common size or scalars.> ...
610s  normpdf (ones (2), ones (3), ones (2))
610s ***** error<normpdf: X, MU, and SIGMA must be of common size or scalars.> ...
610s  normpdf (ones (2), ones (2), ones (3))
610s ***** error<normpdf: X, MU, and SIGMA must not be complex.> normpdf (i, 2, 2)
610s ***** error<normpdf: X, MU, and SIGMA must not be complex.> normpdf (2, i, 2)
610s ***** error<normpdf: X, MU, and SIGMA must not be complex.> normpdf (2, 2, i)
610s 16 tests, 16 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/raylcdf.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/raylcdf.m
610s ***** demo
610s  ## Plot various CDFs from the Rayleigh distribution
610s  x = 0:0.01:10;
610s  p1 = raylcdf (x, 0.5);
610s  p2 = raylcdf (x, 1);
610s  p3 = raylcdf (x, 2);
610s  p4 = raylcdf (x, 3);
610s  p5 = raylcdf (x, 4);
610s  plot (x, p1, "-b", x, p2, "g", x, p3, "-r", x, p4, "-m", x, p5, "-k")
610s  grid on
610s  ylim ([0, 1])
610s  legend ({"σ = 0.5", "σ = 1", "σ = 2", ...
610s           "σ = 3", "σ = 4"}, "location", "southeast")
610s  title ("Rayleigh CDF")
610s  xlabel ("values in x")
610s  ylabel ("probability")
610s ***** test
610s  x = 0:0.5:2.5;
610s  sigma = 1:6;
610s  p = raylcdf (x, sigma);
610s  expected_p = [0.0000, 0.0308, 0.0540, 0.0679, 0.0769, 0.0831];
610s  assert (p, expected_p, 0.001);
610s ***** test
610s  x = 0:0.5:2.5;
610s  p = raylcdf (x, 0.5);
610s  expected_p = [0.0000, 0.3935, 0.8647, 0.9889, 0.9997, 1.0000];
610s  assert (p, expected_p, 0.001);
610s ***** shared x, p
610s  x = [-1, 0, 1, 2, Inf];
610s  p = [0, 0, 0.39346934028737, 0.86466471676338, 1];
610s ***** assert (raylcdf (x, 1), p, 1e-14)
610s ***** assert (raylcdf (x, 1, "upper"), 1 - p, 1e-14)
610s ***** error<raylcdf: function called with too few input arguments.> raylcdf ()
610s ***** error<raylcdf: function called with too few input arguments.> raylcdf (1)
610s ***** error<raylcdf: invalid argument for upper tail.> raylcdf (1, 2, "uper")
610s ***** error<raylcdf: invalid argument for upper tail.> raylcdf (1, 2, 3)
610s ***** error<raylcdf: X and SIGMA must be of common size or scalars.> ...
610s  raylcdf (ones (3), ones (2))
610s ***** error<raylcdf: X and SIGMA must be of common size or scalars.> ...
610s  raylcdf (ones (2), ones (3))
610s ***** error<raylcdf: X and SIGMA must not be complex.> raylcdf (i, 2)
610s ***** error<raylcdf: X and SIGMA must not be complex.> raylcdf (2, i)
610s 12 tests, 12 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/gumbelinv.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gumbelinv.m
610s ***** demo
610s  ## Plot various iCDFs from the Gumbel distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = gumbelinv (p, 0.5, 2);
610s  x2 = gumbelinv (p, 1.0, 2);
610s  x3 = gumbelinv (p, 1.5, 3);
610s  x4 = gumbelinv (p, 3.0, 4);
610s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
610s  grid on
610s  ylim ([-5, 20])
610s  legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ...
610s           "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "northwest")
610s  title ("Gumbel iCDF")
610s  xlabel ("probability")
610s  ylabel ("values in x")
610s ***** shared p, x
610s  p = [0, 0.05, 0.5 0.95];
610s  x = [-Inf, -1.0972, 0.3665, 2.9702];
610s ***** assert (gumbelinv (p), x, 1e-4)
610s ***** assert (gumbelinv (p, zeros (1,4), ones (1,4)), x, 1e-4)
610s ***** assert (gumbelinv (p, 0, ones (1,4)), x, 1e-4)
610s ***** assert (gumbelinv (p, zeros (1,4), 1), x, 1e-4)
610s ***** assert (gumbelinv (p, [0, -Inf, NaN, Inf], 1), [-Inf, -Inf, NaN, Inf], 1e-4)
610s ***** assert (gumbelinv (p, 0, [Inf, NaN, -1, 0]), [-Inf, NaN, NaN, NaN], 1e-4)
610s ***** assert (gumbelinv ([p(1:2), NaN, p(4)], 0, 1), [x(1:2), NaN, x(4)], 1e-4)
610s ***** assert (gumbelinv ([p, NaN], 0, 1), [x, NaN], 1e-4)
610s ***** assert (gumbelinv (single ([p, NaN]), 0, 1), single ([x, NaN]), 1e-4)
610s ***** assert (gumbelinv ([p, NaN], single (0), 1), single ([x, NaN]), 1e-4)
610s ***** assert (gumbelinv ([p, NaN], 0, single (1)), single ([x, NaN]), 1e-4)
610s  p = [0.05, 0.5, 0.95];
610s  x = gumbelinv(p);
610s ***** assert (gumbelcdf(x), p, 1e-4)
610s ***** error<gumbelinv: invalid number of input arguments.> gumbelinv ()
610s ***** error gumbelinv (1,2,3,4,5,6)
610s ***** error<gumbelinv: P, MU, and BETA must be of common size or scalars.> ...
610s  gumbelinv (ones (3), ones (2), ones (2))
610s ***** error<gumbelinv: invalid size of covariance matrix.> ...
610s  [p, plo, pup] = gumbelinv (2, 3, 4, [1, 2])
610s ***** error<gumbelinv: covariance matrix is required for confidence bounds.> ...
610s  [p, plo, pup] = gumbelinv (1, 2, 3)
610s ***** error<gumbelinv: invalid value for alpha.> [p, plo, pup] = ...
610s  gumbelinv (1, 2, 3, [1, 0; 0, 1], 0)
610s ***** error<gumbelinv: invalid value for alpha.> [p, plo, pup] = ...
610s  gumbelinv (1, 2, 3, [1, 0; 0, 1], 1.22)
610s ***** error<gumbelinv: P, MU, and BETA must not be complex.> gumbelinv (i, 2, 2)
610s ***** error<gumbelinv: P, MU, and BETA must not be complex.> gumbelinv (2, i, 2)
610s ***** error<gumbelinv: P, MU, and BETA must not be complex.> gumbelinv (2, 2, i)
610s ***** error<gumbelinv: bad covariance matrix.> ...
610s  [p, plo, pup] = gumbelinv (1, 2, 3, [-1, 10; -Inf, -Inf], 0.04)
610s 23 tests, 23 passed, 0 known failure, 0 skipped
610s [inst/dist_fun/wblinv.m]
610s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wblinv.m
610s ***** demo
610s  ## Plot various iCDFs from the Weibull distribution
610s  p = 0.001:0.001:0.999;
610s  x1 = wblinv (p, 1, 0.5);
610s  x2 = wblinv (p, 1, 1);
610s  x3 = wblinv (p, 1, 1.5);
610s  x4 = wblinv (p, 1, 5);
610s  plot (p, x1, "-b", p, x2, "-r", p, x3, "-m", p, x4, "-g")
610s  ylim ([0, 2.5])
610s  grid on
610s  legend ({"λ = 1, k = 0.5", "λ = 1, k = 1",  ...
610s           "λ = 1, k = 1.5", "λ = 1, k = 5"}, "location", "northwest")
610s  title ("Weibull iCDF")
610s  xlabel ("probability")
610s  ylabel ("x")
610s ***** shared p
610s  p = [-1 0 0.63212055882855778 1 2];
610s ***** assert (wblinv (p, ones (1,5), ones (1,5)), [NaN 0 1 Inf NaN], eps)
610s ***** assert (wblinv (p, 1, ones (1,5)), [NaN 0 1 Inf NaN], eps)
610s ***** assert (wblinv (p, ones (1,5), 1), [NaN 0 1 Inf NaN], eps)
611s ***** assert (wblinv (p, [1 -1 NaN Inf 1], 1), [NaN NaN NaN NaN NaN])
611s ***** assert (wblinv (p, 1, [1 -1 NaN Inf 1]), [NaN NaN NaN NaN NaN])
611s ***** assert (wblinv ([p(1:2) NaN p(4:5)], 1, 1), [NaN 0 NaN Inf NaN])
611s ***** assert (wblinv ([p, NaN], 1, 1), [NaN 0 1 Inf NaN NaN], eps)
611s ***** assert (wblinv (single ([p, NaN]), 1, 1), single ([NaN 0 1 Inf NaN NaN]), eps ("single"))
611s ***** assert (wblinv ([p, NaN], single (1), 1), single ([NaN 0 1 Inf NaN NaN]), eps ("single"))
611s ***** assert (wblinv ([p, NaN], 1, single (1)), single ([NaN 0 1 Inf NaN NaN]), eps ("single"))
611s ***** error<wblinv: invalid number of input arguments.> wblinv ()
611s ***** error<wblinv: invalid number of input arguments.> wblinv (1,2,3,4)
611s ***** error<wblinv: P, LAMBDA, and K must be of common size or scalars.> ...
611s  wblinv (ones (3), ones (2), ones (2))
611s ***** error<wblinv: P, LAMBDA, and K must be of common size or scalars.> ...
611s  wblinv (ones (2), ones (3), ones (2))
611s ***** error<wblinv: P, LAMBDA, and K must be of common size or scalars.> ...
611s  wblinv (ones (2), ones (2), ones (3))
611s ***** error<wblinv: P, LAMBDA, and K must not be complex.> wblinv (i, 2, 2)
611s ***** error<wblinv: P, LAMBDA, and K must not be complex.> wblinv (2, i, 2)
611s ***** error<wblinv: P, LAMBDA, and K must not be complex.> wblinv (2, 2, i)
611s 18 tests, 18 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/gevrnd.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gevrnd.m
611s ***** assert(size (gevrnd (1,2,1)), [1, 1]);
611s ***** assert(size (gevrnd (ones(2,1), 2, 1)), [2, 1]);
611s ***** assert(size (gevrnd (ones(2,2), 2, 1)), [2, 2]);
611s ***** assert(size (gevrnd (1, 2*ones(2,1), 1)), [2, 1]);
611s ***** assert(size (gevrnd (1, 2*ones(2,2), 1)), [2, 2]);
611s ***** assert(size (gevrnd (1, 2, 1, 3)), [3, 3]);
611s ***** assert(size (gevrnd (1, 2, 1, [4 1])), [4, 1]);
611s ***** assert(size (gevrnd (1, 2, 1, 4, 1)), [4, 1]);
611s ***** assert (class (gevrnd (1,1,1)), "double")
611s ***** assert (class (gevrnd (single (1),1,1)), "single")
611s ***** assert (class (gevrnd (single ([1 1]),1,1)), "single")
611s ***** assert (class (gevrnd (1,single (1),1)), "single")
611s ***** assert (class (gevrnd (1,single ([1 1]),1)), "single")
611s ***** assert (class (gevrnd (1,1,single (1))), "single")
611s ***** assert (class (gevrnd (1,1,single ([1 1]))), "single")
611s ***** error<gevrnd: function called with too few input arguments.> gevrnd ()
611s ***** error<gevrnd: function called with too few input arguments.> gevrnd (1)
611s ***** error<gevrnd: function called with too few input arguments.> gevrnd (1, 2)
611s ***** error<gevrnd: K, SIGMA, and MU must be of common size or scalars.> ...
611s  gevrnd (ones (3), ones (2), ones (2))
611s ***** error<gevrnd: K, SIGMA, and MU must be of common size or scalars.> ...
611s  gevrnd (ones (2), ones (3), ones (2))
611s ***** error<gevrnd: K, SIGMA, and MU must be of common size or scalars.> ...
611s  gevrnd (ones (2), ones (2), ones (3))
611s ***** error<gevrnd: K, SIGMA, and MU must not be complex.> gevrnd (i, 2, 3)
611s ***** error<gevrnd: K, SIGMA, and MU must not be complex.> gevrnd (1, i, 3)
611s ***** error<gevrnd: K, SIGMA, and MU must not be complex.> gevrnd (1, 2, i)
611s ***** error<gevrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gevrnd (1, 2, 3, -1)
611s ***** error<gevrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gevrnd (1, 2, 3, 1.2)
611s ***** error<gevrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gevrnd (1, 2, 3, ones (2))
611s ***** error<gevrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gevrnd (1, 2, 3, [2 -1 2])
611s ***** error<gevrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gevrnd (1, 2, 3, [2 0 2.5])
611s ***** error<gevrnd: dimensions must be non-negative integers.> ...
611s  gevrnd (1, 2, 3, 2, -1, 5)
611s ***** error<gevrnd: dimensions must be non-negative integers.> ...
611s  gevrnd (1, 2, 3, 2, 1.5, 5)
611s ***** error<gevrnd: K, SIGMA, and MU must be scalars or of size SZ.> ...
611s  gevrnd (2, ones (2), 2, 3)
611s ***** error<gevrnd: K, SIGMA, and MU must be scalars or of size SZ.> ...
611s  gevrnd (2, ones (2), 2, [3, 2])
611s ***** error<gevrnd: K, SIGMA, and MU must be scalars or of size SZ.> ...
611s  gevrnd (2, ones (2), 2, 3, 2)
611s 34 tests, 34 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/geocdf.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/geocdf.m
611s ***** demo
611s  ## Plot various CDFs from the geometric distribution
611s  x = 0:10;
611s  p1 = geocdf (x, 0.2);
611s  p2 = geocdf (x, 0.5);
611s  p3 = geocdf (x, 0.7);
611s  plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
611s  grid on
611s  xlim ([0, 10])
611s  legend ({"ps = 0.2", "ps = 0.5", "ps = 0.7"}, "location", "southeast")
611s  title ("Geometric CDF")
611s  xlabel ("values in x (number of failures)")
611s  ylabel ("probability")
611s ***** test
611s  p = geocdf ([1, 2, 3, 4], 0.25);
611s  assert (p(1), 0.4375000000, 1e-14);
611s  assert (p(2), 0.5781250000, 1e-14);
611s  assert (p(3), 0.6835937500, 1e-14);
611s  assert (p(4), 0.7626953125, 1e-14);
611s ***** test
611s  p = geocdf ([1, 2, 3, 4], 0.25, "upper");
611s  assert (p(1), 0.5625000000, 1e-14);
611s  assert (p(2), 0.4218750000, 1e-14);
611s  assert (p(3), 0.3164062500, 1e-14);
611s  assert (p(4), 0.2373046875, 1e-14);
611s ***** shared x, p
611s  x = [-1 0 1 Inf];
611s  p = [0 0.5 0.75 1];
611s ***** assert (geocdf (x, 0.5*ones (1,4)), p)
611s ***** assert (geocdf (x, 0.5), p)
611s ***** assert (geocdf (x, 0.5*[-1 NaN 4 1]), [NaN NaN NaN p(4)])
611s ***** assert (geocdf ([x(1:2) NaN x(4)], 0.5), [p(1:2) NaN p(4)])
611s ***** assert (geocdf ([x, NaN], 0.5), [p, NaN])
611s ***** assert (geocdf (single ([x, NaN]), 0.5), single ([p, NaN]))
611s ***** assert (geocdf ([x, NaN], single (0.5)), single ([p, NaN]))
611s ***** error<geocdf: function called with too few input arguments.> geocdf ()
611s ***** error<geocdf: function called with too few input arguments.> geocdf (1)
611s ***** error<geocdf: X and PS must be of common size or scalars.> ...
611s  geocdf (ones (3), ones (2))
611s ***** error<geocdf: X and PS must be of common size or scalars.> ...
611s  geocdf (ones (2), ones (3))
611s ***** error<geocdf: X and PS must not be complex.> geocdf (i, 2)
611s ***** error<geocdf: X and PS must not be complex.> geocdf (2, i)
611s ***** error<geocdf: invalid argument for upper tail.> geocdf (2, 3, "tail")
611s ***** error<geocdf: invalid argument for upper tail.> geocdf (2, 3, 5)
611s 17 tests, 17 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/tlspdf.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tlspdf.m
611s ***** demo
611s  ## Plot various PDFs from the Student's T distribution
611s  x = -8:0.01:8;
611s  y1 = tlspdf (x, 0, 1, 1);
611s  y2 = tlspdf (x, 0, 2, 2);
611s  y3 = tlspdf (x, 3, 2, 5);
611s  y4 = tlspdf (x, -1, 3, Inf);
611s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m")
611s  grid on
611s  xlim ([-8, 8])
611s  ylim ([0, 0.41])
611s  legend ({"mu = 0, sigma = 1, nu = 1", "mu = 0, sigma = 2, nu = 2", ...
611s           "mu = 3, sigma = 2, nu = 5", 'mu = -1, sigma = 3, nu = \infty'}, ...
611s          "location", "northwest")
611s  title ("Location-scale Student's T PDF")
611s  xlabel ("values in x")
611s  ylabel ("density")
611s ***** test
611s  x = rand (10,1);
611s  y = 1./(pi * (1 + x.^2));
611s  assert (tlspdf (x, 0, 1, 1), y, 5*eps);
611s  assert (tlspdf (x+5, 5, 1, 1), y, 5*eps);
611s  assert (tlspdf (x.*2, 0, 2, 1), y./2, 5*eps);
611s ***** shared x, y
611s  x = [-Inf 0 0.5 1 Inf];
611s  y = 1./(pi * (1 + x.^2));
611s ***** assert (tlspdf (x, 0, 1, ones (1,5)), y, eps)
611s ***** assert (tlspdf (x, 0, 1, 1), y, eps)
611s ***** assert (tlspdf (x, 0, 1, [0 NaN 1 1 1]), [NaN NaN y(3:5)], eps)
611s ***** assert (tlspdf (x, 0, 1, Inf), normpdf (x))
611s ***** assert (class (tlspdf ([x, NaN], 1, 1, 1)), "double")
611s ***** assert (class (tlspdf (single ([x, NaN]), 1, 1, 1)), "single")
611s ***** assert (class (tlspdf ([x, NaN], single (1), 1, 1)), "single")
611s ***** assert (class (tlspdf ([x, NaN], 1, single (1), 1)), "single")
611s ***** assert (class (tlspdf ([x, NaN], 1, 1, single (1))), "single")
611s ***** error<tlspdf: function called with too few input arguments.> tlspdf ()
611s ***** error<tlspdf: function called with too few input arguments.> tlspdf (1)
611s ***** error<tlspdf: function called with too few input arguments.> tlspdf (1, 2)
611s ***** error<tlspdf: function called with too few input arguments.> tlspdf (1, 2, 3)
611s ***** error<tlspdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
611s  tlspdf (ones (3), ones (2), 1, 1)
611s ***** error<tlspdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
611s  tlspdf (ones (2), 1, ones (3), 1)
611s ***** error<tlspdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
611s  tlspdf (ones (2), 1, 1, ones (3))
611s ***** error<tlspdf: X, MU, SIGMA, and NU must not be complex.> tlspdf (i, 2, 1, 1)
611s ***** error<tlspdf: X, MU, SIGMA, and NU must not be complex.> tlspdf (2, i, 1, 1)
611s ***** error<tlspdf: X, MU, SIGMA, and NU must not be complex.> tlspdf (2, 1, i, 1)
611s ***** error<tlspdf: X, MU, SIGMA, and NU must not be complex.> tlspdf (2, 1, 1, i)
611s 21 tests, 21 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/ncfcdf.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncfcdf.m
611s ***** demo
611s  ## Plot various CDFs from the noncentral F distribution
611s  x = 0:0.01:5;
611s  p1 = ncfcdf (x, 2, 5, 1);
611s  p2 = ncfcdf (x, 2, 5, 2);
611s  p3 = ncfcdf (x, 5, 10, 1);
611s  p4 = ncfcdf (x, 10, 20, 10);
611s  plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", x, p4, "-m")
611s  grid on
611s  xlim ([0, 5])
611s  legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ...
611s           "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ...
611s          "location", "southeast")
611s  title ("Noncentral F CDF")
611s  xlabel ("values in x")
611s  ylabel ("probability")
611s ***** demo
611s  ## Compare the noncentral F CDF with LAMBDA = 10 to the F CDF with the
611s  ## same number of numerator and denominator degrees of freedom (5, 20)
611s 
611s  x = 0.01:0.1:10.01;
611s  p1 = ncfcdf (x, 5, 20, 10);
611s  p2 = fcdf (x, 5, 20);
611s  plot (x, p1, "-", x, p2, "-");
611s  grid on
611s  xlim ([0, 10])
611s  legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "southeast")
611s  title ("Noncentral F vs F CDFs")
611s  xlabel ("values in x")
611s  ylabel ("probability")
611s ***** test
611s  x = -2:0.1:2;
611s  p = ncfcdf (x, 10, 1, 3);
611s  assert (p([1:21]), zeros (1, 21), 1e-76);
611s  assert (p(22), 0.004530737275319753, 1e-14);
611s  assert (p(30), 0.255842099135669, 1e-14);
611s  assert (p(41), 0.4379890998457305, 1e-14);
611s ***** test
611s  p = ncfcdf (12, 10, 3, 2);
611s  assert (p, 0.9582287900447416, 1e-14);
611s ***** test
611s  p = ncfcdf (2, 3, 2, 1);
611s  assert (p, 0.5731985522994989, 1e-14);
611s ***** test
611s  p = ncfcdf (2, 3, 2, 1, "upper");
611s  assert (p, 0.4268014477004823, 1e-14);
611s ***** test
611s  p = ncfcdf ([3, 6], 3, 2, 5, "upper");
611s  assert (p, [0.530248523596927, 0.3350482341323044], 1e-14);
611s ***** error<ncfcdf: function called with too few input arguments.> ncfcdf ()
611s ***** error<ncfcdf: function called with too few input arguments.> ncfcdf (1)
611s ***** error<ncfcdf: function called with too few input arguments.> ncfcdf (1, 2)
611s ***** error<ncfcdf: function called with too few input arguments.> ncfcdf (1, 2, 3)
611s ***** error<ncfcdf: invalid argument for upper tail.> ncfcdf (1, 2, 3, 4, "tail")
611s ***** error<ncfcdf: invalid argument for upper tail.> ncfcdf (1, 2, 3, 4, 5)
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
611s  ncfcdf (ones (3), ones (2), ones (2), ones (2))
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
611s  ncfcdf (ones (2), ones (3), ones (2), ones (2))
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
611s  ncfcdf (ones (2), ones (2), ones (3), ones (2))
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
611s  ncfcdf (ones (2), ones (2), ones (2), ones (3))
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfcdf (i, 2, 2, 2)
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfcdf (2, i, 2, 2)
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfcdf (2, 2, i, 2)
611s ***** error<ncfcdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfcdf (2, 2, 2, i)
611s 19 tests, 19 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/gamrnd.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gamrnd.m
611s ***** assert (size (gamrnd (1, 1)), [1 1])
611s ***** assert (size (gamrnd (1, ones (2,1))), [2, 1])
611s ***** assert (size (gamrnd (1, ones (2,2))), [2, 2])
611s ***** assert (size (gamrnd (ones (2,1), 1)), [2, 1])
611s ***** assert (size (gamrnd (ones (2,2), 1)), [2, 2])
611s ***** assert (size (gamrnd (1, 1, 3)), [3, 3])
611s ***** assert (size (gamrnd (1, 1, [4, 1])), [4, 1])
611s ***** assert (size (gamrnd (1, 1, 4, 1)), [4, 1])
611s ***** assert (size (gamrnd (1, 1, 4, 1, 5)), [4, 1, 5])
611s ***** assert (size (gamrnd (1, 1, 0, 1)), [0, 1])
611s ***** assert (size (gamrnd (1, 1, 1, 0)), [1, 0])
611s ***** assert (size (gamrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
611s ***** assert (class (gamrnd (1, 1)), "double")
611s ***** assert (class (gamrnd (1, single (1))), "single")
611s ***** assert (class (gamrnd (1, single ([1, 1]))), "single")
611s ***** assert (class (gamrnd (single (1), 1)), "single")
611s ***** assert (class (gamrnd (single ([1, 1]), 1)), "single")
611s ***** error<gamrnd: function called with too few input arguments.> gamrnd ()
611s ***** error<gamrnd: function called with too few input arguments.> gamrnd (1)
611s ***** error<gamrnd: A and B must be of common size or scalars.> ...
611s  gamrnd (ones (3), ones (2))
611s ***** error<gamrnd: A and B must be of common size or scalars.> ...
611s  gamrnd (ones (2), ones (3))
611s ***** error<gamrnd: A and B must not be complex.> gamrnd (i, 2, 3)
611s ***** error<gamrnd: A and B must not be complex.> gamrnd (1, i, 3)
611s ***** error<gamrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gamrnd (1, 2, -1)
611s ***** error<gamrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gamrnd (1, 2, 1.2)
611s ***** error<gamrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gamrnd (1, 2, ones (2))
611s ***** error<gamrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gamrnd (1, 2, [2 -1 2])
611s ***** error<gamrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  gamrnd (1, 2, [2 0 2.5])
611s ***** error<gamrnd: dimensions must be non-negative integers.> ...
611s  gamrnd (1, 2, 2, -1, 5)
611s ***** error<gamrnd: dimensions must be non-negative integers.> ...
611s  gamrnd (1, 2, 2, 1.5, 5)
611s ***** error<gamrnd: A and B must be scalars or of size SZ.> ...
611s  gamrnd (2, ones (2), 3)
611s ***** error<gamrnd: A and B must be scalars or of size SZ.> ...
611s  gamrnd (2, ones (2), [3, 2])
611s ***** error<gamrnd: A and B must be scalars or of size SZ.> ...
611s  gamrnd (2, ones (2), 3, 2)
611s 33 tests, 33 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/iwishrnd.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/iwishrnd.m
611s ***** assert(size (iwishrnd (1,2,1)), [1, 1]);
611s ***** assert(size (iwishrnd ([],2,1)), [1, 1]);
611s ***** assert(size (iwishrnd ([3 1; 1 3], 2.00001, [], 1)), [2, 2]);
611s ***** assert(size (iwishrnd (eye(2), 2, [], 3)), [2, 2, 3]);
611s ***** error iwishrnd ()
611s ***** error iwishrnd (1)
611s ***** error iwishrnd ([-3 1; 1 3],1)
611s ***** error iwishrnd ([1; 1],1)
611s 8 tests, 8 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/lognrnd.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/lognrnd.m
611s ***** assert (size (lognrnd (1, 1)), [1 1])
611s ***** assert (size (lognrnd (1, ones (2,1))), [2, 1])
611s ***** assert (size (lognrnd (1, ones (2,2))), [2, 2])
611s ***** assert (size (lognrnd (ones (2,1), 1)), [2, 1])
611s ***** assert (size (lognrnd (ones (2,2), 1)), [2, 2])
611s ***** assert (size (lognrnd (1, 1, 3)), [3, 3])
611s ***** assert (size (lognrnd (1, 1, [4, 1])), [4, 1])
611s ***** assert (size (lognrnd (1, 1, 4, 1)), [4, 1])
611s ***** assert (size (lognrnd (1, 1, 4, 1, 5)), [4, 1, 5])
611s ***** assert (size (lognrnd (1, 1, 0, 1)), [0, 1])
611s ***** assert (size (lognrnd (1, 1, 1, 0)), [1, 0])
611s ***** assert (size (lognrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
611s ***** assert (class (lognrnd (1, 1)), "double")
611s ***** assert (class (lognrnd (1, single (1))), "single")
611s ***** assert (class (lognrnd (1, single ([1, 1]))), "single")
611s ***** assert (class (lognrnd (single (1), 1)), "single")
611s ***** assert (class (lognrnd (single ([1, 1]), 1)), "single")
611s ***** error<lognrnd: function called with too few input arguments.> lognrnd ()
611s ***** error<lognrnd: function called with too few input arguments.> lognrnd (1)
611s ***** error<lognrnd: MU and SIGMA must be of common size or scalars.> ...
611s  lognrnd (ones (3), ones (2))
611s ***** error<lognrnd: MU and SIGMA must be of common size or scalars.> ...
611s  lognrnd (ones (2), ones (3))
611s ***** error<lognrnd: MU and SIGMA must not be complex.> lognrnd (i, 2, 3)
611s ***** error<lognrnd: MU and SIGMA must not be complex.> lognrnd (1, i, 3)
611s ***** error<lognrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  lognrnd (1, 2, -1)
611s ***** error<lognrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  lognrnd (1, 2, 1.2)
611s ***** error<lognrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  lognrnd (1, 2, ones (2))
611s ***** error<lognrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  lognrnd (1, 2, [2 -1 2])
611s ***** error<lognrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
611s  lognrnd (1, 2, [2 0 2.5])
611s ***** error<lognrnd: dimensions must be non-negative integers.> ...
611s  lognrnd (1, 2, 2, -1, 5)
611s ***** error<lognrnd: dimensions must be non-negative integers.> ...
611s  lognrnd (1, 2, 2, 1.5, 5)
611s ***** error<lognrnd: MU and SIGMA must be scalars or of size SZ.> ...
611s  lognrnd (2, ones (2), 3)
611s ***** error<lognrnd: MU and SIGMA must be scalars or of size SZ.> ...
611s  lognrnd (2, ones (2), [3, 2])
611s ***** error<lognrnd: MU and SIGMA must be scalars or of size SZ.> ...
611s  lognrnd (2, ones (2), 3, 2)
611s 33 tests, 33 passed, 0 known failure, 0 skipped
611s [inst/dist_fun/ncx2inv.m]
611s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncx2inv.m
611s ***** demo
611s  ## Plot various iCDFs from the noncentral chi-squared distribution
611s  p = 0.001:0.001:0.999;
611s  x1 = ncx2inv (p, 2, 1);
611s  x2 = ncx2inv (p, 2, 2);
611s  x3 = ncx2inv (p, 2, 3);
611s  x4 = ncx2inv (p, 4, 1);
611s  x5 = ncx2inv (p, 4, 2);
611s  x6 = ncx2inv (p, 4, 3);
611s  plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", ...
611s        p, x4, "-m", p, x5, "-c", p, x6, "-y")
611s  grid on
611s  ylim ([0, 10])
611s  legend ({"df = 2, λ = 1", "df = 2, λ = 2", ...
611s           "df = 2, λ = 3", "df = 4, λ = 1", ...
611s           "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "northwest")
611s  title ("Noncentral chi-squared iCDF")
611s  xlabel ("probability")
611s  ylabel ("values in x")
611s ***** demo
611s  ## Compare the noncentral chi-squared CDF with LAMBDA = 2 to the
611s  ## chi-squared CDF with the same number of degrees of freedom (4).
611s 
611s  p = 0.001:0.001:0.999;
611s  x1 = ncx2inv (p, 4, 2);
611s  x2 = chi2inv (p, 4);
611s  plot (p, x1, "-", p, x2, "-");
611s  grid on
611s  ylim ([0, 10])
611s  legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest")
611s  title ("Noncentral chi-squared vs chi-squared quantile functions")
611s  xlabel ("probability")
611s  ylabel ("values in x")
611s ***** test
611s  x = [0,0.3443,0.7226,1.1440,1.6220,2.1770,2.8436,3.6854,4.8447,6.7701,Inf];
611s  assert (ncx2inv ([0:0.1:1], 2, 1), x, 1e-4);
611s ***** test
611s  x = [0,0.8295,1.6001,2.3708,3.1785,4.0598,5.0644,6.2765,7.8763,10.4199,Inf];
611s  assert (ncx2inv ([0:0.1:1], 2, 3), x, 1e-4);
612s ***** test
612s  x = [0,0.5417,1.3483,2.1796,3.0516,4.0003,5.0777,6.3726,8.0748,10.7686,Inf];
612s  assert (ncx2inv ([0:0.1:1], 1, 4), x, 1e-4);
612s ***** test
612s  x = [0.1808, 0.6456, 1.1842, 1.7650, 2.3760, 3.0105];
612s  assert (ncx2inv (0.05, [1, 2, 3, 4, 5, 6], 4), x, 1e-4);
612s ***** test
612s  x = [0.4887, 0.6699, 0.9012, 1.1842, 1.5164, 1.8927];
612s  assert (ncx2inv (0.05, 3, [1, 2, 3, 4, 5, 6]), x, 1e-4);
612s ***** test
612s  x = [1.3941, 1.6824, 2.0103, 2.3760, NaN, 3.2087];
612s  assert (ncx2inv (0.05, 5, [1, 2, 3, 4, -1, 6]), x, 1e-4);
612s ***** test
612s  assert (ncx2inv (0.996, 5, 8), 35.51298862765576, 3e-13);
613s ***** error<ncx2inv: function called with too few input arguments.> ncx2inv ()
613s ***** error<ncx2inv: function called with too few input arguments.> ncx2inv (1)
613s ***** error<ncx2inv: function called with too few input arguments.> ncx2inv (1, 2)
613s ***** error<ncx2inv: P, DF, and LAMBDA must be of common size or scalars.> ...
613s  ncx2inv (ones (3), ones (2), ones (2))
613s ***** error<ncx2inv: P, DF, and LAMBDA must be of common size or scalars.> ...
613s  ncx2inv (ones (2), ones (3), ones (2))
613s ***** error<ncx2inv: P, DF, and LAMBDA must be of common size or scalars.> ...
613s  ncx2inv (ones (2), ones (2), ones (3))
613s ***** error<ncx2inv: P, DF, and LAMBDA must not be complex.> ncx2inv (i, 2, 2)
613s ***** error<ncx2inv: P, DF, and LAMBDA must not be complex.> ncx2inv (2, i, 2)
613s ***** error<ncx2inv: P, DF, and LAMBDA must not be complex.> ncx2inv (2, 2, i)
613s 16 tests, 16 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/bvncdf.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/bvncdf.m
613s ***** demo
613s  mu = [1, -1];
613s  sigma = [0.9, 0.4; 0.4, 0.3];
613s  [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
613s  x = [X1(:), X2(:)];
613s  p = bvncdf (x, mu, sigma);
613s  Z = reshape (p, 25, 25);
613s  surf (X1, X2, Z);
613s  title ("Bivariate Normal Distribution");
613s  ylabel "X1"
613s  xlabel "X2"
613s ***** test
613s  mu = [1, -1];
613s  sigma = [0.9, 0.4; 0.4, 0.3];
613s  [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
613s  x = [X1(:), X2(:)];
613s  p = bvncdf (x, mu, sigma);
613s  p_out = [0.00011878988774500, 0.00034404112322371, ...
613s           0.00087682502191813, 0.00195221905058185, ...
613s           0.00378235566873474, 0.00638175749734415, ...
613s           0.00943764224329656, 0.01239164888125426, ...
613s           0.01472750274376648, 0.01623228313374828]';
613s  assert (p([1:10]), p_out, 1e-16);
613s ***** test
613s  mu = [1, -1];
613s  sigma = [0.9, 0.4; 0.4, 0.3];
613s  [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
613s  x = [X1(:), X2(:)];
613s  p = bvncdf (x, mu, sigma);
613s  p_out = [0.8180695783608276, 0.8854485749482751, ...
613s           0.9308108777385832, 0.9579855743025508, ...
613s           0.9722897881414742, 0.9788150170059926, ...
613s           0.9813597788804785, 0.9821977956568989, ...
613s           0.9824283794464095, 0.9824809345614861]';
613s  assert (p([616:625]), p_out, 3e-16);
613s ***** error bvncdf (randn (25,3), [], [1, 1; 1, 1]);
613s ***** error bvncdf (randn (25,2), [], [1, 1; 1, 1]);
613s ***** error bvncdf (randn (25,2), [], ones (3, 2));
613s 5 tests, 5 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/ncx2pdf.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncx2pdf.m
613s ***** demo
613s  ## Plot various PDFs from the noncentral chi-squared distribution
613s  x = 0:0.1:10;
613s  y1 = ncx2pdf (x, 2, 1);
613s  y2 = ncx2pdf (x, 2, 2);
613s  y3 = ncx2pdf (x, 2, 3);
613s  y4 = ncx2pdf (x, 4, 1);
613s  y5 = ncx2pdf (x, 4, 2);
613s  y6 = ncx2pdf (x, 4, 3);
613s  plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", ...
613s        x, y4, "-m", x, y5, "-c", x, y6, "-y")
613s  grid on
613s  xlim ([0, 10])
613s  ylim ([0, 0.32])
613s  legend ({"df = 2, λ = 1", "df = 2, λ = 2", ...
613s           "df = 2, λ = 3", "df = 4, λ = 1", ...
613s           "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "northeast")
613s  title ("Noncentral chi-squared PDF")
613s  xlabel ("values in x")
613s  ylabel ("density")
613s ***** demo
613s  ## Compare the noncentral chi-squared PDF with LAMBDA = 2 to the
613s  ## chi-squared PDF with the same number of degrees of freedom (4).
613s 
613s  x = 0:0.1:10;
613s  y1 = ncx2pdf (x, 4, 2);
613s  y2 = chi2pdf (x, 4);
613s  plot (x, y1, "-", x, y2, "-");
613s  grid on
613s  xlim ([0, 10])
613s  ylim ([0, 0.32])
613s  legend ({"Noncentral T(10,1)", "T(10)"}, "location", "northwest")
613s  title ("Noncentral chi-squared vs chi-squared PDFs")
613s  xlabel ("values in x")
613s  ylabel ("density")
613s ***** shared x1, df, d1
613s  x1 = [-Inf, 2, NaN, 4, Inf];
613s  df = [2, 0, -1, 1, 4];
613s  d1 = [1, NaN, 3, -1, 2];
613s ***** assert (ncx2pdf (x1, df, d1), [0, NaN, NaN, NaN, 0]);
613s ***** assert (ncx2pdf (x1, df, 1), [0, 0.07093996461786045, NaN, ...
613s                               0.06160064323277038, 0], 1e-14);
613s ***** assert (ncx2pdf (x1, df, 3), [0, 0.1208364909271113, NaN, ...
613s                               0.09631299762429098, 0], 1e-14);
613s ***** assert (ncx2pdf (x1, df, 2), [0, 0.1076346446244688, NaN, ...
613s                               0.08430464047296625, 0], 1e-14);
613s ***** assert (ncx2pdf (x1, 2, d1), [0, NaN, NaN, NaN, 0]);
613s ***** assert (ncx2pdf (2, df, d1), [0.1747201674611283, NaN, NaN, ...
613s                               NaN, 0.1076346446244688], 1e-14);
613s ***** assert (ncx2pdf (4, df, d1), [0.09355987820265799, NaN, NaN, ...
613s                               NaN, 0.1192317192431485], 1e-14);
613s ***** error<ncx2pdf: function called with too few input arguments.> ncx2pdf ()
613s ***** error<ncx2pdf: function called with too few input arguments.> ncx2pdf (1)
613s ***** error<ncx2pdf: function called with too few input arguments.> ncx2pdf (1, 2)
613s ***** error<ncx2pdf: X, DF, and LAMBDA must be of common size or scalars.> ...
613s  ncx2pdf (ones (3), ones (2), ones (2))
613s ***** error<ncx2pdf: X, DF, and LAMBDA must be of common size or scalars.> ...
613s  ncx2pdf (ones (2), ones (3), ones (2))
613s ***** error<ncx2pdf: X, DF, and LAMBDA must be of common size or scalars.> ...
613s  ncx2pdf (ones (2), ones (2), ones (3))
613s ***** error<ncx2pdf: X, DF, and LAMBDA must not be complex.> ncx2pdf (i, 2, 2)
613s ***** error<ncx2pdf: X, DF, and LAMBDA must not be complex.> ncx2pdf (2, i, 2)
613s ***** error<ncx2pdf: X, DF, and LAMBDA must not be complex.> ncx2pdf (2, 2, i)
613s 16 tests, 16 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/expinv.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/expinv.m
613s ***** demo
613s  ## Plot various iCDFs from the exponential distribution
613s  p = 0.001:0.001:0.999;
613s  x1 = expinv (p, 2/3);
613s  x2 = expinv (p, 1.0);
613s  x3 = expinv (p, 2.0);
613s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
613s  grid on
613s  ylim ([0, 5])
613s  legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "northwest")
613s  title ("Exponential iCDF")
613s  xlabel ("probability")
613s  ylabel ("values in x")
613s ***** shared p
613s  p = [-1 0 0.3934693402873666 1 2];
613s ***** assert (expinv (p, 2*ones (1,5)), [NaN 0 1 Inf NaN], eps)
613s ***** assert (expinv (p, 2), [NaN 0 1 Inf NaN], eps)
613s ***** assert (expinv (p, 2*[1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps)
613s ***** assert (expinv ([p(1:2) NaN p(4:5)], 2), [NaN 0 NaN Inf NaN], eps)
613s ***** assert (expinv ([p, NaN], 2), [NaN 0 1 Inf NaN NaN], eps)
613s ***** assert (expinv (single ([p, NaN]), 2), single ([NaN 0 1 Inf NaN NaN]), eps)
613s ***** assert (expinv ([p, NaN], single (2)), single ([NaN 0 1 Inf NaN NaN]), eps)
613s ***** error<expinv: invalid number of input arguments.> expinv ()
613s ***** error<expinv: invalid number of input arguments.> expinv (1, 2 ,3 ,4 ,5)
613s ***** error<expinv: P and MU must be of common size or scalars.> ...
613s  expinv (ones (3), ones (2))
613s ***** error<expinv: invalid size of variance, PCOV must be a scalar.> ...
613s  expinv (2, 3, [1, 2])
613s ***** error<expinv: variance, PCOV, is required for confidence bounds.> ...
613s  [x, xlo, xup] = expinv (1, 2)
613s ***** error<expinv: invalid value for alpha.> [x, xlo, xup] = ...
613s  expinv (1, 2, 3, 0)
613s ***** error<expinv: invalid value for alpha.> [x, xlo, xup] = ...
613s  expinv (1, 2, 3, 1.22)
613s ***** error<expinv: invalid value for alpha.> [x, xlo, xup] = ...
613s  expinv (1, 2, 3, [0.05, 0.1])
613s ***** error<expinv: P and MU must not be complex.> expinv (i, 2)
613s ***** error<expinv: P and MU must not be complex.> expinv (2, i)
613s ***** error<expinv: variance, PCOV, cannot be negative.> ...
613s  [x, xlo, xup] = expinv (1, 2, -1, 0.04)
613s 18 tests, 18 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/cauchyrnd.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/cauchyrnd.m
613s ***** assert (size (cauchyrnd (1, 1)), [1 1])
613s ***** assert (size (cauchyrnd (1, ones (2,1))), [2, 1])
613s ***** assert (size (cauchyrnd (1, ones (2,2))), [2, 2])
613s ***** assert (size (cauchyrnd (ones (2,1), 1)), [2, 1])
613s ***** assert (size (cauchyrnd (ones (2,2), 1)), [2, 2])
613s ***** assert (size (cauchyrnd (1, 1, 3)), [3, 3])
613s ***** assert (size (cauchyrnd (1, 1, [4, 1])), [4, 1])
613s ***** assert (size (cauchyrnd (1, 1, 4, 1)), [4, 1])
613s ***** assert (size (cauchyrnd (1, 1, 4, 1, 5)), [4, 1, 5])
613s ***** assert (size (cauchyrnd (1, 1, 0, 1)), [0, 1])
613s ***** assert (size (cauchyrnd (1, 1, 1, 0)), [1, 0])
613s ***** assert (size (cauchyrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
613s ***** assert (class (cauchyrnd (1, 1)), "double")
613s ***** assert (class (cauchyrnd (1, single (1))), "single")
613s ***** assert (class (cauchyrnd (1, single ([1, 1]))), "single")
613s ***** assert (class (cauchyrnd (single (1), 1)), "single")
613s ***** assert (class (cauchyrnd (single ([1, 1]), 1)), "single")
613s ***** error<cauchyrnd: function called with too few input arguments.> cauchyrnd ()
613s ***** error<cauchyrnd: function called with too few input arguments.> cauchyrnd (1)
613s ***** error<cauchyrnd: X0 and GAMMA must be of common size or scalars.> ...
613s  cauchyrnd (ones (3), ones (2))
613s ***** error<cauchyrnd: X0 and GAMMA must be of common size or scalars.> ...
613s  cauchyrnd (ones (2), ones (3))
613s ***** error<cauchyrnd: X0 and GAMMA must not be complex.> cauchyrnd (i, 2, 3)
613s ***** error<cauchyrnd: X0 and GAMMA must not be complex.> cauchyrnd (1, i, 3)
613s ***** error<cauchyrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
613s  cauchyrnd (1, 2, -1)
613s ***** error<cauchyrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
613s  cauchyrnd (1, 2, 1.2)
613s ***** error<cauchyrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
613s  cauchyrnd (1, 2, ones (2))
613s ***** error<cauchyrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
613s  cauchyrnd (1, 2, [2 -1 2])
613s ***** error<cauchyrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
613s  cauchyrnd (1, 2, [2 0 2.5])
613s ***** error<cauchyrnd: dimensions must be non-negative integers.> ...
613s  cauchyrnd (1, 2, 2, -1, 5)
613s ***** error<cauchyrnd: dimensions must be non-negative integers.> ...
613s  cauchyrnd (1, 2, 2, 1.5, 5)
613s ***** error<cauchyrnd: X0 and GAMMA must be scalars or of size SZ.> ...
613s  cauchyrnd (2, ones (2), 3)
613s ***** error<cauchyrnd: X0 and GAMMA must be scalars or of size SZ.> ...
613s  cauchyrnd (2, ones (2), [3, 2])
613s ***** error<cauchyrnd: X0 and GAMMA must be scalars or of size SZ.> ...
613s  cauchyrnd (2, ones (2), 3, 2)
613s 33 tests, 33 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/tripdf.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tripdf.m
613s ***** demo
613s  ## Plot various CDFs from the triangular distribution
613s  x = 0.001:0.001:10;
613s  y1 = tripdf (x, 3, 4, 6);
613s  y2 = tripdf (x, 1, 2, 5);
613s  y3 = tripdf (x, 2, 3, 9);
613s  y4 = tripdf (x, 2, 5, 9);
613s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
613s  grid on
613s  xlim ([0, 10])
613s  legend ({"a = 3, b = 4, c = 6", "a = 1, b = 2, c = 5", ...
613s           "a = 2, b = 3, c = 9", "a = 2, b = 5, c = 9"}, ...
613s          "location", "northeast")
613s  title ("Triangular CDF")
613s  xlabel ("values in x")
613s  ylabel ("probability")
613s ***** shared x, y, deps
613s  x = [-1, 0, 0.1, 0.5, 0.9, 1, 2] + 1;
613s  y = [0, 0, 0.4, 2, 0.4, 0, 0];
613s  deps = 2*eps;
613s ***** assert (tripdf (x, ones (1,7), 1.5*ones (1,7), 2*ones (1,7)), y, deps)
613s ***** assert (tripdf (x, 1*ones (1,7), 1.5, 2), y, deps)
613s ***** assert (tripdf (x, 1, 1.5, 2*ones (1,7)), y, deps)
613s ***** assert (tripdf (x, 1, 1.5*ones (1,7), 2), y, deps)
613s ***** assert (tripdf (x, 1, 1.5, 2), y, deps)
613s ***** assert (tripdf (x, [1, 1, NaN, 1, 1, 1, 1], 1.5, 2), [y(1:2), NaN, y(4:7)], deps)
613s ***** assert (tripdf (x, 1, 1.5, 2*[1, 1, NaN, 1, 1, 1, 1]), [y(1:2), NaN, y(4:7)], deps)
613s ***** assert (tripdf (x, 1, 1.5*[1, 1, NaN, 1, 1, 1, 1], 2), [y(1:2), NaN, y(4:7)], deps)
613s ***** assert (tripdf ([x, NaN], 1, 1.5, 2), [y, NaN], deps)
613s ***** assert (tripdf (single ([x, NaN]), 1, 1.5, 2), single ([y, NaN]), eps("single"))
613s ***** assert (tripdf ([x, NaN], single (1), 1.5, 2), single ([y, NaN]), eps("single"))
613s ***** assert (tripdf ([x, NaN], 1, 1.5, single (2)), single ([y, NaN]), eps("single"))
613s ***** assert (tripdf ([x, NaN], 1, single (1.5), 2), single ([y, NaN]), eps("single"))
613s ***** error<tripdf: function called with too few input arguments.> tripdf ()
613s ***** error<tripdf: function called with too few input arguments.> tripdf (1)
613s ***** error<tripdf: function called with too few input arguments.> tripdf (1, 2)
613s ***** error<tripdf: function called with too few input arguments.> tripdf (1, 2, 3)
613s ***** error<tripdf: function called with too many inputs> ...
613s  tripdf (1, 2, 3, 4, 5)
613s ***** error<tripdf: X, A, B, and C must be of common size or scalars.> ...
613s  tripdf (ones (3), ones (2), ones(2), ones(2))
613s ***** error<tripdf: X, A, B, and C must be of common size or scalars.> ...
613s  tripdf (ones (2), ones (3), ones(2), ones(2))
613s ***** error<tripdf: X, A, B, and C must be of common size or scalars.> ...
613s  tripdf (ones (2), ones (2), ones(3), ones(2))
613s ***** error<tripdf: X, A, B, and C must be of common size or scalars.> ...
613s  tripdf (ones (2), ones (2), ones(2), ones(3))
613s ***** error<tripdf: X, A, B, and C must not be complex.> tripdf (i, 2, 3, 4)
613s ***** error<tripdf: X, A, B, and C must not be complex.> tripdf (1, i, 3, 4)
613s ***** error<tripdf: X, A, B, and C must not be complex.> tripdf (1, 2, i, 4)
613s ***** error<tripdf: X, A, B, and C must not be complex.> tripdf (1, 2, 3, i)
613s 26 tests, 26 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/ncfinv.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncfinv.m
613s ***** demo
613s  ## Plot various iCDFs from the noncentral F distribution
613s  p = 0.001:0.001:0.999;
613s  x1 = ncfinv (p, 2, 5, 1);
613s  x2 = ncfinv (p, 2, 5, 2);
613s  x3 = ncfinv (p, 5, 10, 1);
613s  x4 = ncfinv (p, 10, 20, 10);
613s  plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m")
613s  grid on
613s  ylim ([0, 5])
613s  legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ...
613s           "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ...
613s          "location", "northwest")
613s  title ("Noncentral F iCDF")
613s  xlabel ("probability")
613s  ylabel ("values in x")
613s ***** demo
613s  ## Compare the noncentral F iCDF with LAMBDA = 10 to the F iCDF with the
613s  ## same number of numerator and denominator degrees of freedom (5, 20)
613s 
613s  p = 0.001:0.001:0.999;
613s  x1 = ncfinv (p, 5, 20, 10);
613s  x2 = finv (p, 5, 20);
613s  plot (p, x1, "-", p, x2, "-");
613s  grid on
613s  ylim ([0, 10])
613s  legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "northwest")
613s  title ("Noncentral F vs F quantile functions")
613s  xlabel ("probability")
613s  ylabel ("values in x")
613s ***** test
613s  x = [0,0.1775,0.3864,0.6395,0.9564,1.3712,1.9471,2.8215,4.3679,8.1865,Inf];
613s  assert (ncfinv ([0:0.1:1], 2, 3, 1), x, 1e-4);
613s ***** test
613s  x = [0,0.7492,1.3539,2.0025,2.7658,3.7278,5.0324,6.9826,10.3955,18.7665,Inf];
613s  assert (ncfinv ([0:0.1:1], 2, 3, 5), x, 1e-4);
613s ***** test
613s  x = [0,0.2890,0.8632,1.5653,2.4088,3.4594,4.8442,6.8286,10.0983,17.3736,Inf];
613s  assert (ncfinv ([0:0.1:1], 1, 4, 3), x, 1e-4);
613s ***** test
613s  x = [0.078410, 0.212716, 0.288618, 0.335752, 0.367963, 0.391460];
613s  assert (ncfinv (0.05, [1, 2, 3, 4, 5, 6], 10, 3), x, 1e-6);
613s ***** test
613s  x = [0.2574, 0.2966, 0.3188, 0.3331, 0.3432, 0.3507];
613s  assert (ncfinv (0.05, 5, [1, 2, 3, 4, 5, 6], 3), x, 1e-4);
613s ***** test
613s  x = [1.6090, 1.8113, 1.9215, 1.9911, NaN, 2.0742];
613s  assert (ncfinv (0.05, 1, [1, 2, 3, 4, -1, 6], 10), x, 1e-4);
613s ***** test
613s  assert (ncfinv (0.996, 3, 5, 8), 58.0912074080671, 4e-12);
613s ***** error<ncfinv: function called with too few input arguments.> ncfinv ()
613s ***** error<ncfinv: function called with too few input arguments.> ncfinv (1)
613s ***** error<ncfinv: function called with too few input arguments.> ncfinv (1, 2)
613s ***** error<ncfinv: function called with too few input arguments.> ncfinv (1, 2, 3)
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
613s  ncfinv (ones (3), ones (2), ones (2), ones (2))
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
613s  ncfinv (ones (2), ones (3), ones (2), ones (2))
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
613s  ncfinv (ones (2), ones (2), ones (3), ones (2))
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
613s  ncfinv (ones (2), ones (2), ones (2), ones (3))
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must not be complex.> ncfinv (i, 2, 2, 2)
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must not be complex.> ncfinv (2, i, 2, 2)
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must not be complex.> ncfinv (2, 2, i, 2)
613s ***** error<ncfinv: P, DF1, DF2, and LAMBDA must not be complex.> ncfinv (2, 2, 2, i)
613s 19 tests, 19 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/poisspdf.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/poisspdf.m
613s ***** demo
613s  ## Plot various PDFs from the Poisson distribution
613s  x = 0:20;
613s  y1 = poisspdf (x, 1);
613s  y2 = poisspdf (x, 4);
613s  y3 = poisspdf (x, 10);
613s  plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
613s  grid on
613s  ylim ([0, 0.4])
613s  legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "northeast")
613s  title ("Poisson PDF")
613s  xlabel ("values in x (number of occurences)")
613s  ylabel ("density")
613s ***** shared x, y
613s  x = [-1 0 1 2 Inf];
613s  y = [0, exp(-1)*[1 1 0.5], 0];
613s ***** assert (poisspdf (x, ones (1,5)), y, eps)
613s ***** assert (poisspdf (x, 1), y, eps)
613s ***** assert (poisspdf (x, [1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)], eps)
613s ***** assert (poisspdf ([x, NaN], 1), [y, NaN], eps)
613s ***** assert (poisspdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single"))
613s ***** assert (poisspdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single"))
613s ***** error<poisspdf: function called with too few input arguments.> poisspdf ()
613s ***** error<poisspdf: function called with too few input arguments.> poisspdf (1)
613s ***** error<poisspdf: X and LAMBDA must be of common size or scalars.> ...
613s  poisspdf (ones (3), ones (2))
613s ***** error<poisspdf: X and LAMBDA must be of common size or scalars.> ...
613s  poisspdf (ones (2), ones (3))
613s ***** error<poisspdf: X and LAMBDA must not be complex.> poisspdf (i, 2)
613s ***** error<poisspdf: X and LAMBDA must not be complex.> poisspdf (2, i)
613s 12 tests, 12 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/jsucdf.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/jsucdf.m
613s ***** error jsucdf ()
613s ***** error jsucdf (1, 2, 3, 4)
613s ***** error<jsucdf: X, ALPHA1, and ALPHA2 must be of common size or scalars.> ...
613s  jsucdf (1, ones (2), ones (3))
613s 3 tests, 3 passed, 0 known failure, 0 skipped
613s [inst/dist_fun/nctcdf.m]
613s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nctcdf.m
613s ***** demo
613s  ## Plot various CDFs from the noncentral Τ distribution
613s  x = -5:0.01:5;
613s  p1 = nctcdf (x, 1, 0);
613s  p2 = nctcdf (x, 4, 0);
613s  p3 = nctcdf (x, 1, 2);
613s  p4 = nctcdf (x, 4, 2);
613s  plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", x, p4, "-m")
613s  grid on
613s  xlim ([-5, 5])
613s  legend ({"df = 1, μ = 0", "df = 4, μ = 0", ...
613s           "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "southeast")
613s  title ("Noncentral Τ CDF")
613s  xlabel ("values in x")
613s  ylabel ("probability")
613s ***** demo
613s  ## Compare the noncentral T CDF with MU = 1 to the T CDF
613s  ## with the same number of degrees of freedom (10).
613s 
613s  x = -5:0.1:5;
613s  p1 = nctcdf (x, 10, 1);
613s  p2 = tcdf (x, 10);
613s  plot (x, p1, "-", x, p2, "-")
613s  grid on
613s  xlim ([-5, 5])
613s  legend ({"Noncentral T(10,1)", "T(10)"}, "location", "southeast")
613s  title ("Noncentral T vs T CDFs")
613s  xlabel ("values in x")
613s  ylabel ("probability")
613s ***** test
613s  x = -2:0.1:2;
613s  p = nctcdf (x, 10, 1);
613s  assert (p(1), 0.003302485766631558, 1e-14);
613s  assert (p(2), 0.004084668193532631, 1e-14);
613s  assert (p(3), 0.005052800319478737, 1e-14);
613s  assert (p(41), 0.8076115625303751, 1e-14);
614s ***** test
614s  p = nctcdf (12, 10, 3);
614s  assert (p, 0.9997719343243797, 1e-14);
614s ***** test
614s  p = nctcdf (2, 3, 2);
614s  assert (p, 0.4430757822176028, 1e-14);
614s ***** test
614s  p = nctcdf (2, 3, 2, "upper");
614s  assert (p, 0.5569242177823971, 1e-14);
614s ***** test
614s  p = nctcdf ([3, 6], 3, 2, "upper");
614s  assert (p, [0.3199728259444777, 0.07064855592441913], 1e-14);
614s ***** error<nctcdf: function called with too few input arguments.> nctcdf ()
614s ***** error<nctcdf: function called with too few input arguments.> nctcdf (1)
614s ***** error<nctcdf: function called with too few input arguments.> nctcdf (1, 2)
614s ***** error<nctcdf: invalid argument for upper tail.> nctcdf (1, 2, 3, "tail")
614s ***** error<nctcdf: invalid argument for upper tail.> nctcdf (1, 2, 3, 4)
614s ***** error<nctcdf: X, DF, and MU must be of common size or scalars.> ...
614s  nctcdf (ones (3), ones (2), ones (2))
614s ***** error<nctcdf: X, DF, and MU must be of common size or scalars.> ...
614s  nctcdf (ones (2), ones (3), ones (2))
614s ***** error<nctcdf: X, DF, and MU must be of common size or scalars.> ...
614s  nctcdf (ones (2), ones (2), ones (3))
614s ***** error<nctcdf: X, DF, and MU must not be complex.> nctcdf (i, 2, 2)
614s ***** error<nctcdf: X, DF, and MU must not be complex.> nctcdf (2, i, 2)
614s ***** error<nctcdf: X, DF, and MU must not be complex.> nctcdf (2, 2, i)
614s 16 tests, 16 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/evinv.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/evinv.m
614s ***** demo
614s  ## Plot various iCDFs from the extreme value distribution
614s  p = 0.001:0.001:0.999;
614s  x1 = evinv (p, 0.5, 2);
614s  x2 = evinv (p, 1.0, 2);
614s  x3 = evinv (p, 1.5, 3);
614s  x4 = evinv (p, 3.0, 4);
614s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
614s  grid on
614s  ylim ([-10, 10])
614s  legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ...
614s           "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "northwest")
614s  title ("Extreme value iCDF")
614s  xlabel ("probability")
614s  ylabel ("values in x")
614s ***** shared p, x
614s  p = [0, 0.05, 0.5 0.95];
614s  x = [-Inf, -2.9702, -0.3665, 1.0972];
614s ***** assert (evinv (p), x, 1e-4)
614s ***** assert (evinv (p, zeros (1,4), ones (1,4)), x, 1e-4)
614s ***** assert (evinv (p, 0, ones (1,4)), x, 1e-4)
614s ***** assert (evinv (p, zeros (1,4), 1), x, 1e-4)
614s ***** assert (evinv (p, [0, -Inf, NaN, Inf], 1), [-Inf, -Inf, NaN, Inf], 1e-4)
614s ***** assert (evinv (p, 0, [Inf, NaN, -1, 0]), [-Inf, NaN, NaN, NaN], 1e-4)
614s ***** assert (evinv ([p(1:2), NaN, p(4)], 0, 1), [x(1:2), NaN, x(4)], 1e-4)
614s ***** assert (evinv ([p, NaN], 0, 1), [x, NaN], 1e-4)
614s ***** assert (evinv (single ([p, NaN]), 0, 1), single ([x, NaN]), 1e-4)
614s ***** assert (evinv ([p, NaN], single (0), 1), single ([x, NaN]), 1e-4)
614s ***** assert (evinv ([p, NaN], 0, single (1)), single ([x, NaN]), 1e-4)
614s ***** error<evinv: invalid number of input arguments.> evinv ()
614s ***** error evinv (1,2,3,4,5,6)
614s ***** error<evinv: P, MU, and SIGMA must be of common size or scalars.> ...
614s  evinv (ones (3), ones (2), ones (2))
614s ***** error<evinv: invalid size of covariance matrix.> ...
614s  [p, plo, pup] = evinv (2, 3, 4, [1, 2])
614s ***** error<evinv: covariance matrix is required for confidence bounds.> ...
614s  [p, plo, pup] = evinv (1, 2, 3)
614s ***** error<evinv: invalid value for alpha.> [p, plo, pup] = ...
614s  evinv (1, 2, 3, [1, 0; 0, 1], 0)
614s ***** error<evinv: invalid value for alpha.> [p, plo, pup] = ...
614s  evinv (1, 2, 3, [1, 0; 0, 1], 1.22)
614s ***** error<evinv: P, MU, and SIGMA must not be complex.> evinv (i, 2, 2)
614s ***** error<evinv: P, MU, and SIGMA must not be complex.> evinv (2, i, 2)
614s ***** error<evinv: P, MU, and SIGMA must not be complex.> evinv (2, 2, i)
614s ***** error<evinv: bad covariance matrix.> ...
614s  [p, plo, pup] = evinv (1, 2, 3, [-1, -10; -Inf, -Inf], 0.04)
614s 22 tests, 22 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/laplacecdf.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/laplacecdf.m
614s ***** demo
614s  ## Plot various CDFs from the Laplace distribution
614s  x = -10:0.01:10;
614s  p1 = laplacecdf (x, 0, 1);
614s  p2 = laplacecdf (x, 0, 2);
614s  p3 = laplacecdf (x, 0, 4);
614s  p4 = laplacecdf (x, -5, 4);
614s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
614s  grid on
614s  xlim ([-10, 10])
614s  legend ({"μ = 0, β = 1", "μ = 0, β = 2", ...
614s           "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "southeast")
614s  title ("Laplace CDF")
614s  xlabel ("values in x")
614s  ylabel ("probability")
614s ***** shared x, y
614s  x = [-Inf, -log(2), 0, log(2), Inf];
614s  y = [0, 1/4, 1/2, 3/4, 1];
614s ***** assert (laplacecdf ([x, NaN], 0, 1), [y, NaN])
614s ***** assert (laplacecdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), 0.75, 1])
614s ***** assert (laplacecdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single"))
614s ***** assert (laplacecdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single"))
614s ***** assert (laplacecdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single"))
614s ***** error<laplacecdf: function called with too few input arguments.> laplacecdf ()
614s ***** error<laplacecdf: function called with too few input arguments.> laplacecdf (1)
614s ***** error<laplacecdf: function called with too few input arguments.> ...
614s  laplacecdf (1, 2)
614s ***** error<laplacecdf: function called with too many inputs> ...
614s  laplacecdf (1, 2, 3, 4, 5)
614s ***** error<laplacecdf: invalid argument for upper tail.> laplacecdf (1, 2, 3, "tail")
614s ***** error<laplacecdf: invalid argument for upper tail.> laplacecdf (1, 2, 3, 4)
614s ***** error<laplacecdf: X, MU, and BETA must be of common size or scalars.> ...
614s  laplacecdf (ones (3), ones (2), ones (2))
614s ***** error<laplacecdf: X, MU, and BETA must be of common size or scalars.> ...
614s  laplacecdf (ones (2), ones (3), ones (2))
614s ***** error<laplacecdf: X, MU, and BETA must be of common size or scalars.> ...
614s  laplacecdf (ones (2), ones (2), ones (3))
614s ***** error<laplacecdf: X, MU, and BETA must not be complex.> laplacecdf (i, 2, 2)
614s ***** error<laplacecdf: X, MU, and BETA must not be complex.> laplacecdf (2, i, 2)
614s ***** error<laplacecdf: X, MU, and BETA must not be complex.> laplacecdf (2, 2, i)
614s 17 tests, 17 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/logninv.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/logninv.m
614s ***** demo
614s  ## Plot various iCDFs from the log-normal distribution
614s  p = 0.001:0.001:0.999;
614s  x1 = logninv (p, 0, 1);
614s  x2 = logninv (p, 0, 0.5);
614s  x3 = logninv (p, 0, 0.25);
614s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
614s  grid on
614s  ylim ([0, 3])
614s  legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ...
614s          "location", "northwest")
614s  title ("Log-normal iCDF")
614s  xlabel ("probability")
614s  ylabel ("values in x")
614s ***** shared p
614s  p = [-1 0 0.5 1 2];
614s ***** assert (logninv (p, ones (1,5), ones (1,5)), [NaN 0 e Inf NaN])
614s ***** assert (logninv (p, 1, ones (1,5)), [NaN 0 e Inf NaN])
614s ***** assert (logninv (p, ones (1,5), 1), [NaN 0 e Inf NaN])
614s ***** assert (logninv (p, [1 1 NaN 0 1], 1), [NaN 0 NaN Inf NaN])
614s ***** assert (logninv (p, 1, [1 0 NaN Inf 1]), [NaN NaN NaN NaN NaN])
614s ***** assert (logninv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 0 NaN Inf NaN])
614s ***** assert (logninv ([p, NaN], 1, 1), [NaN 0 e Inf NaN NaN])
614s ***** assert (logninv (single ([p, NaN]), 1, 1), single ([NaN 0 e Inf NaN NaN]))
614s ***** assert (logninv ([p, NaN], single (1), 1), single ([NaN 0 e Inf NaN NaN]))
614s ***** assert (logninv ([p, NaN], 1, single (1)), single ([NaN 0 e Inf NaN NaN]))
614s ***** error logninv ()
614s ***** error logninv (1,2,3,4)
614s ***** error logninv (ones (3), ones (2), ones (2))
614s ***** error logninv (ones (2), ones (3), ones (2))
614s ***** error logninv (ones (2), ones (2), ones (3))
614s ***** error logninv (i, 2, 2)
614s ***** error logninv (2, i, 2)
614s ***** error logninv (2, 2, i)
614s 18 tests, 18 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/chi2inv.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/chi2inv.m
614s ***** demo
614s  ## Plot various iCDFs from the chi-squared distribution
614s  p = 0.001:0.001:0.999;
614s  x1 = chi2inv (p, 1);
614s  x2 = chi2inv (p, 2);
614s  x3 = chi2inv (p, 3);
614s  x4 = chi2inv (p, 4);
614s  x5 = chi2inv (p, 6);
614s  x6 = chi2inv (p, 9);
614s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
614s        p, x4, "-c", p, x5, "-m", p, x6, "-y")
614s  grid on
614s  ylim ([0, 8])
614s  legend ({"df = 1", "df = 2", "df = 3", ...
614s           "df = 4", "df = 6", "df = 9"}, "location", "northwest")
614s  title ("Chi-squared iCDF")
614s  xlabel ("probability")
614s  ylabel ("values in x")
614s ***** shared p
614s  p = [-1 0 0.3934693402873666 1 2];
614s ***** assert (chi2inv (p, 2*ones (1,5)), [NaN 0 1 Inf NaN], 5*eps)
614s ***** assert (chi2inv (p, 2), [NaN 0 1 Inf NaN], 5*eps)
614s ***** assert (chi2inv (p, 2*[0 1 NaN 1 1]), [NaN 0 NaN Inf NaN], 5*eps)
614s ***** assert (chi2inv ([p(1:2) NaN p(4:5)], 2), [NaN 0 NaN Inf NaN], 5*eps)
614s ***** assert (chi2inv ([p, NaN], 2), [NaN 0 1 Inf NaN NaN], 5*eps)
614s ***** assert (chi2inv (single ([p, NaN]), 2), single ([NaN 0 1 Inf NaN NaN]), 5*eps ("single"))
614s ***** assert (chi2inv ([p, NaN], single (2)), single ([NaN 0 1 Inf NaN NaN]), 5*eps ("single"))
614s ***** error<chi2inv: function called with too few input arguments.> chi2inv ()
614s ***** error<chi2inv: function called with too few input arguments.> chi2inv (1)
614s ***** error<chi2inv: function called with too many inputs> chi2inv (1,2,3)
614s ***** error<chi2inv: P and DF must be of common size or scalars.> ...
614s  chi2inv (ones (3), ones (2))
614s ***** error<chi2inv: P and DF must be of common size or scalars.> ...
614s  chi2inv (ones (2), ones (3))
614s ***** error<chi2inv: P and DF must not be complex.> chi2inv (i, 2)
614s ***** error<chi2inv: P and DF must not be complex.> chi2inv (2, i)
614s 14 tests, 14 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/ncfpdf.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncfpdf.m
614s ***** demo
614s  ## Plot various PDFs from the noncentral F distribution
614s  x = 0:0.01:5;
614s  y1 = ncfpdf (x, 2, 5, 1);
614s  y2 = ncfpdf (x, 2, 5, 2);
614s  y3 = ncfpdf (x, 5, 10, 1);
614s  y4 = ncfpdf (x, 10, 20, 10);
614s  plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", x, y4, "-m")
614s  grid on
614s  xlim ([0, 5])
614s  ylim ([0, 0.8])
614s  legend ({"df1 = 2, df2 = 5, λ = 1", "df1 = 2, df2 = 5, λ = 2", ...
614s           "df1 = 5, df2 = 10, λ = 1", "df1 = 10, df2 = 20, λ = 10"}, ...
614s          "location", "northeast")
614s  title ("Noncentral F PDF")
614s  xlabel ("values in x")
614s  ylabel ("density")
614s ***** demo
614s  ## Compare the noncentral F PDF with LAMBDA = 10 to the F PDF with the
614s  ## same number of numerator and denominator degrees of freedom (5, 20)
614s 
614s  x = 0.01:0.1:10.01;
614s  y1 = ncfpdf (x, 5, 20, 10);
614s  y2 = fpdf (x, 5, 20);
614s  plot (x, y1, "-", x, y2, "-");
614s  grid on
614s  xlim ([0, 10])
614s  ylim ([0, 0.8])
614s  legend ({"Noncentral F(5,20,10)", "F(5,20)"}, "location", "northeast")
614s  title ("Noncentral F vs F PDFs")
614s  xlabel ("values in x")
614s  ylabel ("density")
614s ***** shared x1, df1, df2, lambda
614s  x1 = [-Inf, 2, NaN, 4, Inf];
614s  df1 = [2, 0, -1, 1, 4];
614s  df2 = [2, 4, 5, 6, 8];
614s  lambda = [1, NaN, 3, -1, 2];
614s ***** assert (ncfpdf (x1, df1, df2, lambda), [0, NaN, NaN, NaN, NaN]);
614s ***** assert (ncfpdf (x1, df1, df2, 1), [0, NaN, NaN, ...
614s                                    0.05607937264237208, NaN], 1e-14);
614s ***** assert (ncfpdf (x1, df1, df2, 3), [0, NaN, NaN, ...
614s                                    0.080125760971946518, NaN], 1e-14);
614s ***** assert (ncfpdf (x1, df1, df2, 2), [0, NaN, NaN, ...
614s                                    0.0715902008258656, NaN], 1e-14);
614s ***** assert (ncfpdf (x1, 3, 5, lambda), [0, NaN, NaN, NaN, NaN]);
614s ***** assert (ncfpdf (2, df1, df2, lambda), [0.1254046999837947, NaN, NaN, ...
614s                                       NaN, 0.2152571783045893], 1e-14);
614s ***** assert (ncfpdf (4, df1, df2, lambda), [0.05067089541001374, NaN, NaN, ...
614s                                       NaN, 0.05560846335398539], 1e-14);
614s ***** error<ncfpdf: function called with too few input arguments.> ncfpdf ()
614s ***** error<ncfpdf: function called with too few input arguments.> ncfpdf (1)
614s ***** error<ncfpdf: function called with too few input arguments.> ncfpdf (1, 2)
614s ***** error<ncfpdf: function called with too few input arguments.> ncfpdf (1, 2, 3)
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
614s  ncfpdf (ones (3), ones (2), ones (2), ones (2))
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
614s  ncfpdf (ones (2), ones (3), ones (2), ones (2))
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
614s  ncfpdf (ones (2), ones (2), ones (3), ones (2))
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must be of common size or scalars.> ...
614s  ncfpdf (ones (2), ones (2), ones (2), ones (3))
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfpdf (i, 2, 2, 2)
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfpdf (2, i, 2, 2)
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfpdf (2, 2, i, 2)
614s ***** error<ncfpdf: X, DF1, DF2, and LAMBDA must not be complex.> ncfpdf (2, 2, 2, i)
614s 19 tests, 19 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/loglinv.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/loglinv.m
614s ***** demo
614s  ## Plot various iCDFs from the log-logistic distribution
614s  p = 0.001:0.001:0.999;
614s  x1 = loglinv (p, log (1), 1/0.5);
614s  x2 = loglinv (p, log (1), 1);
614s  x3 = loglinv (p, log (1), 1/2);
614s  x4 = loglinv (p, log (1), 1/4);
614s  x5 = loglinv (p, log (1), 1/8);
614s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
614s  ylim ([0, 20])
614s  grid on
614s  legend ({"σ = 2 (β = 0.5)", "σ = 1 (β = 1)", "σ = 0.5 (β = 2)", ...
614s           "σ = 0.25 (β = 4)", "σ = 0.125 (β = 8)"}, "location", "northwest")
614s  title ("Log-logistic iCDF")
614s  xlabel ("probability")
614s  ylabel ("x")
614s  text (0.03, 12.5, "μ = 0 (α = 1), values of σ (β) as shown in legend")
614s ***** shared p, out1, out2
614s  p = [-1, 0, 0.2, 0.5, 0.8, 0.95, 1, 2];
614s  out1 = [NaN, 0, 0.25, 1, 4, 19, Inf, NaN];
614s  out2 = [NaN, 0, 0.0424732, 2.718282, 173.970037, 18644.695061, Inf, NaN];
614s ***** assert (loglinv (p, 0, 1), out1, 1e-8)
614s ***** assert (loglinv (p, 0, 1), out1, 1e-8)
614s ***** assert (loglinv (p, 1, 3), out2, 1e-6)
614s ***** assert (class (loglinv (single (1), 2, 3)), "single")
614s ***** assert (class (loglinv (1, single (2), 3)), "single")
614s ***** assert (class (loglinv (1, 2, single (3))), "single")
614s ***** error<loglinv: function called with too few input arguments.> loglinv (1)
614s ***** error<loglinv: function called with too few input arguments.> loglinv (1, 2)
614s ***** error<loglinv: P, MU, and SIGMA must be of common size or scalars.> ...
614s  loglinv (1, ones (2), ones (3))
614s ***** error<loglinv: P, MU, and SIGMA must be of common size or scalars.> ...
614s  loglinv (ones (2), 1, ones (3))
614s ***** error<loglinv: P, MU, and SIGMA must be of common size or scalars.> ...
614s  loglinv (ones (2), ones (3), 1)
614s ***** error<loglinv: P, MU, and SIGMA must not be complex.> loglinv (i, 2, 3)
614s ***** error<loglinv: P, MU, and SIGMA must not be complex.> loglinv (1, i, 3)
614s ***** error<loglinv: P, MU, and SIGMA must not be complex.> loglinv (1, 2, i)
614s 14 tests, 14 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/mvnpdf.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvnpdf.m
614s ***** demo
614s  mu = [1, -1];
614s  sigma = [0.9, 0.4; 0.4, 0.3];
614s  [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
614s  x = [X1(:), X2(:)];
614s  p = mvnpdf (x, mu, sigma);
614s  surf (X1, X2, reshape (p, 25, 25));
614s ***** error<mvnpdf: too few input arguments.> y = mvnpdf ();
614s ***** error<mvnpdf: too few dimensions in X.> y = mvnpdf ([]);
614s ***** error<mvnpdf: wrong dimensions in X.> y = mvnpdf (ones (3,3,3));
614s ***** error<mvnpdf: columns in X and MU mismatch.> ...
614s  y = mvnpdf (ones (10, 2), [4, 2, 3]);
614s ***** error<mvnpdf: rows in X and MU mismatch.> ...
614s  y = mvnpdf (ones (10, 2), [4, 2; 3, 2]);
614s ***** error<mvnpdf: wrong size of MU.> ...
614s  y = mvnpdf (ones (10, 2), ones (3, 3, 3));
614s ***** shared x, mu, sigma
614s  x = [1, 2, 5, 4, 6];
614s  mu = [2, 0, -1, 1, 4];
614s  sigma = [2, 2, 2, 2, 2];
614s ***** assert (mvnpdf (x), 1.579343404440977e-20, 1e-30);
614s ***** assert (mvnpdf (x, mu), 1.899325144348102e-14, 1e-25);
614s ***** assert (mvnpdf (x, mu, sigma), 2.449062307156273e-09, 1e-20);
614s 9 tests, 9 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/invgpdf.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/invgpdf.m
614s ***** demo
614s  ## Plot various PDFs from the inverse Gaussian distribution
614s  x = 0:0.001:3;
614s  y1 = invgpdf (x, 1, 0.2);
614s  y2 = invgpdf (x, 1, 1);
614s  y3 = invgpdf (x, 1, 3);
614s  y4 = invgpdf (x, 3, 0.2);
614s  y5 = invgpdf (x, 3, 1);
614s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-y")
614s  grid on
614s  xlim ([0, 3])
614s  ylim ([0, 3])
614s  legend ({"μ = 1, σ = 0.2", "μ = 1, σ = 1", "μ = 1, σ = 3", ...
614s           "μ = 3, σ = 0.2", "μ = 3, σ = 1"}, "location", "northeast")
614s  title ("Inverse Gaussian PDF")
614s  xlabel ("values in x")
614s  ylabel ("density")
614s ***** shared x, y
614s  x = [-Inf, -1, 0, 1/2, 1, Inf];
614s  y = [0, 0, 0, 0.8788, 0.3989, 0];
614s ***** assert (invgpdf ([x, NaN], 1, 1), [y, NaN], 1e-4)
614s ***** assert (invgpdf (x, 1, [-2, -1, 0, 1, 1, 1]), [nan(1,3), y([4:6])], 1e-4)
614s ***** assert (class (hncdf (single ([x, NaN]), 1, 1)), "single")
614s ***** assert (class (hncdf ([x, NaN], 1, single (1))), "single")
614s ***** assert (class (hncdf ([x, NaN], single (1), 1)), "single")
614s ***** error<invgpdf: function called with too few input arguments.> invgpdf ()
614s ***** error<invgpdf: function called with too few input arguments.> invgpdf (1)
614s ***** error<invgpdf: function called with too few input arguments.> invgpdf (1, 2)
614s ***** error<invgpdf: X, MU, and LAMBDA must be of common size or scalars.> ...
614s  invgpdf (1, ones (2), ones (3))
614s ***** error<invgpdf: X, MU, and LAMBDA must be of common size or scalars.> ...
614s  invgpdf (ones (2), 1, ones (3))
614s ***** error<invgpdf: X, MU, and LAMBDA must be of common size or scalars.> ...
614s  invgpdf (ones (2), ones (3), 1)
614s ***** error<invgpdf: X, MU, and LAMBDA must not be complex.> invgpdf (i, 2, 3)
614s ***** error<invgpdf: X, MU, and LAMBDA must not be complex.> invgpdf (1, i, 3)
614s ***** error<invgpdf: X, MU, and LAMBDA must not be complex.> invgpdf (1, 2, i)
614s 14 tests, 14 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/gpcdf.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gpcdf.m
614s ***** demo
614s  ## Plot various CDFs from the generalized Pareto distribution
614s  x = 0:0.001:5;
614s  p1 = gpcdf (x, 1, 1, 0);
614s  p2 = gpcdf (x, 5, 1, 0);
614s  p3 = gpcdf (x, 20, 1, 0);
614s  p4 = gpcdf (x, 1, 2, 0);
614s  p5 = gpcdf (x, 5, 2, 0);
614s  p6 = gpcdf (x, 20, 2, 0);
614s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
614s        x, p4, "-c", x, p5, "-m", x, p6, "-k")
614s  grid on
614s  xlim ([0, 5])
614s  legend ({"k = 1, σ = 1, θ = 0", "k = 5, σ = 1, θ = 0", ...
614s           "k = 20, σ = 1, θ = 0", "k = 1, σ = 2, θ = 0", ...
614s           "k = 5, σ = 2, θ = 0", "k = 20, σ = 2, θ = 0"}, ...
614s          "location", "northwest")
614s  title ("Generalized Pareto CDF")
614s  xlabel ("values in x")
614s  ylabel ("probability")
614s ***** shared x, y1, y1u, y2, y2u, y3, y3u
614s  x = [-Inf, -1, 0, 1/2, 1, Inf];
614s  y1 = [0, 0, 0, 0.3934693402873666, 0.6321205588285577, 1];
614s  y1u = [1, 1, 1, 0.6065306597126334, 0.3678794411714423, 0];
614s  y2 = [0, 0, 0, 1/3, 1/2, 1];
614s  y2u = [1, 1, 1, 2/3, 1/2, 0];
614s  y3 = [0, 0, 0, 1/2, 1, 1];
614s  y3u = [1, 1, 1, 1/2, 0, 0];
614s ***** assert (gpcdf (x, zeros (1,6), ones (1,6), zeros (1,6)), y1, eps)
614s ***** assert (gpcdf (x, 0, 1, zeros (1,6)), y1, eps)
614s ***** assert (gpcdf (x, 0, ones (1,6), 0), y1, eps)
614s ***** assert (gpcdf (x, zeros (1,6), 1, 0), y1, eps)
614s ***** assert (gpcdf (x, 0, 1, 0), y1, eps)
614s ***** assert (gpcdf (x, 0, 1, [0, 0, 0, NaN, 0, 0]), [y1(1:3), NaN, y1(5:6)], eps)
614s ***** assert (gpcdf (x, 0, [1, 1, 1, NaN, 1, 1], 0), [y1(1:3), NaN, y1(5:6)], eps)
614s ***** assert (gpcdf (x, [0, 0, 0, NaN, 0, 0], 1, 0), [y1(1:3), NaN, y1(5:6)], eps)
614s ***** assert (gpcdf ([x(1:3), NaN, x(5:6)], 0, 1, 0), [y1(1:3), NaN, y1(5:6)], eps)
614s ***** assert (gpcdf (x, zeros (1,6), ones (1,6), zeros (1,6), "upper"), y1u, eps)
614s ***** assert (gpcdf (x, 0, 1, zeros (1,6), "upper"), y1u, eps)
614s ***** assert (gpcdf (x, 0, ones (1,6), 0, "upper"), y1u, eps)
614s ***** assert (gpcdf (x, zeros (1,6), 1, 0, "upper"), y1u, eps)
614s ***** assert (gpcdf (x, 0, 1, 0, "upper"), y1u, eps)
614s ***** assert (gpcdf (x, ones (1,6), ones (1,6), zeros (1,6)), y2, eps)
614s ***** assert (gpcdf (x, 1, 1, zeros (1,6)), y2, eps)
614s ***** assert (gpcdf (x, 1, ones (1,6), 0), y2, eps)
614s ***** assert (gpcdf (x, ones (1,6), 1, 0), y2, eps)
614s ***** assert (gpcdf (x, 1, 1, 0), y2, eps)
614s ***** assert (gpcdf (x, 1, 1, [0, 0, 0, NaN, 0, 0]), [y2(1:3), NaN, y2(5:6)], eps)
614s ***** assert (gpcdf (x, 1, [1, 1, 1, NaN, 1, 1], 0), [y2(1:3), NaN, y2(5:6)], eps)
614s ***** assert (gpcdf (x, [1, 1, 1, NaN, 1, 1], 1, 0), [y2(1:3), NaN, y2(5:6)], eps)
614s ***** assert (gpcdf ([x(1:3), NaN, x(5:6)], 1, 1, 0), [y2(1:3), NaN, y2(5:6)], eps)
614s ***** assert (gpcdf (x, ones (1,6), ones (1,6), zeros (1,6), "upper"), y2u, eps)
614s ***** assert (gpcdf (x, 1, 1, zeros (1,6), "upper"), y2u, eps)
614s ***** assert (gpcdf (x, 1, ones (1,6), 0, "upper"), y2u, eps)
614s ***** assert (gpcdf (x, ones (1,6), 1, 0, "upper"), y2u, eps)
614s ***** assert (gpcdf (x, 1, 1, 0, "upper"), y2u, eps)
614s ***** assert (gpcdf (x, 1, 1, [0, 0, 0, NaN, 0, 0], "upper"), ...
614s                         [y2u(1:3), NaN, y2u(5:6)], eps)
614s ***** assert (gpcdf (x, 1, [1, 1, 1, NaN, 1, 1], 0, "upper"), ...
614s                         [y2u(1:3), NaN, y2u(5:6)], eps)
614s ***** assert (gpcdf (x, [1, 1, 1, NaN, 1, 1], 1, 0, "upper"), ...
614s                         [y2u(1:3), NaN, y2u(5:6)], eps)
614s ***** assert (gpcdf ([x(1:3), NaN, x(5:6)], 1, 1, 0, "upper"), ...
614s                         [y2u(1:3), NaN, y2u(5:6)], eps)
614s ***** assert (gpcdf (x, -ones (1,6), ones (1,6), zeros (1,6)), y3, eps)
614s ***** assert (gpcdf (x, -1, 1, zeros (1,6)), y3, eps)
614s ***** assert (gpcdf (x, -1, ones (1,6), 0), y3, eps)
614s ***** assert (gpcdf (x, -ones (1,6), 1, 0), y3, eps)
614s ***** assert (gpcdf (x, -1, 1, 0), y3, eps)
614s ***** assert (gpcdf (x, -1, 1, [0, 0, 0, NaN, 0, 0]), [y3(1:3), NaN, y3(5:6)], eps)
614s ***** assert (gpcdf (x, -1, [1, 1, 1, NaN, 1, 1], 0), [y3(1:3), NaN, y3(5:6)], eps)
614s ***** assert (gpcdf (x, [-1, -1, -1, NaN, -1, -1], 1, 0), [y3(1:3), NaN, y3(5:6)], eps)
614s ***** assert (gpcdf ([x(1:3), NaN, x(5:6)], -1, 1, 0), [y3(1:3), NaN, y3(5:6)], eps)
614s ***** assert (gpcdf (x, -ones (1,6), ones (1,6), zeros (1,6), "upper"), y3u, eps)
614s ***** assert (gpcdf (x, -1, 1, zeros (1,6), "upper"), y3u, eps)
614s ***** assert (gpcdf (x, -1, ones (1,6), 0, "upper"), y3u, eps)
614s ***** assert (gpcdf (x, -ones (1,6), 1, 0, "upper"), y3u, eps)
614s ***** assert (gpcdf (x, -1, 1, 0, "upper"), y3u, eps)
614s ***** assert (gpcdf (x, -1, 1, [0, 0, 0, NaN, 0, 0], "upper"), ...
614s                          [y3u(1:3), NaN, y3u(5:6)], eps)
614s ***** assert (gpcdf (x, -1, [1, 1, 1, NaN, 1, 1], 0, "upper"), ...
614s                           [y3u(1:3), NaN, y3u(5:6)], eps)
614s ***** assert (gpcdf (x, [-1, -1, -1, NaN, -1, -1], 1, 0, "upper"), ...
614s                           [y3u(1:3), NaN, y3u(5:6)], eps)
614s ***** assert (gpcdf ([x(1:3), NaN, x(5:6)], -1, 1, 0, "upper"), ...
614s                           [y3u(1:3), NaN, y3u(5:6)], eps)
614s ***** assert (gpcdf (single ([x, NaN]), 0, 1, 0), single ([y1, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], 0, 1, single (0)), single ([y1, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], 0, single (1), 0), single ([y1, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], single (0), 1, 0), single ([y1, NaN]), eps("single"))
614s ***** assert (gpcdf (single ([x, NaN]), 1, 1, 0), single ([y2, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], 1, 1, single (0)), single ([y2, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], 1, single (1), 0), single ([y2, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], single (1), 1, 0), single ([y2, NaN]), eps("single"))
614s ***** assert (gpcdf (single ([x, NaN]), -1, 1, 0), single ([y3, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], -1, 1, single (0)), single ([y3, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], -1, single (1), 0), single ([y3, NaN]), eps("single"))
614s ***** assert (gpcdf ([x, NaN], single (-1), 1, 0), single ([y3, NaN]), eps("single"))
614s ***** error<gpcdf: function called with too few input arguments.> gpcdf ()
614s ***** error<gpcdf: function called with too few input arguments.> gpcdf (1)
614s ***** error<gpcdf: function called with too few input arguments.> gpcdf (1, 2)
614s ***** error<gpcdf: function called with too few input arguments.> gpcdf (1, 2, 3)
614s ***** error<gpcdf: invalid argument for upper tail.> gpcdf (1, 2, 3, 4, "tail")
614s ***** error<gpcdf: invalid argument for upper tail.> gpcdf (1, 2, 3, 4, 5)
614s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
614s  gpcdf (ones (3), ones (2), ones(2), ones(2))
614s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
614s  gpcdf (ones (2), ones (3), ones(2), ones(2))
614s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
614s  gpcdf (ones (2), ones (2), ones(3), ones(2))
614s ***** error<gpcdf: X, K, SIGMA, and THETA must be of common size or scalars.> ...
614s  gpcdf (ones (2), ones (2), ones(2), ones(3))
614s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (i, 2, 3, 4)
614s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (1, i, 3, 4)
614s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (1, 2, i, 4)
614s ***** error<gpcdf: X, K, SIGMA, and THETA must not be complex.> gpcdf (1, 2, 3, i)
614s 76 tests, 76 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/hnpdf.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hnpdf.m
614s ***** demo
614s  ## Plot various PDFs from the half-normal distribution
614s  x = 0:0.001:10;
614s  y1 = hnpdf (x, 0, 1);
614s  y2 = hnpdf (x, 0, 2);
614s  y3 = hnpdf (x, 0, 3);
614s  y4 = hnpdf (x, 0, 5);
614s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
614s  grid on
614s  xlim ([0, 10])
614s  ylim ([0, 0.9])
614s  legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ...
614s           "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "northeast")
614s  title ("Half-normal PDF")
614s  xlabel ("values in x")
614s  ylabel ("density")
614s ***** demo
614s  ## Plot half-normal against normal probability density function
614s  x = -5:0.001:5;
614s  y1 = hnpdf (x, 0, 1);
614s  y2 = normpdf (x);
614s  plot (x, y1, "-b", x, y2, "-g")
614s  grid on
614s  xlim ([-5, 5])
614s  ylim ([0, 0.9])
614s  legend ({"half-normal with μ = 0, σ = 1", ...
614s           "standart normal (μ = 0, σ = 1)"}, "location", "northeast")
614s  title ("Half-normal against standard normal PDF")
614s  xlabel ("values in x")
614s  ylabel ("density")
614s ***** shared x, y
614s  x = [-Inf, -1, 0, 1/2, 1, Inf];
614s  y = [0, 0, 0.7979, 0.7041, 0.4839, 0];
614s ***** assert (hnpdf ([x, NaN], 0, 1), [y, NaN], 1e-4)
614s ***** assert (hnpdf (x, 0, [-2, -1, 0, 1, 1, 1]), [nan(1,3), y([4:6])], 1e-4)
614s ***** assert (class (hncdf (single ([x, NaN]), 0, 1)), "single")
614s ***** assert (class (hncdf ([x, NaN], 0, single (1))), "single")
614s ***** assert (class (hncdf ([x, NaN], single (0), 1)), "single")
614s ***** error<hnpdf: function called with too few input arguments.> hnpdf ()
614s ***** error<hnpdf: function called with too few input arguments.> hnpdf (1)
614s ***** error<hnpdf: function called with too few input arguments.> hnpdf (1, 2)
614s ***** error<hnpdf: X, MU, and SIGMA must be of common size or scalars.> ...
614s  hnpdf (1, ones (2), ones (3))
614s ***** error<hnpdf: X, MU, and SIGMA must be of common size or scalars.> ...
614s  hnpdf (ones (2), 1, ones (3))
614s ***** error<hnpdf: X, MU, and SIGMA must be of common size or scalars.> ...
614s  hnpdf (ones (2), ones (3), 1)
614s ***** error<hnpdf: X, MU, and SIGMA must not be complex.> hnpdf (i, 2, 3)
614s ***** error<hnpdf: X, MU, and SIGMA must not be complex.> hnpdf (1, i, 3)
614s ***** error<hnpdf: X, MU, and SIGMA must not be complex.> hnpdf (1, 2, i)
614s 14 tests, 14 passed, 0 known failure, 0 skipped
614s [inst/dist_fun/ncx2rnd.m]
614s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncx2rnd.m
614s ***** assert (size (ncx2rnd (1, 1)), [1 1])
614s ***** assert (size (ncx2rnd (1, ones (2,1))), [2, 1])
614s ***** assert (size (ncx2rnd (1, ones (2,2))), [2, 2])
614s ***** assert (size (ncx2rnd (ones (2,1), 1)), [2, 1])
614s ***** assert (size (ncx2rnd (ones (2,2), 1)), [2, 2])
614s ***** assert (size (ncx2rnd (1, 1, 3)), [3, 3])
614s ***** assert (size (ncx2rnd (1, 1, [4, 1])), [4, 1])
614s ***** assert (size (ncx2rnd (1, 1, 4, 1)), [4, 1])
614s ***** assert (size (ncx2rnd (1, 1, 4, 1, 5)), [4, 1, 5])
614s ***** assert (size (ncx2rnd (1, 1, 0, 1)), [0, 1])
614s ***** assert (size (ncx2rnd (1, 1, 1, 0)), [1, 0])
614s ***** assert (size (ncx2rnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
614s ***** assert (class (ncx2rnd (1, 1)), "double")
614s ***** assert (class (ncx2rnd (1, single (1))), "single")
614s ***** assert (class (ncx2rnd (1, single ([1, 1]))), "single")
614s ***** assert (class (ncx2rnd (single (1), 1)), "single")
614s ***** assert (class (ncx2rnd (single ([1, 1]), 1)), "single")
614s ***** error<ncx2rnd: function called with too few input arguments.> ncx2rnd ()
614s ***** error<ncx2rnd: function called with too few input arguments.> ncx2rnd (1)
614s ***** error<ncx2rnd: DF and LAMBDA must be of common size or scalars.> ...
614s  ncx2rnd (ones (3), ones (2))
614s ***** error<ncx2rnd: DF and LAMBDA must be of common size or scalars.> ...
614s  ncx2rnd (ones (2), ones (3))
615s ***** error<ncx2rnd: DF and LAMBDA must not be complex.> ncx2rnd (i, 2)
615s ***** error<ncx2rnd: DF and LAMBDA must not be complex.> ncx2rnd (1, i)
615s ***** error<ncx2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  ncx2rnd (1, 2, -1)
615s ***** error<ncx2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  ncx2rnd (1, 2, 1.2)
615s ***** error<ncx2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  ncx2rnd (1, 2, ones (2))
615s ***** error<ncx2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  ncx2rnd (1, 2, [2 -1 2])
615s ***** error<ncx2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  ncx2rnd (1, 2, [2 0 2.5])
615s ***** error<ncx2rnd: dimensions must be non-negative integers.> ...
615s  ncx2rnd (1, 2, 2, -1, 5)
615s ***** error<ncx2rnd: dimensions must be non-negative integers.> ...
615s  ncx2rnd (1, 2, 2, 1.5, 5)
615s ***** error<ncx2rnd: DF and LAMBDA must be scalars or of size SZ.> ...
615s  ncx2rnd (2, ones (2), 3)
615s ***** error<ncx2rnd: DF and LAMBDA must be scalars or of size SZ.> ...
615s  ncx2rnd (2, ones (2), [3, 2])
615s ***** error<ncx2rnd: DF and LAMBDA must be scalars or of size SZ.> ...
615s  ncx2rnd (2, ones (2), 3, 2)
615s 33 tests, 33 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/tlsrnd.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tlsrnd.m
615s ***** assert (size (tlsrnd (1, 2, 3)), [1, 1])
615s ***** assert (size (tlsrnd (ones (2,1), 2, 3)), [2, 1])
615s ***** assert (size (tlsrnd (ones (2,2), 2, 3)), [2, 2])
615s ***** assert (size (tlsrnd (1, 2, 3, 3)), [3, 3])
615s ***** assert (size (tlsrnd (1, 2, 3, [4 1])), [4, 1])
615s ***** assert (size (tlsrnd (1, 2, 3, 4, 1)), [4, 1])
615s ***** assert (size (tlsrnd (1, 2, 3, 4, 1)), [4, 1])
615s ***** assert (size (tlsrnd (1, 2, 3, 4, 1, 5)), [4, 1, 5])
615s ***** assert (size (tlsrnd (1, 2, 3, 0, 1)), [0, 1])
615s ***** assert (size (tlsrnd (1, 2, 3, 1, 0)), [1, 0])
615s ***** assert (size (tlsrnd (1, 2, 3, 1, 2, 0, 5)), [1, 2, 0, 5])
615s ***** assert (tlsrnd (1, 2, 0, 1, 1), NaN)
615s ***** assert (tlsrnd (1, 2, [0, 0, 0], [1, 3]), [NaN, NaN, NaN])
615s ***** assert (class (tlsrnd (1, 2, 3)), "double")
615s ***** assert (class (tlsrnd (single (1), 2, 3)), "single")
615s ***** assert (class (tlsrnd (single ([1, 1]), 2, 3)), "single")
615s ***** assert (class (tlsrnd (1, single (2), 3)), "single")
615s ***** assert (class (tlsrnd (1, single ([2, 2]), 3)), "single")
615s ***** assert (class (tlsrnd (1, 2, single (3))), "single")
615s ***** assert (class (tlsrnd (1, 2, single ([3, 3]))), "single")
615s ***** error<tlsrnd: function called with too few input arguments.> tlsrnd ()
615s ***** error<tlsrnd: function called with too few input arguments.> tlsrnd (1)
615s ***** error<tlsrnd: function called with too few input arguments.> tlsrnd (1, 2)
615s ***** error<tlsrnd: MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlsrnd (ones (3), ones (2), 1)
615s ***** error<tlsrnd: MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlsrnd (ones (2), 1, ones (3))
615s ***** error<tlsrnd: MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlsrnd (1, ones (2), ones (3))
615s ***** error<tlsrnd: MU, SIGMA, and NU must not be complex.> tlsrnd (i, 2, 3)
615s ***** error<tlsrnd: MU, SIGMA, and NU must not be complex.> tlsrnd (1, i, 3)
615s ***** error<tlsrnd: MU, SIGMA, and NU must not be complex.> tlsrnd (1, 2, i)
615s ***** error<tlsrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  tlsrnd (1, 2, 3, -1)
615s ***** error<tlsrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  tlsrnd (1, 2, 3, 1.2)
615s ***** error<tlsrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  tlsrnd (1, 2, 3, ones (2))
615s ***** error<tlsrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  tlsrnd (1, 2, 3, [2 -1 2])
615s ***** error<tlsrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  tlsrnd (1, 2, 3, [2 0 2.5])
615s ***** error<tlsrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  tlsrnd (ones (2), 2, 3, ones (2))
615s ***** error<tlsrnd: dimensions must be non-negative integers.> ...
615s  tlsrnd (1, 2, 3, 2, -1, 5)
615s ***** error<tlsrnd: dimensions must be non-negative integers.> ...
615s  tlsrnd (1, 2, 3, 2, 1.5, 5)
615s ***** error<tlsrnd: MU, SIGMA, and NU must be scalar or of size SZ.> ...
615s  tlsrnd (ones (2,2), 2, 3, 3)
615s ***** error<tlsrnd: MU, SIGMA, and NU must be scalar or of size SZ.> ...
615s  tlsrnd (1, ones (2,2), 3, 3)
615s ***** error<tlsrnd: MU, SIGMA, and NU must be scalar or of size SZ.> ...
615s  tlsrnd (1, 2, ones (2,2), 3)
615s ***** error<tlsrnd: MU, SIGMA, and NU must be scalar or of size SZ.> ...
615s  tlsrnd (1, 2, ones (2,2), [3, 3])
615s ***** error<tlsrnd: MU, SIGMA, and NU must be scalar or of size SZ.> ...
615s  tlsrnd (1, 2, ones (2,2), 2, 3)
615s 42 tests, 42 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/chi2pdf.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/chi2pdf.m
615s ***** demo
615s  ## Plot various PDFs from the chi-squared distribution
615s  x = 0:0.01:8;
615s  y1 = chi2pdf (x, 1);
615s  y2 = chi2pdf (x, 2);
615s  y3 = chi2pdf (x, 3);
615s  y4 = chi2pdf (x, 4);
615s  y5 = chi2pdf (x, 6);
615s  y6 = chi2pdf (x, 9);
615s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
615s        x, y4, "-c", x, y5, "-m", x, y6, "-y")
615s  grid on
615s  xlim ([0, 8])
615s  ylim ([0, 0.5])
615s  legend ({"df = 1", "df = 2", "df = 3", ...
615s           "df = 4", "df = 6", "df = 9"}, "location", "northeast")
615s  title ("Chi-squared PDF")
615s  xlabel ("values in x")
615s  ylabel ("density")
615s ***** shared x, y
615s  x = [-1 0 0.5 1 Inf];
615s  y = [0, 1/2 * exp(-x(2:5)/2)];
615s ***** assert (chi2pdf (x, 2*ones (1,5)), y)
615s ***** assert (chi2pdf (x, 2), y)
615s ***** assert (chi2pdf (x, 2*[1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)])
615s ***** assert (chi2pdf ([x, NaN], 2), [y, NaN])
615s ***** assert (chi2pdf (single ([x, NaN]), 2), single ([y, NaN]))
615s ***** assert (chi2pdf ([x, NaN], single (2)), single ([y, NaN]))
615s ***** error<chi2pdf: function called with too few input arguments.> chi2pdf ()
615s ***** error<chi2pdf: function called with too few input arguments.> chi2pdf (1)
615s ***** error<chi2pdf: function called with too many inputs> chi2pdf (1,2,3)
615s ***** error<chi2pdf: X and DF must be of common size or scalars.> ...
615s  chi2pdf (ones (3), ones (2))
615s ***** error<chi2pdf: X and DF must be of common size or scalars.> ...
615s  chi2pdf (ones (2), ones (3))
615s ***** error<chi2pdf: X and DF must not be complex.> chi2pdf (i, 2)
615s ***** error<chi2pdf: X and DF must not be complex.> chi2pdf (2, i)
615s 13 tests, 13 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/lognpdf.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/lognpdf.m
615s ***** demo
615s  ## Plot various PDFs from the log-normal distribution
615s  x = 0:0.01:5;
615s  y1 = lognpdf (x, 0, 1);
615s  y2 = lognpdf (x, 0, 0.5);
615s  y3 = lognpdf (x, 0, 0.25);
615s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r")
615s  grid on
615s  ylim ([0, 2])
615s  legend ({"μ = 0, σ = 1", "μ = 0, σ = 0.5", "μ = 0, σ = 0.25"}, ...
615s           "location", "northeast")
615s  title ("Log-normal PDF")
615s  xlabel ("values in x")
615s  ylabel ("density")
615s ***** shared x, y
615s  x = [-1 0 e Inf];
615s  y = [0, 0, 1/(e*sqrt(2*pi)) * exp(-1/2), 0];
615s ***** assert (lognpdf (x, zeros (1,4), ones (1,4)), y, eps)
615s ***** assert (lognpdf (x, 0, ones (1,4)), y, eps)
615s ***** assert (lognpdf (x, zeros (1,4), 1), y, eps)
615s ***** assert (lognpdf (x, [0 1 NaN 0], 1), [0 0 NaN y(4)], eps)
615s ***** assert (lognpdf (x, 0, [0 NaN Inf 1]), [NaN NaN NaN y(4)], eps)
615s ***** assert (lognpdf ([x, NaN], 0, 1), [y, NaN], eps)
615s ***** assert (lognpdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single"))
615s ***** assert (lognpdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single"))
615s ***** assert (lognpdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single"))
615s ***** error lognpdf ()
615s ***** error lognpdf (1,2,3,4)
615s ***** error lognpdf (ones (3), ones (2), ones (2))
615s ***** error lognpdf (ones (2), ones (3), ones (2))
615s ***** error lognpdf (ones (2), ones (2), ones (3))
615s ***** error lognpdf (i, 2, 2)
615s ***** error lognpdf (2, i, 2)
615s ***** error lognpdf (2, 2, i)
615s 17 tests, 17 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/trnd.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/trnd.m
615s ***** assert (size (trnd (2)), [1, 1])
615s ***** assert (size (trnd (ones (2,1))), [2, 1])
615s ***** assert (size (trnd (ones (2,2))), [2, 2])
615s ***** assert (size (trnd (1, 3)), [3, 3])
615s ***** assert (size (trnd (1, [4 1])), [4, 1])
615s ***** assert (size (trnd (1, 4, 1)), [4, 1])
615s ***** assert (size (trnd (1, 4, 1)), [4, 1])
615s ***** assert (size (trnd (1, 4, 1, 5)), [4, 1, 5])
615s ***** assert (size (trnd (1, 0, 1)), [0, 1])
615s ***** assert (size (trnd (1, 1, 0)), [1, 0])
615s ***** assert (size (trnd (1, 1, 2, 0, 5)), [1, 2, 0, 5])
615s ***** assert (trnd (0, 1, 1), NaN)
615s ***** assert (trnd ([0, 0, 0], [1, 3]), [NaN, NaN, NaN])
615s ***** assert (class (trnd (2)), "double")
615s ***** assert (class (trnd (single (2))), "single")
615s ***** assert (class (trnd (single ([2 2]))), "single")
615s ***** error<trnd: function called with too few input arguments.> trnd ()
615s ***** error<trnd: DF must not be complex.> trnd (i)
615s ***** error<trnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  trnd (1, -1)
615s ***** error<trnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  trnd (1, 1.2)
615s ***** error<trnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  trnd (1, ones (2))
615s ***** error<trnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  trnd (1, [2 -1 2])
615s ***** error<trnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  trnd (1, [2 0 2.5])
615s ***** error<trnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  trnd (ones (2), ones (2))
615s ***** error<trnd: dimensions must be non-negative integers.> ...
615s  trnd (1, 2, -1, 5)
615s ***** error<trnd: dimensions must be non-negative integers.> ...
615s  trnd (1, 2, 1.5, 5)
615s ***** error<trnd: DF must be scalar or of size SZ.> trnd (ones (2,2), 3)
615s ***** error<trnd: DF must be scalar or of size SZ.> trnd (ones (2,2), [3, 2])
615s ***** error<trnd: DF must be scalar or of size SZ.> trnd (ones (2,2), 2, 3)
615s 29 tests, 29 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/hygernd.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hygernd.m
615s ***** assert (size (hygernd (4,2,2)), [1, 1])
615s ***** assert (size (hygernd (4*ones (2,1), 2,2)), [2, 1])
615s ***** assert (size (hygernd (4*ones (2,2), 2,2)), [2, 2])
615s ***** assert (size (hygernd (4, 2*ones (2,1), 2)), [2, 1])
615s ***** assert (size (hygernd (4, 2*ones (2,2), 2)), [2, 2])
615s ***** assert (size (hygernd (4, 2, 2*ones (2,1))), [2, 1])
615s ***** assert (size (hygernd (4, 2, 2*ones (2,2))), [2, 2])
615s ***** assert (size (hygernd (4, 2, 2, 3)), [3, 3])
615s ***** assert (size (hygernd (4, 2, 2, [4 1])), [4, 1])
615s ***** assert (size (hygernd (4, 2, 2, 4, 1)), [4, 1])
615s ***** assert (class (hygernd (4,2,2)), "double")
615s ***** assert (class (hygernd (single (4),2,2)), "single")
615s ***** assert (class (hygernd (single ([4 4]),2,2)), "single")
615s ***** assert (class (hygernd (4,single (2),2)), "single")
615s ***** assert (class (hygernd (4,single ([2 2]),2)), "single")
615s ***** assert (class (hygernd (4,2,single (2))), "single")
615s ***** assert (class (hygernd (4,2,single ([2 2]))), "single")
615s ***** error<hygernd: function called with too few input arguments.> hygernd ()
615s ***** error<hygernd: function called with too few input arguments.> hygernd (1)
615s ***** error<hygernd: function called with too few input arguments.> hygernd (1, 2)
615s ***** error<hygernd: T, M, and N must be of common size or scalars.> ...
615s  hygernd (ones (3), ones (2), ones (2))
615s ***** error<hygernd: T, M, and N must be of common size or scalars.> ...
615s  hygernd (ones (2), ones (3), ones (2))
615s ***** error<hygernd: T, M, and N must be of common size or scalars.> ...
615s  hygernd (ones (2), ones (2), ones (3))
615s ***** error<hygernd: T, M, and N must not be complex.> hygernd (i, 2, 3)
615s ***** error<hygernd: T, M, and N must not be complex.> hygernd (1, i, 3)
615s ***** error<hygernd: T, M, and N must not be complex.> hygernd (1, 2, i)
615s ***** error<hygernd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  hygernd (1, 2, 3, -1)
615s ***** error<hygernd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  hygernd (1, 2, 3, 1.2)
615s ***** error<hygernd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  hygernd (1, 2, 3, ones (2))
615s ***** error<hygernd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  hygernd (1, 2, 3, [2 -1 2])
615s ***** error<hygernd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  hygernd (1, 2, 3, [2 0 2.5])
615s ***** error<hygernd: dimensions must be non-negative integers.> ...
615s  hygernd (1, 2, 3, 2, -1, 5)
615s ***** error<hygernd: dimensions must be non-negative integers.> ...
615s  hygernd (1, 2, 3, 2, 1.5, 5)
615s ***** error<hygernd: T, M, and N must be scalars or of size SZ.> ...
615s  hygernd (2, ones (2), 2, 3)
615s ***** error<hygernd: T, M, and N must be scalars or of size SZ.> ...
615s  hygernd (2, ones (2), 2, [3, 2])
615s ***** error<hygernd: T, M, and N must be scalars or of size SZ.> ...
615s  hygernd (2, ones (2), 2, 3, 2)
615s 36 tests, 36 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/ncx2cdf.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncx2cdf.m
615s ***** demo
615s  ## Plot various CDFs from the noncentral chi-squared distribution
615s  x = 0:0.1:10;
615s  p1 = ncx2cdf (x, 2, 1);
615s  p2 = ncx2cdf (x, 2, 2);
615s  p3 = ncx2cdf (x, 2, 3);
615s  p4 = ncx2cdf (x, 4, 1);
615s  p5 = ncx2cdf (x, 4, 2);
615s  p6 = ncx2cdf (x, 4, 3);
615s  plot (x, p1, "-r", x, p2, "-g", x, p3, "-k", ...
615s        x, p4, "-m", x, p5, "-c", x, p6, "-y")
615s  grid on
615s  xlim ([0, 10])
615s  legend ({"df = 2, λ = 1", "df = 2, λ = 2", ...
615s           "df = 2, λ = 3", "df = 4, λ = 1", ...
615s           "df = 4, λ = 2", "df = 4, λ = 3"}, "location", "southeast")
615s  title ("Noncentral chi-squared CDF")
615s  xlabel ("values in x")
615s  ylabel ("probability")
615s ***** demo
615s  ## Compare the noncentral chi-squared CDF with LAMBDA = 2 to the
615s  ## chi-squared CDF with the same number of degrees of freedom (4).
615s 
615s  x = 0:0.1:10;
615s  p1 = ncx2cdf (x, 4, 2);
615s  p2 = chi2cdf (x, 4);
615s  plot (x, p1, "-", x, p2, "-")
615s  grid on
615s  xlim ([0, 10])
615s  legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest")
615s  title ("Noncentral chi-squared vs chi-squared CDFs")
615s  xlabel ("values in x")
615s  ylabel ("probability")
615s ***** test
615s  x = -2:0.1:2;
615s  p = ncx2cdf (x, 10, 1);
615s  assert (p([1:21]), zeros (1, 21), 3e-84);
615s  assert (p(22), 1.521400636466575e-09, 1e-14);
615s  assert (p(30), 6.665480510026046e-05, 1e-14);
615s  assert (p(41), 0.002406447308399836, 1e-14);
615s ***** test
615s  p = ncx2cdf (12, 10, 3);
615s  assert (p, 0.4845555602398649, 1e-14);
615s ***** test
615s  p = ncx2cdf (2, 3, 2);
615s  assert (p, 0.2207330870741212, 1e-14);
615s ***** test
615s  p = ncx2cdf (2, 3, 2, "upper");
615s  assert (p, 0.7792669129258789, 1e-14);
615s ***** test
615s  p = ncx2cdf ([3, 6], 3, 2, "upper");
615s  assert (p, [0.6423318186400054, 0.3152299878943012], 1e-14);
615s ***** error<ncx2cdf: function called with too few input arguments.> ncx2cdf ()
615s ***** error<ncx2cdf: function called with too few input arguments.> ncx2cdf (1)
615s ***** error<ncx2cdf: function called with too few input arguments.> ncx2cdf (1, 2)
615s ***** error<ncx2cdf: invalid argument for upper tail.> ncx2cdf (1, 2, 3, "tail")
615s ***** error<ncx2cdf: invalid argument for upper tail.> ncx2cdf (1, 2, 3, 4)
615s ***** error<ncx2cdf: X, DF, and LAMBDA must be of common size or scalars.> ...
615s  ncx2cdf (ones (3), ones (2), ones (2))
615s ***** error<ncx2cdf: X, DF, and LAMBDA must be of common size or scalars.> ...
615s  ncx2cdf (ones (2), ones (3), ones (2))
615s ***** error<ncx2cdf: X, DF, and LAMBDA must be of common size or scalars.> ...
615s  ncx2cdf (ones (2), ones (2), ones (3))
615s ***** error<ncx2cdf: X, DF, and LAMBDA must not be complex.> ncx2cdf (i, 2, 2)
615s ***** error<ncx2cdf: X, DF, and LAMBDA must not be complex.> ncx2cdf (2, i, 2)
615s ***** error<ncx2cdf: X, DF, and LAMBDA must not be complex.> ncx2cdf (2, 2, i)
615s 16 tests, 16 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/normrnd.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/normrnd.m
615s ***** assert (size (normrnd (1, 1)), [1 1])
615s ***** assert (size (normrnd (1, ones (2,1))), [2, 1])
615s ***** assert (size (normrnd (1, ones (2,2))), [2, 2])
615s ***** assert (size (normrnd (ones (2,1), 1)), [2, 1])
615s ***** assert (size (normrnd (ones (2,2), 1)), [2, 2])
615s ***** assert (size (normrnd (1, 1, 3)), [3, 3])
615s ***** assert (size (normrnd (1, 1, [4, 1])), [4, 1])
615s ***** assert (size (normrnd (1, 1, 4, 1)), [4, 1])
615s ***** assert (size (normrnd (1, 1, 4, 1, 5)), [4, 1, 5])
615s ***** assert (size (normrnd (1, 1, 0, 1)), [0, 1])
615s ***** assert (size (normrnd (1, 1, 1, 0)), [1, 0])
615s ***** assert (size (normrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
615s ***** assert (class (normrnd (1, 1)), "double")
615s ***** assert (class (normrnd (1, single (1))), "single")
615s ***** assert (class (normrnd (1, single ([1, 1]))), "single")
615s ***** assert (class (normrnd (single (1), 1)), "single")
615s ***** assert (class (normrnd (single ([1, 1]), 1)), "single")
615s ***** error<normrnd: function called with too few input arguments.> normrnd ()
615s ***** error<normrnd: function called with too few input arguments.> normrnd (1)
615s ***** error<normrnd: MU and SIGMA must be of common size or scalars.> ...
615s  normrnd (ones (3), ones (2))
615s ***** error<normrnd: MU and SIGMA must be of common size or scalars.> ...
615s  normrnd (ones (2), ones (3))
615s ***** error<normrnd: MU and SIGMA must not be complex.> normrnd (i, 2, 3)
615s ***** error<normrnd: MU and SIGMA must not be complex.> normrnd (1, i, 3)
615s ***** error<normrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  normrnd (1, 2, -1)
615s ***** error<normrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  normrnd (1, 2, 1.2)
615s ***** error<normrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  normrnd (1, 2, ones (2))
615s ***** error<normrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  normrnd (1, 2, [2 -1 2])
615s ***** error<normrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
615s  normrnd (1, 2, [2 0 2.5])
615s ***** error<normrnd: dimensions must be non-negative integers.> ...
615s  normrnd (1, 2, 2, -1, 5)
615s ***** error<normrnd: dimensions must be non-negative integers.> ...
615s  normrnd (1, 2, 2, 1.5, 5)
615s ***** error<normrnd: MU and SIGMA must be scalars or of size SZ.> ...
615s  normrnd (2, ones (2), 3)
615s ***** error<normrnd: MU and SIGMA must be scalars or of size SZ.> ...
615s  normrnd (2, ones (2), [3, 2])
615s ***** error<normrnd: MU and SIGMA must be scalars or of size SZ.> ...
615s  normrnd (2, ones (2), 3, 2)
615s 33 tests, 33 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/tlscdf.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tlscdf.m
615s ***** demo
615s  ## Plot various CDFs from the location-scale Student's T distribution
615s  x = -8:0.01:8;
615s  p1 = tlscdf (x, 0, 1, 1);
615s  p2 = tlscdf (x, 0, 2, 2);
615s  p3 = tlscdf (x, 3, 2, 5);
615s  p4 = tlscdf (x, -1, 3, Inf);
615s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-m")
615s  grid on
615s  xlim ([-8, 8])
615s  ylim ([0, 1])
615s  legend ({"mu = 0, sigma = 1, nu = 1", "mu = 0, sigma = 2, nu = 2", ...
615s           "mu = 3, sigma = 2, nu = 5", 'mu = -1, sigma = 3, nu = \infty'}, ...
615s          "location", "northwest")
615s  title ("Location-scale Student's T CDF")
615s  xlabel ("values in x")
615s  ylabel ("probability")
615s ***** shared x,y
615s  x = [-Inf 0 1 Inf];
615s  y = [0 1/2 3/4 1];
615s ***** assert (tlscdf (x, 0, 1, ones (1,4)), y, eps)
615s ***** assert (tlscdf (x, 0, 1, 1), y, eps)
615s ***** assert (tlscdf (x, 0, 1, [0 1 NaN 1]), [NaN 1/2 NaN 1], eps)
615s ***** assert (tlscdf ([x(1:2) NaN x(4)], 0, 1, 1), [y(1:2) NaN y(4)], eps)
615s ***** assert (tlscdf (2, 0, 1, 3, "upper"), 0.0697, 1e-4)
615s ***** assert (tlscdf (205, 0, 1, 5, "upper"), 2.6206e-11, 1e-14)
615s ***** assert (tlscdf ([x, NaN], 0, 1, 1), [y, NaN], eps)
615s ***** assert (tlscdf (single ([x, NaN]), 0, 1, 1), single ([y, NaN]), eps ("single"))
615s ***** assert (tlscdf ([x, NaN], single (0), 1, 1), single ([y, NaN]), eps ("single"))
615s ***** assert (tlscdf ([x, NaN], 0, single (1), 1), single ([y, NaN]), eps ("single"))
615s ***** assert (tlscdf ([x, NaN], 0, 1, single (1)), single ([y, NaN]), eps ("single"))
615s ***** error<tlscdf: function called with too few input arguments.> tlscdf ()
615s ***** error<tlscdf: function called with too few input arguments.> tlscdf (1)
615s ***** error<tlscdf: function called with too few input arguments.> tlscdf (1, 2)
615s ***** error<tlscdf: function called with too few input arguments.> tlscdf (1, 2, 3)
615s ***** error<tlscdf: invalid argument for upper tail.> tlscdf (1, 2, 3, 4, "uper")
615s ***** error<tlscdf: invalid argument for upper tail.> tlscdf (1, 2, 3, 4, 5)
615s ***** error<tlscdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlscdf (ones (3), ones (2), 1, 1)
615s ***** error<tlscdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlscdf (ones (3), 1, ones (2), 1)
615s ***** error<tlscdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlscdf (ones (3), 1, 1, ones (2))
615s ***** error<tlscdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlscdf (ones (3), ones (2), 1, 1, "upper")
615s ***** error<tlscdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlscdf (ones (3), 1, ones (2), 1, "upper")
615s ***** error<tlscdf: X, MU, SIGMA, and NU must be of common size or scalars.> ...
615s  tlscdf (ones (3), 1, 1, ones (2), "upper")
615s ***** error<tlscdf: X, MU, SIGMA, and NU must not be complex.> tlscdf (i, 2, 1, 1)
615s ***** error<tlscdf: X, MU, SIGMA, and NU must not be complex.> tlscdf (2, i, 1, 1)
615s ***** error<tlscdf: X, MU, SIGMA, and NU must not be complex.> tlscdf (2, 1, i, 1)
615s ***** error<tlscdf: X, MU, SIGMA, and NU must not be complex.> tlscdf (2, 1, 1, i)
615s 27 tests, 27 passed, 0 known failure, 0 skipped
615s [inst/dist_fun/bisarnd.m]
615s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/bisarnd.m
615s ***** assert (size (bisarnd (1, 1)), [1 1])
615s ***** assert (size (bisarnd (1, ones (2,1))), [2, 1])
615s ***** assert (size (bisarnd (1, ones (2,2))), [2, 2])
615s ***** assert (size (bisarnd (ones (2,1), 1)), [2, 1])
615s ***** assert (size (bisarnd (ones (2,2), 1)), [2, 2])
615s ***** assert (size (bisarnd (1, 1, 3)), [3, 3])
615s ***** assert (size (bisarnd (1, 1, [4, 1])), [4, 1])
615s ***** assert (size (bisarnd (1, 1, 4, 1)), [4, 1])
615s ***** assert (size (bisarnd (1, 1, 4, 1, 5)), [4, 1, 5])
615s ***** assert (size (bisarnd (1, 1, 0, 1)), [0, 1])
615s ***** assert (size (bisarnd (1, 1, 1, 0)), [1, 0])
615s ***** assert (size (bisarnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
615s ***** assert (class (bisarnd (1, 1)), "double")
615s ***** assert (class (bisarnd (1, single (1))), "single")
615s ***** assert (class (bisarnd (1, single ([1, 1]))), "single")
615s ***** assert (class (bisarnd (single (1), 1)), "single")
615s ***** assert (class (bisarnd (single ([1, 1]), 1)), "single")
615s ***** error<bisarnd: function called with too few input arguments.> bisarnd ()
615s ***** error<bisarnd: function called with too few input arguments.> bisarnd (1)
615s ***** error<bisarnd: BETA and GAMMA must be of common size or scalars.> ...
615s  bisarnd (ones (3), ones (2))
615s ***** error<bisarnd: BETA and GAMMA must be of common size or scalars.> ...
615s  bisarnd (ones (2), ones (3))
615s ***** error<bisarnd: BETA and GAMMA must not be complex.> bisarnd (i, 2, 3)
616s ***** error<bisarnd: BETA and GAMMA must not be complex.> bisarnd (1, i, 3)
616s ***** error<bisarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  bisarnd (1, 2, -1)
616s ***** error<bisarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  bisarnd (1, 2, 1.2)
616s ***** error<bisarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  bisarnd (1, 2, ones (2))
616s ***** error<bisarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  bisarnd (1, 2, [2 -1 2])
616s ***** error<bisarnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  bisarnd (1, 2, [2 0 2.5])
616s ***** error<bisarnd: dimensions must be non-negative integers.> ...
616s  bisarnd (1, 2, 2, -1, 5)
616s ***** error<bisarnd: dimensions must be non-negative integers.> ...
616s  bisarnd (1, 2, 2, 1.5, 5)
616s ***** error<bisarnd: BETA and GAMMA must be scalars or of size SZ.> ...
616s  bisarnd (2, ones (2), 3)
616s ***** error<bisarnd: BETA and GAMMA must be scalars or of size SZ.> ...
616s  bisarnd (2, ones (2), [3, 2])
616s ***** error<bisarnd: BETA and GAMMA must be scalars or of size SZ.> ...
616s  bisarnd (2, ones (2), 3, 2)
616s 33 tests, 33 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/gevcdf.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gevcdf.m
616s ***** demo
616s  ## Plot various CDFs from the generalized extreme value distribution
616s  x = -1:0.001:10;
616s  p1 = gevcdf (x, 1, 1, 1);
616s  p2 = gevcdf (x, 0.5, 1, 1);
616s  p3 = gevcdf (x, 1, 1, 5);
616s  p4 = gevcdf (x, 1, 2, 5);
616s  p5 = gevcdf (x, 1, 5, 5);
616s  p6 = gevcdf (x, 1, 0.5, 5);
616s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", ...
616s        x, p4, "-c", x, p5, "-m", x, p6, "-k")
616s  grid on
616s  xlim ([-1, 10])
616s  legend ({"k = 1, σ = 1, μ = 1", "k = 0.5, σ = 1, μ = 1", ...
616s           "k = 1, σ = 1, μ = 5", "k = 1, σ = 2, μ = 5", ...
616s           "k = 1, σ = 5, μ = 5", "k = 1, σ = 0.5, μ = 5"}, ...
616s          "location", "southeast")
616s  title ("Generalized extreme value CDF")
616s  xlabel ("values in x")
616s  ylabel ("probability")
616s ***** test
616s  x = 0:0.5:2.5;
616s  sigma = 1:6;
616s  k = 1;
616s  mu = 0;
616s  p = gevcdf (x, k, sigma, mu);
616s  expected_p = [0.36788, 0.44933, 0.47237, 0.48323, 0.48954, 0.49367];
616s  assert (p, expected_p, 0.001);
616s ***** test
616s  x = -0.5:0.5:2.5;
616s  sigma = 0.5;
616s  k = 1;
616s  mu = 0;
616s  p = gevcdf (x, k, sigma, mu);
616s  expected_p = [0, 0.36788, 0.60653, 0.71653, 0.77880, 0.81873, 0.84648];
616s  assert (p, expected_p, 0.001);
616s ***** test # check for continuity for k near 0
616s  x = 1;
616s  sigma = 0.5;
616s  k = -0.03:0.01:0.03;
616s  mu = 0;
616s  p = gevcdf (x, k, sigma, mu);
616s  expected_p = [0.88062, 0.87820, 0.87580, 0.87342, 0.87107, 0.86874, 0.86643];
616s  assert (p, expected_p, 0.001);
616s ***** error<gevcdf: function called with too few input arguments.> gevcdf ()
616s ***** error<gevcdf: function called with too few input arguments.> gevcdf (1)
616s ***** error<gevcdf: function called with too few input arguments.> gevcdf (1, 2)
616s ***** error<gevcdf: function called with too few input arguments.> gevcdf (1, 2, 3)
616s ***** error<gevcdf: function called with too many inputs> ...
616s  gevcdf (1, 2, 3, 4, 5, 6)
616s ***** error<gevcdf: invalid argument for upper tail.> gevcdf (1, 2, 3, 4, "tail")
616s ***** error<gevcdf: invalid argument for upper tail.> gevcdf (1, 2, 3, 4, 5)
616s ***** error<gevcdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
616s  gevcdf (ones (3), ones (2), ones(2), ones(2))
616s ***** error<gevcdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
616s  gevcdf (ones (2), ones (3), ones(2), ones(2))
616s ***** error<gevcdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
616s  gevcdf (ones (2), ones (2), ones(3), ones(2))
616s ***** error<gevcdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
616s  gevcdf (ones (2), ones (2), ones(2), ones(3))
616s ***** error<gevcdf: X, K, SIGMA, and MU must not be complex.> gevcdf (i, 2, 3, 4)
616s ***** error<gevcdf: X, K, SIGMA, and MU must not be complex.> gevcdf (1, i, 3, 4)
616s ***** error<gevcdf: X, K, SIGMA, and MU must not be complex.> gevcdf (1, 2, i, 4)
616s ***** error<gevcdf: X, K, SIGMA, and MU must not be complex.> gevcdf (1, 2, 3, i)
616s 18 tests, 18 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/tinv.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tinv.m
616s ***** demo
616s  ## Plot various iCDFs from the Student's T distribution
616s  p = 0.001:0.001:0.999;
616s  x1 = tinv (p, 1);
616s  x2 = tinv (p, 2);
616s  x3 = tinv (p, 5);
616s  x4 = tinv (p, Inf);
616s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m")
616s  grid on
616s  xlim ([0, 1])
616s  ylim ([-5, 5])
616s  legend ({"df = 1", "df = 2", ...
616s           "df = 5", 'df = \infty'}, "location", "northwest")
616s  title ("Student's T iCDF")
616s  xlabel ("probability")
616s  ylabel ("values in x")
616s ***** shared p
616s  p = [-1 0 0.5 1 2];
616s ***** assert (tinv (p, ones (1,5)), [NaN -Inf 0 Inf NaN])
616s ***** assert (tinv (p, 1), [NaN -Inf 0 Inf NaN], eps)
616s ***** assert (tinv (p, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps)
616s ***** assert (tinv ([p(1:2) NaN p(4:5)], 1), [NaN -Inf NaN Inf NaN])
616s ***** assert (tinv ([p, NaN], 1), [NaN -Inf 0 Inf NaN NaN], eps)
616s ***** assert (tinv (single ([p, NaN]), 1), single ([NaN -Inf 0 Inf NaN NaN]), eps ("single"))
616s ***** assert (tinv ([p, NaN], single (1)), single ([NaN -Inf 0 Inf NaN NaN]), eps ("single"))
616s ***** error<tinv: function called with too few input arguments.> tinv ()
616s ***** error<tinv: function called with too few input arguments.> tinv (1)
616s ***** error<tinv: P and DF must be of common size or scalars.> ...
616s  tinv (ones (3), ones (2))
616s ***** error<tinv: P and DF must be of common size or scalars.> ...
616s  tinv (ones (2), ones (3))
616s ***** error<tinv: P and DF must not be complex.> tinv (i, 2)
616s ***** error<tinv: P and DF must not be complex.> tinv (2, i)
616s 13 tests, 13 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/copulacdf.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/copulacdf.m
616s ***** test
616s  x = [0.2:0.2:0.6; 0.2:0.2:0.6];
616s  theta = [1; 2];
616s  p = copulacdf ("Clayton", x, theta);
616s  expected_p = [0.1395; 0.1767];
616s  assert (p, expected_p, 0.001);
616s ***** test
616s  x = [0.2:0.2:0.6; 0.2:0.2:0.6];
616s  p = copulacdf ("Gumbel", x, 2);
616s  expected_p = [0.1464; 0.1464];
616s  assert (p, expected_p, 0.001);
616s ***** test
616s  x = [0.2:0.2:0.6; 0.2:0.2:0.6];
616s  theta = [1; 2];
616s  p = copulacdf ("Frank", x, theta);
616s  expected_p = [0.0699; 0.0930];
616s  assert (p, expected_p, 0.001);
616s ***** test
616s  x = [0.2:0.2:0.6; 0.2:0.2:0.6];
616s  theta = [0.3; 0.7];
616s  p = copulacdf ("AMH", x, theta);
616s  expected_p = [0.0629; 0.0959];
616s  assert (p, expected_p, 0.001);
616s ***** test
616s  x = [0.2:0.2:0.6; 0.2:0.1:0.4];
616s  theta = [0.2, 0.1, 0.1, 0.05];
616s  p = copulacdf ("FGM", x, theta);
616s  expected_p = [0.0558; 0.0293];
616s  assert (p, expected_p, 0.001);
616s 5 tests, 5 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/trirnd.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/trirnd.m
616s ***** assert (size (trirnd (1, 1.5, 2)), [1, 1])
616s ***** assert (size (trirnd (1 * ones (2, 1), 1.5, 2)), [2, 1])
616s ***** assert (size (trirnd (1 * ones (2, 2), 1.5, 2)), [2, 2])
616s ***** assert (size (trirnd (1, 1.5 * ones (2, 1), 2)), [2, 1])
616s ***** assert (size (trirnd (1, 1.5 * ones (2, 2), 2)), [2, 2])
616s ***** assert (size (trirnd (1, 1.5, 2 * ones (2, 1))), [2, 1])
616s ***** assert (size (trirnd (1, 1.5, 2 * ones (2, 2))), [2, 2])
616s ***** assert (size (trirnd (1, 1.5, 2, 3)), [3, 3])
616s ***** assert (size (trirnd (1, 1.5, 2, [4, 1])), [4, 1])
616s ***** assert (size (trirnd (1, 1.5, 2, 4, 1)), [4, 1])
616s ***** assert (class (trirnd (1, 1.5, 2)), "double")
616s ***** assert (class (trirnd (single (1), 1.5, 2)), "single")
616s ***** assert (class (trirnd (single ([1, 1]), 1.5, 2)), "single")
616s ***** assert (class (trirnd (1, single (1.5), 2)), "single")
616s ***** assert (class (trirnd (1, single ([1.5, 1.5]), 2)), "single")
616s ***** assert (class (trirnd (1, 1.5, single (1.5))), "single")
616s ***** assert (class (trirnd (1, 1.5, single ([2, 2]))), "single")
616s ***** error<trirnd: function called with too few input arguments.> trirnd ()
616s ***** error<trirnd: function called with too few input arguments.> trirnd (1)
616s ***** error<trirnd: function called with too few input arguments.> trirnd (1, 2)
616s ***** error<trirnd: A, B, and C must be of common size or scalars.> ...
616s  trirnd (ones (3), 5 * ones (2), ones (2))
616s ***** error<trirnd: A, B, and C must be of common size or scalars.> ...
616s  trirnd (ones (2), 5 * ones (3), ones (2))
616s ***** error<trirnd: A, B, and C must be of common size or scalars.> ...
616s  trirnd (ones (2), 5 * ones (2), ones (3))
616s ***** error<trirnd: A, B, and C must not be complex.> trirnd (i, 5, 3)
616s ***** error<trirnd: A, B, and C must not be complex.> trirnd (1, 5+i, 3)
616s ***** error<trirnd: A, B, and C must not be complex.> trirnd (1, 5, i)
616s ***** error<trirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  trirnd (1, 5, 3, -1)
616s ***** error<trirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  trirnd (1, 5, 3, 1.2)
616s ***** error<trirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  trirnd (1, 5, 3, ones (2))
616s ***** error<trirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  trirnd (1, 5, 3, [2 -1 2])
616s ***** error<trirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  trirnd (1, 5, 3, [2 0 2.5])
616s ***** error<trirnd: dimensions must be non-negative integers.> ...
616s  trirnd (1, 5, 3, 2, -1, 5)
616s ***** error<trirnd: dimensions must be non-negative integers.> ...
616s  trirnd (1, 5, 3, 2, 1.5, 5)
616s ***** error<trirnd: A, B, and C must be scalar or of size SZ.> ...
616s  trirnd (2, 5 * ones (2), 2, 3)
616s ***** error<trirnd: A, B, and C must be scalar or of size SZ.> ...
616s  trirnd (2, 5 * ones (2), 2, [3, 2])
616s ***** error<trirnd: A, B, and C must be scalar or of size SZ.> ...
616s  trirnd (2, 5 * ones (2), 2, 3, 2)
616s 36 tests, 36 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/wblrnd.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wblrnd.m
616s ***** assert (size (wblrnd (1, 1)), [1 1])
616s ***** assert (size (wblrnd (1, ones (2,1))), [2, 1])
616s ***** assert (size (wblrnd (1, ones (2,2))), [2, 2])
616s ***** assert (size (wblrnd (ones (2,1), 1)), [2, 1])
616s ***** assert (size (wblrnd (ones (2,2), 1)), [2, 2])
616s ***** assert (size (wblrnd (1, 1, 3)), [3, 3])
616s ***** assert (size (wblrnd (1, 1, [4, 1])), [4, 1])
616s ***** assert (size (wblrnd (1, 1, 4, 1)), [4, 1])
616s ***** assert (size (wblrnd (1, 1, 4, 1, 5)), [4, 1, 5])
616s ***** assert (size (wblrnd (1, 1, 0, 1)), [0, 1])
616s ***** assert (size (wblrnd (1, 1, 1, 0)), [1, 0])
616s ***** assert (size (wblrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
616s ***** assert (class (wblrnd (1, 1)), "double")
616s ***** assert (class (wblrnd (1, single (1))), "single")
616s ***** assert (class (wblrnd (1, single ([1, 1]))), "single")
616s ***** assert (class (wblrnd (single (1), 1)), "single")
616s ***** assert (class (wblrnd (single ([1, 1]), 1)), "single")
616s ***** error<wblrnd: function called with too few input arguments.> wblrnd ()
616s ***** error<wblrnd: function called with too few input arguments.> wblrnd (1)
616s ***** error<wblrnd: LAMBDA and K must be of common size or scalars.> ...
616s  wblrnd (ones (3), ones (2))
616s ***** error<wblrnd: LAMBDA and K must be of common size or scalars.> ...
616s  wblrnd (ones (2), ones (3))
616s ***** error<wblrnd: LAMBDA and K must not be complex.> wblrnd (i, 2, 3)
616s ***** error<wblrnd: LAMBDA and K must not be complex.> wblrnd (1, i, 3)
616s ***** error<wblrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  wblrnd (1, 2, -1)
616s ***** error<wblrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  wblrnd (1, 2, 1.2)
616s ***** error<wblrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  wblrnd (1, 2, ones (2))
616s ***** error<wblrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  wblrnd (1, 2, [2 -1 2])
616s ***** error<wblrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  wblrnd (1, 2, [2 0 2.5])
616s ***** error<wblrnd: dimensions must be non-negative integers.> ...
616s  wblrnd (1, 2, 2, -1, 5)
616s ***** error<wblrnd: dimensions must be non-negative integers.> ...
616s  wblrnd (1, 2, 2, 1.5, 5)
616s ***** error<wblrnd: LAMBDA and K must be scalar or of size SZ.> ...
616s  wblrnd (2, ones (2), 3)
616s ***** error<wblrnd: LAMBDA and K must be scalar or of size SZ.> ...
616s  wblrnd (2, ones (2), [3, 2])
616s ***** error<wblrnd: LAMBDA and K must be scalar or of size SZ.> ...
616s  wblrnd (2, ones (2), 3, 2)
616s 33 tests, 33 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/plrnd.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/plrnd.m
616s ***** shared x, Fx
616s  x = [0, 1, 3, 4, 7, 10];
616s  Fx = [0, 0.2, 0.5, 0.6, 0.7, 1];
616s ***** assert (size (plrnd (x, Fx)), [1, 1])
616s ***** assert (size (plrnd (x, Fx, 3)), [3, 3])
616s ***** assert (size (plrnd (x, Fx, [4, 1])), [4, 1])
616s ***** assert (size (plrnd (x, Fx, 4, 1)), [4, 1])
616s ***** assert (size (plrnd (x, Fx, 4, 1, 5)), [4, 1, 5])
616s ***** assert (size (plrnd (x, Fx, 0, 1)), [0, 1])
616s ***** assert (size (plrnd (x, Fx, 1, 0)), [1, 0])
616s ***** assert (size (plrnd (x, Fx, 1, 2, 0, 5)), [1, 2, 0, 5])
616s ***** assert (class (plrnd (x, Fx)), "double")
616s ***** assert (class (plrnd (x, single (Fx))), "single")
616s ***** assert (class (plrnd (single (x), Fx)), "single")
616s ***** error<plrnd: function called with too few input arguments.> plrnd ()
616s ***** error<plrnd: function called with too few input arguments.> plrnd (1)
616s ***** error<plrnd: X and FX must be vectors of equal size.> ...
616s  plrnd ([0, 1, 2], [0, 1])
616s ***** error<plrnd: X and FX must be at least two-elements long.> ...
616s  plrnd ([0], [1])
616s ***** error<plrnd: FX must be bounded in the range> ...
616s  plrnd ([0, 1, 2], [0, 1, 1.5])
616s ***** error<plrnd: FX must be bounded in the range> ...
616s  plrnd ([0, 1, 2], [0, i, 1])
616s ***** error<plrnd: X and FX must not be complex.> ...
616s  plrnd ([0, i, 2], [0, 0.5, 1])
616s ***** error<plrnd: X and FX must not be complex.> ...
616s  plrnd ([0, i, 2], [0, 0.5i, 1])
616s ***** error<plrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  plrnd (x, Fx, -1)
616s ***** error<plrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  plrnd (x, Fx, 1.2)
616s ***** error<plrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  plrnd (x, Fx, ones (2))
616s ***** error<plrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  plrnd (x, Fx, [2 -1 2])
616s ***** error<plrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  plrnd (x, Fx, [2 0 2.5])
616s ***** error<plrnd: dimensions must be non-negative integers.> ...
616s  plrnd (x, Fx, 2, -1, 5)
616s ***** error<plrnd: dimensions must be non-negative integers.> ...
616s  plrnd (x, Fx, 2, 1.5, 5)
616s 26 tests, 26 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/laplacepdf.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/laplacepdf.m
616s ***** demo
616s  ## Plot various PDFs from the Laplace distribution
616s  x = -10:0.01:10;
616s  y1 = laplacepdf (x, 0, 1);
616s  y2 = laplacepdf (x, 0, 2);
616s  y3 = laplacepdf (x, 0, 4);
616s  y4 = laplacepdf (x, -5, 4);
616s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
616s  grid on
616s  xlim ([-10, 10])
616s  ylim ([0, 0.6])
616s  legend ({"μ = 0, β = 1", "μ = 0, β = 2", ...
616s           "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "northeast")
616s  title ("Laplace PDF")
616s  xlabel ("values in x")
616s  ylabel ("density")
616s ***** shared x, y
616s  x = [-Inf -log(2) 0 log(2) Inf];
616s  y = [0, 1/4, 1/2, 1/4, 0];
616s ***** assert (laplacepdf ([x, NaN], 0, 1), [y, NaN])
616s ***** assert (laplacepdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), 0.25, 0])
616s ***** assert (laplacepdf (single ([x, NaN]), 0, 1), single ([y, NaN]))
616s ***** assert (laplacepdf ([x, NaN], single (0), 1), single ([y, NaN]))
616s ***** assert (laplacepdf ([x, NaN], 0, single (1)), single ([y, NaN]))
616s ***** error<laplacepdf: function called with too few input arguments.> laplacepdf ()
616s ***** error<laplacepdf: function called with too few input arguments.> laplacepdf (1)
616s ***** error<laplacepdf: function called with too few input arguments.> ...
616s  laplacepdf (1, 2)
616s ***** error<laplacepdf: function called with too many inputs> laplacepdf (1, 2, 3, 4)
616s ***** error<laplacepdf: X, MU, and BETA must be of common size or scalars.> ...
616s  laplacepdf (1, ones (2), ones (3))
616s ***** error<laplacepdf: X, MU, and BETA must be of common size or scalars.> ...
616s  laplacepdf (ones (2), 1, ones (3))
616s ***** error<laplacepdf: X, MU, and BETA must be of common size or scalars.> ...
616s  laplacepdf (ones (2), ones (3), 1)
616s ***** error<laplacepdf: X, MU, and BETA must not be complex.> laplacepdf (i, 2, 3)
616s ***** error<laplacepdf: X, MU, and BETA must not be complex.> laplacepdf (1, i, 3)
616s ***** error<laplacepdf: X, MU, and BETA must not be complex.> laplacepdf (1, 2, i)
616s 15 tests, 15 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/mvncdf.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvncdf.m
616s ***** demo
616s  mu = [1, -1];
616s  Sigma = [0.9, 0.4; 0.4, 0.3];
616s  [X1, X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
616s  X = [X1(:), X2(:)];
616s  p = mvncdf (X, mu, Sigma);
616s  Z = reshape (p, 25, 25);
616s  surf (X1, X2, Z);
616s  title ("Bivariate Normal Distribution");
616s  ylabel "X1"
616s  xlabel "X2"
616s ***** demo
616s  mu = [0, 0];
616s  Sigma = [0.25, 0.3; 0.3, 1];
616s  p = mvncdf ([0 0], [1 1], mu, Sigma);
616s  x1 = -3:.2:3;
616s  x2 = -3:.2:3;
616s  [X1, X2] = meshgrid (x1, x2);
616s  X = [X1(:), X2(:)];
616s  p = mvnpdf (X, mu, Sigma);
616s  p = reshape (p, length (x2), length (x1));
616s  contour (x1, x2, p, [0.0001, 0.001, 0.01, 0.05, 0.15, 0.25, 0.35]);
616s  xlabel ("x");
616s  ylabel ("p");
616s  title ("Probability over Rectangular Region");
616s  line ([0, 0, 1, 1, 0], [1, 0, 0, 1, 1], "Linestyle", "--", "Color", "k");
616s ***** test
616s  fD = (-2:2)';
616s  X = repmat (fD, 1, 4);
616s  p = mvncdf (X);
616s  assert (p, [0; 0.0006; 0.0625; 0.5011; 0.9121], ones (5, 1) * 1e-4);
616s ***** test
616s  mu = [1, -1];
616s  Sigma = [0.9, 0.4; 0.4, 0.3];
616s  [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
616s  X = [X1(:), X2(:)];
616s  p = mvncdf (X, mu, Sigma);
616s  p_out = [0.00011878988774500, 0.00034404112322371, ...
616s           0.00087682502191813, 0.00195221905058185, ...
616s           0.00378235566873474, 0.00638175749734415, ...
616s           0.00943764224329656, 0.01239164888125426, ...
616s           0.01472750274376648, 0.01623228313374828]';
616s  assert (p([1:10]), p_out, 1e-16);
616s ***** test
616s  mu = [1, -1];
616s  Sigma = [0.9, 0.4; 0.4, 0.3];
616s  [X1,X2] = meshgrid (linspace (-1, 3, 25)', linspace (-3, 1, 25)');
616s  X = [X1(:), X2(:)];
616s  p = mvncdf (X, mu, Sigma);
616s  p_out = [0.8180695783608276, 0.8854485749482751, ...
616s           0.9308108777385832, 0.9579855743025508, ...
616s           0.9722897881414742, 0.9788150170059926, ...
616s           0.9813597788804785, 0.9821977956568989, ...
616s           0.9824283794464095, 0.9824809345614861]';
616s  assert (p([616:625]), p_out, 3e-16);
616s ***** test
616s  mu = [0, 0];
616s  Sigma = [0.25, 0.3; 0.3, 1];
616s  [p, err] = mvncdf ([0, 0], [1, 1], mu, Sigma);
616s  assert (p, 0.2097424404755626, 1e-16);
616s  assert (err, 1e-08);
616s ***** test
616s  x = [1 2];
616s  mu = [0.5 1.5];
616s  sigma = [1.0, 0.5; 0.5, 1.0];
616s  p = mvncdf (x, mu, sigma);
616s  assert (p, 0.546244443857090, 1e-15);
616s ***** test
616s  x = [1 2];
616s  mu = [0.5 1.5];
616s  sigma = [1.0, 0.5; 0.5, 1.0];
616s  a = [-inf 0];
616s  p = mvncdf (a, x, mu, sigma);
616s  assert (p, 0.482672935215631, 1e-15);
616s ***** error p = mvncdf (randn (25,26), [], eye (26));
616s ***** error p = mvncdf (randn (25,8), [], eye (9));
616s ***** error p = mvncdf (randn (25,4), randn (25,5), [], eye (4));
616s ***** error p = mvncdf (randn (25,4), randn (25,4), [2, 3; 2, 3], eye (4));
616s ***** error p = mvncdf (randn (25,4), randn (25,4), ones (1, 5), eye (4));
616s ***** error p = mvncdf ([-inf, 0], [1, 2], [0.5, 1.5], [1.0, 0.5; 0.5, 1.0], option)
616s 12 tests, 12 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/raylpdf.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/raylpdf.m
616s ***** demo
616s  ## Plot various PDFs from the Rayleigh distribution
616s  x = 0:0.01:10;
616s  y1 = raylpdf (x, 0.5);
616s  y2 = raylpdf (x, 1);
616s  y3 = raylpdf (x, 2);
616s  y4 = raylpdf (x, 3);
616s  y5 = raylpdf (x, 4);
616s  plot (x, y1, "-b", x, y2, "g", x, y3, "-r", x, y4, "-m", x, y5, "-k")
616s  grid on
616s  ylim ([0, 1.25])
616s  legend ({"σ = 0,5", "σ = 1", "σ = 2", ...
616s           "σ = 3", "σ = 4"}, "location", "northeast")
616s  title ("Rayleigh PDF")
616s  xlabel ("values in x")
616s  ylabel ("density")
616s ***** test
616s  x = 0:0.5:2.5;
616s  sigma = 1:6;
616s  y = raylpdf (x, sigma);
616s  expected_y = [0.0000, 0.1212, 0.1051, 0.0874, 0.0738, 0.0637];
616s  assert (y, expected_y, 0.001);
616s ***** test
616s  x = 0:0.5:2.5;
616s  y = raylpdf (x, 0.5);
616s  expected_y = [0.0000, 1.2131, 0.5413, 0.0667, 0.0027, 0.0000];
616s  assert (y, expected_y, 0.001);
616s ***** error<raylpdf: function called with too few input arguments.> raylpdf ()
616s ***** error<raylpdf: function called with too few input arguments.> raylpdf (1)
616s ***** error<raylpdf: X and SIGMA must be of common size or scalars.> ...
616s  raylpdf (ones (3), ones (2))
616s ***** error<raylpdf: X and SIGMA must be of common size or scalars.> ...
616s  raylpdf (ones (2), ones (3))
616s ***** error<raylpdf: X and SIGMA must not be complex.> raylpdf (i, 2)
616s ***** error<raylpdf: X and SIGMA must not be complex.> raylpdf (2, i)
616s 8 tests, 8 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/nbinrnd.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nbinrnd.m
616s ***** assert (size (nbinrnd (1, 0.5)), [1 1])
616s ***** assert (size (nbinrnd (1, 0.5 * ones (2,1))), [2, 1])
616s ***** assert (size (nbinrnd (1, 0.5 * ones (2,2))), [2, 2])
616s ***** assert (size (nbinrnd (ones (2,1), 0.5)), [2, 1])
616s ***** assert (size (nbinrnd (ones (2,2), 0.5)), [2, 2])
616s ***** assert (size (nbinrnd (1, 0.5, 3)), [3, 3])
616s ***** assert (size (nbinrnd (1, 0.5, [4, 1])), [4, 1])
616s ***** assert (size (nbinrnd (1, 0.5, 4, 1)), [4, 1])
616s ***** assert (size (nbinrnd (1, 0.5, 4, 1, 5)), [4, 1, 5])
616s ***** assert (size (nbinrnd (1, 0.5, 0, 1)), [0, 1])
616s ***** assert (size (nbinrnd (1, 0.5, 1, 0)), [1, 0])
616s ***** assert (size (nbinrnd (1, 0.5, 1, 2, 0, 5)), [1, 2, 0, 5])
616s ***** assert (class (nbinrnd (1, 0.5)), "double")
616s ***** assert (class (nbinrnd (1, single (0.5))), "single")
616s ***** assert (class (nbinrnd (1, single ([0.5, 0.5]))), "single")
616s ***** assert (class (nbinrnd (single (1), 0.5)), "single")
616s ***** assert (class (nbinrnd (single ([1, 1]), 0.5)), "single")
616s ***** error<nbinrnd: function called with too few input arguments.> nbinrnd ()
616s ***** error<nbinrnd: function called with too few input arguments.> nbinrnd (1)
616s ***** error<nbinrnd: R and PS must be of common size or scalars.> ...
616s  nbinrnd (ones (3), ones (2))
616s ***** error<nbinrnd: R and PS must be of common size or scalars.> ...
616s  nbinrnd (ones (2), ones (3))
616s ***** error<nbinrnd: R and PS must not be complex.> nbinrnd (i, 2, 3)
616s ***** error<nbinrnd: R and PS must not be complex.> nbinrnd (1, i, 3)
616s ***** error<nbinrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  nbinrnd (1, 2, -1)
616s ***** error<nbinrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  nbinrnd (1, 2, 1.2)
616s ***** error<nbinrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  nbinrnd (1, 2, ones (2))
616s ***** error<nbinrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  nbinrnd (1, 2, [2 -1 2])
616s ***** error<nbinrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  nbinrnd (1, 2, [2 0 2.5])
616s ***** error<nbinrnd: dimensions must be non-negative integers.> ...
616s  nbinrnd (1, 2, 2, -1, 5)
616s ***** error<nbinrnd: dimensions must be non-negative integers.> ...
616s  nbinrnd (1, 2, 2, 1.5, 5)
616s ***** error<nbinrnd: R and PS must be scalars or of size SZ.> ...
616s  nbinrnd (2, ones (2), 3)
616s ***** error<nbinrnd: R and PS must be scalars or of size SZ.> ...
616s  nbinrnd (2, ones (2), [3, 2])
616s ***** error<nbinrnd: R and PS must be scalars or of size SZ.> ...
616s  nbinrnd (2, ones (2), 3, 2)
616s 33 tests, 33 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/laplacernd.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/laplacernd.m
616s ***** assert (size (laplacernd (1, 1)), [1 1])
616s ***** assert (size (laplacernd (1, ones (2,1))), [2, 1])
616s ***** assert (size (laplacernd (1, ones (2,2))), [2, 2])
616s ***** assert (size (laplacernd (ones (2,1), 1)), [2, 1])
616s ***** assert (size (laplacernd (ones (2,2), 1)), [2, 2])
616s ***** assert (size (laplacernd (1, 1, 3)), [3, 3])
616s ***** assert (size (laplacernd (1, 1, [4, 1])), [4, 1])
616s ***** assert (size (laplacernd (1, 1, 4, 1)), [4, 1])
616s ***** assert (size (laplacernd (1, 1, 4, 1, 5)), [4, 1, 5])
616s ***** assert (size (laplacernd (1, 1, 0, 1)), [0, 1])
616s ***** assert (size (laplacernd (1, 1, 1, 0)), [1, 0])
616s ***** assert (size (laplacernd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
616s ***** assert (class (laplacernd (1, 1)), "double")
616s ***** assert (class (laplacernd (1, single (1))), "single")
616s ***** assert (class (laplacernd (1, single ([1, 1]))), "single")
616s ***** assert (class (laplacernd (single (1), 1)), "single")
616s ***** assert (class (laplacernd (single ([1, 1]), 1)), "single")
616s ***** error<laplacernd: function called with too few input arguments.> laplacernd ()
616s ***** error<laplacernd: function called with too few input arguments.> laplacernd (1)
616s ***** error<laplacernd: MU and BETA must be of common size or scalars.> ...
616s  laplacernd (ones (3), ones (2))
616s ***** error<laplacernd: MU and BETA must be of common size or scalars.> ...
616s  laplacernd (ones (2), ones (3))
616s ***** error<laplacernd: MU and BETA must not be complex.> laplacernd (i, 2, 3)
616s ***** error<laplacernd: MU and BETA must not be complex.> laplacernd (1, i, 3)
616s ***** error<laplacernd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  laplacernd (1, 2, -1)
616s ***** error<laplacernd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  laplacernd (1, 2, 1.2)
616s ***** error<laplacernd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  laplacernd (1, 2, ones (2))
616s ***** error<laplacernd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  laplacernd (1, 2, [2 -1 2])
616s ***** error<laplacernd: SZ must be a scalar or a row vector of non-negative integers.> ...
616s  laplacernd (1, 2, [2 0 2.5])
616s ***** error<laplacernd: dimensions must be non-negative integers.> ...
616s  laplacernd (1, 2, 2, -1, 5)
616s ***** error<laplacernd: dimensions must be non-negative integers.> ...
616s  laplacernd (1, 2, 2, 1.5, 5)
616s ***** error<laplacernd: MU and BETA must be scalars or of size SZ.> ...
616s  laplacernd (2, ones (2), 3)
616s ***** error<laplacernd: MU and BETA must be scalars or of size SZ.> ...
616s  laplacernd (2, ones (2), [3, 2])
616s ***** error<laplacernd: MU and BETA must be scalars or of size SZ.> ...
616s  laplacernd (2, ones (2), 3, 2)
616s 33 tests, 33 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/mvnrnd.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvnrnd.m
616s ***** error<mvnrnd: too few input arguments.> mvnrnd ()
616s ***** error<mvnrnd: too few input arguments.> mvnrnd ([2, 3, 4])
616s ***** error<mvnrnd: wrong size of MU.> mvnrnd (ones (2, 2, 2), ones (1, 2, 3, 4))
616s ***** error<mvnrnd: wrong size of SIGMA.> mvnrnd (ones (1, 3), ones (1, 2, 3, 4))
616s ***** assert (size (mvnrnd ([2, 3, 4], [2, 2, 2])), [1, 3])
616s ***** assert (size (mvnrnd ([2, 3, 4], [2, 2, 2], 10)), [10, 3])
616s 6 tests, 6 passed, 0 known failure, 0 skipped
616s [inst/dist_fun/vmcdf.m]
616s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/vmcdf.m
616s ***** demo
616s  ## Plot various CDFs from the von Mises distribution
616s  x1 = [-pi:0.1:pi];
616s  p1 = vmcdf (x1, 0, 0.5);
616s  p2 = vmcdf (x1, 0, 1);
616s  p3 = vmcdf (x1, 0, 2);
616s  p4 = vmcdf (x1, 0, 4);
616s  plot (x1, p1, "-r", x1, p2, "-g", x1, p3, "-b", x1, p4, "-c")
616s  grid on
616s  xlim ([-pi, pi])
616s  legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ...
616s           "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest")
616s  title ("Von Mises CDF")
616s  xlabel ("values in x")
616s  ylabel ("probability")
616s ***** shared x, p0, p1
616s  x = [-pi:pi/2:pi];
616s  p0 = [0, 0.10975, 0.5, 0.89025, 1];
616s  p1 = [0, 0.03752, 0.5, 0.99622, 1];
616s ***** assert (vmcdf (x, 0, 1), p0, 1e-5)
616s ***** assert (vmcdf (x, 0, 1, "upper"), 1 - p0, 1e-5)
617s ***** assert (vmcdf (x, zeros (1,5), ones (1,5)), p0, 1e-5)
617s ***** assert (vmcdf (x, zeros (1,5), ones (1,5), "upper"), 1 - p0, 1e-5)
617s ***** assert (vmcdf (x, 0, [1 2 3 4 5]), p1, 1e-5)
617s ***** assert (vmcdf (x, 0, [1 2 3 4 5], "upper"), 1 - p1, 1e-5)
617s ***** assert (isa (vmcdf (single (pi), 0, 1), "single"), true)
617s ***** assert (isa (vmcdf (pi, single (0), 1), "single"), true)
617s ***** assert (isa (vmcdf (pi, 0, single (1)), "single"), true)
617s ***** error<vmcdf: function called with too few input arguments.> vmcdf ()
617s ***** error<vmcdf: function called with too few input arguments.> vmcdf (1)
617s ***** error<vmcdf: function called with too few input arguments.> vmcdf (1, 2)
617s ***** error<vmcdf: invalid argument for upper tail.> vmcdf (1, 2, 3, "tail")
617s ***** error<vmcdf: invalid argument for upper tail.> vmcdf (1, 2, 3, 4)
617s ***** error<vmcdf: X, MU, and K must be of common size or scalars.> ...
617s  vmcdf (ones (3), ones (2), ones (2))
617s ***** error<vmcdf: X, MU, and K must be of common size or scalars.> ...
617s  vmcdf (ones (2), ones (3), ones (2))
617s ***** error<vmcdf: X, MU, and K must be of common size or scalars.> ...
617s  vmcdf (ones (2), ones (2), ones (3))
617s ***** error<vmcdf: X, MU, and K must not be complex.> vmcdf (i, 2, 2)
617s ***** error<vmcdf: X, MU, and K must not be complex.> vmcdf (2, i, 2)
617s ***** error<vmcdf: X, MU, and K must not be complex.> vmcdf (2, 2, i)
617s 20 tests, 20 passed, 0 known failure, 0 skipped
617s [inst/dist_fun/binornd.m]
617s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/binornd.m
617s ***** assert (size (binornd (2, 1/2)), [1 1])
617s ***** assert (size (binornd (2 * ones (2, 1), 1/2)), [2, 1])
617s ***** assert (size (binornd (2 * ones (2, 2), 1/2)), [2, 2])
617s ***** assert (size (binornd (2, 1/2 * ones (2, 1))), [2, 1])
617s ***** assert (size (binornd (1, 1/2 * ones (2, 2))), [2, 2])
617s ***** assert (size (binornd (ones (2, 1), 1)), [2, 1])
617s ***** assert (size (binornd (ones (2, 2), 1)), [2, 2])
617s ***** assert (size (binornd (2, 1/2, 3)), [3, 3])
617s ***** assert (size (binornd (1, 1, [4, 1])), [4, 1])
617s ***** assert (size (binornd (1, 1, 4, 1)), [4, 1])
617s ***** assert (size (binornd (1, 1, 4, 1, 5)), [4, 1, 5])
617s ***** assert (size (binornd (1, 1, 0, 1)), [0, 1])
617s ***** assert (size (binornd (1, 1, 1, 0)), [1, 0])
617s ***** assert (size (binornd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
617s ***** assert (class (binornd (1, 1)), "double")
617s ***** assert (class (binornd (1, single (0))), "single")
617s ***** assert (class (binornd (1, single ([0, 0]))), "single")
617s ***** assert (class (binornd (1, single (1), 2)), "single")
617s ***** assert (class (binornd (1, single ([1, 1]), 1, 2)), "single")
617s ***** assert (class (binornd (single (1), 1, 2)), "single")
617s ***** assert (class (binornd (single ([1, 1]), 1, 1, 2)), "single")
617s ***** error<binornd: function called with too few input arguments.> binornd ()
617s ***** error<binornd: function called with too few input arguments.> binornd (1)
617s ***** error<binornd: N and PS must be of common size or scalars.> ...
617s  binornd (ones (3), ones (2))
617s ***** error<binornd: N and PS must be of common size or scalars.> ...
617s  binornd (ones (2), ones (3))
617s ***** error<binornd: N and PS must not be complex.> binornd (i, 2)
617s ***** error<binornd: N and PS must not be complex.> binornd (1, i)
617s ***** error<binornd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  binornd (1, 1/2, -1)
617s ***** error<binornd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  binornd (1, 1/2, 1.2)
617s ***** error<binornd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  binornd (1, 1/2, ones (2))
617s ***** error<binornd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  binornd (1, 1/2, [2 -1 2])
617s ***** error<binornd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  binornd (1, 1/2, [2 0 2.5])
617s ***** error<binornd: dimensions must be non-negative integers.> ...
617s  binornd (1, 1/2, 2, -1, 5)
617s ***** error<binornd: dimensions must be non-negative integers.> ...
617s  binornd (1, 1/2, 2, 1.5, 5)
617s ***** error<binornd: N and PS must be scalars or of size SZ.> ...
617s  binornd (2, 1/2 * ones (2), 3)
617s ***** error<binornd: N and PS must be scalars or of size SZ.> ...
617s  binornd (2, 1/2 * ones (2), [3, 2])
617s ***** error<binornd: N and PS must be scalars or of size SZ.> ...
617s  binornd (2, 1/2 * ones (2), 3, 2)
617s ***** error<binornd: N and PS must be scalars or of size SZ.> ...
617s  binornd (2 * ones (2), 1/2, 3)
617s ***** error<binornd: N and PS must be scalars or of size SZ.> ...
617s  binornd (2 * ones (2), 1/2, [3, 2])
617s ***** error<binornd: N and PS must be scalars or of size SZ.> ...
617s  binornd (2 * ones (2), 1/2, 3, 2)
617s 40 tests, 40 passed, 0 known failure, 0 skipped
617s [inst/dist_fun/frnd.m]
617s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/frnd.m
617s ***** assert (size (frnd (1, 1)), [1 1])
617s ***** assert (size (frnd (1, ones (2,1))), [2, 1])
617s ***** assert (size (frnd (1, ones (2,2))), [2, 2])
617s ***** assert (size (frnd (ones (2,1), 1)), [2, 1])
617s ***** assert (size (frnd (ones (2,2), 1)), [2, 2])
617s ***** assert (size (frnd (1, 1, 3)), [3, 3])
617s ***** assert (size (frnd (1, 1, [4, 1])), [4, 1])
617s ***** assert (size (frnd (1, 1, 4, 1)), [4, 1])
617s ***** assert (size (frnd (1, 1, 4, 1, 5)), [4, 1, 5])
617s ***** assert (size (frnd (1, 1, 0, 1)), [0, 1])
617s ***** assert (size (frnd (1, 1, 1, 0)), [1, 0])
617s ***** assert (size (frnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
617s ***** assert (class (frnd (1, 1)), "double")
617s ***** assert (class (frnd (1, single (1))), "single")
617s ***** assert (class (frnd (1, single ([1, 1]))), "single")
617s ***** assert (class (frnd (single (1), 1)), "single")
617s ***** assert (class (frnd (single ([1, 1]), 1)), "single")
617s ***** error<frnd: function called with too few input arguments.> frnd ()
617s ***** error<frnd: function called with too few input arguments.> frnd (1)
617s ***** error<frnd: DF1 and DF2 must be of common size or scalars.> ...
617s  frnd (ones (3), ones (2))
617s ***** error<frnd: DF1 and DF2 must be of common size or scalars.> ...
617s  frnd (ones (2), ones (3))
617s ***** error<frnd: DF1 and DF2 must not be complex.> frnd (i, 2, 3)
617s ***** error<frnd: DF1 and DF2 must not be complex.> frnd (1, i, 3)
617s ***** error<frnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  frnd (1, 2, -1)
617s ***** error<frnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  frnd (1, 2, 1.2)
617s ***** error<frnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  frnd (1, 2, ones (2))
617s ***** error<frnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  frnd (1, 2, [2 -1 2])
617s ***** error<frnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  frnd (1, 2, [2 0 2.5])
617s ***** error<frnd: dimensions must be non-negative integers.> ...
617s  frnd (1, 2, 2, -1, 5)
617s ***** error<frnd: dimensions must be non-negative integers.> ...
617s  frnd (1, 2, 2, 1.5, 5)
617s ***** error<frnd: DF1 and DF2 must be scalars or of size SZ.> ...
617s  frnd (2, ones (2), 3)
617s ***** error<frnd: DF1 and DF2 must be scalars or of size SZ.> ...
617s  frnd (2, ones (2), [3, 2])
617s ***** error<frnd: DF1 and DF2 must be scalars or of size SZ.> ...
617s  frnd (2, ones (2), 3, 2)
617s 33 tests, 33 passed, 0 known failure, 0 skipped
617s [inst/dist_fun/normcdf.m]
617s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/normcdf.m
617s ***** demo
617s  ## Plot various CDFs from the normal distribution
617s  x = -5:0.01:5;
617s  p1 = normcdf (x, 0, 0.5);
617s  p2 = normcdf (x, 0, 1);
617s  p3 = normcdf (x, 0, 2);
617s  p4 = normcdf (x, -2, 0.8);
617s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
617s  grid on
617s  xlim ([-5, 5])
617s  legend ({"μ = 0, σ = 0.5", "μ = 0, σ = 1", ...
617s           "μ = 0, σ = 2", "μ = -2, σ = 0.8"}, "location", "southeast")
617s  title ("Normal CDF")
617s  xlabel ("values in x")
617s  ylabel ("probability")
617s ***** shared x, y
617s  x = [-Inf 1 2 Inf];
617s  y = [0, 0.5, 1/2*(1+erf(1/sqrt(2))), 1];
617s ***** assert (normcdf (x, ones (1,4), ones (1,4)), y)
617s ***** assert (normcdf (x, 1, ones (1,4)), y)
617s ***** assert (normcdf (x, ones (1,4), 1), y)
617s ***** assert (normcdf (x, [0, -Inf, NaN, Inf], 1), [0, 1, NaN, NaN])
617s ***** assert (normcdf (x, 1, [Inf, NaN, -1, 0]), [NaN, NaN, NaN, 1])
617s ***** assert (normcdf ([x(1:2), NaN, x(4)], 1, 1), [y(1:2), NaN, y(4)])
617s ***** assert (normcdf (x, "upper"), [1, 0.1587, 0.0228, 0], 1e-4)
617s ***** assert (normcdf ([x, NaN], 1, 1), [y, NaN])
617s ***** assert (normcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single"))
617s ***** assert (normcdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single"))
617s ***** assert (normcdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single"))
617s ***** error<normcdf: invalid number of input arguments.> normcdf ()
617s ***** error<normcdf: invalid number of input arguments.> normcdf (1,2,3,4,5,6,7)
617s ***** error<normcdf: invalid argument for upper tail.> normcdf (1, 2, 3, 4, "uper")
617s ***** error<normcdf: X, MU, and SIGMA must be of common size or scalars.> ...
617s  normcdf (ones (3), ones (2), ones (2))
617s ***** error<normcdf: invalid size of covariance matrix.> normcdf (2, 3, 4, [1, 2])
617s ***** error<normcdf: covariance matrix is required for confidence bounds.> ...
617s  [p, plo, pup] = normcdf (1, 2, 3)
617s ***** error<normcdf: invalid value for alpha.> [p, plo, pup] = ...
617s  normcdf (1, 2, 3, [1, 0; 0, 1], 0)
617s ***** error<normcdf: invalid value for alpha.> [p, plo, pup] = ...
617s  normcdf (1, 2, 3, [1, 0; 0, 1], 1.22)
617s ***** error<normcdf: invalid value for alpha.> [p, plo, pup] = ...
617s  normcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper")
617s ***** error<normcdf: X, MU, and SIGMA must not be complex.> normcdf (i, 2, 2)
617s ***** error<normcdf: X, MU, and SIGMA must not be complex.> normcdf (2, i, 2)
617s ***** error<normcdf: X, MU, and SIGMA must not be complex.> normcdf (2, 2, i)
617s ***** error<normcdf: bad covariance matrix.> ...
617s  [p, plo, pup] =normcdf (1, 2, 3, [1, 0; 0, -inf], 0.04)
617s 24 tests, 24 passed, 0 known failure, 0 skipped
617s [inst/dist_fun/gaminv.m]
617s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gaminv.m
617s ***** demo
617s  ## Plot various iCDFs from the Gamma distribution
617s  p = 0.001:0.001:0.999;
617s  x1 = gaminv (p, 1, 2);
617s  x2 = gaminv (p, 2, 2);
617s  x3 = gaminv (p, 3, 2);
617s  x4 = gaminv (p, 5, 1);
617s  x5 = gaminv (p, 9, 0.5);
617s  x6 = gaminv (p, 7.5, 1);
617s  x7 = gaminv (p, 0.5, 1);
617s  plot (p, x1, "-r", p, x2, "-g", p, x3, "-y", p, x4, "-m", ...
617s        p, x5, "-k", p, x6, "-b", p, x7, "-c")
617s  ylim ([0, 20])
617s  grid on
617s  legend ({"α = 1, β = 2", "α = 2, β = 2", "α = 3, β = 2", ...
617s           "α = 5, β = 1", "α = 9, β = 0.5", "α = 7.5, β = 1", ...
617s           "α = 0.5, β = 1"}, "location", "northwest")
617s  title ("Gamma iCDF")
617s  xlabel ("probability")
617s  ylabel ("x")
617s ***** shared p
617s  p = [-1 0 0.63212055882855778 1 2];
617s ***** assert (gaminv (p, ones (1,5), ones (1,5)), [NaN 0 1 Inf NaN], eps)
617s ***** assert (gaminv (p, 1, ones (1,5)), [NaN 0 1 Inf NaN], eps)
617s ***** assert (gaminv (p, ones (1,5), 1), [NaN 0 1 Inf NaN], eps)
617s ***** assert (gaminv (p, [1 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN NaN])
617s ***** assert (gaminv (p, 1, [1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN])
617s ***** assert (gaminv ([p(1:2) NaN p(4:5)], 1, 1), [NaN 0 NaN Inf NaN])
617s ***** assert (gaminv ([p(1:2) NaN p(4:5)], 1, 1), [NaN 0 NaN Inf NaN])
617s ***** assert (gaminv (1e-16, 1, 1), 1e-16, eps)
617s ***** assert (gaminv (1e-16, 1, 2), 2e-16, eps)
617s ***** assert (gaminv (1e-20, 3, 5), 1.957434012161815e-06, eps)
617s ***** assert (gaminv (1e-15, 1, 1), 1e-15, eps)
617s ***** assert (gaminv (1e-35, 1, 1), 1e-35, eps)
617s ***** assert (gaminv ([p, NaN], 1, 1), [NaN 0 1 Inf NaN NaN], eps)
617s ***** assert (gaminv (single ([p, NaN]), 1, 1), single ([NaN 0 1 Inf NaN NaN]), ...
617s  eps ("single"))
617s ***** assert (gaminv ([p, NaN], single (1), 1), single ([NaN 0 1 Inf NaN NaN]), ...
617s  eps ("single"))
617s ***** assert (gaminv ([p, NaN], 1, single (1)), single ([NaN 0 1 Inf NaN NaN]), ...
617s  eps ("single"))
617s ***** error<gaminv: function called with too few input arguments.> gaminv ()
617s ***** error<gaminv: function called with too few input arguments.> gaminv (1)
617s ***** error<gaminv: function called with too few input arguments.> gaminv (1,2)
617s ***** error<gaminv: P, Α, and Β must be of common size or scalars.> ...
617s  gaminv (ones (3), ones (2), ones (2))
617s ***** error<gaminv: P, Α, and Β must be of common size or scalars.> ...
617s  gaminv (ones (2), ones (3), ones (2))
617s ***** error<gaminv: P, Α, and Β must be of common size or scalars.> ...
617s  gaminv (ones (2), ones (2), ones (3))
617s ***** error<gaminv: P, Α, and Β must not be complex.> gaminv (i, 2, 2)
617s ***** error<gaminv: P, Α, and Β must not be complex.> gaminv (2, i, 2)
617s ***** error<gaminv: P, Α, and Β must not be complex.> gaminv (2, 2, i)
617s 25 tests, 25 passed, 0 known failure, 0 skipped
617s [inst/dist_fun/logirnd.m]
617s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/logirnd.m
617s ***** assert (size (logirnd (1, 1)), [1 1])
617s ***** assert (size (logirnd (1, ones (2,1))), [2, 1])
617s ***** assert (size (logirnd (1, ones (2,2))), [2, 2])
617s ***** assert (size (logirnd (ones (2,1), 1)), [2, 1])
617s ***** assert (size (logirnd (ones (2,2), 1)), [2, 2])
617s ***** assert (size (logirnd (1, 1, 3)), [3, 3])
617s ***** assert (size (logirnd (1, 1, [4, 1])), [4, 1])
617s ***** assert (size (logirnd (1, 1, 4, 1)), [4, 1])
617s ***** assert (size (logirnd (1, 1, 4, 1, 5)), [4, 1, 5])
617s ***** assert (size (logirnd (1, 1, 0, 1)), [0, 1])
617s ***** assert (size (logirnd (1, 1, 1, 0)), [1, 0])
617s ***** assert (size (logirnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
617s ***** assert (class (logirnd (1, 1)), "double")
617s ***** assert (class (logirnd (1, single (1))), "single")
617s ***** assert (class (logirnd (1, single ([1, 1]))), "single")
617s ***** assert (class (logirnd (single (1), 1)), "single")
617s ***** assert (class (logirnd (single ([1, 1]), 1)), "single")
617s ***** error<logirnd: function called with too few input arguments.> logirnd ()
617s ***** error<logirnd: function called with too few input arguments.> logirnd (1)
617s ***** error<logirnd: MU and SIGMA must be of common size or scalars.> ...
617s  logirnd (ones (3), ones (2))
617s ***** error<logirnd: MU and SIGMA must be of common size or scalars.> ...
617s  logirnd (ones (2), ones (3))
617s ***** error<logirnd: MU and SIGMA must not be complex.> logirnd (i, 2, 3)
617s ***** error<logirnd: MU and SIGMA must not be complex.> logirnd (1, i, 3)
617s ***** error<logirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  logirnd (1, 2, -1)
617s ***** error<logirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  logirnd (1, 2, 1.2)
617s ***** error<logirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  logirnd (1, 2, ones (2))
617s ***** error<logirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  logirnd (1, 2, [2 -1 2])
617s ***** error<logirnd: SZ must be a scalar or a row vector of non-negative integers.> ...
617s  logirnd (1, 2, [2 0 2.5])
617s ***** error<logirnd: dimensions must be non-negative integers.> ...
617s  logirnd (1, 2, 2, -1, 5)
617s ***** error<logirnd: dimensions must be non-negative integers.> ...
617s  logirnd (1, 2, 2, 1.5, 5)
618s ***** error<logirnd: MU and SIGMA must be scalars or of size SZ.> ...
618s  logirnd (2, ones (2), 3)
618s ***** error<logirnd: MU and SIGMA must be scalars or of size SZ.> ...
618s  logirnd (2, ones (2), [3, 2])
618s ***** error<logirnd: MU and SIGMA must be scalars or of size SZ.> ...
618s  logirnd (2, ones (2), 3, 2)
618s 33 tests, 33 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/unidinv.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unidinv.m
618s ***** demo
618s  ## Plot various iCDFs from the discrete uniform distribution
618s  p = 0.001:0.001:0.999;
618s  x1 = unidinv (p, 5);
618s  x2 = unidinv (p, 9);
618s  plot (p, x1, "-b", p, x2, "-g")
618s  grid on
618s  xlim ([0, 1])
618s  ylim ([0, 10])
618s  legend ({"N = 5", "N = 9"}, "location", "northwest")
618s  title ("Discrete uniform iCDF")
618s  xlabel ("probability")
618s  ylabel ("values in x")
618s ***** shared p
618s  p = [-1 0 0.5 1 2];
618s ***** assert (unidinv (p, 10*ones (1,5)), [NaN NaN 5 10 NaN], eps)
618s ***** assert (unidinv (p, 10), [NaN NaN 5 10 NaN], eps)
618s ***** assert (unidinv (p, 10*[0 1 NaN 1 1]), [NaN NaN NaN 10 NaN], eps)
618s ***** assert (unidinv ([p(1:2) NaN p(4:5)], 10), [NaN NaN NaN 10 NaN], eps)
618s ***** assert (unidinv ([p, NaN], 10), [NaN NaN 5 10 NaN NaN], eps)
618s ***** assert (unidinv (single ([p, NaN]), 10), single ([NaN NaN 5 10 NaN NaN]), eps)
618s ***** assert (unidinv ([p, NaN], single (10)), single ([NaN NaN 5 10 NaN NaN]), eps)
618s ***** error<unidinv: function called with too few input arguments.> unidinv ()
618s ***** error<unidinv: function called with too few input arguments.> unidinv (1)
618s ***** error<unidinv: P and N must be of common size or scalars.> ...
618s  unidinv (ones (3), ones (2))
618s ***** error<unidinv: P and N must be of common size or scalars.> ...
618s  unidinv (ones (2), ones (3))
618s ***** error<unidinv: P and N must not be complex.> unidinv (i, 2)
618s ***** error<unidinv: P and N must not be complex.> unidinv (2, i)
618s 13 tests, 13 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/gprnd.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gprnd.m
618s ***** assert (size (gprnd (0, 1, 0)), [1, 1])
618s ***** assert (size (gprnd (0, 1, zeros (2,1))), [2, 1])
618s ***** assert (size (gprnd (0, 1, zeros (2,2))), [2, 2])
618s ***** assert (size (gprnd (0, ones (2,1), 0)), [2, 1])
618s ***** assert (size (gprnd (0, ones (2,2), 0)), [2, 2])
618s ***** assert (size (gprnd (zeros (2,1), 1, 0)), [2, 1])
618s ***** assert (size (gprnd (zeros (2,2), 1, 0)), [2, 2])
618s ***** assert (size (gprnd (0, 1, 0, 3)), [3, 3])
618s ***** assert (size (gprnd (0, 1, 0, [4 1])), [4, 1])
618s ***** assert (size (gprnd (0, 1, 0, 4, 1)), [4, 1])
618s ***** assert (size (gprnd (1,1,0)), [1, 1])
618s ***** assert (size (gprnd (1, 1, zeros (2,1))), [2, 1])
618s ***** assert (size (gprnd (1, 1, zeros (2,2))), [2, 2])
618s ***** assert (size (gprnd (1, ones (2,1), 0)), [2, 1])
618s ***** assert (size (gprnd (1, ones (2,2), 0)), [2, 2])
618s ***** assert (size (gprnd (ones (2,1), 1, 0)), [2, 1])
618s ***** assert (size (gprnd (ones (2,2), 1, 0)), [2, 2])
618s ***** assert (size (gprnd (1, 1, 0, 3)), [3, 3])
618s ***** assert (size (gprnd (1, 1, 0, [4 1])), [4, 1])
618s ***** assert (size (gprnd (1, 1, 0, 4, 1)), [4, 1])
618s ***** assert (size (gprnd (-1, 1, 0)), [1, 1])
618s ***** assert (size (gprnd (-1, 1, zeros (2,1))), [2, 1])
618s ***** assert (size (gprnd (1, -1, zeros (2,2))), [2, 2])
618s ***** assert (size (gprnd (-1, ones (2,1), 0)), [2, 1])
618s ***** assert (size (gprnd (-1, ones (2,2), 0)), [2, 2])
618s ***** assert (size (gprnd (-ones (2,1), 1, 0)), [2, 1])
618s ***** assert (size (gprnd (-ones (2,2), 1, 0)), [2, 2])
618s ***** assert (size (gprnd (-1, 1, 0, 3)), [3, 3])
618s ***** assert (size (gprnd (-1, 1, 0, [4, 1])), [4, 1])
618s ***** assert (size (gprnd (-1, 1, 0, 4, 1)), [4, 1])
618s ***** assert (class (gprnd (0, 1, 0)), "double")
618s ***** assert (class (gprnd (0, 1, single (0))), "single")
618s ***** assert (class (gprnd (0, 1, single ([0, 0]))), "single")
618s ***** assert (class (gprnd (0, single (1),0)), "single")
618s ***** assert (class (gprnd (0, single ([1, 1]),0)), "single")
618s ***** assert (class (gprnd (single (0), 1, 0)), "single")
618s ***** assert (class (gprnd (single ([0, 0]), 1, 0)), "single")
618s ***** error<gprnd: function called with too few input arguments.> gprnd ()
618s ***** error<gprnd: function called with too few input arguments.> gprnd (1)
618s ***** error<gprnd: function called with too few input arguments.> gprnd (1, 2)
618s ***** error<gprnd: K, SIGMA, and THETA must be of common size or scalars.> ...
618s  gprnd (ones (3), ones (2), ones (2))
618s ***** error<gprnd: K, SIGMA, and THETA must be of common size or scalars.> ...
618s  gprnd (ones (2), ones (3), ones (2))
618s ***** error<gprnd: K, SIGMA, and THETA must be of common size or scalars.> ...
618s  gprnd (ones (2), ones (2), ones (3))
618s ***** error<gprnd: K, SIGMA, and THETA must not be complex.> gprnd (i, 2, 3)
618s ***** error<gprnd: K, SIGMA, and THETA must not be complex.> gprnd (1, i, 3)
618s ***** error<gprnd: K, SIGMA, and THETA must not be complex.> gprnd (1, 2, i)
618s ***** error<gprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
618s  gprnd (1, 2, 3, -1)
618s ***** error<gprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
618s  gprnd (1, 2, 3, 1.2)
618s ***** error<gprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
618s  gprnd (1, 2, 3, ones (2))
618s ***** error<gprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
618s  gprnd (1, 2, 3, [2 -1 2])
618s ***** error<gprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
618s  gprnd (1, 2, 3, [2 0 2.5])
618s ***** error<gprnd: dimensions must be non-negative integers.> ...
618s  gprnd (1, 2, 3, 2, -1, 5)
618s ***** error<gprnd: dimensions must be non-negative integers.> ...
618s  gprnd (1, 2, 3, 2, 1.5, 5)
618s ***** error<gprnd: K, SIGMA, and THETA must be scalars or of size SZ.> ...
618s  gprnd (2, ones (2), 2, 3)
618s ***** error<gprnd: K, SIGMA, and THETA must be scalars or of size SZ.> ...
618s  gprnd (2, ones (2), 2, [3, 2])
618s ***** error<gprnd: K, SIGMA, and THETA must be scalars or of size SZ.> ...
618s  gprnd (2, ones (2), 2, 3, 2)
618s 56 tests, 56 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/hygecdf.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hygecdf.m
618s ***** demo
618s  ## Plot various CDFs from the hypergeometric distribution
618s  x = 0:60;
618s  p1 = hygecdf (x, 500, 50, 100);
618s  p2 = hygecdf (x, 500, 60, 200);
618s  p3 = hygecdf (x, 500, 70, 300);
618s  plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
618s  grid on
618s  xlim ([0, 60])
618s  legend ({"m = 500, k = 50, n = 100", "m = 500, k = 60, n = 200", ...
618s           "m = 500, k = 70, n = 300"}, "location", "southeast")
618s  title ("Hypergeometric CDF")
618s  xlabel ("values in x (number of successes)")
618s  ylabel ("probability")
618s ***** shared x, y
618s  x = [-1 0 1 2 3];
618s  y = [0 1/6 5/6 1 1];
618s ***** assert (hygecdf (x, 4*ones (1,5), 2, 2), y, 5*eps)
618s ***** assert (hygecdf (x, 4, 2*ones (1,5), 2), y, 5*eps)
618s ***** assert (hygecdf (x, 4, 2, 2*ones (1,5)), y, 5*eps)
618s ***** assert (hygecdf (x, 4*[1 -1 NaN 1.1 1], 2, 2), [y(1) NaN NaN NaN y(5)], 5*eps)
618s ***** assert (hygecdf (x, 4*[1 -1 NaN 1.1 1], 2, 2, "upper"), ...
618s  [y(5) NaN NaN NaN y(1)], 5*eps)
618s ***** assert (hygecdf (x, 4, 2*[1 -1 NaN 1.1 1], 2), [y(1) NaN NaN NaN y(5)], 5*eps)
618s ***** assert (hygecdf (x, 4, 2*[1 -1 NaN 1.1 1], 2, "upper"), ...
618s  [y(5) NaN NaN NaN y(1)], 5*eps)
618s ***** assert (hygecdf (x, 4, 5, 2), [NaN NaN NaN NaN NaN])
618s ***** assert (hygecdf (x, 4, 2, 2*[1 -1 NaN 1.1 1]), [y(1) NaN NaN NaN y(5)], 5*eps)
618s ***** assert (hygecdf (x, 4, 2, 2*[1 -1 NaN 1.1 1], "upper"), ...
618s  [y(5) NaN NaN NaN y(1)], 5*eps)
618s ***** assert (hygecdf (x, 4, 2, 5), [NaN NaN NaN NaN NaN])
618s ***** assert (hygecdf ([x(1:2) NaN x(4:5)], 4, 2, 2), [y(1:2) NaN y(4:5)], 5*eps)
618s ***** test
618s  p = hygecdf (x, 10, [1 2 3 4 5], 2, "upper");
618s  assert (p, [1, 34/90, 2/30, 0, 0], 10*eps);
618s ***** test
618s  p = hygecdf (2*x, 10, [1 2 3 4 5], 2, "upper");
618s  assert (p, [1, 34/90, 0, 0, 0], 10*eps);
618s ***** assert (hygecdf ([x, NaN], 4, 2, 2), [y, NaN], 5*eps)
618s ***** assert (hygecdf (single ([x, NaN]), 4, 2, 2), single ([y, NaN]), ...
618s  eps ("single"))
618s ***** assert (hygecdf ([x, NaN], single (4), 2, 2), single ([y, NaN]), ...
618s  eps ("single"))
618s ***** assert (hygecdf ([x, NaN], 4, single (2), 2), single ([y, NaN]), ...
618s  eps ("single"))
618s ***** assert (hygecdf ([x, NaN], 4, 2, single (2)), single ([y, NaN]), ...
618s  eps ("single"))
618s ***** error<hygecdf: function called with too few input arguments.> hygecdf ()
618s ***** error<hygecdf: function called with too few input arguments.> hygecdf (1)
618s ***** error<hygecdf: function called with too few input arguments.> hygecdf (1,2)
618s ***** error<hygecdf: function called with too few input arguments.> hygecdf (1,2,3)
618s ***** error<hygecdf: invalid argument for upper tail.> hygecdf (1,2,3,4,5)
618s ***** error<hygecdf: invalid argument for upper tail.> hygecdf (1,2,3,4,"uper")
618s ***** error<hygecdf: X, T, k, and N must be of common size or scalars.> ...
618s  hygecdf (ones (2), ones (3), 1, 1)
618s ***** error<hygecdf: X, T, k, and N must be of common size or scalars.> ...
618s  hygecdf (1, ones (2), ones (3), 1)
618s ***** error<hygecdf: X, T, k, and N must be of common size or scalars.> ...
618s  hygecdf (1, 1, ones (2), ones (3))
618s ***** error<hygecdf: X, T, k, and N must not be complex.> hygecdf (i, 2, 2, 2)
618s ***** error<hygecdf: X, T, k, and N must not be complex.> hygecdf (2, i, 2, 2)
618s ***** error<hygecdf: X, T, k, and N must not be complex.> hygecdf (2, 2, i, 2)
618s ***** error<hygecdf: X, T, k, and N must not be complex.> hygecdf (2, 2, 2, i)
618s 32 tests, 32 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/loglpdf.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/loglpdf.m
618s ***** demo
618s  ## Plot various PDFs from the log-logistic distribution
618s  x = 0.001:0.001:2;
618s  y1 = loglpdf (x, log (1), 1/0.5);
618s  y2 = loglpdf (x, log (1), 1);
618s  y3 = loglpdf (x, log (1), 1/2);
618s  y4 = loglpdf (x, log (1), 1/4);
618s  y5 = loglpdf (x, log (1), 1/8);
618s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
618s  grid on
618s  ylim ([0,3])
618s  legend ({"σ = 2 (β = 0.5)", "σ = 1 (β = 1)", "σ = 0.5 (β = 2)", ...
618s           "σ = 0.25 (β = 4)", "σ = 0.125 (β = 8)"}, "location", "northeast")
618s  title ("Log-logistic PDF")
618s  xlabel ("values in x")
618s  ylabel ("density")
618s  text (0.1, 2.8, "μ = 0 (α = 1), values of σ (β) as shown in legend")
618s ***** shared out1, out2
618s  out1 = [0, 0, 1, 0.2500, 0.1111, 0.0625, 0.0400, 0.0278, 0];
618s  out2 = [0, 0, 0.0811, 0.0416, 0.0278, 0.0207, 0.0165, 0];
618s ***** assert (loglpdf ([-1,0,realmin,1:5,Inf], 0, 1), out1, 1e-4)
618s ***** assert (loglpdf ([-1,0,realmin,1:5,Inf], 0, 1), out1, 1e-4)
618s ***** assert (loglpdf ([-1:5,Inf], 1, 3), out2, 1e-4)
618s ***** assert (class (loglpdf (single (1), 2, 3)), "single")
618s ***** assert (class (loglpdf (1, single (2), 3)), "single")
618s ***** assert (class (loglpdf (1, 2, single (3))), "single")
618s ***** error<loglpdf: function called with too few input arguments.> loglpdf (1)
618s ***** error<loglpdf: function called with too few input arguments.> loglpdf (1, 2)
618s ***** error<loglpdf: X, MU, and SIGMA must be of common size or scalars.> ...
618s  loglpdf (1, ones (2), ones (3))
618s ***** error<loglpdf: X, MU, and SIGMA must be of common size or scalars.> ...
618s  loglpdf (ones (2), 1, ones (3))
618s ***** error<loglpdf: X, MU, and SIGMA must be of common size or scalars.> ...
618s  loglpdf (ones (2), ones (3), 1)
618s ***** error<loglpdf: X, MU, and SIGMA must not be complex.> loglpdf (i, 2, 3)
618s ***** error<loglpdf: X, MU, and SIGMA must not be complex.> loglpdf (1, i, 3)
618s ***** error<loglpdf: X, MU, and SIGMA must not be complex.> loglpdf (1, 2, i)
618s 14 tests, 14 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/cauchycdf.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/cauchycdf.m
618s ***** demo
618s  ## Plot various CDFs from the Cauchy distribution
618s  x = -5:0.01:5;
618s  p1 = cauchycdf (x, 0, 0.5);
618s  p2 = cauchycdf (x, 0, 1);
618s  p3 = cauchycdf (x, 0, 2);
618s  p4 = cauchycdf (x, -2, 1);
618s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
618s  grid on
618s  xlim ([-5, 5])
618s  legend ({"x0 = 0, γ = 0.5", "x0 = 0, γ = 1", ...
618s           "x0 = 0, γ = 2", "x0 = -2, γ = 1"}, "location", "southeast")
618s  title ("Cauchy CDF")
618s  xlabel ("values in x")
618s  ylabel ("probability")
618s ***** shared x, y
618s  x = [-1 0 0.5 1 2];
618s  y = 1/pi * atan ((x-1) / 2) + 1/2;
618s ***** assert (cauchycdf (x, ones (1,5), 2*ones (1,5)), y)
618s ***** assert (cauchycdf (x, 1, 2*ones (1,5)), y)
618s ***** assert (cauchycdf (x, ones (1,5), 2), y)
618s ***** assert (cauchycdf (x, [-Inf 1 NaN 1 Inf], 2), [NaN y(2) NaN y(4) NaN])
618s ***** assert (cauchycdf (x, 1, 2*[0 1 NaN 1 Inf]), [NaN y(2) NaN y(4) NaN])
618s ***** assert (cauchycdf ([x(1:2) NaN x(4:5)], 1, 2), [y(1:2) NaN y(4:5)])
618s ***** assert (cauchycdf ([x, NaN], 1, 2), [y, NaN])
618s ***** assert (cauchycdf (single ([x, NaN]), 1, 2), single ([y, NaN]), eps ("single"))
618s ***** assert (cauchycdf ([x, NaN], single (1), 2), single ([y, NaN]), eps ("single"))
618s ***** assert (cauchycdf ([x, NaN], 1, single (2)), single ([y, NaN]), eps ("single"))
618s ***** error<cauchycdf: function called with too few input arguments.> cauchycdf ()
618s ***** error<cauchycdf: function called with too few input arguments.> cauchycdf (1)
618s ***** error<cauchycdf: function called with too few input arguments.> ...
618s  cauchycdf (1, 2)
618s ***** error<cauchycdf: function called with too many inputs> ...
618s  cauchycdf (1, 2, 3, 4, 5)
618s ***** error<cauchycdf: invalid argument for upper tail.> cauchycdf (1, 2, 3, "tail")
618s ***** error<cauchycdf: invalid argument for upper tail.> cauchycdf (1, 2, 3, 4)
618s ***** error<cauchycdf: X, X0, and GAMMA must be of common size or scalars.> ...
618s  cauchycdf (ones (3), ones (2), ones (2))
618s ***** error<cauchycdf: X, X0, and GAMMA must be of common size or scalars.> ...
618s  cauchycdf (ones (2), ones (3), ones (2))
618s ***** error<cauchycdf: X, X0, and GAMMA must be of common size or scalars.> ...
618s  cauchycdf (ones (2), ones (2), ones (3))
618s ***** error<cauchycdf: X, X0, and GAMMA must not be complex.> cauchycdf (i, 2, 2)
618s ***** error<cauchycdf: X, X0, and GAMMA must not be complex.> cauchycdf (2, i, 2)
618s ***** error<cauchycdf: X, X0, and GAMMA must not be complex.> cauchycdf (2, 2, i)
618s 22 tests, 22 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/poisscdf.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/poisscdf.m
618s ***** demo
618s  ## Plot various CDFs from the Poisson distribution
618s  x = 0:20;
618s  p1 = poisscdf (x, 1);
618s  p2 = poisscdf (x, 4);
618s  p3 = poisscdf (x, 10);
618s  plot (x, p1, "*b", x, p2, "*g", x, p3, "*r")
618s  grid on
618s  ylim ([0, 1])
618s  legend ({"λ = 1", "λ = 4", "λ = 10"}, "location", "southeast")
618s  title ("Poisson CDF")
618s  xlabel ("values in x (number of occurences)")
618s  ylabel ("probability")
618s ***** shared x, y
618s  x = [-1 0 1 2 Inf];
618s  y = [0, gammainc(1, (x(2:4) +1), "upper"), 1];
618s ***** assert (poisscdf (x, ones (1,5)), y)
618s ***** assert (poisscdf (x, 1), y)
618s ***** assert (poisscdf (x, [1 0 NaN 1 1]), [y(1) 1 NaN y(4:5)])
618s ***** assert (poisscdf ([x(1:2) NaN Inf x(5)], 1), [y(1:2) NaN 1 y(5)])
618s ***** assert (poisscdf ([x, NaN], 1), [y, NaN])
618s ***** assert (poisscdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single"))
618s ***** assert (poisscdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single"))
618s ***** error<poisscdf: function called with too few input arguments.> poisscdf ()
618s ***** error<poisscdf: function called with too few input arguments.> poisscdf (1)
618s ***** error<poisscdf: invalid argument for upper tail.> poisscdf (1, 2, 3)
618s ***** error<poisscdf: invalid argument for upper tail.> poisscdf (1, 2, "tail")
618s ***** error<poisscdf: X and LAMBDA must be of common size or scalars.> ...
618s  poisscdf (ones (3), ones (2))
618s ***** error<poisscdf: X and LAMBDA must be of common size or scalars.> ...
618s  poisscdf (ones (2), ones (3))
618s ***** error<poisscdf: X and LAMBDA must not be complex.> poisscdf (i, 2)
618s ***** error<poisscdf: X and LAMBDA must not be complex.> poisscdf (2, i)
618s 15 tests, 15 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/fpdf.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/fpdf.m
618s ***** demo
618s  ## Plot various PDFs from the F distribution
618s  x = 0.01:0.01:4;
618s  y1 = fpdf (x, 1, 1);
618s  y2 = fpdf (x, 2, 1);
618s  y3 = fpdf (x, 5, 2);
618s  y4 = fpdf (x, 10, 1);
618s  y5 = fpdf (x, 100, 100);
618s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c", x, y5, "-m")
618s  grid on
618s  ylim ([0, 2.5])
618s  legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ...
618s           "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ...
618s           "df1 = 100, df2 = 100"}, "location", "northeast")
618s  title ("F PDF")
618s  xlabel ("values in x")
618s  ylabel ("density")
618s ***** shared x, y
618s  x = [-1 0 0.5 1 2];
618s  y = [0 0 4/9 1/4 1/9];
618s ***** assert (fpdf (x, 2*ones (1,5), 2*ones (1,5)), y, eps)
618s ***** assert (fpdf (x, 2, 2*ones (1,5)), y, eps)
618s ***** assert (fpdf (x, 2*ones (1,5), 2), y, eps)
618s ***** assert (fpdf (x, [0 NaN Inf 2 2], 2), [NaN NaN NaN y(4:5)], eps)
618s ***** assert (fpdf (x, 2, [0 NaN Inf 2 2]), [NaN NaN NaN y(4:5)], eps)
618s ***** assert (fpdf ([x, NaN], 2, 2), [y, NaN], eps)
618s ***** test #F (x, 1, df1) == T distribution (sqrt (x), df1) / sqrt (x)
618s  rand ("seed", 1234);    # for reproducibility
618s  xr = rand (10,1);
618s  xr = xr(x > 0.1 & x < 0.9);
618s  yr = tpdf (sqrt (xr), 2) ./ sqrt (xr);
618s  assert (fpdf (xr, 1, 2), yr, 5*eps);
618s ***** assert (fpdf (single ([x, NaN]), 2, 2), single ([y, NaN]), eps ("single"))
618s ***** assert (fpdf ([x, NaN], single (2), 2), single ([y, NaN]), eps ("single"))
618s ***** assert (fpdf ([x, NaN], 2, single (2)), single ([y, NaN]), eps ("single"))
618s ***** error<fpdf: function called with too few input arguments.> fpdf ()
618s ***** error<fpdf: function called with too few input arguments.> fpdf (1)
618s ***** error<fpdf: function called with too few input arguments.> fpdf (1,2)
618s ***** error<fpdf: X, DF1, and DF2 must be of common size or scalars.> ...
618s  fpdf (ones (3), ones (2), ones (2))
618s ***** error<fpdf: X, DF1, and DF2 must be of common size or scalars.> ...
618s  fpdf (ones (2), ones (3), ones (2))
618s ***** error<fpdf: X, DF1, and DF2 must be of common size or scalars.> ...
618s  fpdf (ones (2), ones (2), ones (3))
618s ***** error<fpdf: X, DF1, and DF2 must not be complex.> fpdf (i, 2, 2)
618s ***** error<fpdf: X, DF1, and DF2 must not be complex.> fpdf (2, i, 2)
618s ***** error<fpdf: X, DF1, and DF2 must not be complex.> fpdf (2, 2, i)
618s 19 tests, 19 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/wishrnd.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wishrnd.m
618s ***** assert(size (wishrnd (1,2)), [1, 1]);
618s ***** assert(size (wishrnd (1,2,[])), [1, 1]);
618s ***** assert(size (wishrnd (1,2,1)), [1, 1]);
618s ***** assert(size (wishrnd ([],2,1)), [1, 1]);
618s ***** assert(size (wishrnd ([3 1; 1 3], 2.00001, [], 1)), [2, 2]);
618s ***** assert(size (wishrnd (eye(2), 2, [], 3)), [2, 2, 3]);
618s ***** error wishrnd ()
618s ***** error wishrnd (1)
618s ***** error wishrnd ([1; 1], 2)
618s 9 tests, 9 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/evpdf.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/evpdf.m
618s ***** demo
618s  ## Plot various PDFs from the Extreme value distribution
618s  x = -10:0.001:10;
618s  y1 = evpdf (x, 0.5, 2);
618s  y2 = evpdf (x, 1.0, 2);
618s  y3 = evpdf (x, 1.5, 3);
618s  y4 = evpdf (x, 3.0, 4);
618s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
618s  grid on
618s  ylim ([0, 0.2])
618s  legend ({"μ = 0.5, σ = 2", "μ = 1.0, σ = 2", ...
618s           "μ = 1.5, σ = 3", "μ = 3.0, σ = 4"}, "location", "northeast")
618s  title ("Extreme value PDF")
618s  xlabel ("values in x")
618s  ylabel ("density")
618s ***** shared x, y0, y1
618s  x = [-5, 0, 1, 2, 3];
618s  y0 = [0.0067, 0.3679, 0.1794, 0.0046, 0];
618s  y1 = [0.0025, 0.2546, 0.3679, 0.1794, 0.0046];
618s ***** assert (evpdf (x), y0, 1e-4)
618s ***** assert (evpdf (x, zeros (1,5), ones (1,5)), y0, 1e-4)
618s ***** assert (evpdf (x, ones (1,5), ones (1,5)), y1, 1e-4)
618s ***** error<evpdf: function called with too few input arguments.> evpdf ()
618s ***** error<evpdf: X, MU, and SIGMA must be of common size or scalars.> ...
618s  evpdf (ones (3), ones (2), ones (2))
618s ***** error<evpdf: X, MU, and SIGMA must not be complex.> evpdf (i, 2, 2)
618s ***** error<evpdf: X, MU, and SIGMA must not be complex.> evpdf (2, i, 2)
618s ***** error<evpdf: X, MU, and SIGMA must not be complex.> evpdf (2, 2, i)
618s 8 tests, 8 passed, 0 known failure, 0 skipped
618s [inst/dist_fun/unifinv.m]
618s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unifinv.m
618s ***** demo
618s  ## Plot various iCDFs from the continuous uniform distribution
618s  p = 0.001:0.001:0.999;
618s  x1 = unifinv (p, 2, 5);
618s  x2 = unifinv (p, 3, 9);
618s  plot (p, x1, "-b", p, x2, "-g")
618s  grid on
618s  xlim ([0, 1])
618s  ylim ([0, 10])
618s  legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "northwest")
618s  title ("Continuous uniform iCDF")
618s  xlabel ("probability")
618s  ylabel ("values in x")
618s ***** shared p
618s  p = [-1 0 0.5 1 2];
618s ***** assert (unifinv (p, ones (1,5), 2*ones (1,5)), [NaN 1 1.5 2 NaN])
618s ***** assert (unifinv (p, 0, 1), [NaN 1 1.5 2 NaN] - 1)
618s ***** assert (unifinv (p, 1, 2*ones (1,5)), [NaN 1 1.5 2 NaN])
618s ***** assert (unifinv (p, ones (1,5), 2), [NaN 1 1.5 2 NaN])
618s ***** assert (unifinv (p, [1 2 NaN 1 1], 2), [NaN NaN NaN 2 NaN])
618s ***** assert (unifinv (p, 1, 2*[1 0 NaN 1 1]), [NaN NaN NaN 2 NaN])
618s ***** assert (unifinv ([p(1:2) NaN p(4:5)], 1, 2), [NaN 1 NaN 2 NaN])
618s ***** assert (unifinv ([p, NaN], 1, 2), [NaN 1 1.5 2 NaN NaN])
618s ***** assert (unifinv (single ([p, NaN]), 1, 2), single ([NaN 1 1.5 2 NaN NaN]))
618s ***** assert (unifinv ([p, NaN], single (1), 2), single ([NaN 1 1.5 2 NaN NaN]))
619s ***** assert (unifinv ([p, NaN], 1, single (2)), single ([NaN 1 1.5 2 NaN NaN]))
619s ***** error<unifinv: function called with too few input arguments.> unifinv ()
619s ***** error<unifinv: function called with too few input arguments.> unifinv (1, 2)
619s ***** error<unifinv: P, A, and B must be of common size or scalars.> ...
619s  unifinv (ones (3), ones (2), ones (2))
619s ***** error<unifinv: P, A, and B must be of common size or scalars.> ...
619s  unifinv (ones (2), ones (3), ones (2))
619s ***** error<unifinv: P, A, and B must be of common size or scalars.> ...
619s  unifinv (ones (2), ones (2), ones (3))
619s ***** error<unifinv: P, A, and B must not be complex.> unifinv (i, 2, 2)
619s ***** error<unifinv: P, A, and B must not be complex.> unifinv (2, i, 2)
619s ***** error<unifinv: P, A, and B must not be complex.> unifinv (2, 2, i)
619s 19 tests, 19 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/laplaceinv.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/laplaceinv.m
619s ***** demo
619s  ## Plot various iCDFs from the Laplace distribution
619s  p = 0.001:0.001:0.999;
619s  x1 = cauchyinv (p, 0, 1);
619s  x2 = cauchyinv (p, 0, 2);
619s  x3 = cauchyinv (p, 0, 4);
619s  x4 = cauchyinv (p, -5, 4);
619s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
619s  grid on
619s  ylim ([-10, 10])
619s  legend ({"μ = 0, β = 1", "μ = 0, β = 2", ...
619s           "μ = 0, β = 4", "μ = -5, β = 4"}, "location", "northwest")
619s  title ("Laplace iCDF")
619s  xlabel ("probability")
619s  ylabel ("values in x")
619s ***** shared p, x
619s  p = [-1 0 0.5 1 2];
619s  x = [NaN, -Inf, 0, Inf, NaN];
619s ***** assert (laplaceinv (p, 0, 1), x)
619s ***** assert (laplaceinv (p, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), Inf, NaN])
619s ***** assert (laplaceinv ([p, NaN], 0, 1), [x, NaN])
619s ***** assert (laplaceinv (single ([p, NaN]), 0, 1), single ([x, NaN]))
619s ***** assert (laplaceinv ([p, NaN], single (0), 1), single ([x, NaN]))
619s ***** assert (laplaceinv ([p, NaN], 0, single (1)), single ([x, NaN]))
619s ***** error<laplaceinv: function called with too few input arguments.> laplaceinv ()
619s ***** error<laplaceinv: function called with too few input arguments.> laplaceinv (1)
619s ***** error<laplaceinv: function called with too few input arguments.> ...
619s  laplaceinv (1, 2)
619s ***** error<laplaceinv: function called with too many inputs> laplaceinv (1, 2, 3, 4)
619s ***** error<laplaceinv: P, MU, and BETA must be of common size or scalars.> ...
619s  laplaceinv (1, ones (2), ones (3))
619s ***** error<laplaceinv: P, MU, and BETA must be of common size or scalars.> ...
619s  laplaceinv (ones (2), 1, ones (3))
619s ***** error<laplaceinv: P, MU, and BETA must be of common size or scalars.> ...
619s  laplaceinv (ones (2), ones (3), 1)
619s ***** error<laplaceinv: P, MU, and BETA must not be complex.> laplaceinv (i, 2, 3)
619s ***** error<laplaceinv: P, MU, and BETA must not be complex.> laplaceinv (1, i, 3)
619s ***** error<laplaceinv: P, MU, and BETA must not be complex.> laplaceinv (1, 2, i)
619s 16 tests, 16 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/hygepdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hygepdf.m
619s ***** demo
619s  ## Plot various PDFs from the hypergeometric distribution
619s  x = 0:60;
619s  y1 = hygepdf (x, 500, 50, 100);
619s  y2 = hygepdf (x, 500, 60, 200);
619s  y3 = hygepdf (x, 500, 70, 300);
619s  plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
619s  grid on
619s  xlim ([0, 60])
619s  ylim ([0, 0.18])
619s  legend ({"m = 500, k = 50, μ = 100", "m = 500, k = 60, μ = 200", ...
619s           "m = 500, k = 70, μ = 300"}, "location", "northeast")
619s  title ("Hypergeometric PDF")
619s  xlabel ("values in x (number of successes)")
619s  ylabel ("density")
619s ***** shared x, y
619s  x = [-1 0 1 2 3];
619s  y = [0 1/6 4/6 1/6 0];
619s ***** assert (hygepdf (x, 4 * ones (1, 5), 2, 2), y, 3 * eps)
619s ***** assert (hygepdf (x, 4, 2 * ones (1, 5), 2), y, 3 * eps)
619s ***** assert (hygepdf (x, 4, 2, 2 * ones (1, 5)), y, 3 * eps)
619s ***** assert (hygepdf (x, 4 * [1, -1, NaN, 1.1, 1], 2, 2), [0, NaN, NaN, NaN, 0])
619s ***** assert (hygepdf (x, 4, 2 * [1, -1, NaN, 1.1, 1], 2), [0, NaN, NaN, NaN, 0])
619s ***** assert (hygepdf (x, 4, 5, 2), [NaN, NaN, NaN, NaN, NaN], 3 * eps)
619s ***** assert (hygepdf (x, 4, 2, 2 * [1, -1, NaN, 1.1, 1]), [0, NaN, NaN, NaN, 0])
619s ***** assert (hygepdf (x, 4, 2, 5), [NaN, NaN, NaN, NaN, NaN], 3 * eps)
619s ***** assert (hygepdf ([x, NaN], 4, 2, 2), [y, NaN], 3 * eps)
619s ***** assert (hygepdf (single ([x, NaN]), 4, 2, 2), single ([y, NaN]), eps ("single"))
619s ***** assert (hygepdf ([x, NaN], single (4), 2, 2), single ([y, NaN]), eps ("single"))
619s ***** assert (hygepdf ([x, NaN], 4, single (2), 2), single ([y, NaN]), eps ("single"))
619s ***** assert (hygepdf ([x, NaN], 4, 2, single (2)), single ([y, NaN]), eps ("single"))
619s ***** test
619s  z = zeros(3,5);
619s  z([4,5,6,8,9,12]) = [1, 0.5, 1/6, 0.5, 2/3, 1/6];
619s  assert (hygepdf (x, 4, [0, 1, 2], 2, "vectorexpand"), z, 3 * eps);
619s  assert (hygepdf (x, 4, [0, 1, 2]', 2, "vectorexpand"), z, 3 * eps);
619s  assert (hygepdf (x', 4, [0, 1, 2], 2, "vectorexpand"), z, 3 * eps);
619s  assert (hygepdf (2, 4, [0 ,1, 2], 2, "vectorexpand"), z(:,4), 3 * eps);
619s  assert (hygepdf (x, 4, 1, 2, "vectorexpand"), z(2,:), 3 *eps);
619s  assert (hygepdf ([NaN, x], 4, [0 1 2]', 2, "vectorexpand"), [NaN(3, 1), z], 3 * eps);
619s ***** error<hygepdf: function called with too few input arguments.> hygepdf ()
619s ***** error<hygepdf: function called with too few input arguments.> hygepdf (1)
619s ***** error<hygepdf: function called with too few input arguments.> hygepdf (1,2)
619s ***** error<hygepdf: function called with too few input arguments.> hygepdf (1,2,3)
619s ***** error<hygepdf: X, T, M, and N must be of common size or scalars.> ...
619s  hygepdf (1, ones (3), ones (2), ones (2))
619s ***** error<hygepdf: X, T, M, and N must be of common size or scalars.> ...
619s  hygepdf (1, ones (2), ones (3), ones (2))
619s ***** error<hygepdf: X, T, M, and N must be of common size or scalars.> ...
619s  hygepdf (1, ones (2), ones (2), ones (3))
619s ***** error<hygepdf: X, T, M, and N must not be complex.> hygepdf (i, 2, 2, 2)
619s ***** error<hygepdf: X, T, M, and N must not be complex.> hygepdf (2, i, 2, 2)
619s ***** error<hygepdf: X, T, M, and N must not be complex.> hygepdf (2, 2, i, 2)
619s ***** error<hygepdf: X, T, M, and N must not be complex.> hygepdf (2, 2, 2, i)
619s 25 tests, 25 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/burrinv.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/burrinv.m
619s ***** demo
619s  ## Plot various iCDFs from the Burr type XII distribution
619s  p = 0.001:0.001:0.999;
619s  x1 = burrinv (p, 1, 1, 1);
619s  x2 = burrinv (p, 1, 1, 2);
619s  x3 = burrinv (p, 1, 1, 3);
619s  x4 = burrinv (p, 1, 2, 1);
619s  x5 = burrinv (p, 1, 3, 1);
619s  x6 = burrinv (p, 1, 0.5, 2);
619s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
619s        p, x4, "-c", p, x5, "-m", p, x6, "-k")
619s  grid on
619s  ylim ([0, 5])
619s  legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ...
619s           "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ...
619s           "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ...
619s          "location", "northwest")
619s  title ("Burr type XII iCDF")
619s  xlabel ("probability")
619s  ylabel ("values in x")
619s ***** shared p, y
619s  p = [-Inf, -1, 0, 1/2, 1, 2, Inf];
619s  y = [NaN, NaN, 0, 1 , Inf, NaN, NaN];
619s ***** assert (burrinv (p, ones (1,7), ones (1,7), ones(1,7)), y, eps)
619s ***** assert (burrinv (p, 1, 1, 1), y, eps)
619s ***** assert (burrinv (p, [1, 1, 1, NaN, 1, 1, 1], 1, 1), [y(1:3), NaN, y(5:7)], eps)
619s ***** assert (burrinv (p, 1, [1, 1, 1, NaN, 1, 1, 1], 1), [y(1:3), NaN, y(5:7)], eps)
619s ***** assert (burrinv (p, 1, 1, [1, 1, 1, NaN, 1, 1, 1]), [y(1:3), NaN, y(5:7)], eps)
619s ***** assert (burrinv ([p, NaN], 1, 1, 1), [y, NaN], eps)
619s ***** assert (burrinv (single ([p, NaN]), 1, 1, 1), single ([y, NaN]), eps("single"))
619s ***** assert (burrinv ([p, NaN], single (1), 1, 1), single ([y, NaN]), eps("single"))
619s ***** assert (burrinv ([p, NaN], 1, single (1), 1), single ([y, NaN]), eps("single"))
619s ***** assert (burrinv ([p, NaN], 1, 1, single (1)), single ([y, NaN]), eps("single"))
619s ***** error<burrinv: function called with too few input arguments.> burrinv ()
619s ***** error<burrinv: function called with too few input arguments.> burrinv (1)
619s ***** error<burrinv: function called with too few input arguments.> burrinv (1, 2)
619s ***** error<burrinv: function called with too few input arguments.> burrinv (1, 2, 3)
619s ***** error<burrinv: function called with too many inputs> ...
619s  burrinv (1, 2, 3, 4, 5)
619s ***** error<burrinv: P, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrinv (ones (3), ones (2), ones(2), ones(2))
619s ***** error<burrinv: P, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrinv (ones (2), ones (3), ones(2), ones(2))
619s ***** error<burrinv: P, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrinv (ones (2), ones (2), ones(3), ones(2))
619s ***** error<burrinv: P, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrinv (ones (2), ones (2), ones(2), ones(3))
619s ***** error<burrinv: P, LAMBDA, C, and K must not be complex.> burrinv (i, 2, 3, 4)
619s ***** error<burrinv: P, LAMBDA, C, and K must not be complex.> burrinv (1, i, 3, 4)
619s ***** error<burrinv: P, LAMBDA, C, and K must not be complex.> burrinv (1, 2, i, 4)
619s ***** error<burrinv: P, LAMBDA, C, and K must not be complex.> burrinv (1, 2, 3, i)
619s 23 tests, 23 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/gevpdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gevpdf.m
619s ***** demo
619s  ## Plot various PDFs from the generalized extreme value distribution
619s  x = -1:0.001:10;
619s  y1 = gevpdf (x, 1, 1, 1);
619s  y2 = gevpdf (x, 0.5, 1, 1);
619s  y3 = gevpdf (x, 1, 1, 5);
619s  y4 = gevpdf (x, 1, 2, 5);
619s  y5 = gevpdf (x, 1, 5, 5);
619s  y6 = gevpdf (x, 1, 0.5, 5);
619s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
619s        x, y4, "-c", x, y5, "-m", x, y6, "-k")
619s  grid on
619s  xlim ([-1, 10])
619s  ylim ([0, 1.1])
619s  legend ({"k = 1, σ = 1, μ = 1", "k = 0.5, σ = 1, μ = 1", ...
619s           "k = 1, σ = 1, μ = 5", "k = 1, σ = 2, μ = 5", ...
619s           "k = 1, σ = 5, μ = 5", "k = 1, σ = 0.5, μ = 5"}, ...
619s          "location", "northeast")
619s  title ("Generalized extreme value PDF")
619s  xlabel ("values in x")
619s  ylabel ("density")
619s ***** test
619s  x = 0:0.5:2.5;
619s  sigma = 1:6;
619s  k = 1;
619s  mu = 0;
619s  y = gevpdf (x, k, sigma, mu);
619s  expected_y = [0.367879   0.143785   0.088569   0.063898   0.049953   0.040997];
619s  assert (y, expected_y, 0.001);
619s ***** test
619s  x = -0.5:0.5:2.5;
619s  sigma = 0.5;
619s  k = 1;
619s  mu = 0;
619s  y = gevpdf (x, k, sigma, mu);
619s  expected_y = [0 0.735759   0.303265   0.159229   0.097350   0.065498   0.047027];
619s  assert (y, expected_y, 0.001);
619s ***** test # check for continuity for k near 0
619s  x = 1;
619s  sigma = 0.5;
619s  k = -0.03:0.01:0.03;
619s  mu = 0;
619s  y = gevpdf (x, k, sigma, mu);
619s  expected_y = [0.23820   0.23764   0.23704   0.23641   0.23576   0.23508   0.23438];
619s  assert (y, expected_y, 0.001);
619s ***** error<gevpdf: function called with too few input arguments.> gevpdf ()
619s ***** error<gevpdf: function called with too few input arguments.> gevpdf (1)
619s ***** error<gevpdf: function called with too few input arguments.> gevpdf (1, 2)
619s ***** error<gevpdf: function called with too few input arguments.> gevpdf (1, 2, 3)
619s ***** error<gevpdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
619s  gevpdf (ones (3), ones (2), ones(2), ones(2))
619s ***** error<gevpdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
619s  gevpdf (ones (2), ones (3), ones(2), ones(2))
619s ***** error<gevpdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
619s  gevpdf (ones (2), ones (2), ones(3), ones(2))
619s ***** error<gevpdf: X, K, SIGMA, and MU must be of common size or scalars.> ...
619s  gevpdf (ones (2), ones (2), ones(2), ones(3))
619s ***** error<gevpdf: X, K, SIGMA, and MU must not be complex.> gevpdf (i, 2, 3, 4)
619s ***** error<gevpdf: X, K, SIGMA, and MU must not be complex.> gevpdf (1, i, 3, 4)
619s ***** error<gevpdf: X, K, SIGMA, and MU must not be complex.> gevpdf (1, 2, i, 4)
619s ***** error<gevpdf: X, K, SIGMA, and MU must not be complex.> gevpdf (1, 2, 3, i)
619s 15 tests, 15 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/tlsinv.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tlsinv.m
619s ***** demo
619s  ## Plot various iCDFs from the location-scale Student's T distribution
619s  p = 0.001:0.001:0.999;
619s  x1 = tlsinv (p, 0, 1, 1);
619s  x2 = tlsinv (p, 0, 2, 2);
619s  x3 = tlsinv (p, 3, 2, 5);
619s  x4 = tlsinv (p, -1, 3, Inf);
619s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-m")
619s  grid on
619s  xlim ([0, 1])
619s  ylim ([-8, 8])
619s  legend ({"mu = 0, sigma = 1, nu = 1", "mu = 0, sigma = 2, nu = 2", ...
619s           "mu = 3, sigma = 2, nu = 5", 'mu = -1, sigma = 3, nu = \infty'}, ...
619s          "location", "southeast")
619s  title ("Location-scale Student's T iCDF")
619s  xlabel ("probability")
619s  ylabel ("values in x")
619s ***** shared p
619s  p = [-1 0 0.5 1 2];
619s ***** assert (tlsinv (p, 0, 1, ones (1,5)), [NaN -Inf 0 Inf NaN])
619s ***** assert (tlsinv (p, 0, 1, 1), [NaN -Inf 0 Inf NaN], eps)
619s ***** assert (tlsinv (p, 0, 1, [1 0 NaN 1 1]), [NaN NaN NaN Inf NaN], eps)
619s ***** assert (tlsinv ([p(1:2) NaN p(4:5)], 0, 1, 1), [NaN -Inf NaN Inf NaN])
619s ***** assert (class (tlsinv ([p, NaN], 0, 1, 1)), "double")
619s ***** assert (class (tlsinv (single ([p, NaN]), 0, 1, 1)), "single")
619s ***** assert (class (tlsinv ([p, NaN], single (0), 1, 1)), "single")
619s ***** assert (class (tlsinv ([p, NaN], 0, single (1), 1)), "single")
619s ***** assert (class (tlsinv ([p, NaN], 0, 1, single (1))), "single")
619s ***** error<tlsinv: function called with too few input arguments.> tlsinv ()
619s ***** error<tlsinv: function called with too few input arguments.> tlsinv (1)
619s ***** error<tlsinv: function called with too few input arguments.> tlsinv (1, 2)
619s ***** error<tlsinv: function called with too few input arguments.> tlsinv (1, 2, 3)
619s ***** error<tlsinv: P, MU, SIGMA, and NU must be of common size or scalars.> ...
619s  tlsinv (ones (3), ones (2), 1, 1)
619s ***** error<tlsinv: P, MU, SIGMA, and NU must be of common size or scalars.> ...
619s  tlsinv (ones (2), 1, ones (3), 1)
619s ***** error<tlsinv: P, MU, SIGMA, and NU must be of common size or scalars.> ...
619s  tlsinv (ones (2), 1, 1, ones (3))
619s ***** error<tlsinv: P, MU, SIGMA, and NU must not be complex.> tlsinv (i, 2, 3, 4)
619s ***** error<tlsinv: P, MU, SIGMA, and NU must not be complex.> tlsinv (2, i, 3, 4)
619s ***** error<tlsinv: P, MU, SIGMA, and NU must not be complex.> tlsinv (2, 2, i, 4)
619s ***** error<tlsinv: P, MU, SIGMA, and NU must not be complex.> tlsinv (2, 2, 3, i)
619s 20 tests, 20 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/exppdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/exppdf.m
619s ***** demo
619s  ## Plot various PDFs from the exponential distribution
619s  x = 0:0.01:5;
619s  y1 = exppdf (x, 2/3);
619s  y2 = exppdf (x, 1.0);
619s  y3 = exppdf (x, 2.0);
619s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r")
619s  grid on
619s  ylim ([0, 1.5])
619s  legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "northeast")
619s  title ("Exponential PDF")
619s  xlabel ("values in x")
619s  ylabel ("density")
619s ***** shared x,y
619s  x = [-1 0 0.5 1 Inf];
619s  y = gampdf (x, 1, 2);
619s ***** assert (exppdf (x, 2*ones (1,5)), y)
619s ***** assert (exppdf (x, 2*[1 0 NaN 1 1]), [y(1) NaN NaN y(4:5)])
619s ***** assert (exppdf ([x, NaN], 2), [y, NaN])
619s ***** assert (exppdf (single ([x, NaN]), 2), single ([y, NaN]))
619s ***** assert (exppdf ([x, NaN], single (2)), single ([y, NaN]))
619s ***** error<exppdf: function called with too few input arguments.> exppdf ()
619s ***** error<exppdf: function called with too many inputs> exppdf (1,2,3)
619s ***** error<exppdf: X and MU must be of common size or scalars.> ...
619s  exppdf (ones (3), ones (2))
619s ***** error<exppdf: X and MU must be of common size or scalars.> ...
619s  exppdf (ones (2), ones (3))
619s ***** error<exppdf: X and MU must not be complex.> exppdf (i, 2)
619s ***** error<exppdf: X and MU must not be complex.> exppdf (2, i)
619s 11 tests, 11 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/burrpdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/burrpdf.m
619s ***** demo
619s  ## Plot various PDFs from the Burr type XII distribution
619s  x = 0.001:0.001:3;
619s  y1 = burrpdf (x, 1, 1, 1);
619s  y2 = burrpdf (x, 1, 1, 2);
619s  y3 = burrpdf (x, 1, 1, 3);
619s  y4 = burrpdf (x, 1, 2, 1);
619s  y5 = burrpdf (x, 1, 3, 1);
619s  y6 = burrpdf (x, 1, 0.5, 2);
619s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", ...
619s        x, y4, "-c", x, y5, "-m", x, y6, "-k")
619s  grid on
619s  ylim ([0, 2])
619s  legend ({"λ = 1, c = 1, k = 1", "λ = 1, c = 1, k = 2", ...
619s           "λ = 1, c = 1, k = 3", "λ = 1, c = 2, k = 1", ...
619s           "λ = 1, c = 3, k = 1", "λ = 1, c = 0.5, k = 2"}, ...
619s          "location", "northeast")
619s  title ("Burr type XII PDF")
619s  xlabel ("values in x")
619s  ylabel ("density")
619s ***** shared x, y
619s  x = [-1, 0, 1, 2, Inf];
619s  y = [0, 1, 1/4, 1/9, 0];
619s ***** assert (burrpdf (x, ones(1,5), ones (1,5), ones (1,5)), y)
619s ***** assert (burrpdf (x, 1, 1, 1), y)
619s ***** assert (burrpdf (x, [1, 1, NaN, 1, 1], 1, 1), [y(1:2), NaN, y(4:5)])
619s ***** assert (burrpdf (x, 1, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)])
619s ***** assert (burrpdf (x, 1, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)])
619s ***** assert (burrpdf ([x, NaN], 1, 1, 1), [y, NaN])
619s ***** assert (burrpdf (single ([x, NaN]), 1, 1, 1), single ([y, NaN]))
619s ***** assert (burrpdf ([x, NaN], single (1), 1, 1), single ([y, NaN]))
619s ***** assert (burrpdf ([x, NaN], 1, single (1), 1), single ([y, NaN]))
619s ***** assert (burrpdf ([x, NaN], 1, 1, single (1)), single ([y, NaN]))
619s ***** error<burrpdf: function called with too few input arguments.> burrpdf ()
619s ***** error<burrpdf: function called with too few input arguments.> burrpdf (1)
619s ***** error<burrpdf: function called with too few input arguments.> burrpdf (1, 2)
619s ***** error<burrpdf: function called with too few input arguments.> burrpdf (1, 2, 3)
619s ***** error<burrpdf: function called with too many inputs> ...
619s  burrpdf (1, 2, 3, 4, 5)
619s ***** error<burrpdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrpdf (ones (3), ones (2), ones(2), ones(2))
619s ***** error<burrpdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrpdf (ones (2), ones (3), ones(2), ones(2))
619s ***** error<burrpdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrpdf (ones (2), ones (2), ones(3), ones(2))
619s ***** error<burrpdf: X, LAMBDA, C, and K must be of common size or scalars.> ...
619s  burrpdf (ones (2), ones (2), ones(2), ones(3))
619s ***** error<burrpdf: X, LAMBDA, C, and K must not be complex.> burrpdf (i, 2, 3, 4)
619s ***** error<burrpdf: X, LAMBDA, C, and K must not be complex.> burrpdf (1, i, 3, 4)
619s ***** error<burrpdf: X, LAMBDA, C, and K must not be complex.> burrpdf (1, 2, i, 4)
619s ***** error<burrpdf: X, LAMBDA, C, and K must not be complex.> burrpdf (1, 2, 3, i)
619s 23 tests, 23 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/invgrnd.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/invgrnd.m
619s ***** assert (size (invgrnd (1, 1, 1)), [1, 1])
619s ***** assert (size (invgrnd (1, 1, 2)), [2, 2])
619s ***** assert (size (invgrnd (1, 1, [2, 1])), [2, 1])
619s ***** assert (size (invgrnd (1, zeros (2, 2))), [2, 2])
619s ***** assert (size (invgrnd (1, ones (2, 1))), [2, 1])
619s ***** assert (size (invgrnd (1, ones (2, 2))), [2, 2])
619s ***** assert (size (invgrnd (ones (2, 1), 1)), [2, 1])
619s ***** assert (size (invgrnd (ones (2, 2), 1)), [2, 2])
619s ***** assert (size (invgrnd (1, 1, 3)), [3, 3])
619s ***** assert (size (invgrnd (1, 1, [4 1])), [4, 1])
619s ***** assert (size (invgrnd (1, 1, 4, 1)), [4, 1])
619s ***** test
619s  r =  invgrnd (1, [1, 0, -1]);
619s  assert (r([2:3]), [NaN, NaN])
619s ***** assert (class (invgrnd (1, 0)), "double")
619s ***** assert (class (invgrnd (1, single (0))), "single")
619s ***** assert (class (invgrnd (1, single ([0 0]))), "single")
619s ***** assert (class (invgrnd (1, single (1))), "single")
619s ***** assert (class (invgrnd (1, single ([1 1]))), "single")
619s ***** assert (class (invgrnd (single (1), 1)), "single")
619s ***** assert (class (invgrnd (single ([1 1]), 1)), "single")
619s ***** error<invgrnd: function called with too few input arguments.> invgrnd ()
619s ***** error<invgrnd: function called with too few input arguments.> invgrnd (1)
619s ***** error<invgrnd: MU and LAMBDA must be of common size or scalars.> ...
619s  invgrnd (ones (3), ones (2))
619s ***** error<invgrnd: MU and LAMBDA must be of common size or scalars.> ...
619s  invgrnd (ones (2), ones (3))
619s ***** error<invgrnd: MU and LAMBDA must not be complex.> invgrnd (i, 2, 3)
619s ***** error<invgrnd: MU and LAMBDA must not be complex.> invgrnd (1, i, 3)
619s ***** error<invgrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  invgrnd (1, 2, -1)
619s ***** error<invgrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  invgrnd (1, 2, 1.2)
619s ***** error<invgrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  invgrnd (1, 2, ones (2))
619s ***** error<invgrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  invgrnd (1, 2, [2 -1 2])
619s ***** error<invgrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  invgrnd (1, 2, [2 0 2.5])
619s ***** error<invgrnd: dimensions must be non-negative integers.> ...
619s  invgrnd (1, 2, 2, -1, 5)
619s ***** error<invgrnd: dimensions must be non-negative integers.> ...
619s  invgrnd (1, 2, 2, 1.5, 5)
619s ***** error<invgrnd: MU and LAMBDA must be scalars or of size SZ.> ...
619s  invgrnd (2, ones (2), 3)
619s ***** error<invgrnd: MU and LAMBDA must be scalars or of size SZ.> ...
619s  invgrnd (2, ones (2), [3, 2])
619s ***** error<invgrnd: MU and LAMBDA must be scalars or of size SZ.> ...
619s  invgrnd (2, ones (2), 3, 2)
619s 35 tests, 35 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/gumbelpdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gumbelpdf.m
619s ***** demo
619s  ## Plot various PDFs from the Extreme value distribution
619s  x = -5:0.001:20;
619s  y1 = gumbelpdf (x, 0.5, 2);
619s  y2 = gumbelpdf (x, 1.0, 2);
619s  y3 = gumbelpdf (x, 1.5, 3);
619s  y4 = gumbelpdf (x, 3.0, 4);
619s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-c")
619s  grid on
619s  ylim ([0, 0.2])
619s  legend ({"μ = 0.5, β = 2", "μ = 1.0, β = 2", ...
619s           "μ = 1.5, β = 3", "μ = 3.0, β = 4"}, "location", "northeast")
619s  title ("Extreme value PDF")
619s  xlabel ("values in x")
619s  ylabel ("density")
619s ***** shared x, y0, y1
619s  x = [-5, 0, 1, 2, 3];
619s  y0 = [0, 0.3679, 0.2547, 0.1182, 0.0474];
619s  y1 = [0, 0.1794, 0.3679, 0.2547, 0.1182];
619s ***** assert (gumbelpdf (x), y0, 1e-4)
619s ***** assert (gumbelpdf (x, zeros (1,5), ones (1,5)), y0, 1e-4)
619s ***** assert (gumbelpdf (x, ones (1,5), ones (1,5)), y1, 1e-4)
619s ***** error<gumbelpdf: too few input arguments.> gumbelpdf ()
619s ***** error<gumbelpdf: X, MU, and BETA must be of common size or scalars.> ...
619s  gumbelpdf (ones (3), ones (2), ones (2))
619s ***** error<gumbelpdf: X, MU, and BETA must not be complex.> gumbelpdf (i, 2, 2)
619s ***** error<gumbelpdf: X, MU, and BETA must not be complex.> gumbelpdf (2, i, 2)
619s ***** error<gumbelpdf: X, MU, and BETA must not be complex.> gumbelpdf (2, 2, i)
619s 8 tests, 8 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/plcdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/plcdf.m
619s ***** demo
619s  ## Plot various CDFs from the Piecewise linear distribution
619s  data = 0:0.01:10;
619s  x1 = [0, 1, 3, 4, 7, 10];
619s  Fx1 = [0, 0.2, 0.5, 0.6, 0.7, 1];
619s  x2 = [0, 2, 5, 6, 7, 8];
619s  Fx2 = [0, 0.1, 0.3, 0.6, 0.9, 1];
619s  p1 = plcdf (data, x1, Fx1);
619s  p2 = plcdf (data, x2, Fx2);
619s  plot (data, p1, "-b", data, p2, "g")
619s  grid on
619s  ylim ([0, 1])
619s  xlim ([0, 10])
619s  legend ({"x1, Fx1", "x2, Fx2"}, "location", "southeast")
619s  title ("Piecewise linear CDF")
619s  xlabel ("values in data")
619s  ylabel ("probability")
619s ***** test
619s  data = 0:0.2:1;
619s  p = plcdf (data, [0, 1], [0, 1]);
619s  assert (p, data);
619s ***** test
619s  data = 0:0.2:1;
619s  p = plcdf (data, [0, 2], [0, 1]);
619s  assert (p, 0.5 * data);
619s ***** test
619s  data = 0:0.2:1;
619s  p = plcdf (data, [0, 1], [0, 0.5]);
619s  assert (p, 0.5 * data);
619s ***** test
619s  data = 0:0.2:1;
619s  p = plcdf (data, [0, 0.5], [0, 1]);
619s  assert (p, [0, 0.4, 0.8, 1, 1, 1]);
619s ***** test
619s  data = 0:0.2:1;
619s  p = plcdf (data, [0, 1], [0, 1], "upper");
619s  assert (p, 1 - data);
619s ***** error<plcdf: function called with too few input arguments.> plcdf ()
619s ***** error<plcdf: function called with too few input arguments.> plcdf (1)
619s ***** error<plcdf: function called with too few input arguments.> plcdf (1, 2)
619s ***** error<plcdf: invalid argument for upper tail.> plcdf (1, 2, 3, "uper")
619s ***** error<plcdf: invalid argument for upper tail.> plcdf (1, 2, 3, 4)
619s ***** error<plcdf: X and FX must be vectors of equal size.> ...
619s  plcdf (1, [0, 1, 2], [0, 1])
619s ***** error<plcdf: X and FX must be at least two-elements long.> ...
619s  plcdf (1, [0], [1])
619s ***** error<plcdf: FX must be bounded in the range> ...
619s  plcdf (1, [0, 1, 2], [0, 1, 1.5])
619s ***** error<plcdf: FX must be bounded in the range> ...
619s  plcdf (1, [0, 1, 2], [0, i, 1])
619s ***** error<plcdf: DATA, X, and FX must not be complex.> ...
619s  plcdf (i, [0, 1, 2], [0, 0.5, 1])
619s ***** error<plcdf: DATA, X, and FX must not be complex.> ...
619s  plcdf (1, [0, i, 2], [0, 0.5, 1])
619s ***** error<plcdf: DATA, X, and FX must not be complex.> ...
619s  plcdf (1, [0, 1, 2], [0, 0.5i, 1])
619s 17 tests, 17 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/loglrnd.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/loglrnd.m
619s ***** assert (size (loglrnd (1, 1)), [1 1])
619s ***** assert (size (loglrnd (1, ones (2,1))), [2, 1])
619s ***** assert (size (loglrnd (1, ones (2,2))), [2, 2])
619s ***** assert (size (loglrnd (ones (2,1), 1)), [2, 1])
619s ***** assert (size (loglrnd (ones (2,2), 1)), [2, 2])
619s ***** assert (size (loglrnd (1, 1, 3)), [3, 3])
619s ***** assert (size (loglrnd (1, 1, [4, 1])), [4, 1])
619s ***** assert (size (loglrnd (1, 1, 4, 1)), [4, 1])
619s ***** assert (size (loglrnd (1, 1, 4, 1, 5)), [4, 1, 5])
619s ***** assert (size (loglrnd (1, 1, 0, 1)), [0, 1])
619s ***** assert (size (loglrnd (1, 1, 1, 0)), [1, 0])
619s ***** assert (size (loglrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
619s ***** assert (class (loglrnd (1, 1)), "double")
619s ***** assert (class (loglrnd (1, single (1))), "single")
619s ***** assert (class (loglrnd (1, single ([1, 1]))), "single")
619s ***** assert (class (loglrnd (single (1), 1)), "single")
619s ***** assert (class (loglrnd (single ([1, 1]), 1)), "single")
619s ***** error<loglrnd: function called with too few input arguments.> loglrnd ()
619s ***** error<loglrnd: function called with too few input arguments.> loglrnd (1)
619s ***** error<loglrnd: MU and SIGMA must be of common size or scalars.> ...
619s  loglrnd (ones (3), ones (2))
619s ***** error<loglrnd: MU and SIGMA must be of common size or scalars.> ...
619s  loglrnd (ones (2), ones (3))
619s ***** error<loglrnd: MU and SIGMA must not be complex.> loglrnd (i, 2, 3)
619s ***** error<loglrnd: MU and SIGMA must not be complex.> loglrnd (1, i, 3)
619s ***** error<loglrnd: SZ must be mu scalar or mu row vector of non-negative integers.> ...
619s  loglrnd (1, 2, -1)
619s ***** error<loglrnd: SZ must be mu scalar or mu row vector of non-negative integers.> ...
619s  loglrnd (1, 2, 1.2)
619s ***** error<loglrnd: SZ must be mu scalar or mu row vector of non-negative integers.> ...
619s  loglrnd (1, 2, ones (2))
619s ***** error<loglrnd: SZ must be mu scalar or mu row vector of non-negative integers.> ...
619s  loglrnd (1, 2, [2 -1 2])
619s ***** error<loglrnd: SZ must be mu scalar or mu row vector of non-negative integers.> ...
619s  loglrnd (1, 2, [2 0 2.5])
619s ***** error<loglrnd: dimensions must be non-negative integers.> ...
619s  loglrnd (1, 2, 2, -1, 5)
619s ***** error<loglrnd: dimensions must be non-negative integers.> ...
619s  loglrnd (1, 2, 2, 1.5, 5)
619s ***** error<loglrnd: MU and SIGMA must be scalars or of size SZ.> ...
619s  loglrnd (2, ones (2), 3)
619s ***** error<loglrnd: MU and SIGMA must be scalars or of size SZ.> ...
619s  loglrnd (2, ones (2), [3, 2])
619s ***** error<loglrnd: MU and SIGMA must be scalars or of size SZ.> ...
619s  loglrnd (2, ones (2), 3, 2)
619s 33 tests, 33 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/vmrnd.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/vmrnd.m
619s ***** assert (size (vmrnd (1, 1)), [1 1])
619s ***** assert (size (vmrnd (1, ones (2,1))), [2, 1])
619s ***** assert (size (vmrnd (1, ones (2,2))), [2, 2])
619s ***** assert (size (vmrnd (ones (2,1), 1)), [2, 1])
619s ***** assert (size (vmrnd (ones (2,2), 1)), [2, 2])
619s ***** assert (size (vmrnd (1, 1, 3)), [3, 3])
619s ***** assert (size (vmrnd (1, 1, [4, 1])), [4, 1])
619s ***** assert (size (vmrnd (1, 1, 4, 1)), [4, 1])
619s ***** assert (size (vmrnd (1, 1, 4, 1, 5)), [4, 1, 5])
619s ***** assert (size (vmrnd (1, 1, 0, 1)), [0, 1])
619s ***** assert (size (vmrnd (1, 1, 1, 0)), [1, 0])
619s ***** assert (size (vmrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
619s ***** assert (class (vmrnd (1, 1)), "double")
619s ***** assert (class (vmrnd (1, single (1))), "single")
619s ***** assert (class (vmrnd (1, single ([1, 1]))), "single")
619s ***** assert (class (vmrnd (single (1), 1)), "single")
619s ***** assert (class (vmrnd (single ([1, 1]), 1)), "single")
619s ***** error<vmrnd: function called with too few input arguments.> vmrnd ()
619s ***** error<vmrnd: function called with too few input arguments.> vmrnd (1)
619s ***** error<vmrnd: MU and K must be of common size or scalars.> ...
619s  vmrnd (ones (3), ones (2))
619s ***** error<vmrnd: MU and K must be of common size or scalars.> ...
619s  vmrnd (ones (2), ones (3))
619s ***** error<vmrnd: MU and K must not be complex.> vmrnd (i, 2, 3)
619s ***** error<vmrnd: MU and K must not be complex.> vmrnd (1, i, 3)
619s ***** error<vmrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  vmrnd (1, 2, -1)
619s ***** error<vmrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  vmrnd (1, 2, 1.2)
619s ***** error<vmrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  vmrnd (1, 2, ones (2))
619s ***** error<vmrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  vmrnd (1, 2, [2 -1 2])
619s ***** error<vmrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
619s  vmrnd (1, 2, [2 0 2.5])
619s ***** error<vmrnd: dimensions must be non-negative integers.> ...
619s  vmrnd (1, 2, 2, -1, 5)
619s ***** error<vmrnd: dimensions must be non-negative integers.> ...
619s  vmrnd (1, 2, 2, 1.5, 5)
619s ***** error<vmrnd: MU and K must be scalars or of size SZ.> ...
619s  vmrnd (2, ones (2), 3)
619s ***** error<vmrnd: MU and K must be scalars or of size SZ.> ...
619s  vmrnd (2, ones (2), [3, 2])
619s ***** error<vmrnd: MU and K must be scalars or of size SZ.> ...
619s  vmrnd (2, ones (2), 3, 2)
619s 33 tests, 33 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/wblcdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wblcdf.m
619s ***** demo
619s  ## Plot various CDFs from the Weibull distribution
619s  x = 0:0.001:2.5;
619s  p1 = wblcdf (x, 1, 0.5);
619s  p2 = wblcdf (x, 1, 1);
619s  p3 = wblcdf (x, 1, 1.5);
619s  p4 = wblcdf (x, 1, 5);
619s  plot (x, p1, "-b", x, p2, "-r", x, p3, "-m", x, p4, "-g")
619s  grid on
619s  legend ({"λ = 1, k = 0.5", "λ = 1, k = 1", ...
619s           "λ = 1, k = 1.5", "λ = 1, k = 5"}, "location", "southeast")
619s  title ("Weibull CDF")
619s  xlabel ("values in x")
619s  ylabel ("probability")
619s ***** shared x, y
619s  x = [-1 0 0.5 1 Inf];
619s  y = [0, 1-exp(-x(2:4)), 1];
619s ***** assert (wblcdf (x, ones (1,5), ones (1,5)), y, 1e-16)
619s ***** assert (wblcdf (x, ones (1,5), ones (1,5), "upper"), 1 - y)
619s ***** assert (wblcdf (x, "upper"), 1 - y)
619s ***** assert (wblcdf (x, 1, ones (1,5)), y, 1e-16)
619s ***** assert (wblcdf (x, ones (1,5), 1), y, 1e-16)
619s ***** assert (wblcdf (x, [0 1 NaN Inf 1], 1), [NaN 0 NaN 0 1])
619s ***** assert (wblcdf (x, [0 1 NaN Inf 1], 1, "upper"), 1 - [NaN 0 NaN 0 1])
619s ***** assert (wblcdf (x, 1, [0 1 NaN Inf 1]), [NaN 0 NaN y(4:5)])
619s ***** assert (wblcdf (x, 1, [0 1 NaN Inf 1], "upper"), 1 - [NaN 0 NaN y(4:5)])
619s ***** assert (wblcdf ([x(1:2) NaN x(4:5)], 1, 1), [y(1:2) NaN y(4:5)])
619s ***** assert (wblcdf ([x(1:2) NaN x(4:5)], 1, 1, "upper"), 1 - [y(1:2) NaN y(4:5)])
619s ***** assert (wblcdf ([x, NaN], 1, 1), [y, NaN], 1e-16)
619s ***** assert (wblcdf (single ([x, NaN]), 1, 1), single ([y, NaN]))
619s ***** assert (wblcdf ([x, NaN], single (1), 1), single ([y, NaN]))
619s ***** assert (wblcdf ([x, NaN], 1, single (1)), single ([y, NaN]))
619s ***** error<wblcdf: invalid number of input arguments.> wblcdf ()
619s ***** error<wblcdf: invalid number of input arguments.> wblcdf (1,2,3,4,5,6,7)
619s ***** error<wblcdf: invalid argument for upper tail.> wblcdf (1, 2, 3, 4, "uper")
619s ***** error<wblcdf: X, LAMBDA, and K must be of common size or scalars.> ...
619s  wblcdf (ones (3), ones (2), ones (2))
619s ***** error<wblcdf: invalid size of covariance matrix.> wblcdf (2, 3, 4, [1, 2])
619s ***** error<wblcdf: covariance matrix is required for confidence bounds.> ...
619s  [p, plo, pup] = wblcdf (1, 2, 3)
619s ***** error<wblcdf: invalid value for alpha.> [p, plo, pup] = ...
619s  wblcdf (1, 2, 3, [1, 0; 0, 1], 0)
619s ***** error<wblcdf: invalid value for alpha.> [p, plo, pup] = ...
619s  wblcdf (1, 2, 3, [1, 0; 0, 1], 1.22)
619s ***** error<wblcdf: invalid value for alpha.> [p, plo, pup] = ...
619s  wblcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper")
619s ***** error<wblcdf: X, LAMBDA, and K must not be complex.> wblcdf (i, 2, 2)
619s ***** error<wblcdf: X, LAMBDA, and K must not be complex.> wblcdf (2, i, 2)
619s ***** error<wblcdf: X, LAMBDA, and K must not be complex.> wblcdf (2, 2, i)
619s ***** error<wblcdf: bad covariance matrix.> ...
619s  [p, plo, pup] =wblcdf (1, 2, 3, [1, 0; 0, -inf], 0.04)
619s 28 tests, 28 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/gampdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gampdf.m
619s ***** demo
619s  ## Plot various PDFs from the Gamma distribution
619s  x = 0:0.01:20;
619s  y1 = gampdf (x, 1, 2);
619s  y2 = gampdf (x, 2, 2);
619s  y3 = gampdf (x, 3, 2);
619s  y4 = gampdf (x, 5, 1);
619s  y5 = gampdf (x, 9, 0.5);
619s  y6 = gampdf (x, 7.5, 1);
619s  y7 = gampdf (x, 0.5, 1);
619s  plot (x, y1, "-r", x, y2, "-g", x, y3, "-y", x, y4, "-m", ...
619s        x, y5, "-k", x, y6, "-b", x, y7, "-c")
619s  grid on
619s  ylim ([0,0.5])
619s  legend ({"α = 1, β = 2", "α = 2, β = 2", "α = 3, β = 2", ...
619s           "α = 5, β = 1", "α = 9, β = 0.5", "α = 7.5, β = 1", ...
619s           "α = 0.5, β = 1"}, "location", "northeast")
619s  title ("Gamma PDF")
619s  xlabel ("values in x")
619s  ylabel ("density")
619s ***** shared x, y
619s  x = [-1 0 0.5 1 Inf];
619s  y = [0 exp(-x(2:end))];
619s ***** assert (gampdf (x, ones (1,5), ones (1,5)), y)
619s ***** assert (gampdf (x, 1, ones (1,5)), y)
619s ***** assert (gampdf (x, ones (1,5), 1), y)
619s ***** assert (gampdf (x, [0 -Inf NaN Inf 1], 1), [NaN NaN NaN NaN y(5)])
619s ***** assert (gampdf (x, 1, [0 -Inf NaN Inf 1]), [NaN NaN NaN 0 y(5)])
619s ***** assert (gampdf ([x, NaN], 1, 1), [y, NaN])
619s ***** assert (gampdf (single ([x, NaN]), 1, 1), single ([y, NaN]))
619s ***** assert (gampdf ([x, NaN], single (1), 1), single ([y, NaN]))
619s ***** assert (gampdf ([x, NaN], 1, single (1)), single ([y, NaN]))
619s ***** error<gampdf: function called with too few input arguments.> gampdf ()
619s ***** error<gampdf: function called with too few input arguments.> gampdf (1)
619s ***** error<gampdf: function called with too few input arguments.> gampdf (1,2)
619s ***** error<gampdf: X, A, and B must be of common size or scalars.> ...
619s  gampdf (ones (3), ones (2), ones (2))
619s ***** error<gampdf: X, A, and B must be of common size or scalars.> ...
619s  gampdf (ones (2), ones (3), ones (2))
619s ***** error<gampdf: X, A, and B must be of common size or scalars.> ...
619s  gampdf (ones (2), ones (2), ones (3))
619s ***** error<gampdf: X, A, and B must not be complex.> gampdf (i, 2, 2)
619s ***** error<gampdf: X, A, and B must not be complex.> gampdf (2, i, 2)
619s ***** error<gampdf: X, A, and B must not be complex.> gampdf (2, 2, i)
619s 18 tests, 18 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/mvtpdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvtpdf.m
619s ***** demo
619s  ## Compute the pdf of a multivariate t distribution with correlation
619s  ## parameters rho = [1 .4; .4 1] and 2 degrees of freedom.
619s 
619s  rho = [1, 0.4; 0.4, 1];
619s  df = 2;
619s  [X1, X2] = meshgrid (linspace (-2, 2, 25)', linspace (-2, 2, 25)');
619s  X = [X1(:), X2(:)];
619s  y = mvtpdf (X, rho, df);
619s  surf (X1, X2, reshape (y, 25, 25));
619s  title ("Bivariate Student's t probability density function");
619s ***** assert (mvtpdf ([0 0], eye(2), 1), 0.1591549, 1E-7)
619s ***** assert (mvtpdf ([1 0], [1 0.5; 0.5 1], 2), 0.06615947, 1E-7)
619s ***** assert (mvtpdf ([1 0.4 0; 1.2 0.5 0.5; 1.4 0.6 1], ...
619s  [1 0.5 0.3; 0.5 1 0.6; 0.3 0.6 1], [5 6 7]), ...
619s  [0.04713313 0.03722421 0.02069011]', 1E-7)
619s 3 tests, 3 passed, 0 known failure, 0 skipped
619s [inst/dist_fun/wblpdf.m]
619s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wblpdf.m
619s ***** demo
619s  ## Plot various PDFs from the Weibul distribution
619s  x = 0:0.001:2.5;
619s  y1 = wblpdf (x, 1, 0.5);
619s  y2 = wblpdf (x, 1, 1);
619s  y3 = wblpdf (x, 1, 1.5);
619s  y4 = wblpdf (x, 1, 5);
619s  plot (x, y1, "-b", x, y2, "-r", x, y3, "-m", x, y4, "-g")
619s  grid on
619s  ylim ([0, 2.5])
619s  legend ({"λ = 5, k = 0.5", "λ = 9, k = 1", ...
619s           "λ = 6, k = 1.5", "λ = 2, k = 5"}, "location", "northeast")
619s  title ("Weibul PDF")
619s  xlabel ("values in x")
619s  ylabel ("density")
619s ***** shared x,y
619s  x = [-1 0 0.5 1 Inf];
619s  y = [0, exp(-x(2:4)), NaN];
619s ***** assert (wblpdf (x, ones (1,5), ones (1,5)), y)
619s ***** assert (wblpdf (x, 1, ones (1,5)), y)
619s ***** assert (wblpdf (x, ones (1,5), 1), y)
619s ***** assert (wblpdf (x, [0 NaN Inf 1 1], 1), [NaN NaN NaN y(4:5)])
619s ***** assert (wblpdf (x, 1, [0 NaN Inf 1 1]), [NaN NaN NaN y(4:5)])
619s ***** assert (wblpdf ([x, NaN], 1, 1), [y, NaN])
619s ***** assert (wblpdf (single ([x, NaN]), 1, 1), single ([y, NaN]))
619s ***** assert (wblpdf ([x, NaN], single (1), 1), single ([y, NaN]))
619s ***** assert (wblpdf ([x, NaN], 1, single (1)), single ([y, NaN]))
619s ***** error wblpdf ()
619s ***** error wblpdf (1,2,3,4)
620s ***** error wblpdf (ones (3), ones (2), ones (2))
620s ***** error wblpdf (ones (2), ones (3), ones (2))
620s ***** error wblpdf (ones (2), ones (2), ones (3))
620s ***** error wblpdf (i, 2, 2)
620s ***** error wblpdf (2, i, 2)
620s ***** error wblpdf (2, 2, i)
620s 17 tests, 17 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/mvtcdfqmc.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvtcdfqmc.m
620s ***** error mvtcdfqmc (1, 2, 3);
620s ***** error mvtcdfqmc (1, 2, 3, 4, 5, 6, 7, 8);
620s 2 tests, 2 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/exprnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/exprnd.m
620s ***** assert (size (exprnd (2)), [1, 1])
620s ***** assert (size (exprnd (ones (2,1))), [2, 1])
620s ***** assert (size (exprnd (ones (2,2))), [2, 2])
620s ***** assert (size (exprnd (1, 3)), [3, 3])
620s ***** assert (size (exprnd (1, [4 1])), [4, 1])
620s ***** assert (size (exprnd (1, 4, 1)), [4, 1])
620s ***** assert (size (exprnd (1, 4, 1)), [4, 1])
620s ***** assert (size (exprnd (1, 4, 1, 5)), [4, 1, 5])
620s ***** assert (size (exprnd (1, 0, 1)), [0, 1])
620s ***** assert (size (exprnd (1, 1, 0)), [1, 0])
620s ***** assert (size (exprnd (1, 1, 2, 0, 5)), [1, 2, 0, 5])
620s ***** assert (class (exprnd (2)), "double")
620s ***** assert (class (exprnd (single (2))), "single")
620s ***** assert (class (exprnd (single ([2 2]))), "single")
620s ***** error<exprnd: function called with too few input arguments.> exprnd ()
620s ***** error<exprnd: MU must not be complex.> exprnd (i)
620s ***** error<exprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  exprnd (1, -1)
620s ***** error<exprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  exprnd (1, 1.2)
620s ***** error<exprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  exprnd (1, ones (2))
620s ***** error<exprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  exprnd (1, [2 -1 2])
620s ***** error<exprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  exprnd (1, [2 0 2.5])
620s ***** error<exprnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  exprnd (ones (2), ones (2))
620s ***** error<exprnd: dimensions must be non-negative integers.> ...
620s  exprnd (1, 2, -1, 5)
620s ***** error<exprnd: dimensions must be non-negative integers.> ...
620s  exprnd (1, 2, 1.5, 5)
620s ***** error<exprnd: MU must be scalar or of size SZ.> exprnd (ones (2,2), 3)
620s ***** error<exprnd: MU must be scalar or of size SZ.> exprnd (ones (2,2), [3, 2])
620s ***** error<exprnd: MU must be scalar or of size SZ.> exprnd (ones (2,2), 2, 3)
620s 27 tests, 27 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/evrnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/evrnd.m
620s ***** assert (size (evrnd (1, 1)), [1 1])
620s ***** assert (size (evrnd (1, ones (2,1))), [2, 1])
620s ***** assert (size (evrnd (1, ones (2,2))), [2, 2])
620s ***** assert (size (evrnd (ones (2,1), 1)), [2, 1])
620s ***** assert (size (evrnd (ones (2,2), 1)), [2, 2])
620s ***** assert (size (evrnd (1, 1, 3)), [3, 3])
620s ***** assert (size (evrnd (1, 1, [4, 1])), [4, 1])
620s ***** assert (size (evrnd (1, 1, 4, 1)), [4, 1])
620s ***** assert (size (evrnd (1, 1, 4, 1, 5)), [4, 1, 5])
620s ***** assert (size (evrnd (1, 1, 0, 1)), [0, 1])
620s ***** assert (size (evrnd (1, 1, 1, 0)), [1, 0])
620s ***** assert (size (evrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
620s ***** assert (class (evrnd (1, 1)), "double")
620s ***** assert (class (evrnd (1, single (1))), "single")
620s ***** assert (class (evrnd (1, single ([1, 1]))), "single")
620s ***** assert (class (evrnd (single (1), 1)), "single")
620s ***** assert (class (evrnd (single ([1, 1]), 1)), "single")
620s ***** error<evrnd: function called with too few input arguments.> evrnd ()
620s ***** error<evrnd: function called with too few input arguments.> evrnd (1)
620s ***** error<evrnd: MU and SIGMA must be of common size or scalars.> ...
620s  evrnd (ones (3), ones (2))
620s ***** error<evrnd: MU and SIGMA must be of common size or scalars.> ...
620s  evrnd (ones (2), ones (3))
620s ***** error<evrnd: MU and SIGMA must not be complex.> evrnd (i, 2, 3)
620s ***** error<evrnd: MU and SIGMA must not be complex.> evrnd (1, i, 3)
620s ***** error<evrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  evrnd (1, 2, -1)
620s ***** error<evrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  evrnd (1, 2, 1.2)
620s ***** error<evrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  evrnd (1, 2, ones (2))
620s ***** error<evrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  evrnd (1, 2, [2 -1 2])
620s ***** error<evrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  evrnd (1, 2, [2 0 2.5])
620s ***** error<evrnd: dimensions must be non-negative integers.> ...
620s  evrnd (1, 2, 2, -1, 5)
620s ***** error<evrnd: dimensions must be non-negative integers.> ...
620s  evrnd (1, 2, 2, 1.5, 5)
620s ***** error<evrnd: MU and SIGMA must be scalars or of size SZ.> ...
620s  evrnd (2, ones (2), 3)
620s ***** error<evrnd: MU and SIGMA must be scalars or of size SZ.> ...
620s  evrnd (2, ones (2), [3, 2])
620s ***** error<evrnd: MU and SIGMA must be scalars or of size SZ.> ...
620s  evrnd (2, ones (2), 3, 2)
620s 33 tests, 33 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/burrrnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/burrrnd.m
620s ***** assert (size (burrrnd (1, 1, 1)), [1 1])
620s ***** assert (size (burrrnd (ones (2,1), 1, 1)), [2, 1])
620s ***** assert (size (burrrnd (ones (2,2), 1, 1)), [2, 2])
620s ***** assert (size (burrrnd (1, ones (2,1), 1)), [2, 1])
620s ***** assert (size (burrrnd (1, ones (2,2), 1)), [2, 2])
620s ***** assert (size (burrrnd (1, 1, ones (2,1))), [2, 1])
620s ***** assert (size (burrrnd (1, 1, ones (2,2))), [2, 2])
620s ***** assert (size (burrrnd (1, 1, 1, 3)), [3, 3])
620s ***** assert (size (burrrnd (1, 1, 1, [4 1])), [4, 1])
620s ***** assert (size (burrrnd (1, 1, 1, 4, 1)), [4, 1])
620s ***** assert (class (burrrnd (1,1,1)), "double")
620s ***** assert (class (burrrnd (single (1),1,1)), "single")
620s ***** assert (class (burrrnd (single ([1 1]),1,1)), "single")
620s ***** assert (class (burrrnd (1,single (1),1)), "single")
620s ***** assert (class (burrrnd (1,single ([1 1]),1)), "single")
620s ***** assert (class (burrrnd (1,1,single (1))), "single")
620s ***** assert (class (burrrnd (1,1,single ([1 1]))), "single")
620s ***** error<burrrnd: function called with too few input arguments.> burrrnd ()
620s ***** error<burrrnd: function called with too few input arguments.> burrrnd (1)
620s ***** error<burrrnd: function called with too few input arguments.> burrrnd (1, 2)
620s ***** error<burrrnd: LAMBDA, C, and K must be of common size or scalars.> ...
620s  burrrnd (ones (3), ones (2), ones (2))
620s ***** error<burrrnd: LAMBDA, C, and K must be of common size or scalars.> ...
620s  burrrnd (ones (2), ones (3), ones (2))
620s ***** error<burrrnd: LAMBDA, C, and K must be of common size or scalars.> ...
620s  burrrnd (ones (2), ones (2), ones (3))
620s ***** error<burrrnd: LAMBDA, C, and K must not be complex.> burrrnd (i, 2, 3)
620s ***** error<burrrnd: LAMBDA, C, and K must not be complex.> burrrnd (1, i, 3)
620s ***** error<burrrnd: LAMBDA, C, and K must not be complex.> burrrnd (1, 2, i)
620s ***** error<burrrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  burrrnd (1, 2, 3, -1)
620s ***** error<burrrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  burrrnd (1, 2, 3, 1.2)
620s ***** error<burrrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  burrrnd (1, 2, 3, ones (2))
620s ***** error<burrrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  burrrnd (1, 2, 3, [2 -1 2])
620s ***** error<burrrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  burrrnd (1, 2, 3, [2 0 2.5])
620s ***** error<burrrnd: dimensions must be non-negative integers.> ...
620s  burrrnd (1, 2, 3, 2, -1, 5)
620s ***** error<burrrnd: dimensions must be non-negative integers.> ...
620s  burrrnd (1, 2, 3, 2, 1.5, 5)
620s ***** error<burrrnd: LAMBDA, C, and K must be scalars or of size SZ.> ...
620s  burrrnd (2, ones (2), 2, 3)
620s ***** error<burrrnd: LAMBDA, C, and K must be scalars or of size SZ.> ...
620s  burrrnd (2, ones (2), 2, [3, 2])
620s ***** error<burrrnd: LAMBDA, C, and K must be scalars or of size SZ.> ...
620s  burrrnd (2, ones (2), 2, 3, 2)
620s 36 tests, 36 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/unifcdf.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unifcdf.m
620s ***** demo
620s  ## Plot various CDFs from the continuous uniform distribution
620s  x = 0:0.1:10;
620s  p1 = unifcdf (x, 2, 5);
620s  p2 = unifcdf (x, 3, 9);
620s  plot (x, p1, "-b", x, p2, "-g")
620s  grid on
620s  xlim ([0, 10])
620s  ylim ([0, 1])
620s  legend ({"a = 2, b = 5", "a = 3, b = 9"}, "location", "southeast")
620s  title ("Continuous uniform CDF")
620s  xlabel ("values in x")
620s  ylabel ("probability")
620s ***** shared x, y
620s  x = [-1 0 0.5 1 2] + 1;
620s  y = [0 0 0.5 1 1];
620s ***** assert (unifcdf (x, ones (1,5), 2*ones (1,5)), y)
620s ***** assert (unifcdf (x, ones (1,5), 2*ones (1,5), "upper"), 1 - y)
620s ***** assert (unifcdf (x, 1, 2*ones (1,5)), y)
620s ***** assert (unifcdf (x, 1, 2*ones (1,5), "upper"), 1 - y)
620s ***** assert (unifcdf (x, ones (1,5), 2), y)
620s ***** assert (unifcdf (x, ones (1,5), 2, "upper"), 1 - y)
620s ***** assert (unifcdf (x, [2 1 NaN 1 1], 2), [NaN 0 NaN 1 1])
620s ***** assert (unifcdf (x, [2 1 NaN 1 1], 2, "upper"), 1 - [NaN 0 NaN 1 1])
620s ***** assert (unifcdf (x, 1, 2*[0 1 NaN 1 1]), [NaN 0 NaN 1 1])
620s ***** assert (unifcdf (x, 1, 2*[0 1 NaN 1 1], "upper"), 1 - [NaN 0 NaN 1 1])
620s ***** assert (unifcdf ([x(1:2) NaN x(4:5)], 1, 2), [y(1:2) NaN y(4:5)])
620s ***** assert (unifcdf ([x(1:2) NaN x(4:5)], 1, 2, "upper"), 1 - [y(1:2) NaN y(4:5)])
620s ***** assert (unifcdf ([x, NaN], 1, 2), [y, NaN])
620s ***** assert (unifcdf (single ([x, NaN]), 1, 2), single ([y, NaN]))
620s ***** assert (unifcdf ([x, NaN], single (1), 2), single ([y, NaN]))
620s ***** assert (unifcdf ([x, NaN], 1, single (2)), single ([y, NaN]))
620s ***** error<unifcdf: function called with too few input arguments.> unifcdf ()
620s ***** error<unifcdf: function called with too few input arguments.> unifcdf (1)
620s ***** error<unifcdf: function called with too few input arguments.> unifcdf (1, 2)
620s ***** error<unifcdf: invalid argument for upper tail.> unifcdf (1, 2, 3, 4)
620s ***** error<unifcdf: invalid argument for upper tail.> unifcdf (1, 2, 3, "tail")
620s ***** error<unifcdf: X, A, and B must be of common size or scalars.> ...
620s  unifcdf (ones (3), ones (2), ones (2))
620s ***** error<unifcdf: X, A, and B must be of common size or scalars.> ...
620s  unifcdf (ones (2), ones (3), ones (2))
620s ***** error<unifcdf: X, A, and B must be of common size or scalars.> ...
620s  unifcdf (ones (2), ones (2), ones (3))
620s ***** error<unifcdf: X, A, and B must not be complex.> unifcdf (i, 2, 2)
620s ***** error<unifcdf: X, A, and B must not be complex.> unifcdf (2, i, 2)
620s ***** error<unifcdf: X, A, and B must not be complex.> unifcdf (2, 2, i)
620s 27 tests, 27 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/ncfrnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ncfrnd.m
620s ***** assert (size (ncfrnd (1, 1, 1)), [1 1])
620s ***** assert (size (ncfrnd (1, ones (2,1), 1)), [2, 1])
620s ***** assert (size (ncfrnd (1, ones (2,2), 1)), [2, 2])
620s ***** assert (size (ncfrnd (ones (2,1), 1, 1)), [2, 1])
620s ***** assert (size (ncfrnd (ones (2,2), 1, 1)), [2, 2])
620s ***** assert (size (ncfrnd (1, 1, 1, 3)), [3, 3])
620s ***** assert (size (ncfrnd (1, 1, 1, [4, 1])), [4, 1])
620s ***** assert (size (ncfrnd (1, 1, 1, 4, 1)), [4, 1])
620s ***** assert (size (ncfrnd (1, 1, 1, 4, 1, 5)), [4, 1, 5])
620s ***** assert (size (ncfrnd (1, 1, 1, 0, 1)), [0, 1])
620s ***** assert (size (ncfrnd (1, 1, 1, 1, 0)), [1, 0])
620s ***** assert (size (ncfrnd (1, 1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
620s ***** assert (class (ncfrnd (1, 1, 1)), "double")
620s ***** assert (class (ncfrnd (1, single (1), 1)), "single")
620s ***** assert (class (ncfrnd (1, 1, single (1))), "single")
620s ***** assert (class (ncfrnd (1, single ([1, 1]), 1)), "single")
620s ***** assert (class (ncfrnd (1, 1, single ([1, 1]))), "single")
620s ***** assert (class (ncfrnd (single (1), 1, 1)), "single")
620s ***** assert (class (ncfrnd (single ([1, 1]), 1, 1)), "single")
620s ***** error<ncfrnd: function called with too few input arguments.> ncfrnd ()
620s ***** error<ncfrnd: function called with too few input arguments.> ncfrnd (1)
620s ***** error<ncfrnd: function called with too few input arguments.> ncfrnd (1, 2)
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must be of common size or scalars.> ...
620s  ncfrnd (ones (3), ones (2), ones (2))
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must be of common size or scalars.> ...
620s  ncfrnd (ones (2), ones (3), ones (2))
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must be of common size or scalars.> ...
620s  ncfrnd (ones (2), ones (2), ones (3))
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must not be complex.> ncfrnd (i, 2, 3)
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must not be complex.> ncfrnd (1, i, 3)
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must not be complex.> ncfrnd (1, 2, i)
620s ***** error<ncfrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  ncfrnd (1, 2, 3, -1)
620s ***** error<ncfrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  ncfrnd (1, 2, 3, 1.2)
620s ***** error<ncfrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  ncfrnd (1, 2, 3, ones (2))
620s ***** error<ncfrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  ncfrnd (1, 2, 3, [2 -1 2])
620s ***** error<ncfrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  ncfrnd (1, 2, 3, [2 0 2.5])
620s ***** error<ncfrnd: dimensions must be non-negative integers.> ...
620s  ncfrnd (1, 2, 3, 2, -1, 5)
620s ***** error<ncfrnd: dimensions must be non-negative integers.> ...
620s  ncfrnd (1, 2, 3, 2, 1.5, 5)
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must be scalars or of size SZ.> ...
620s  ncfrnd (2, ones (2), 2, 3)
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must be scalars or of size SZ.> ...
620s  ncfrnd (2, ones (2), 2, [3, 2])
620s ***** error<ncfrnd: DF1, DF2, and LAMBDA must be scalars or of size SZ.> ...
620s  ncfrnd (2, ones (2), 2, 3, 2)
620s 38 tests, 38 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/nakacdf.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nakacdf.m
620s ***** demo
620s  ## Plot various CDFs from the Nakagami distribution
620s  x = 0:0.01:3;
620s  p1 = nakacdf (x, 0.5, 1);
620s  p2 = nakacdf (x, 1, 1);
620s  p3 = nakacdf (x, 1, 2);
620s  p4 = nakacdf (x, 1, 3);
620s  p5 = nakacdf (x, 2, 1);
620s  p6 = nakacdf (x, 2, 2);
620s  p7 = nakacdf (x, 5, 1);
620s  plot (x, p1, "-r", x, p2, "-g", x, p3, "-y", x, p4, "-m", ...
620s        x, p5, "-k", x, p6, "-b", x, p7, "-c")
620s  grid on
620s  xlim ([0, 3])
620s  legend ({"μ = 0.5, ω = 1", "μ = 1, ω = 1", "μ = 1, ω = 2", ...
620s           "μ = 1, ω = 3", "μ = 2, ω = 1", "μ = 2, ω = 2", ...
620s           "μ = 5, ω = 1"}, "location", "southeast")
620s  title ("Nakagami CDF")
620s  xlabel ("values in x")
620s  ylabel ("probability")
620s ***** shared x, y
620s  x = [-1, 0, 1, 2, Inf];
620s  y = [0, 0, 0.63212055882855778, 0.98168436111126578, 1];
620s ***** assert (nakacdf (x, ones (1,5), ones (1,5)), y, eps)
620s ***** assert (nakacdf (x, 1, 1), y, eps)
620s ***** assert (nakacdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)])
620s ***** assert (nakacdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)])
620s ***** assert (nakacdf ([x, NaN], 1, 1), [y, NaN], eps)
620s ***** assert (nakacdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps("single"))
620s ***** assert (nakacdf ([x, NaN], single (1), 1), single ([y, NaN]), eps("single"))
620s ***** assert (nakacdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps("single"))
620s ***** error<nakacdf: function called with too few input arguments.> nakacdf ()
620s ***** error<nakacdf: function called with too few input arguments.> nakacdf (1)
620s ***** error<nakacdf: function called with too few input arguments.> nakacdf (1, 2)
620s ***** error<nakacdf: invalid argument for upper tail.> nakacdf (1, 2, 3, "tail")
620s ***** error<nakacdf: invalid argument for upper tail.> nakacdf (1, 2, 3, 4)
620s ***** error<nakacdf: X, MU, and OMEGA must be of common size or scalars.> ...
620s  nakacdf (ones (3), ones (2), ones (2))
620s ***** error<nakacdf: X, MU, and OMEGA must be of common size or scalars.> ...
620s  nakacdf (ones (2), ones (3), ones (2))
620s ***** error<nakacdf: X, MU, and OMEGA must be of common size or scalars.> ...
620s  nakacdf (ones (2), ones (2), ones (3))
620s ***** error<nakacdf: X, MU, and OMEGA must not be complex.> nakacdf (i, 2, 2)
620s ***** error<nakacdf: X, MU, and OMEGA must not be complex.> nakacdf (2, i, 2)
620s ***** error<nakacdf: X, MU, and OMEGA must not be complex.> nakacdf (2, 2, i)
620s 19 tests, 19 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/hninv.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/hninv.m
620s ***** demo
620s  ## Plot various iCDFs from the half-normal distribution
620s  p = 0.001:0.001:0.999;
620s  x1 = hninv (p, 0, 1);
620s  x2 = hninv (p, 0, 2);
620s  x3 = hninv (p, 0, 3);
620s  x4 = hninv (p, 0, 5);
620s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c")
620s  grid on
620s  ylim ([0, 10])
620s  legend ({"μ = 0, σ = 1", "μ = 0, σ = 2", ...
620s           "μ = 0, σ = 3", "μ = 0, σ = 5"}, "location", "northwest")
620s  title ("Half-normal iCDF")
620s  xlabel ("probability")
620s  ylabel ("x")
620s ***** shared p, x
620s  p = [0, 0.3829, 0.6827, 1];
620s  x = [0, 1/2, 1, Inf];
620s ***** assert (hninv (p, 0, 1), x, 1e-4);
620s ***** assert (hninv (p, 5, 1), x + 5, 1e-4);
620s ***** assert (hninv (p, 0, ones (1,4)), x, 1e-4);
620s ***** assert (hninv (p, 0, [-1, 0, 1, 1]), [NaN, NaN, x(3:4)], 1e-4)
620s ***** assert (class (hninv (single ([p, NaN]), 0, 1)), "single")
620s ***** assert (class (hninv ([p, NaN], single (0), 1)), "single")
620s ***** assert (class (hninv ([p, NaN], 0, single (1))), "single")
620s ***** error<hninv: function called with too few input arguments.> hninv (1)
620s ***** error<hninv: function called with too few input arguments.> hninv (1, 2)
620s ***** error<hninv: P, MU, and SIGMA must be of common size or scalars.> ...
620s  hninv (1, ones (2), ones (3))
620s ***** error<hninv: P, MU, and SIGMA must be of common size or scalars.> ...
620s  hninv (ones (2), 1, ones (3))
620s ***** error<hninv: P, MU, and SIGMA must be of common size or scalars.> ...
620s  hninv (ones (2), ones (3), 1)
620s ***** error<hninv: P, MU, and SIGMA must not be complex.> hninv (i, 2, 3)
620s ***** error<hninv: P, MU, and SIGMA must not be complex.> hninv (1, i, 3)
620s ***** error<hninv: P, MU, and SIGMA must not be complex.> hninv (1, 2, i)
620s 15 tests, 15 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/bvtcdf.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/bvtcdf.m
620s ***** test
620s  x = [1, 2];
620s  rho = [1, 0.5; 0.5, 1];
620s  df = 4;
620s  assert (bvtcdf(x, rho(2), df), mvtcdf(x, rho, df), 1e-14);
620s ***** test
620s  x = [3, 2;2, 4;1, 5];
620s  rho = [1, 0.5; 0.5, 1];
620s  df = 4;
620s  assert (bvtcdf(x, rho(2), df), mvtcdf(x, rho, df), 1e-14);
620s 2 tests, 2 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/nctrnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nctrnd.m
620s ***** assert (size (nctrnd (1, 1)), [1 1])
620s ***** assert (size (nctrnd (1, ones (2,1))), [2, 1])
620s ***** assert (size (nctrnd (1, ones (2,2))), [2, 2])
620s ***** assert (size (nctrnd (ones (2,1), 1)), [2, 1])
620s ***** assert (size (nctrnd (ones (2,2), 1)), [2, 2])
620s ***** assert (size (nctrnd (1, 1, 3)), [3, 3])
620s ***** assert (size (nctrnd (1, 1, [4, 1])), [4, 1])
620s ***** assert (size (nctrnd (1, 1, 4, 1)), [4, 1])
620s ***** assert (size (nctrnd (1, 1, 4, 1, 5)), [4, 1, 5])
620s ***** assert (size (nctrnd (1, 1, 0, 1)), [0, 1])
620s ***** assert (size (nctrnd (1, 1, 1, 0)), [1, 0])
620s ***** assert (size (nctrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
620s ***** assert (class (nctrnd (1, 1)), "double")
620s ***** assert (class (nctrnd (1, single (1))), "single")
620s ***** assert (class (nctrnd (1, single ([1, 1]))), "single")
620s ***** assert (class (nctrnd (single (1), 1)), "single")
620s ***** assert (class (nctrnd (single ([1, 1]), 1)), "single")
620s ***** error<nctrnd: function called with too few input arguments.> nctrnd ()
620s ***** error<nctrnd: function called with too few input arguments.> nctrnd (1)
620s ***** error<nctrnd: DF and MU must be of common size or scalars.> ...
620s  nctrnd (ones (3), ones (2))
620s ***** error<nctrnd: DF and MU must be of common size or scalars.> ...
620s  nctrnd (ones (2), ones (3))
620s ***** error<nctrnd: DF and MU must not be complex.> nctrnd (i, 2)
620s ***** error<nctrnd: DF and MU must not be complex.> nctrnd (1, i)
620s ***** error<nctrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  nctrnd (1, 2, -1)
620s ***** error<nctrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  nctrnd (1, 2, 1.2)
620s ***** error<nctrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  nctrnd (1, 2, ones (2))
620s ***** error<nctrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  nctrnd (1, 2, [2 -1 2])
620s ***** error<nctrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  nctrnd (1, 2, [2 0 2.5])
620s ***** error<nctrnd: dimensions must be non-negative integers.> ...
620s  nctrnd (1, 2, 2, -1, 5)
620s ***** error<nctrnd: dimensions must be non-negative integers.> ...
620s  nctrnd (1, 2, 2, 1.5, 5)
620s ***** error<nctrnd: DF and MU must be scalars or of size SZ.> ...
620s  nctrnd (2, ones (2), 3)
620s ***** error<nctrnd: DF and MU must be scalars or of size SZ.> ...
620s  nctrnd (2, ones (2), [3, 2])
620s ***** error<nctrnd: DF and MU must be scalars or of size SZ.> ...
620s  nctrnd (2, ones (2), 3, 2)
620s 33 tests, 33 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/betacdf.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/betacdf.m
620s ***** demo
620s  ## Plot various CDFs from the Beta distribution
620s  x = 0:0.005:1;
620s  p1 = betacdf (x, 0.5, 0.5);
620s  p2 = betacdf (x, 5, 1);
620s  p3 = betacdf (x, 1, 3);
620s  p4 = betacdf (x, 2, 2);
620s  p5 = betacdf (x, 2, 5);
620s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
620s  grid on
620s  legend ({"α = β = 0.5", "α = 5, β = 1", "α = 1, β = 3", ...
620s           "α = 2, β = 2", "α = 2, β = 5"}, "location", "northwest")
620s  title ("Beta CDF")
620s  xlabel ("values in x")
620s  ylabel ("probability")
620s ***** shared x, y, x1, x2
620s  x = [-1 0 0.5 1 2];
620s  y = [0 0 0.75 1 1];
620s ***** assert (betacdf (x, ones (1, 5), 2 * ones (1, 5)), y)
620s ***** assert (betacdf (x, 1, 2 * ones (1, 5)), y)
620s ***** assert (betacdf (x, ones (1, 5), 2), y)
620s ***** assert (betacdf (x, [0 1 NaN 1 1], 2), [NaN 0 NaN 1 1])
620s ***** assert (betacdf (x, 1, 2 * [0 1 NaN 1 1]), [NaN 0 NaN 1 1])
620s ***** assert (betacdf ([x(1:2) NaN x(4:5)], 1, 2), [y(1:2) NaN y(4:5)])
620s  x1 = [0.1:0.2:0.9];
620s ***** assert (betacdf (x1, 2, 2), [0.028, 0.216, 0.5, 0.784, 0.972], 1e-14);
620s ***** assert (betacdf (x1, 2, 2, "upper"), 1 - [0.028, 0.216, 0.5, 0.784, 0.972],...
620s         1e-14);
620s  x2 = [1, 2, 3];
620s ***** assert (betacdf (0.5, x2, x2), [0.5, 0.5, 0.5], 1e-14);
620s ***** assert (betacdf ([x, NaN], 1, 2), [y, NaN])
620s ***** assert (betacdf (single ([x, NaN]), 1, 2), single ([y, NaN]))
620s ***** assert (betacdf ([x, NaN], single (1), 2), single ([y, NaN]))
620s ***** assert (betacdf ([x, NaN], 1, single (2)), single ([y, NaN]))
620s ***** error<betacdf: function called with too few input arguments.> betacdf ()
620s ***** error<betacdf: function called with too few input arguments.> betacdf (1)
620s ***** error<betacdf: function called with too few input arguments.> betacdf (1, 2)
620s ***** error<betacdf: function called with too many inputs> betacdf (1, 2, 3, 4, 5)
620s ***** error<betacdf: invalid argument for upper tail.> betacdf (1, 2, 3, "tail")
620s ***** error<betacdf: invalid argument for upper tail.> betacdf (1, 2, 3, 4)
620s ***** error<betacdf: X, A, and B must be of common size or scalars.> ...
620s  betacdf (ones (3), ones (2), ones (2))
620s ***** error<betacdf: X, A, and B must be of common size or scalars.> ...
620s  betacdf (ones (2), ones (3), ones (2))
620s ***** error<betacdf: X, A, and B must be of common size or scalars.> ...
620s  betacdf (ones (2), ones (2), ones (3))
620s ***** error<betacdf: X, A, and B must not be complex.> betacdf (i, 2, 2)
620s ***** error<betacdf: X, A, and B must not be complex.> betacdf (2, i, 2)
620s ***** error<betacdf: X, A, and B must not be complex.> betacdf (2, 2, i)
620s 25 tests, 25 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/unidrnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unidrnd.m
620s ***** assert (size (unidrnd (2)), [1, 1])
620s ***** assert (size (unidrnd (ones (2,1))), [2, 1])
620s ***** assert (size (unidrnd (ones (2,2))), [2, 2])
620s ***** assert (size (unidrnd (1, 3)), [3, 3])
620s ***** assert (size (unidrnd (1, [4 1])), [4, 1])
620s ***** assert (size (unidrnd (1, 4, 1)), [4, 1])
620s ***** assert (size (unidrnd (1, 4, 1)), [4, 1])
620s ***** assert (size (unidrnd (1, 4, 1, 5)), [4, 1, 5])
620s ***** assert (size (unidrnd (1, 0, 1)), [0, 1])
620s ***** assert (size (unidrnd (1, 1, 0)), [1, 0])
620s ***** assert (size (unidrnd (1, 1, 2, 0, 5)), [1, 2, 0, 5])
620s ***** assert (unidrnd (0, 1, 1), NaN)
620s ***** assert (unidrnd ([0, 0, 0], [1, 3]), [NaN, NaN, NaN])
620s ***** assert (class (unidrnd (2)), "double")
620s ***** assert (class (unidrnd (single (2))), "single")
620s ***** assert (class (unidrnd (single ([2 2]))), "single")
620s ***** error<unidrnd: function called with too few input arguments.> unidrnd ()
620s ***** error<unidrnd: N must not be complex.> unidrnd (i)
620s ***** error<unidrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  unidrnd (1, -1)
620s ***** error<unidrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  unidrnd (1, 1.2)
620s ***** error<unidrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  unidrnd (1, ones (2))
620s ***** error<unidrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  unidrnd (1, [2 -1 2])
620s ***** error<unidrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  unidrnd (1, [2 0 2.5])
620s ***** error<unidrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
620s  unidrnd (ones (2), ones (2))
620s ***** error<unidrnd: dimensions must be non-negative integers.> ...
620s  unidrnd (1, 2, -1, 5)
620s ***** error<unidrnd: dimensions must be non-negative integers.> ...
620s  unidrnd (1, 2, 1.5, 5)
620s ***** error<unidrnd: N must be scalar or of size SZ.> unidrnd (ones (2,2), 3)
620s ***** error<unidrnd: N must be scalar or of size SZ.> unidrnd (ones (2,2), [3, 2])
620s ***** error<unidrnd: N must be scalar or of size SZ.> unidrnd (ones (2,2), 2, 3)
620s 29 tests, 29 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/mvtrnd.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/mvtrnd.m
620s ***** test
620s  rho = [1, 0.5; 0.5, 1];
620s  df = 3;
620s  n = 10;
620s  r = mvtrnd (rho, df, n);
620s  assert (size (r), [10, 2]);
620s ***** test
620s  rho = [1, 0.5; 0.5, 1];
620s  df = [2; 3];
620s  n = 2;
620s  r = mvtrnd (rho, df, 2);
620s  assert (size (r), [2, 2]);
620s 2 tests, 2 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/expcdf.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/expcdf.m
620s ***** demo
620s  ## Plot various CDFs from the exponential distribution
620s  x = 0:0.01:5;
620s  p1 = expcdf (x, 2/3);
620s  p2 = expcdf (x, 1.0);
620s  p3 = expcdf (x, 2.0);
620s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r")
620s  grid on
620s  legend ({"μ = 2/3", "μ = 1", "μ = 2"}, "location", "southeast")
620s  title ("Exponential CDF")
620s  xlabel ("values in x")
620s  ylabel ("probability")
620s ***** shared x, p
620s  x = [-1 0 0.5 1 Inf];
620s  p = [0, 1 - exp(-x(2:end)/2)];
620s ***** assert (expcdf (x, 2 * ones (1, 5)), p, 1e-16)
620s ***** assert (expcdf (x, 2), p, 1e-16)
620s ***** assert (expcdf (x, 2 * [1, 0, NaN, 1, 1]), [0, NaN, NaN, p(4:5)], 1e-16)
620s ***** assert (expcdf ([x, NaN], 2), [p, NaN], 1e-16)
620s ***** assert (expcdf (single ([x, NaN]), 2), single ([p, NaN]))
620s ***** assert (expcdf ([x, NaN], single (2)), single ([p, NaN]))
620s ***** test
620s  [p, plo, pup] = expcdf (1, 2, 3);
620s  assert (p, 0.39346934028737, 1e-14);
620s  assert (plo, 0.08751307220484, 1e-14);
620s  assert (pup, 0.93476821257933, 1e-14);
620s ***** test
620s  [p, plo, pup] = expcdf (1, 2, 2, 0.1);
620s  assert (p, 0.39346934028737, 1e-14);
620s  assert (plo, 0.14466318041675, 1e-14);
620s  assert (pup, 0.79808291849140, 1e-14);
620s ***** test
620s  [p, plo, pup] = expcdf (1, 2, 2, 0.1, "upper");
620s  assert (p, 0.60653065971263, 1e-14);
620s  assert (plo, 0.20191708150860, 1e-14);
620s  assert (pup, 0.85533681958325, 1e-14);
620s ***** error<expcdf: invalid number of input arguments.> expcdf ()
620s ***** error<expcdf: invalid number of input arguments.> expcdf (1, 2 ,3 ,4 ,5, 6)
620s ***** error<expcdf: invalid argument for upper tail.> expcdf (1, 2, 3, 4, "uper")
620s ***** error<expcdf: X and MU must be of common size or scalars.> ...
620s  expcdf (ones (3), ones (2))
620s ***** error<expcdf: invalid size of variance, PCOV must be a scalar.> ...
620s  expcdf (2, 3, [1, 2])
620s ***** error<expcdf: variance, PCOV, is required for confidence bounds.> ...
620s  [p, plo, pup] = expcdf (1, 2)
620s ***** error<expcdf: invalid value for alpha.> [p, plo, pup] = ...
620s  expcdf (1, 2, 3, 0)
620s ***** error<expcdf: invalid value for alpha.> [p, plo, pup] = ...
620s  expcdf (1, 2, 3, 1.22)
620s ***** error<expcdf: invalid value for alpha.> [p, plo, pup] = ...
620s  expcdf (1, 2, 3, "alpha", "upper")
620s ***** error<expcdf: X and MU must not be complex.> expcdf (i, 2)
620s ***** error<expcdf: X and MU must not be complex.> expcdf (2, i)
620s ***** error<expcdf: variance, PCOV, cannot be negative.> ...
620s  [p, plo, pup] = expcdf (1, 2, -1, 0.04)
620s 21 tests, 21 passed, 0 known failure, 0 skipped
620s [inst/dist_fun/finv.m]
620s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/finv.m
620s ***** demo
620s  ## Plot various iCDFs from the F distribution
620s  p = 0.001:0.001:0.999;
620s  x1 = finv (p, 1, 1);
620s  x2 = finv (p, 2, 1);
620s  x3 = finv (p, 5, 2);
620s  x4 = finv (p, 10, 1);
620s  x5 = finv (p, 100, 100);
620s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", p, x4, "-c", p, x5, "-m")
620s  grid on
620s  ylim ([0, 4])
620s  legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ...
620s           "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ...
620s           "df1 = 100, df2 = 100"}, "location", "northwest")
620s  title ("F iCDF")
620s  xlabel ("probability")
620s  ylabel ("values in x")
620s ***** shared p
620s  p = [-1 0 0.5 1 2];
620s ***** assert (finv (p, 2*ones (1,5), 2*ones (1,5)), [NaN 0 1 Inf NaN])
620s ***** assert (finv (p, 2, 2*ones (1,5)), [NaN 0 1 Inf NaN])
620s ***** assert (finv (p, 2*ones (1,5), 2), [NaN 0 1 Inf NaN])
620s ***** assert (finv (p, [2 -Inf NaN Inf 2], 2), [NaN NaN NaN NaN NaN])
620s ***** assert (finv (p, 2, [2 -Inf NaN Inf 2]), [NaN NaN NaN NaN NaN])
620s ***** assert (finv ([p(1:2) NaN p(4:5)], 2, 2), [NaN 0 NaN Inf NaN])
620s ***** assert (finv (0.025, 10, 1e6), 0.3247, 1e-4)
620s ***** assert (finv (0.025, 10, 1e7), 0.3247, 1e-4)
621s ***** assert (finv (0.025, 10, 1e10), 0.3247, 1e-4)
621s ***** assert (finv (0.025, 10, 1e255), 0.3247, 1e-4)
621s ***** assert (finv (0.025, 10, Inf), 0.3247, 1e-4)
621s ***** assert (finv ([p, NaN], 2, 2), [NaN 0 1 Inf NaN NaN])
621s ***** assert (finv (single ([p, NaN]), 2, 2), single ([NaN 0 1 Inf NaN NaN]))
621s ***** assert (finv ([p, NaN], single (2), 2), single ([NaN 0 1 Inf NaN NaN]))
621s ***** assert (finv ([p, NaN], 2, single (2)), single ([NaN 0 1 Inf NaN NaN]))
621s ***** error<finv: function called with too few input arguments.> finv ()
621s ***** error<finv: function called with too few input arguments.> finv (1)
621s ***** error<finv: function called with too few input arguments.> finv (1,2)
621s ***** error<finv: P, DF1, and DF2 must be of common size or scalars.> ...
621s  finv (ones (3), ones (2), ones (2))
621s ***** error<finv: P, DF1, and DF2 must be of common size or scalars.> ...
621s  finv (ones (2), ones (3), ones (2))
621s ***** error<finv: P, DF1, and DF2 must be of common size or scalars.> ...
621s  finv (ones (2), ones (2), ones (3))
621s ***** error<finv: P, DF1, and DF2 must not be complex.> finv (i, 2, 2)
621s ***** error<finv: P, DF1, and DF2 must not be complex.> finv (2, i, 2)
621s ***** error<finv: P, DF1, and DF2 must not be complex.> finv (2, 2, i)
621s 24 tests, 24 passed, 0 known failure, 0 skipped
621s [inst/dist_fun/nbininv.m]
621s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nbininv.m
621s ***** demo
621s  ## Plot various iCDFs from the negative binomial distribution
621s  p = 0.001:0.001:0.999;
621s  x1 = nbininv (p, 2, 0.15);
621s  x2 = nbininv (p, 5, 0.2);
621s  x3 = nbininv (p, 4, 0.4);
621s  x4 = nbininv (p, 10, 0.3);
621s  plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m")
621s  grid on
621s  ylim ([0, 40])
621s  legend ({"r = 2, ps = 0.15", "r = 5, ps = 0.2", "r = 4, p = 0.4", ...
621s           "r = 10, ps = 0.3"}, "location", "northwest")
621s  title ("Negative binomial iCDF")
621s  xlabel ("probability")
621s  ylabel ("values in x (number of failures)")
621s ***** shared p
621s  p = [-1 0 3/4 1 2];
621s ***** assert (nbininv (p, ones (1,5), 0.5*ones (1,5)), [NaN 0 1 Inf NaN])
621s ***** assert (nbininv (p, 1, 0.5*ones (1,5)), [NaN 0 1 Inf NaN])
621s ***** assert (nbininv (p, ones (1,5), 0.5), [NaN 0 1 Inf NaN])
621s ***** assert (nbininv (p, [1 0 NaN Inf 1], 0.5), [NaN NaN NaN NaN NaN])
621s ***** assert (nbininv (p, [1 0 1.5 Inf 1], 0.5), [NaN NaN 2 NaN NaN])
621s ***** assert (nbininv (p, 1, 0.5*[1 -Inf NaN Inf 1]), [NaN NaN NaN NaN NaN])
621s ***** assert (nbininv ([p(1:2) NaN p(4:5)], 1, 0.5), [NaN 0 NaN Inf NaN])
621s ***** assert (nbininv ([p, NaN], 1, 0.5), [NaN 0 1 Inf NaN NaN])
621s ***** assert (nbininv (single ([p, NaN]), 1, 0.5), single ([NaN 0 1 Inf NaN NaN]))
621s ***** assert (nbininv ([p, NaN], single (1), 0.5), single ([NaN 0 1 Inf NaN NaN]))
621s ***** assert (nbininv ([p, NaN], 1, single (0.5)), single ([NaN 0 1 Inf NaN NaN]))
621s ***** shared y, tol
621s  y = magic (3) + 1;
621s  tol = 1;
621s ***** assert (nbininv (nbincdf (1:10, 3, 0.1), 3, 0.1), 1:10, tol)
621s ***** assert (nbininv (nbincdf (1:10, 3./(1:10), 0.1), 3./(1:10), 0.1), 1:10, tol)
621s ***** assert (nbininv (nbincdf (y, 3./y, 1./y), 3./y, 1./y), y, tol)
621s ***** error<nbininv: function called with too few input arguments.> nbininv ()
621s ***** error<nbininv: function called with too few input arguments.> nbininv (1)
621s ***** error<nbininv: function called with too few input arguments.> nbininv (1, 2)
621s ***** error<nbininv: P, R, and PS must be of common size or scalars.> ...
621s  nbininv (ones (3), ones (2), ones (2))
621s ***** error<nbininv: P, R, and PS must be of common size or scalars.> ...
621s  nbininv (ones (2), ones (3), ones (2))
621s ***** error<nbininv: P, R, and PS must be of common size or scalars.> ...
621s  nbininv (ones (2), ones (2), ones (3))
621s ***** error<nbininv: P, R, and PS must not be complex.> nbininv (i, 2, 2)
621s ***** error<nbininv: P, R, and PS must not be complex.> nbininv (2, i, 2)
621s ***** error<nbininv: P, R, and PS must not be complex.> nbininv (2, 2, i)
621s 23 tests, 23 passed, 0 known failure, 0 skipped
621s [inst/dist_fun/iwishpdf.m]
621s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/iwishpdf.m
621s ***** assert(iwishpdf(4, 3, 3.1), 0.04226595, 1E-7);
621s ***** assert(iwishpdf([2 -0.3;-0.3 4], [1 0.3;0.3 1], 4), 1.60166e-05, 1E-10);
621s ***** assert(iwishpdf([6 2 5; 2 10 -5; 5 -5 25], ...
621s  [9 5 5; 5 10 -8; 5 -8 22], 5.1), 4.946831e-12, 1E-17);
621s ***** error iwishpdf ()
621s ***** error iwishpdf (1, 2)
621s ***** error iwishpdf (1, 2, 0)
621s 6 tests, 6 passed, 0 known failure, 0 skipped
621s [inst/dist_fun/bisacdf.m]
621s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/bisacdf.m
621s ***** demo
621s  ## Plot various CDFs from the Birnbaum-Saunders distribution
621s  x = 0.01:0.01:4;
621s  p1 = bisacdf (x, 1, 0.5);
621s  p2 = bisacdf (x, 1, 1);
621s  p3 = bisacdf (x, 1, 2);
621s  p4 = bisacdf (x, 1, 5);
621s  p5 = bisacdf (x, 1, 10);
621s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
621s  grid on
621s  legend ({"β = 1, γ = 0.5", "β = 1, γ = 1", "β = 1, γ = 2", ...
621s           "β = 1, γ = 5", "β = 1, γ = 10"}, "location", "southeast")
621s  title ("Birnbaum-Saunders CDF")
621s  xlabel ("values in x")
621s  ylabel ("probability")
621s ***** demo
621s  ## Plot various CDFs from the Birnbaum-Saunders distribution
621s  x = 0.01:0.01:6;
621s  p1 = bisacdf (x, 1, 0.3);
621s  p2 = bisacdf (x, 2, 0.3);
621s  p3 = bisacdf (x, 1, 0.5);
621s  p4 = bisacdf (x, 3, 0.5);
621s  p5 = bisacdf (x, 5, 0.5);
621s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
621s  grid on
621s  legend ({"β = 1, γ = 0.3", "β = 2, γ = 0.3", "β = 1, γ = 0.5", ...
621s           "β = 3, γ = 0.5", "β = 5, γ = 0.5"}, "location", "southeast")
621s  title ("Birnbaum-Saunders CDF")
621s  xlabel ("values in x")
621s  ylabel ("probability")
621s ***** shared x, y
621s  x = [-1, 0, 1, 2, Inf];
621s  y = [0, 0, 1/2, 0.76024993890652337, 1];
621s ***** assert (bisacdf (x, ones (1,5), ones (1,5)), y, eps)
621s ***** assert (bisacdf (x, 1, 1), y, eps)
621s ***** assert (bisacdf (x, 1, ones (1,5)), y, eps)
621s ***** assert (bisacdf (x, ones (1,5), 1), y, eps)
621s ***** assert (bisacdf (x, 1, 1), y, eps)
621s ***** assert (bisacdf (x, 1, [1, 1, NaN, 1, 1]), [y(1:2), NaN, y(4:5)], eps)
621s ***** assert (bisacdf (x, [1, 1, NaN, 1, 1], 1), [y(1:2), NaN, y(4:5)], eps)
621s ***** assert (bisacdf ([x, NaN], 1, 1), [y, NaN], eps)
621s ***** assert (bisacdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single"))
621s ***** assert (bisacdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single"))
621s ***** assert (bisacdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single"))
621s ***** error<bisacdf: function called with too few input arguments.> bisacdf ()
621s ***** error<bisacdf: function called with too few input arguments.> bisacdf (1)
621s ***** error<bisacdf: function called with too few input arguments.> bisacdf (1, 2)
621s ***** error<bisacdf: function called with too many inputs> ...
621s  bisacdf (1, 2, 3, 4, 5)
621s ***** error<bisacdf: invalid argument for upper tail.> bisacdf (1, 2, 3, "tail")
621s ***** error<bisacdf: invalid argument for upper tail.> bisacdf (1, 2, 3, 4)
621s ***** error<bisacdf: X, BETA, and GAMMA must be of common size or scalars.> ...
621s  bisacdf (ones (3), ones (2), ones(2))
621s ***** error<bisacdf: X, BETA, and GAMMA must be of common size or scalars.> ...
621s  bisacdf (ones (2), ones (3), ones(2))
621s ***** error<bisacdf: X, BETA, and GAMMA must be of common size or scalars.> ...
621s  bisacdf (ones (2), ones (2), ones(3))
621s ***** error<bisacdf: X, BETA, and GAMMA must not be complex.> bisacdf (i, 4, 3)
621s ***** error<bisacdf: X, BETA, and GAMMA must not be complex.> bisacdf (1, i, 3)
621s ***** error<bisacdf: X, BETA, and GAMMA must not be complex.> bisacdf (1, 4, i)
621s 23 tests, 23 passed, 0 known failure, 0 skipped
621s [inst/dist_fun/nctinv.m]
621s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nctinv.m
621s ***** demo
621s  ## Plot various iCDFs from the noncentral T distribution
621s  p = 0.001:0.001:0.999;
621s  x1 = nctinv (p, 1, 0);
621s  x2 = nctinv (p, 4, 0);
621s  x3 = nctinv (p, 1, 2);
621s  x4 = nctinv (p, 4, 2);
621s  plot (p, x1, "-r", p, x2, "-g", p, x3, "-k", p, x4, "-m")
621s  grid on
621s  ylim ([-5, 5])
621s  legend ({"df = 1, μ = 0", "df = 4, μ = 0", ...
621s           "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "northwest")
621s  title ("Noncentral T iCDF")
621s  xlabel ("probability")
621s  ylabel ("values in x")
621s ***** demo
621s  ## Compare the noncentral T iCDF with MU = 1 to the T iCDF
621s  ## with the same number of degrees of freedom (10).
621s 
621s  p = 0.001:0.001:0.999;
621s  x1 = nctinv (p, 10, 1);
621s  x2 = tinv (p, 10);
621s  plot (p, x1, "-", p, x2, "-");
621s  grid on
621s  ylim ([-5, 5])
621s  legend ({"Noncentral T(10,1)", "T(10)"}, "location", "northwest")
621s  title ("Noncentral T vs T quantile functions")
621s  xlabel ("probability")
621s  ylabel ("values in x")
621s ***** test
621s  x = [-Inf,-0.3347,0.1756,0.5209,0.8279,1.1424,1.5021,1.9633,2.6571,4.0845,Inf];
621s  assert (nctinv ([0:0.1:1], 2, 1), x, 1e-4);
622s ***** test
622s  x = [-Inf,1.5756,2.0827,2.5343,3.0043,3.5406,4.2050,5.1128,6.5510,9.6442,Inf];
622s  assert (nctinv ([0:0.1:1], 2, 3), x, 1e-4);
622s ***** test
622s  x = [-Inf,2.2167,2.9567,3.7276,4.6464,5.8455,7.5619,10.3327,15.7569,31.8159,Inf];
622s  assert (nctinv ([0:0.1:1], 1, 4), x, 1e-4);
623s ***** test
623s  x = [1.7791   1.9368   2.0239   2.0801   2.1195   2.1489];
623s  assert (nctinv (0.05, [1, 2, 3, 4, 5, 6], 4), x, 1e-4);
623s ***** test
623s  x = [-0.7755, 0.3670, 1.2554, 2.0239, 2.7348, 3.4154];
623s  assert (nctinv (0.05, 3, [1, 2, 3, 4, 5, 6]), x, 1e-4);
624s ***** test
624s  x = [-0.7183, 0.3624, 1.2878, 2.1195, -3.5413, 3.6430];
624s  assert (nctinv (0.05, 5, [1, 2, 3, 4, -1, 6]), x, 1e-4);
625s ***** test
625s  assert (nctinv (0.996, 5, 8), 30.02610554063658, 2e-11);
627s ***** error<nctinv: function called with too few input arguments.> nctinv ()
627s ***** error<nctinv: function called with too few input arguments.> nctinv (1)
627s ***** error<nctinv: function called with too few input arguments.> nctinv (1, 2)
627s ***** error<nctinv: P, DF, and MU must be of common size or scalars.> ...
627s  nctinv (ones (3), ones (2), ones (2))
627s ***** error<nctinv: P, DF, and MU must be of common size or scalars.> ...
627s  nctinv (ones (2), ones (3), ones (2))
627s ***** error<nctinv: P, DF, and MU must be of common size or scalars.> ...
627s  nctinv (ones (2), ones (2), ones (3))
627s ***** error<nctinv: P, DF, and MU must not be complex.> nctinv (i, 2, 2)
627s ***** error<nctinv: P, DF, and MU must not be complex.> nctinv (2, i, 2)
627s ***** error<nctinv: P, DF, and MU must not be complex.> nctinv (2, 2, i)
627s 16 tests, 16 passed, 0 known failure, 0 skipped
627s [inst/dist_fun/wishpdf.m]
627s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/wishpdf.m
627s ***** assert(wishpdf(4, 3, 3.1), 0.07702496, 1E-7);
627s ***** assert(wishpdf([2 -0.3;-0.3 4], [1 0.3;0.3 1], 4), 0.004529741, 1E-7);
627s ***** assert(wishpdf([6 2 5; 2 10 -5; 5 -5 25], [9 5 5; 5 10 -8; 5 -8 22], 5.1), 4.474865e-10, 1E-15);
627s ***** error wishpdf ()
627s ***** error wishpdf (1, 2)
627s ***** error wishpdf (1, 2, 0)
627s ***** error wishpdf (1, 2)
627s 7 tests, 7 passed, 0 known failure, 0 skipped
627s [inst/dist_fun/jsupdf.m]
627s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/jsupdf.m
627s ***** error jsupdf ()
627s ***** error jsupdf (1, 2, 3, 4)
627s ***** error<jsupdf: X, ALPHA1, and ALPHA2 must be of common size or scalars.> ...
627s  jsupdf (1, ones (2), ones (3))
627s 3 tests, 3 passed, 0 known failure, 0 skipped
627s [inst/dist_fun/binopdf.m]
627s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/binopdf.m
627s ***** demo
627s  ## Plot various PDFs from the binomial distribution
627s  x = 0:40;
627s  y1 = binopdf (x, 20, 0.5);
627s  y2 = binopdf (x, 20, 0.7);
627s  y3 = binopdf (x, 40, 0.5);
627s  plot (x, y1, "*b", x, y2, "*g", x, y3, "*r")
627s  grid on
627s  ylim ([0, 0.25])
627s  legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ...
627s           "n = 40, ps = 0.5"}, "location", "northeast")
627s  title ("Binomial PDF")
627s  xlabel ("values in x (number of successes)")
627s  ylabel ("density")
627s ***** shared x, y
627s  x = [-1 0 1 2 3];
627s  y = [0 1/4 1/2 1/4 0];
627s ***** assert (binopdf (x, 2 * ones (1, 5), 0.5 * ones (1, 5)), y, eps)
627s ***** assert (binopdf (x, 2, 0.5 * ones (1, 5)), y, eps)
627s ***** assert (binopdf (x, 2 * ones (1, 5), 0.5), y, eps)
627s ***** assert (binopdf (x, 2 * [0 -1 NaN 1.1 1], 0.5), [0 NaN NaN NaN 0])
628s ***** assert (binopdf (x, 2, 0.5 * [0 -1 NaN 3 1]), [0 NaN NaN NaN 0])
628s ***** assert (binopdf ([x, NaN], 2, 0.5), [y, NaN], eps)
628s ***** assert (binopdf (cat (3, x, x), 2, 0.5), cat (3, y, y), eps)
628s ***** assert (binopdf (1, 1, 1), 1)
628s ***** assert (binopdf (0, 3, 0), 1)
628s ***** assert (binopdf (2, 2, 1), 1)
628s ***** assert (binopdf (1, 2, 1), 0)
628s ***** assert (binopdf (0, 1.1, 0), NaN)
628s ***** assert (binopdf (1, 2, -1), NaN)
628s ***** assert (binopdf (1, 2, 1.5), NaN)
628s ***** assert (binopdf ([], 1, 1), [])
628s ***** assert (binopdf (1, [], 1), [])
628s ***** assert (binopdf (1, 1, []), [])
628s ***** assert (binopdf (ones (1, 0), 2, .5), ones(1, 0))
628s ***** assert (binopdf (ones (0, 1), 2, .5), ones(0, 1))
628s ***** assert (binopdf (ones (0, 1, 2), 2, .5), ones(0, 1, 2))
628s ***** assert (binopdf (1, ones (0, 1, 2), .5), ones(0, 1, 2))
628s ***** assert (binopdf (1, 2, ones (0, 1, 2)), ones(0, 1, 2))
628s ***** assert (binopdf (ones (1, 0, 2), 2, .5), ones(1, 0, 2))
628s ***** assert (binopdf (ones (1, 2, 0), 2, .5), ones(1, 2, 0))
628s ***** assert (binopdf (ones (0, 1, 2), NaN, .5), ones(0, 1, 2))
628s ***** assert (binopdf (ones (0, 1, 2), 2, NaN), ones(0, 1, 2))
628s ***** assert (binopdf (single ([x, NaN]), 2, 0.5), single ([y, NaN]))
628s ***** assert (binopdf ([x, NaN], single (2), 0.5), single ([y, NaN]))
628s ***** assert (binopdf ([x, NaN], 2, single (0.5)), single ([y, NaN]))
628s ***** error<binopdf: function called with too few input arguments.> binopdf ()
628s ***** error<binopdf: function called with too few input arguments.> binopdf (1)
628s ***** error<binopdf: function called with too few input arguments.> binopdf (1, 2)
628s ***** error<binopdf: function called with too many inputs> binopdf (1, 2, 3, 4)
628s ***** error<binopdf: X, N, and PS must be of common size or scalars.> ...
628s  binopdf (ones (3), ones (2), ones (2))
628s ***** error<binopdf: X, N, and PS must be of common size or scalars.> ...
628s  binopdf (ones (2), ones (3), ones (2))
628s ***** error<binopdf: X, N, and PS must be of common size or scalars.> ...
628s  binopdf (ones (2), ones (2), ones (3))
628s ***** error<binopdf: X, N, and PS must not be complex.> binopdf (i, 2, 2)
628s ***** error<binopdf: X, N, and PS must not be complex.> binopdf (2, i, 2)
628s ***** error<binopdf: X, N, and PS must not be complex.> binopdf (2, 2, i)
628s 39 tests, 39 passed, 0 known failure, 0 skipped
628s [inst/dist_fun/tpdf.m]
628s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tpdf.m
628s ***** demo
628s  ## Plot various PDFs from the Student's T distribution
628s  x = -5:0.01:5;
628s  y1 = tpdf (x, 1);
628s  y2 = tpdf (x, 2);
628s  y3 = tpdf (x, 5);
628s  y4 = tpdf (x, Inf);
628s  plot (x, y1, "-b", x, y2, "-g", x, y3, "-r", x, y4, "-m")
628s  grid on
628s  xlim ([-5, 5])
628s  ylim ([0, 0.41])
628s  legend ({"df = 1", "df = 2", ...
628s           "df = 5", 'df = \infty'}, "location", "northeast")
628s  title ("Student's T PDF")
628s  xlabel ("values in x")
628s  ylabel ("density")
628s ***** test
628s  x = rand (10,1);
628s  y = 1./(pi * (1 + x.^2));
628s  assert (tpdf (x, 1), y, 5*eps);
628s ***** shared x, y
628s  x = [-Inf 0 0.5 1 Inf];
628s  y = 1./(pi * (1 + x.^2));
628s ***** assert (tpdf (x, ones (1,5)), y, eps)
628s ***** assert (tpdf (x, 1), y, eps)
628s ***** assert (tpdf (x, [0 NaN 1 1 1]), [NaN NaN y(3:5)], eps)
628s ***** assert (tpdf (x, Inf), normpdf (x))
628s ***** assert (tpdf ([x, NaN], 1), [y, NaN], eps)
628s ***** assert (tpdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single"))
628s ***** assert (tpdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single"))
628s ***** error<tpdf: function called with too few input arguments.> tpdf ()
628s ***** error<tpdf: function called with too few input arguments.> tpdf (1)
628s ***** error<tpdf: X and DF must be of common size or scalars.> ...
628s  tpdf (ones (3), ones (2))
628s ***** error<tpdf: X and DF must be of common size or scalars.> ...
628s  tpdf (ones (2), ones (3))
628s ***** error<tpdf: X and DF must not be complex.> tpdf (i, 2)
628s ***** error<tpdf: X and DF must not be complex.> tpdf (2, i)
628s 14 tests, 14 passed, 0 known failure, 0 skipped
628s [inst/dist_fun/unidpdf.m]
628s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unidpdf.m
628s ***** demo
628s  ## Plot various PDFs from the discrete uniform distribution
628s  x = 0:10;
628s  y1 = unidpdf (x, 5);
628s  y2 = unidpdf (x, 9);
628s  plot (x, y1, "*b", x, y2, "*g")
628s  grid on
628s  xlim ([0, 10])
628s  ylim ([0, 0.25])
628s  legend ({"N = 5", "N = 9"}, "location", "northeast")
628s  title ("Descrete uniform PDF")
628s  xlabel ("values in x")
628s  ylabel ("density")
628s ***** shared x, y
628s  x = [-1 0 1 2 10 11];
628s  y = [0 0 0.1 0.1 0.1 0];
628s ***** assert (unidpdf (x, 10*ones (1,6)), y)
628s ***** assert (unidpdf (x, 10), y)
628s ***** assert (unidpdf (x, 10*[0 NaN 1 1 1 1]), [NaN NaN y(3:6)])
628s ***** assert (unidpdf ([x, NaN], 10), [y, NaN])
628s ***** assert (unidpdf (single ([x, NaN]), 10), single ([y, NaN]))
628s ***** assert (unidpdf ([x, NaN], single (10)), single ([y, NaN]))
628s ***** error<unidpdf: function called with too few input arguments.> unidpdf ()
628s ***** error<unidpdf: function called with too few input arguments.> unidpdf (1)
628s ***** error<unidpdf: X and N must be of common size or scalars.> ...
628s  unidpdf (ones (3), ones (2))
628s ***** error<unidpdf: X and N must be of common size or scalars.> ...
628s  unidpdf (ones (2), ones (3))
628s ***** error<unidpdf: X and N must not be complex.> unidpdf (i, 2)
628s ***** error<unidpdf: X and N must not be complex.> unidpdf (2, i)
628s 12 tests, 12 passed, 0 known failure, 0 skipped
628s [inst/dist_fun/gamcdf.m]
628s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gamcdf.m
628s ***** demo
628s  ## Plot various CDFs from the Gamma distribution
628s  x = 0:0.01:20;
628s  p1 = gamcdf (x, 1, 2);
628s  p2 = gamcdf (x, 2, 2);
628s  p3 = gamcdf (x, 3, 2);
628s  p4 = gamcdf (x, 5, 1);
628s  p5 = gamcdf (x, 9, 0.5);
628s  p6 = gamcdf (x, 7.5, 1);
628s  p7 = gamcdf (x, 0.5, 1);
628s  plot (x, p1, "-r", x, p2, "-g", x, p3, "-y", x, p4, "-m", ...
628s        x, p5, "-k", x, p6, "-b", x, p7, "-c")
628s  grid on
628s  legend ({"α = 1, β = 2", "α = 2, β = 2", "α = 3, β = 2", ...
628s           "α = 5, β = 1", "α = 9, β = 0.5", "α = 7.5, β = 1", ...
628s           "α = 0.5, β = 1"}, "location", "southeast")
628s  title ("Gamma CDF")
628s  xlabel ("values in x")
628s  ylabel ("probability")
628s ***** shared x, y, u
628s  x = [-1, 0, 0.5, 1, 2, Inf];
628s  y = [0, gammainc(x(2:end), 1)];
628s  u = [0, NaN, NaN, 1, 0.1353352832366127, 0];
628s ***** assert (gamcdf (x, ones (1,6), ones (1,6)), y, eps)
628s ***** assert (gamcdf (x, ones (1,6), ones (1,6), []), y, eps)
628s ***** assert (gamcdf (x, 1, ones (1,6)), y, eps)
628s ***** assert (gamcdf (x, ones (1,6), 1), y, eps)
628s ***** assert (gamcdf (x, [0, -Inf, NaN, Inf, 1, 1], 1), [1, NaN, NaN, 0, y(5:6)], eps)
628s ***** assert (gamcdf (x, [0, -Inf, NaN, Inf, 1, 1], 1, "upper"), u, eps)
628s ***** assert (gamcdf (x, 1, [0, -Inf, NaN, Inf, 1, 1]), [NaN, NaN, NaN, 0, y(5:6)], eps)
628s ***** assert (gamcdf ([x(1:2), NaN, x(4:6)], 1, 1), [y(1:2), NaN, y(4:6)], eps)
628s ***** assert (gamcdf ([x, NaN], 1, 1), [y, NaN])
628s ***** assert (gamcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single"))
628s ***** assert (gamcdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single"))
628s ***** assert (gamcdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single"))
628s ***** error<gamcdf: invalid number of input arguments.> gamcdf ()
628s ***** error<gamcdf: invalid number of input arguments.> gamcdf (1)
628s ***** error<gamcdf: invalid number of input arguments.> gamcdf (1, 2, 3, 4, 5, 6, 7)
628s ***** error<gamcdf: invalid argument for upper tail.> gamcdf (1, 2, 3, "uper")
628s ***** error<gamcdf: invalid argument for upper tail.> gamcdf (1, 2, 3, 4, 5, "uper")
628s ***** error<gamcdf: invalid size of covariance matrix.> gamcdf (2, 3, 4, [1, 2])
628s ***** error<gamcdf: covariance matrix is required for confidence bounds.> ...
628s  [p, plo, pup] = gamcdf (1, 2, 3)
628s ***** error<gamcdf: covariance matrix is required for confidence bounds.> ...
628s  [p, plo, pup] = gamcdf (1, 2, 3, "upper")
628s ***** error<gamcdf: invalid value for alpha.> [p, plo, pup] = ...
628s  gamcdf (1, 2, 3, [1, 0; 0, 1], 0)
628s ***** error<gamcdf: invalid value for alpha.> [p, plo, pup] = ...
628s  gamcdf (1, 2, 3, [1, 0; 0, 1], 1.22)
628s ***** error<gamcdf: invalid value for alpha.> [p, plo, pup] = ...
628s  gamcdf (1, 2, 3, [1, 0; 0, 1], "alpha", "upper")
628s ***** error<gamcdf: X, A, and B must be of common size or scalars.> ...
628s  gamcdf (ones (3), ones (2), ones (2))
628s ***** error<gamcdf: X, A, and B must be of common size or scalars.> ...
628s  gamcdf (ones (2), ones (3), ones (2))
628s ***** error<gamcdf: X, A, and B must be of common size or scalars.> ...
628s  gamcdf (ones (2), ones (2), ones (3))
628s ***** error<gamcdf: X, A, and B must not be complex.> gamcdf (i, 2, 2)
628s ***** error<gamcdf: X, A, and B must not be complex.> gamcdf (2, i, 2)
628s ***** error<gamcdf: X, A, and B must not be complex.> gamcdf (2, 2, i)
628s ***** error<gamcdf: bad covariance matrix.> ...
628s  [p, plo, pup] = gamcdf (1, 2, 3, [1, 0; 0, -inf], 0.04)
628s 30 tests, 30 passed, 0 known failure, 0 skipped
628s [inst/dist_fun/ricernd.m]
628s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/ricernd.m
628s ***** assert (size (ricernd (2, 1/2)), [1, 1])
628s ***** assert (size (ricernd (2 * ones (2, 1), 1/2)), [2, 1])
628s ***** assert (size (ricernd (2 * ones (2, 2), 1/2)), [2, 2])
628s ***** assert (size (ricernd (2, 1/2 * ones (2, 1))), [2, 1])
628s ***** assert (size (ricernd (1, 1/2 * ones (2, 2))), [2, 2])
628s ***** assert (size (ricernd (ones (2, 1), 1)), [2, 1])
628s ***** assert (size (ricernd (ones (2, 2), 1)), [2, 2])
628s ***** assert (size (ricernd (2, 1/2, 3)), [3, 3])
628s ***** assert (size (ricernd (1, 1, [4, 1])), [4, 1])
628s ***** assert (size (ricernd (1, 1, 4, 1)), [4, 1])
628s ***** assert (size (ricernd (1, 1, 4, 1, 5)), [4, 1, 5])
628s ***** assert (size (ricernd (1, 1, 0, 1)), [0, 1])
628s ***** assert (size (ricernd (1, 1, 1, 0)), [1, 0])
628s ***** assert (size (ricernd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
628s ***** assert (class (ricernd (1, 1)), "double")
628s ***** assert (class (ricernd (1, single (0))), "single")
628s ***** assert (class (ricernd (1, single ([0, 0]))), "single")
628s ***** assert (class (ricernd (1, single (1), 2)), "single")
628s ***** assert (class (ricernd (1, single ([1, 1]), 1, 2)), "single")
628s ***** assert (class (ricernd (single (1), 1, 2)), "single")
628s ***** assert (class (ricernd (single ([1, 1]), 1, 1, 2)), "single")
628s ***** error<ricernd: function called with too few input arguments.> ricernd ()
628s ***** error<ricernd: function called with too few input arguments.> ricernd (1)
628s ***** error<ricernd: S and SIGMA must be of common size or scalars.> ...
628s  ricernd (ones (3), ones (2))
628s ***** error<ricernd: S and SIGMA must be of common size or scalars.> ...
628s  ricernd (ones (2), ones (3))
628s ***** error<ricernd: S and SIGMA must not be complex.> ricernd (i, 2)
628s ***** error<ricernd: S and SIGMA must not be complex.> ricernd (1, i)
628s ***** error<ricernd: SZ must be a scalar or a row vector of non-negative integers.> ...
628s  ricernd (1, 1/2, -1)
628s ***** error<ricernd: SZ must be a scalar or a row vector of non-negative integers.> ...
628s  ricernd (1, 1/2, 1.2)
628s ***** error<ricernd: SZ must be a scalar or a row vector of non-negative integers.> ...
628s  ricernd (1, 1/2, ones (2))
628s ***** error<ricernd: SZ must be a scalar or a row vector of non-negative integers.> ...
628s  ricernd (1, 1/2, [2 -1 2])
628s ***** error<ricernd: SZ must be a scalar or a row vector of non-negative integers.> ...
628s  ricernd (1, 1/2, [2 0 2.5])
628s ***** error<ricernd: dimensions must be non-negative integers.> ...
628s  ricernd (1, 1/2, 2, -1, 5)
628s ***** error<ricernd: dimensions must be non-negative integers.> ...
628s  ricernd (1, 1/2, 2, 1.5, 5)
628s ***** error<ricernd: S and SIGMA must be scalars or of size SZ.> ...
628s  ricernd (2, 1/2 * ones (2), 3)
628s ***** error<ricernd: S and SIGMA must be scalars or of size SZ.> ...
628s  ricernd (2, 1/2 * ones (2), [3, 2])
628s ***** error<ricernd: S and SIGMA must be scalars or of size SZ.> ...
628s  ricernd (2, 1/2 * ones (2), 3, 2)
628s ***** error<ricernd: S and SIGMA must be scalars or of size SZ.> ...
628s  ricernd (2 * ones (2), 1/2, 3)
628s ***** error<ricernd: S and SIGMA must be scalars or of size SZ.> ...
628s  ricernd (2 * ones (2), 1/2, [3, 2])
628s ***** error<ricernd: S and SIGMA must be scalars or of size SZ.> ...
628s  ricernd (2 * ones (2), 1/2, 3, 2)
628s 40 tests, 40 passed, 0 known failure, 0 skipped
628s [inst/dist_fun/vminv.m]
628s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/vminv.m
628s ***** demo
628s  ## Plot various iCDFs from the von Mises distribution
628s  p1 = [0,0.005,0.01:0.01:0.1,0.15,0.2:0.1:0.8,0.85,0.9:0.01:0.99,0.995,1];
628s  x1 = vminv (p1, 0, 0.5);
628s  x2 = vminv (p1, 0, 1);
628s  x3 = vminv (p1, 0, 2);
628s  x4 = vminv (p1, 0, 4);
628s  plot (p1, x1, "-r", p1, x2, "-g", p1, x3, "-b", p1, x4, "-c")
628s  grid on
628s  ylim ([-pi, pi])
628s  legend ({"μ = 0, k = 0.5", "μ = 0, k = 1", ...
628s           "μ = 0, k = 2", "μ = 0, k = 4"}, "location", "northwest")
628s  title ("Von Mises iCDF")
628s  xlabel ("probability")
628s  ylabel ("values in x")
628s ***** shared x, p0, p1
628s  x = [-pi:pi/2:pi];
628s  p0 = [0, 0.10975, 0.5, 0.89025, 1];
628s  p1 = [0, 0.03752, 0.5, 0.99622, 1];
628s ***** assert (vminv (p0, 0, 1), x, 5e-5)
628s ***** assert (vminv (p0, zeros (1,5), ones (1,5)), x, 5e-5)
629s ***** assert (vminv (p1, 0, [1 2 3 4 5]), x, [5e-5, 5e-4, 5e-5, 5e-4, 5e-5])
629s ***** error<vminv: function called with too few input arguments.> vminv ()
629s ***** error<vminv: function called with too few input arguments.> vminv (1)
629s ***** error<vminv: function called with too few input arguments.> vminv (1, 2)
629s ***** error<vminv: P, MU, and K must be of common size or scalars.> ...
629s  vminv (ones (3), ones (2), ones (2))
629s ***** error<vminv: P, MU, and K must be of common size or scalars.> ...
629s  vminv (ones (2), ones (3), ones (2))
629s ***** error<vminv: P, MU, and K must be of common size or scalars.> ...
629s  vminv (ones (2), ones (2), ones (3))
629s ***** error<vminv: P, MU, and K must not be complex.> vminv (i, 2, 2)
629s ***** error<vminv: P, MU, and K must not be complex.> vminv (2, i, 2)
629s ***** error<vminv: P, MU, and K must not be complex.> vminv (2, 2, i)
629s 12 tests, 12 passed, 0 known failure, 0 skipped
629s [inst/dist_fun/geornd.m]
629s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/geornd.m
629s ***** assert (size (geornd (0.5)), [1, 1])
629s ***** assert (size (geornd (0.5*ones (2,1))), [2, 1])
629s ***** assert (size (geornd (0.5*ones (2,2))), [2, 2])
629s ***** assert (size (geornd (0.5, 3)), [3, 3])
629s ***** assert (size (geornd (0.5, [4 1])), [4, 1])
629s ***** assert (size (geornd (0.5, 4, 1)), [4, 1])
629s ***** assert (class (geornd (0.5)), "double")
629s ***** assert (class (geornd (single (0.5))), "single")
629s ***** assert (class (geornd (single ([0.5 0.5]))), "single")
629s ***** assert (class (geornd (single (0))), "single")
629s ***** assert (class (geornd (single (1))), "single")
629s ***** error<geornd: function called with too few input arguments.> geornd ()
629s ***** error<geornd: PS must not be complex.> geornd (i)
629s ***** error<geornd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  geornd (1, -1)
629s ***** error<geornd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  geornd (1, 1.2)
629s ***** error<geornd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  geornd (1, ones (2))
629s ***** error<geornd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  geornd (1, [2 -1 2])
629s ***** error<geornd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  geornd (1, [2 0 2.5])
629s ***** error<geornd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  geornd (ones (2), ones (2))
629s ***** error<geornd: dimensions must be non-negative integers.> ...
629s  geornd (1, 2, -1, 5)
629s ***** error<geornd: dimensions must be non-negative integers.> ...
629s  geornd (1, 2, 1.5, 5)
629s ***** error<geornd: PS must be scalar or of size SZ.> geornd (ones (2,2), 3)
629s ***** error<geornd: PS must be scalar or of size SZ.> geornd (ones (2,2), [3, 2])
629s ***** error<geornd: PS must be scalar or of size SZ.> geornd (ones (2,2), 2, 3)
629s 24 tests, 24 passed, 0 known failure, 0 skipped
629s [inst/dist_fun/fcdf.m]
629s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/fcdf.m
629s ***** demo
629s  ## Plot various CDFs from the F distribution
629s  x = 0.01:0.01:4;
629s  p1 = fcdf (x, 1, 2);
629s  p2 = fcdf (x, 2, 1);
629s  p3 = fcdf (x, 5, 2);
629s  p4 = fcdf (x, 10, 1);
629s  p5 = fcdf (x, 100, 100);
629s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
629s  grid on
629s  legend ({"df1 = 1, df2 = 2", "df1 = 2, df2 = 1", ...
629s           "df1 = 5, df2 = 2", "df1 = 10, df2 = 1", ...
629s           "df1 = 100, df2 = 100"}, "location", "southeast")
629s  title ("F CDF")
629s  xlabel ("values in x")
629s  ylabel ("probability")
629s ***** shared x, y
629s  x = [-1, 0, 0.5, 1, 2, Inf];
629s  y = [0, 0, 1/3, 1/2, 2/3, 1];
629s ***** assert (fcdf (x, 2*ones (1,6), 2*ones (1,6)), y, eps)
629s ***** assert (fcdf (x, 2, 2*ones (1,6)), y, eps)
629s ***** assert (fcdf (x, 2*ones (1,6), 2), y, eps)
629s ***** assert (fcdf (x, [0 NaN Inf 2 2 2], 2), [NaN NaN 0.1353352832366127 y(4:6)], eps)
629s ***** assert (fcdf (x, 2, [0 NaN Inf 2 2 2]), [NaN NaN 0.3934693402873666 y(4:6)], eps)
629s ***** assert (fcdf ([x(1:2) NaN x(4:6)], 2, 2), [y(1:2) NaN y(4:6)], eps)
629s ***** assert (fcdf ([x, NaN], 2, 2), [y, NaN], eps)
629s ***** assert (fcdf (single ([x, NaN]), 2, 2), single ([y, NaN]), eps ("single"))
629s ***** assert (fcdf ([x, NaN], single (2), 2), single ([y, NaN]), eps ("single"))
629s ***** assert (fcdf ([x, NaN], 2, single (2)), single ([y, NaN]), eps ("single"))
629s ***** error<fcdf: function called with too few input arguments.> fcdf ()
629s ***** error<fcdf: function called with too few input arguments.> fcdf (1)
629s ***** error<fcdf: function called with too few input arguments.> fcdf (1, 2)
629s ***** error<fcdf: invalid argument for upper tail.> fcdf (1, 2, 3, 4)
629s ***** error<fcdf: invalid argument for upper tail.> fcdf (1, 2, 3, "tail")
629s ***** error<fcdf: X, DF1, and DF2 must be of common size or scalars.> ...
629s  fcdf (ones (3), ones (2), ones (2))
629s ***** error<fcdf: X, DF1, and DF2 must be of common size or scalars.> ...
629s  fcdf (ones (2), ones (3), ones (2))
629s ***** error<fcdf: X, DF1, and DF2 must be of common size or scalars.> ...
629s  fcdf (ones (2), ones (2), ones (3))
629s ***** error<fcdf: X, DF1, and DF2 must not be complex.> fcdf (i, 2, 2)
629s ***** error<fcdf: X, DF1, and DF2 must not be complex.> fcdf (2, i, 2)
629s ***** error<fcdf: X, DF1, and DF2 must not be complex.> fcdf (2, 2, i)
629s 21 tests, 21 passed, 0 known failure, 0 skipped
629s [inst/dist_fun/unifrnd.m]
629s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/unifrnd.m
629s ***** assert (size (unifrnd (1, 1)), [1 1])
629s ***** assert (size (unifrnd (1, ones (2,1))), [2, 1])
629s ***** assert (size (unifrnd (1, ones (2,2))), [2, 2])
629s ***** assert (size (unifrnd (ones (2,1), 1)), [2, 1])
629s ***** assert (size (unifrnd (ones (2,2), 1)), [2, 2])
629s ***** assert (size (unifrnd (1, 1, 3)), [3, 3])
629s ***** assert (size (unifrnd (1, 1, [4, 1])), [4, 1])
629s ***** assert (size (unifrnd (1, 1, 4, 1)), [4, 1])
629s ***** assert (size (unifrnd (1, 1, 4, 1, 5)), [4, 1, 5])
629s ***** assert (size (unifrnd (1, 1, 0, 1)), [0, 1])
629s ***** assert (size (unifrnd (1, 1, 1, 0)), [1, 0])
629s ***** assert (size (unifrnd (1, 1, 1, 2, 0, 5)), [1, 2, 0, 5])
629s ***** assert (class (unifrnd (1, 1)), "double")
629s ***** assert (class (unifrnd (1, single (1))), "single")
629s ***** assert (class (unifrnd (1, single ([1, 1]))), "single")
629s ***** assert (class (unifrnd (single (1), 1)), "single")
629s ***** assert (class (unifrnd (single ([1, 1]), 1)), "single")
629s ***** error<unifrnd: function called with too few input arguments.> unifrnd ()
629s ***** error<unifrnd: function called with too few input arguments.> unifrnd (1)
629s ***** error<unifrnd: A and B must be of common size or scalars.> ...
629s  unifrnd (ones (3), ones (2))
629s ***** error<unifrnd: A and B must be of common size or scalars.> ...
629s  unifrnd (ones (2), ones (3))
629s ***** error<unifrnd: A and B must not be complex.> unifrnd (i, 2, 3)
629s ***** error<unifrnd: A and B must not be complex.> unifrnd (1, i, 3)
629s ***** error<unifrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  unifrnd (1, 2, -1)
629s ***** error<unifrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  unifrnd (1, 2, 1.2)
629s ***** error<unifrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  unifrnd (1, 2, ones (2))
629s ***** error<unifrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  unifrnd (1, 2, [2 -1 2])
629s ***** error<unifrnd: SZ must be a scalar or a row vector of non-negative integers.> ...
629s  unifrnd (1, 2, [2 0 2.5])
629s ***** error<unifrnd: dimensions must be non-negative integers.> ...
629s  unifrnd (1, 2, 2, -1, 5)
629s ***** error<unifrnd: dimensions must be non-negative integers.> ...
629s  unifrnd (1, 2, 2, 1.5, 5)
629s ***** error<unifrnd: A and B must be scalars or of size SZ.> ...
629s  unifrnd (2, ones (2), 3)
629s ***** error<unifrnd: A and B must be scalars or of size SZ.> ...
629s  unifrnd (2, ones (2), [3, 2])
629s ***** error<unifrnd: A and B must be scalars or of size SZ.> ...
629s  unifrnd (2, ones (2), 3, 2)
629s 33 tests, 33 passed, 0 known failure, 0 skipped
629s [inst/dist_fun/binoinv.m]
629s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/binoinv.m
629s ***** demo
629s  ## Plot various iCDFs from the binomial distribution
629s  p = 0.001:0.001:0.999;
629s  x1 = binoinv (p, 20, 0.5);
629s  x2 = binoinv (p, 20, 0.7);
629s  x3 = binoinv (p, 40, 0.5);
629s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r")
629s  grid on
629s  legend ({"n = 20, ps = 0.5", "n = 20, ps = 0.7", ...
629s           "n = 40, ps = 0.5"}, "location", "southeast")
629s  title ("Binomial iCDF")
629s  xlabel ("probability")
629s  ylabel ("values in x (number of successes)")
629s ***** shared p
629s  p = [-1 0 0.5 1 2];
629s ***** assert (binoinv (p, 2*ones (1,5), 0.5*ones (1,5)), [NaN 0 1 2 NaN])
629s ***** assert (binoinv (p, 2, 0.5*ones (1,5)), [NaN 0 1 2 NaN])
629s ***** assert (binoinv (p, 2*ones (1,5), 0.5), [NaN 0 1 2 NaN])
629s ***** assert (binoinv (p, 2*[0 -1 NaN 1.1 1], 0.5), [NaN NaN NaN NaN NaN])
629s ***** assert (binoinv (p, 2, 0.5*[0 -1 NaN 3 1]), [NaN NaN NaN NaN NaN])
629s ***** assert (binoinv ([p(1:2) NaN p(4:5)], 2, 0.5), [NaN 0 NaN 2 NaN])
629s ***** assert (binoinv ([p, NaN], 2, 0.5), [NaN 0 1 2 NaN NaN])
629s ***** assert (binoinv (single ([p, NaN]), 2, 0.5), single ([NaN 0 1 2 NaN NaN]))
629s ***** assert (binoinv ([p, NaN], single (2), 0.5), single ([NaN 0 1 2 NaN NaN]))
629s ***** assert (binoinv ([p, NaN], 2, single (0.5)), single ([NaN 0 1 2 NaN NaN]))
629s ***** shared x, tol
629s  x = magic (3) + 1;
629s  tol = 1;
629s ***** assert (binoinv (binocdf (1:10, 11, 0.1), 11, 0.1), 1:10, tol)
629s ***** assert (binoinv (binocdf (1:10, 2*(1:10), 0.1), 2*(1:10), 0.1), 1:10, tol)
629s ***** assert (binoinv (binocdf (x, 2*x, 1./x), 2*x, 1./x), x, tol)
629s ***** error<binoinv: function called with too few input arguments.> binoinv ()
629s ***** error<binoinv: function called with too few input arguments.> binoinv (1)
629s ***** error<binoinv: function called with too few input arguments.> binoinv (1,2)
629s ***** error<binoinv: function called with too many inputs> binoinv (1,2,3,4)
629s ***** error<binoinv: P, N, and PS must be of common size or scalars.> ...
629s  binoinv (ones (3), ones (2), ones (2))
629s ***** error<binoinv: P, N, and PS must be of common size or scalars.> ...
629s  binoinv (ones (2), ones (3), ones (2))
629s ***** error<binoinv: P, N, and PS must be of common size or scalars.> ...
629s  binoinv (ones (2), ones (2), ones (3))
629s ***** error<binoinv: P, N, and PS must not be complex.> binoinv (i, 2, 2)
629s ***** error<binoinv: P, N, and PS must not be complex.> binoinv (2, i, 2)
629s ***** error<binoinv: P, N, and PS must not be complex.> binoinv (2, 2, i)
629s 23 tests, 23 passed, 0 known failure, 0 skipped
629s [inst/dist_fun/tcdf.m]
629s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tcdf.m
629s ***** demo
629s  ## Plot various CDFs from the Student's T distribution
629s  x = -5:0.01:5;
629s  p1 = tcdf (x, 1);
629s  p2 = tcdf (x, 2);
629s  p3 = tcdf (x, 5);
629s  p4 = tcdf (x, Inf);
629s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-m")
629s  grid on
629s  xlim ([-5, 5])
629s  ylim ([0, 1])
629s  legend ({"df = 1", "df = 2", ...
629s           "df = 5", 'df = \infty'}, "location", "southeast")
629s  title ("Student's T CDF")
629s  xlabel ("values in x")
629s  ylabel ("probability")
629s ***** shared x,y
629s  x = [-Inf 0 1 Inf];
629s  y = [0 1/2 3/4 1];
629s ***** assert (tcdf (x, ones (1,4)), y, eps)
630s ***** assert (tcdf (x, 1), y, eps)
630s ***** assert (tcdf (x, [0 1 NaN 1]), [NaN 1/2 NaN 1], eps)
630s ***** assert (tcdf ([x(1:2) NaN x(4)], 1), [y(1:2) NaN y(4)], eps)
630s ***** assert (tcdf (2, 3, "upper"), 0.0697, 1e-4)
630s ***** assert (tcdf (205, 5, "upper"), 2.6206e-11, 1e-14)
630s ***** assert (tcdf ([x, NaN], 1), [y, NaN], eps)
630s ***** assert (tcdf (single ([x, NaN]), 1), single ([y, NaN]), eps ("single"))
630s ***** assert (tcdf ([x, NaN], single (1)), single ([y, NaN]), eps ("single"))
630s ***** error<tcdf: function called with too few input arguments.> tcdf ()
630s ***** error<tcdf: function called with too few input arguments.> tcdf (1)
630s ***** error<tcdf: invalid argument for upper tail.> tcdf (1, 2, "uper")
630s ***** error<tcdf: invalid argument for upper tail.> tcdf (1, 2, 3)
630s ***** error<tcdf: X and DF must be of common size or scalars.> ...
630s  tcdf (ones (3), ones (2))
630s ***** error<tcdf: X and DF must be of common size or scalars.> ...
630s  tcdf (ones (3), ones (2))
630s ***** error<tcdf: X and DF must be of common size or scalars.> ...
630s  tcdf (ones (3), ones (2), "upper")
630s ***** error<tcdf: X and DF must not be complex.> tcdf (i, 2)
630s ***** error<tcdf: X and DF must not be complex.> tcdf (2, i)
630s ***** shared tol_rel
630s  tol_rel = 10 * eps;
630s ***** assert (tcdf (10^(-10), 2.5), 0.50000000003618087, -tol_rel)
630s ***** assert (tcdf (10^(-11), 2.5), 0.50000000000361809, -tol_rel)
630s ***** assert (tcdf (10^(-12), 2.5), 0.50000000000036181, -tol_rel)
630s ***** assert (tcdf (10^(-13), 2.5), 0.50000000000003618, -tol_rel)
630s ***** assert (tcdf (10^(-14), 2.5), 0.50000000000000362, -tol_rel)
630s ***** assert (tcdf (10^(-15), 2.5), 0.50000000000000036, -tol_rel)
630s ***** assert (tcdf (10^(-16), 2.5), 0.50000000000000004, -tol_rel)
630s ***** assert (tcdf (-10^1, 2.5), 2.2207478836537124e-03, -tol_rel)
630s ***** assert (tcdf (-10^2, 2.5), 7.1916492116661878e-06, -tol_rel)
630s ***** assert (tcdf (-10^3, 2.5), 2.2747463948307452e-08, -tol_rel)
630s ***** assert (tcdf (-10^4, 2.5), 7.1933970159922115e-11, -tol_rel)
630s ***** assert (tcdf (-10^5, 2.5), 2.2747519231756221e-13, -tol_rel)
630s 30 tests, 30 passed, 0 known failure, 0 skipped
630s [inst/dist_fun/logicdf.m]
630s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/logicdf.m
630s ***** demo
630s  ## Plot various CDFs from the logistic distribution
630s  x = -5:0.01:20;
630s  p1 = logicdf (x, 5, 2);
630s  p2 = logicdf (x, 9, 3);
630s  p3 = logicdf (x, 9, 4);
630s  p4 = logicdf (x, 6, 2);
630s  p5 = logicdf (x, 2, 1);
630s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c", x, p5, "-m")
630s  grid on
630s  legend ({"μ = 5, σ = 2", "μ = 9, σ = 3", "μ = 9, σ = 4", ...
630s           "μ = 6, σ = 2", "μ = 2, σ = 1"}, "location", "southeast")
630s  title ("Logistic CDF")
630s  xlabel ("values in x")
630s  ylabel ("probability")
630s ***** shared x, y
630s  x = [-Inf -log(3) 0 log(3) Inf];
630s  y = [0, 1/4, 1/2, 3/4, 1];
630s ***** assert (logicdf ([x, NaN], 0, 1), [y, NaN], eps)
630s ***** assert (logicdf (x, 0, [-2, -1, 0, 1, 2]), [nan(1, 3), 0.75, 1])
630s ***** assert (logicdf (single ([x, NaN]), 0, 1), single ([y, NaN]), eps ("single"))
630s ***** assert (logicdf ([x, NaN], single (0), 1), single ([y, NaN]), eps ("single"))
630s ***** assert (logicdf ([x, NaN], 0, single (1)), single ([y, NaN]), eps ("single"))
630s ***** error<logicdf: function called with too few input arguments.> logicdf ()
630s ***** error<logicdf: function called with too few input arguments.> logicdf (1)
630s ***** error<logicdf: function called with too few input arguments.> ...
630s  logicdf (1, 2)
630s ***** error<logicdf: invalid argument for upper tail.> logicdf (1, 2, 3, "tail")
630s ***** error<logicdf: invalid argument for upper tail.> logicdf (1, 2, 3, 4)
630s ***** error<logicdf: X, MU, and SIGMA must be of common size or scalars.> ...
630s  logicdf (1, ones (2), ones (3))
630s ***** error<logicdf: X, MU, and SIGMA must be of common size or scalars.> ...
630s  logicdf (ones (2), 1, ones (3))
630s ***** error<logicdf: X, MU, and SIGMA must be of common size or scalars.> ...
630s  logicdf (ones (2), ones (3), 1)
630s ***** error<logicdf: X, MU, and SIGMA must not be complex.> logicdf (i, 2, 3)
630s ***** error<logicdf: X, MU, and SIGMA must not be complex.> logicdf (1, i, 3)
630s ***** error<logicdf: X, MU, and SIGMA must not be complex.> logicdf (1, 2, i)
630s 16 tests, 16 passed, 0 known failure, 0 skipped
630s [inst/dist_fun/chi2rnd.m]
630s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/chi2rnd.m
630s ***** assert (size (chi2rnd (2)), [1, 1])
630s ***** assert (size (chi2rnd (ones (2,1))), [2, 1])
630s ***** assert (size (chi2rnd (ones (2,2))), [2, 2])
630s ***** assert (size (chi2rnd (1, 3)), [3, 3])
630s ***** assert (size (chi2rnd (1, [4 1])), [4, 1])
630s ***** assert (size (chi2rnd (1, 4, 1)), [4, 1])
630s ***** assert (size (chi2rnd (1, 4, 1)), [4, 1])
630s ***** assert (size (chi2rnd (1, 4, 1, 5)), [4, 1, 5])
630s ***** assert (size (chi2rnd (1, 0, 1)), [0, 1])
630s ***** assert (size (chi2rnd (1, 1, 0)), [1, 0])
630s ***** assert (size (chi2rnd (1, 1, 2, 0, 5)), [1, 2, 0, 5])
630s ***** assert (class (chi2rnd (2)), "double")
630s ***** assert (class (chi2rnd (single (2))), "single")
630s ***** assert (class (chi2rnd (single ([2 2]))), "single")
630s ***** error<chi2rnd: function called with too few input arguments.> chi2rnd ()
630s ***** error<chi2rnd: DF must not be complex.> chi2rnd (i)
630s ***** error<chi2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
630s  chi2rnd (1, -1)
630s ***** error<chi2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
630s  chi2rnd (1, 1.2)
630s ***** error<chi2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
630s  chi2rnd (1, ones (2))
630s ***** error<chi2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
630s  chi2rnd (1, [2 -1 2])
630s ***** error<chi2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
630s  chi2rnd (1, [2 0 2.5])
630s ***** error<chi2rnd: SZ must be a scalar or a row vector of non-negative integers.> ...
630s  chi2rnd (ones (2), ones (2))
630s ***** error<chi2rnd: dimensions must be non-negative integers.> ...
630s  chi2rnd (1, 2, -1, 5)
630s ***** error<chi2rnd: dimensions must be non-negative integers.> ...
630s  chi2rnd (1, 2, 1.5, 5)
630s ***** error<chi2rnd: DF must be scalar or of size SZ.> chi2rnd (ones (2,2), 3)
630s ***** error<chi2rnd: DF must be scalar or of size SZ.> chi2rnd (ones (2,2), [3, 2])
630s ***** error<chi2rnd: DF must be scalar or of size SZ.> chi2rnd (ones (2,2), 2, 3)
630s 27 tests, 27 passed, 0 known failure, 0 skipped
630s [inst/dist_fun/gpinv.m]
630s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/gpinv.m
630s ***** demo
630s  ## Plot various iCDFs from the generalized Pareto distribution
630s  p = 0.001:0.001:0.999;
630s  x1 = gpinv (p, 1, 1, 0);
630s  x2 = gpinv (p, 5, 1, 0);
630s  x3 = gpinv (p, 20, 1, 0);
630s  x4 = gpinv (p, 1, 2, 0);
630s  x5 = gpinv (p, 5, 2, 0);
630s  x6 = gpinv (p, 20, 2, 0);
630s  plot (p, x1, "-b", p, x2, "-g", p, x3, "-r", ...
630s        p, x4, "-c", p, x5, "-m", p, x6, "-k")
630s  grid on
630s  ylim ([0, 5])
630s  legend ({"k = 1, σ = 1, θ = 0", "k = 5, σ = 1, θ = 0", ...
630s           "k = 20, σ = 1, θ = 0", "k = 1, σ = 2, θ = 0", ...
630s           "k = 5, σ = 2, θ = 0", "k = 20, σ = 2, θ = 0"}, ...
630s          "location", "southeast")
630s  title ("Generalized Pareto iCDF")
630s  xlabel ("probability")
630s  ylabel ("values in x")
630s ***** shared p, y1, y2, y3
630s  p = [-1, 0, 1/2, 1, 2];
630s  y1 = [NaN, 0, 0.6931471805599453, Inf, NaN];
630s  y2 = [NaN, 0, 1, Inf, NaN];
630s  y3 = [NaN, 0, 1/2, 1, NaN];
630s ***** assert (gpinv (p, zeros (1,5), ones (1,5), zeros (1,5)), y1)
630s ***** assert (gpinv (p, 0, 1, zeros (1,5)), y1)
630s ***** assert (gpinv (p, 0, ones (1,5), 0), y1)
630s ***** assert (gpinv (p, zeros (1,5), 1, 0), y1)
630s ***** assert (gpinv (p, 0, 1, 0), y1)
630s ***** assert (gpinv (p, 0, 1, [0, 0, NaN, 0, 0]), [y1(1:2), NaN, y1(4:5)])
630s ***** assert (gpinv (p, 0, [1, 1, NaN, 1, 1], 0), [y1(1:2), NaN, y1(4:5)])
630s ***** assert (gpinv (p, [0, 0, NaN, 0, 0], 1, 0), [y1(1:2), NaN, y1(4:5)])
630s ***** assert (gpinv ([p(1:2), NaN, p(4:5)], 0, 1, 0), [y1(1:2), NaN, y1(4:5)])
630s ***** assert (gpinv (p, ones (1,5), ones (1,5), zeros (1,5)), y2)
630s ***** assert (gpinv (p, 1, 1, zeros (1,5)), y2)
630s ***** assert (gpinv (p, 1, ones (1,5), 0), y2)
630s ***** assert (gpinv (p, ones (1,5), 1, 0), y2)
630s ***** assert (gpinv (p, 1, 1, 0), y2)
630s ***** assert (gpinv (p, 1, 1, [0, 0, NaN, 0, 0]), [y2(1:2), NaN, y2(4:5)])
630s ***** assert (gpinv (p, 1, [1, 1, NaN, 1, 1], 0), [y2(1:2), NaN, y2(4:5)])
630s ***** assert (gpinv (p, [1, 1, NaN, 1, 1], 1, 0), [y2(1:2), NaN, y2(4:5)])
630s ***** assert (gpinv ([p(1:2), NaN, p(4:5)], 1, 1, 0), [y2(1:2), NaN, y2(4:5)])
630s ***** assert (gpinv (p, -ones (1,5), ones (1,5), zeros (1,5)), y3)
630s ***** assert (gpinv (p, -1, 1, zeros (1,5)), y3)
630s ***** assert (gpinv (p, -1, ones (1,5), 0), y3)
630s ***** assert (gpinv (p, -ones (1,5), 1, 0), y3)
630s ***** assert (gpinv (p, -1, 1, 0), y3)
630s ***** assert (gpinv (p, -1, 1, [0, 0, NaN, 0, 0]), [y3(1:2), NaN, y3(4:5)])
630s ***** assert (gpinv (p, -1, [1, 1, NaN, 1, 1], 0), [y3(1:2), NaN, y3(4:5)])
630s ***** assert (gpinv (p, -[1, 1, NaN, 1, 1], 1, 0), [y3(1:2), NaN, y3(4:5)])
630s ***** assert (gpinv ([p(1:2), NaN, p(4:5)], -1, 1, 0), [y3(1:2), NaN, y3(4:5)])
630s ***** assert (gpinv (single ([p, NaN]), 0, 1, 0), single ([y1, NaN]))
630s ***** assert (gpinv ([p, NaN], 0, 1, single (0)), single ([y1, NaN]))
630s ***** assert (gpinv ([p, NaN], 0, single (1), 0), single ([y1, NaN]))
630s ***** assert (gpinv ([p, NaN], single (0), 1, 0), single ([y1, NaN]))
630s ***** assert (gpinv (single ([p, NaN]), 1, 1, 0), single ([y2, NaN]))
630s ***** assert (gpinv ([p, NaN], 1, 1, single (0)), single ([y2, NaN]))
630s ***** assert (gpinv ([p, NaN], 1, single (1), 0), single ([y2, NaN]))
630s ***** assert (gpinv ([p, NaN], single (1), 1, 0), single ([y2, NaN]))
630s ***** assert (gpinv (single ([p, NaN]), -1, 1, 0), single ([y3, NaN]))
630s ***** assert (gpinv ([p, NaN], -1, 1, single (0)), single ([y3, NaN]))
630s ***** assert (gpinv ([p, NaN], -1, single (1), 0), single ([y3, NaN]))
630s ***** assert (gpinv ([p, NaN], single (-1), 1, 0), single ([y3, NaN]))
630s ***** error<gpinv: function called with too few input arguments.> gpinv ()
630s ***** error<gpinv: function called with too few input arguments.> gpinv (1)
630s ***** error<gpinv: function called with too few input arguments.> gpinv (1, 2)
630s ***** error<gpinv: function called with too few input arguments.> gpinv (1, 2, 3)
630s ***** error<gpinv: P, K, SIGMA, and THETA must be of common size or scalars.> ...
630s  gpinv (ones (3), ones (2), ones(2), ones(2))
630s ***** error<gpinv: P, K, SIGMA, and THETA must be of common size or scalars.> ...
630s  gpinv (ones (2), ones (3), ones(2), ones(2))
630s ***** error<gpinv: P, K, SIGMA, and THETA must be of common size or scalars.> ...
630s  gpinv (ones (2), ones (2), ones(3), ones(2))
630s ***** error<gpinv: P, K, SIGMA, and THETA must be of common size or scalars.> ...
630s  gpinv (ones (2), ones (2), ones(2), ones(3))
630s ***** error<gpinv: P, K, SIGMA, and THETA must not be complex.> gpinv (i, 2, 3, 4)
630s ***** error<gpinv: P, K, SIGMA, and THETA must not be complex.> gpinv (1, i, 3, 4)
630s ***** error<gpinv: P, K, SIGMA, and THETA must not be complex.> gpinv (1, 2, i, 4)
630s ***** error<gpinv: P, K, SIGMA, and THETA must not be complex.> gpinv (1, 2, 3, i)
630s 51 tests, 51 passed, 0 known failure, 0 skipped
630s [inst/dist_fun/nctpdf.m]
630s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/nctpdf.m
630s ***** demo
630s  ## Plot various PDFs from the noncentral T distribution
630s  x = -5:0.01:10;
630s  y1 = nctpdf (x, 1, 0);
630s  y2 = nctpdf (x, 4, 0);
630s  y3 = nctpdf (x, 1, 2);
630s  y4 = nctpdf (x, 4, 2);
630s  plot (x, y1, "-r", x, y2, "-g", x, y3, "-k", x, y4, "-m")
630s  grid on
630s  xlim ([-5, 10])
630s  ylim ([0, 0.4])
630s  legend ({"df = 1, μ = 0", "df = 4, μ = 0", ...
630s           "df = 1, μ = 2", "df = 4, μ = 2"}, "location", "northeast")
630s  title ("Noncentral T PDF")
630s  xlabel ("values in x")
630s  ylabel ("density")
630s ***** demo
630s  ## Compare the noncentral T PDF with MU = 1 to the T PDF
630s  ## with the same number of degrees of freedom (10).
630s 
630s  x = -5:0.1:5;
630s  y1 = nctpdf (x, 10, 1);
630s  y2 = tpdf (x, 10);
630s  plot (x, y1, "-", x, y2, "-");
630s  grid on
630s  xlim ([-5, 5])
630s  ylim ([0, 0.4])
630s  legend ({"Noncentral χ^2(4,2)", "χ^2(4)"}, "location", "northwest")
630s  title ("Noncentral T vs T PDFs")
630s  xlabel ("values in x")
630s  ylabel ("density")
630s ***** shared x1, df, mu
630s  x1 = [-Inf, 2, NaN, 4, Inf];
630s  df = [2, 0, -1, 1, 4];
630s  mu = [1, NaN, 3, -1, 2];
630s ***** assert (nctpdf (x1, df, mu), [0, NaN, NaN, 0.00401787561306999, 0], 1e-14);
630s ***** assert (nctpdf (x1, df, 1), [0, NaN, NaN, 0.0482312135423008, 0], 1e-14);
630s ***** assert (nctpdf (x1, df, 3), [0, NaN, NaN, 0.1048493126401585, 0], 1e-14);
630s ***** assert (nctpdf (x1, df, 2), [0, NaN, NaN, 0.08137377919890307, 0], 1e-14);
630s ***** assert (nctpdf (x1, 3, mu), [0, NaN, NaN, 0.001185305171654381, 0], 1e-14);
630s ***** assert (nctpdf (2, df, mu), [0.1791097459405861, NaN, NaN, ...
630s                              0.0146500727180389, 0.3082302682110299], 1e-14);
630s ***** assert (nctpdf (4, df, mu), [0.04467929612254971, NaN, NaN, ...
630s                              0.00401787561306999, 0.0972086534042828], 1e-14);
630s ***** error<nctpdf: function called with too few input arguments.> nctpdf ()
630s ***** error<nctpdf: function called with too few input arguments.> nctpdf (1)
630s ***** error<nctpdf: function called with too few input arguments.> nctpdf (1, 2)
630s ***** error<nctpdf: X, DF, and MU must be of common size or scalars.> ...
630s  nctpdf (ones (3), ones (2), ones (2))
630s ***** error<nctpdf: X, DF, and MU must be of common size or scalars.> ...
630s  nctpdf (ones (2), ones (3), ones (2))
630s ***** error<nctpdf: X, DF, and MU must be of common size or scalars.> ...
630s  nctpdf (ones (2), ones (2), ones (3))
630s ***** error<nctpdf: X, DF, and MU must not be complex.> nctpdf (i, 2, 2)
630s ***** error<nctpdf: X, DF, and MU must not be complex.> nctpdf (2, i, 2)
630s ***** error<nctpdf: X, DF, and MU must not be complex.> nctpdf (2, 2, i)
630s 16 tests, 16 passed, 0 known failure, 0 skipped
630s [inst/dist_fun/tricdf.m]
630s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_fun/tricdf.m
630s ***** demo
630s  ## Plot various CDFs from the triangular distribution
630s  x = 0.001:0.001:10;
630s  p1 = tricdf (x, 3, 4, 6);
630s  p2 = tricdf (x, 1, 2, 5);
630s  p3 = tricdf (x, 2, 3, 9);
630s  p4 = tricdf (x, 2, 5, 9);
630s  plot (x, p1, "-b", x, p2, "-g", x, p3, "-r", x, p4, "-c")
630s  grid on
630s  xlim ([0, 10])
630s  legend ({"a = 3, b = 4, c = 6", "a = 1, b = 2, c = 5", ...
630s           "a = 2, b = 3, c = 9", "a = 2, b = 5, c = 9"}, ...
630s          "location", "southeast")
630s  title ("Triangular CDF")
630s  xlabel ("values in x")
630s  ylabel ("probability")
630s ***** shared x, y
630s  x = [-1, 0, 0.1, 0.5, 0.9, 1, 2] + 1;
630s  y = [0, 0, 0.02, 0.5, 0.98, 1 1];
630s ***** assert (tricdf (x, ones (1,7), 1.5 * ones (1, 7), 2 * ones (1, 7)), y, eps)
630s ***** assert (tricdf (x, 1 * ones (1, 7), 1.5, 2), y, eps)
630s ***** assert (tricdf (x, 1 * ones (1, 7), 1.5, 2, "upper"), 1 - y, eps)
630s ***** assert (tricdf (x, 1, 1.5, 2 * ones (1, 7)), y, eps)
630s ***** assert (tricdf (x, 1, 1.5 * ones (1, 7), 2), y, eps)
630s ***** assert (tricdf (x, 1, 1.5, 2), y, eps)
630s ***** assert (tricdf (x, [1, 1, NaN, 1, 1, 1, 1], 1.5, 2), ...
630s  [y(1:2), NaN, y(4:7)], eps)
630s ***** assert (tricdf (x, 1, 1.5, 2*[1, 1, NaN, 1, 1, 1, 1]), ...
630s  [y(1:2), NaN, y(4:7)], eps)
630s ***** assert (tricdf (x, 1, 1.5, 2*[1, 1, NaN, 1, 1, 1, 1]), ...
630s  [y(1:2), NaN, y(4:7)], eps)
630s ***** assert (tricdf ([x, NaN], 1, 1.5, 2), [y, NaN], eps)
630s ***** assert (tricdf (single ([x, NaN]), 1, 1.5, 2), ...
630s  single ([y, NaN]), eps("single"))
630s ***** assert (tricdf ([x, NaN], single (1), 1.5, 2), ...
630s  single ([y, NaN]), eps("single"))
630s ***** assert (tricdf ([x, NaN], 1, single (1.5), 2), ...
630s  single ([y, NaN]), eps("single"))
630s ***** assert (tricdf ([x, NaN], 1, 1.5, single (2)), ...
630s  single ([y, NaN]), eps("single"))
630s ***** error<tricdf: function called with too few input arguments.> tricdf ()
630s ***** error<tricdf: function called with too few input arguments.> tricdf (1)
630s ***** error<tricdf: function called with too few input arguments.> tricdf (1, 2)
630s ***** error<tricdf: function called with too few input arguments.> tricdf (1, 2, 3)
630s ***** error<tricdf: function called with too many inputs> ...
630s  tricdf (1, 2, 3, 4, 5, 6)
630s ***** error<tricdf: invalid argument for upper tail.> tricdf (1, 2, 3, 4, "tail")
630s ***** error<tricdf: invalid argument for upper tail.> tricdf (1, 2, 3, 4, 5)
630s ***** error<tricdf: X, A, B, and C must be of common size or scalars.> ...
630s  tricdf (ones (3), ones (2), ones(2), ones(2))
630s ***** error<tricdf: X, A, B, and C must be of common size or scalars.> ...
630s  tricdf (ones (2), ones (3), ones(2), ones(2))
630s ***** error<tricdf: X, A, B, and C must be of common size or scalars.> ...
630s  tricdf (ones (2), ones (2), ones(3), ones(2))
630s ***** error<tricdf: X, A, B, and C must be of common size or scalars.> ...
630s  tricdf (ones (2), ones (2), ones(2), ones(3))
630s ***** error<tricdf: X, A, B, and C must not be complex.> tricdf (i, 2, 3, 4)
630s ***** error<tricdf: X, A, B, and C must not be complex.> tricdf (1, i, 3, 4)
630s ***** error<tricdf: X, A, B, and C must not be complex.> tricdf (1, 2, i, 4)
630s ***** error<tricdf: X, A, B, and C must not be complex.> tricdf (1, 2, 3, i)
630s 29 tests, 29 passed, 0 known failure, 0 skipped
630s [inst/dist_obj/UniformDistribution.m]
630s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/UniformDistribution.m
630s ***** shared pd, t
630s  pd = UniformDistribution (0, 5);
630s  t = truncate (pd, 2, 4);
630s ***** assert (cdf (pd, [0:5]), [0, 0.2, 0.4, 0.6, 0.8, 1], 1e-4);
630s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.5, 1, 1], 1e-4);
630s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.3, 0.4, 0.6, 0.8, NaN], 1e-4);
630s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.5, 1, NaN], 1e-4);
630s ***** assert (icdf (pd, [0:0.2:1]), [0, 1, 2, 3, 4, 5], 1e-4);
630s ***** assert (icdf (t, [0:0.2:1]), [2, 2.4, 2.8, 3.2, 3.6, 4], 1e-4);
630s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 2, 3, 4, 5, NaN], 1e-4);
630s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.8, 3.2, 3.6, 4, NaN], 1e-4);
630s ***** assert (iqr (pd), 2.5, 1e-14);
630s ***** assert (iqr (t), 1, 1e-14);
630s ***** assert (mean (pd), 2.5, 1e-14);
630s ***** assert (mean (t), 3, 1e-14);
630s ***** assert (median (pd), 2.5, 1e-14);
630s ***** assert (median (t), 3, 1e-14);
630s ***** assert (pdf (pd, [0:5]), [0.2, 0.2, 0.2, 0.2, 0.2, 0.2], 1e-4);
630s ***** assert (pdf (t, [0:5]), [0, 0, 0.5, 0.5, 0.5, 0], 1e-4);
630s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0.2, NaN], 1e-4);
630s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
630s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
630s ***** assert (any (random (t, 1000, 1) < 2), false);
630s ***** assert (any (random (t, 1000, 1) > 4), false);
630s ***** assert (std (pd), 1.4434, 1e-4);
630s ***** assert (std (t), 0.5774, 1e-4);
630s ***** assert (var (pd), 2.0833, 1e-4);
630s ***** assert (var (t), 0.3333, 1e-4);
630s ***** error <UniformDistribution: LOWER must be a real scalar.> ...
630s  UniformDistribution (i, 1)
630s ***** error <UniformDistribution: LOWER must be a real scalar.> ...
630s  UniformDistribution (Inf, 1)
630s ***** error <UniformDistribution: LOWER must be a real scalar.> ...
630s  UniformDistribution ([1, 2], 1)
630s ***** error <UniformDistribution: LOWER must be a real scalar.> ...
630s  UniformDistribution ("a", 1)
630s ***** error <UniformDistribution: LOWER must be a real scalar.> ...
630s  UniformDistribution (NaN, 1)
630s ***** error <UniformDistribution: UPPER must be a real scalar.> ...
630s  UniformDistribution (1, i)
630s ***** error <UniformDistribution: UPPER must be a real scalar.> ...
630s  UniformDistribution (1, Inf)
630s ***** error <UniformDistribution: UPPER must be a real scalar.> ...
630s  UniformDistribution (1, [1, 2])
630s ***** error <UniformDistribution: UPPER must be a real scalar.> ...
630s  UniformDistribution (1, "a")
630s ***** error <UniformDistribution: UPPER must be a real scalar.> ...
630s  UniformDistribution (1, NaN)
630s ***** error <UniformDistribution: LOWER must be less than UPPER.> ...
630s  UniformDistribution (2, 1)
630s ***** error <cdf: invalid argument for upper tail.> ...
630s  cdf (UniformDistribution, 2, "uper")
630s ***** error <cdf: invalid argument for upper tail.> ...
630s  cdf (UniformDistribution, 2, 3)
630s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
630s  plot (UniformDistribution, "Parent")
630s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
630s  plot (UniformDistribution, "PlotType", 12)
630s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
630s  plot (UniformDistribution, "PlotType", {"pdf", "cdf"})
630s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
630s  plot (UniformDistribution, "PlotType", "pdfcdf")
630s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
630s  plot (UniformDistribution, "Discrete", "pdfcdf")
630s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
630s  plot (UniformDistribution, "Discrete", [1, 0])
630s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
630s  plot (UniformDistribution, "Discrete", {true})
630s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
630s  plot (UniformDistribution, "Parent", 12)
630s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
630s  plot (UniformDistribution, "Parent", "hax")
630s ***** error <plot: invalid NAME for optional argument.> ...
630s  plot (UniformDistribution, "invalidNAME", "pdf")
630s ***** error <plot: 'probability' PlotType is not supported for 'UniformDistribution'.> ...
630s  plot (UniformDistribution, "PlotType", "probability")
630s ***** error <truncate: missing input argument.> ...
630s  truncate (UniformDistribution)
630s ***** error <truncate: missing input argument.> ...
630s  truncate (UniformDistribution, 2)
630s ***** error <truncate: invalid lower upper limits.> ...
630s  truncate (UniformDistribution, 4, 2)
630s ***** shared pd
630s  pd = UniformDistribution (0, 1);
630s  pd(2) = UniformDistribution (0, 2);
630s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
630s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
630s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
630s ***** error <mean: requires a scalar probability distribution.> mean (pd)
630s ***** error <median: requires a scalar probability distribution.> median (pd)
630s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
630s ***** error <plot: requires a scalar probability distribution.> plot (pd)
630s ***** error <random: requires a scalar probability distribution.> random (pd)
630s ***** error <std: requires a scalar probability distribution.> std (pd)
631s ***** error <truncate: requires a scalar probability distribution.> ...
631s  truncate (pd, 2, 4)
631s ***** error <var: requires a scalar probability distribution.> var (pd)
631s 63 tests, 63 passed, 0 known failure, 0 skipped
631s [inst/dist_obj/InverseGaussianDistribution.m]
631s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/InverseGaussianDistribution.m
631s ***** shared pd, t
631s  pd = InverseGaussianDistribution (1, 1);
631s  t = truncate (pd, 2, 4);
631s ***** assert (cdf (pd, [0:5]), [0, 0.6681, 0.8855, 0.9532, 0.9791, 0.9901], 1e-4);
631s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7234, 1, 1], 1e-4);
631s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.8108, 0.8855, 0.9532, 0.9791], 1e-4);
631s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.7234, 1], 1e-4);
631s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.3320, 0.5411, 0.8483, 1.4479, Inf], 1e-4);
631s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1889, 2.4264, 2.7417, 3.1993, 4], 1e-4);
631s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.5411, 0.8483, 1.4479, Inf, NaN], 1e-4);
631s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4264, 2.7417, 3.1993, 4, NaN], 1e-4);
631s ***** assert (iqr (pd), 0.8643, 1e-4);
631s ***** assert (iqr (t), 0.8222, 1e-4);
631s ***** assert (mean (pd), 1);
631s ***** assert (mean (t), 2.6953, 1e-4);
631s ***** assert (median (pd), 0.6758, 1e-4);
631s ***** assert (median (t), 2.5716, 1e-4);
631s ***** assert (pdf (pd, [0:5]), [0, 0.3989, 0.1098, 0.0394, 0.0162, 0.0072], 1e-4);
631s ***** assert (pdf (t, [0:5]), [0, 0, 1.1736, 0.4211, 0.1730, 0], 1e-4);
631s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.3989, 0.1098, 0.0394, 0.0162, NaN], 1e-4);
631s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 1.1736, 0.4211, 0.1730, NaN], 1e-4);
631s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
631s ***** assert (any (random (t, 1000, 1) < 2), false);
631s ***** assert (any (random (t, 1000, 1) > 4), false);
631s ***** assert (std (pd), 1);
631s ***** assert (std (t), 0.5332, 1e-4);
631s ***** assert (var (pd), 1);
631s ***** assert (var (t), 0.2843, 1e-4);
631s ***** error <InverseGaussianDistribution: MU must be a positive real scalar.> ...
631s  InverseGaussianDistribution(0, 1)
631s ***** error <InverseGaussianDistribution: MU must be a positive real scalar.> ...
631s  InverseGaussianDistribution(Inf, 1)
631s ***** error <InverseGaussianDistribution: MU must be a positive real scalar.> ...
631s  InverseGaussianDistribution(i, 1)
631s ***** error <InverseGaussianDistribution: MU must be a positive real scalar.> ...
631s  InverseGaussianDistribution("a", 1)
631s ***** error <InverseGaussianDistribution: MU must be a positive real scalar.> ...
631s  InverseGaussianDistribution([1, 2], 1)
631s ***** error <InverseGaussianDistribution: MU must be a positive real scalar.> ...
631s  InverseGaussianDistribution(NaN, 1)
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, 0)
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, -1)
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, Inf)
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, i)
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, "a")
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, [1, 2])
631s ***** error <InverseGaussianDistribution: LAMBDA must be a positive real scalar.> ...
631s  InverseGaussianDistribution(1, NaN)
631s ***** error <cdf: invalid argument for upper tail.> ...
631s  cdf (InverseGaussianDistribution, 2, "uper")
631s ***** error <cdf: invalid argument for upper tail.> ...
631s  cdf (InverseGaussianDistribution, 2, 3)
631s ***** shared x
631s  x = invgrnd (1, 1, [1, 100]);
631s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha")
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", 0)
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", 1)
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", [0.5 2])
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", "")
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", {0.05})
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "parameter", "mu", ...
631s           "alpha", {0.05})
631s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), ...
631s           "parameter", {"mu", "lambda", "param"})
631s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", 0.01, ...
631s           "parameter", {"mu", "lambda", "param"})
631s ***** error <paramci: unknown distribution parameter.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "parameter", "param")
631s ***** error <paramci: unknown distribution parameter.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", 0.01, ...
631s           "parameter", "param")
631s ***** error <paramci: invalid NAME for optional argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "NAME", "value")
631s ***** error <paramci: invalid NAME for optional argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", 0.01, "NAME", "value")
631s ***** error <paramci: invalid NAME for optional argument.> ...
631s  paramci (InverseGaussianDistribution.fit (x), "alpha", 0.01, ...
631s           "parameter", "mu", "NAME", "value")
631s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
631s  plot (InverseGaussianDistribution, "Parent")
631s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
631s  plot (InverseGaussianDistribution, "PlotType", 12)
631s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
631s  plot (InverseGaussianDistribution, "PlotType", {"pdf", "cdf"})
631s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
631s  plot (InverseGaussianDistribution, "PlotType", "pdfcdf")
631s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
631s  plot (InverseGaussianDistribution, "Discrete", "pdfcdf")
631s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
631s  plot (InverseGaussianDistribution, "Discrete", [1, 0])
631s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
631s  plot (InverseGaussianDistribution, "Discrete", {true})
631s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
631s  plot (InverseGaussianDistribution, "Parent", 12)
631s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
631s  plot (InverseGaussianDistribution, "Parent", "hax")
631s ***** error <plot: invalid NAME for optional argument.> ...
631s  plot (InverseGaussianDistribution, "invalidNAME", "pdf")
631s ***** error <plot: no fitted DATA to plot a probability plot.> ...
631s  plot (InverseGaussianDistribution, "PlotType", "probability")
631s ***** error <proflik: no fitted data available.> ...
631s  proflik (InverseGaussianDistribution, 2)
631s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 3)
631s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
631s  proflik (InverseGaussianDistribution.fit (x), [1, 2])
631s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
631s  proflik (InverseGaussianDistribution.fit (x), {1})
631s ***** error <proflik: SETPARAM must be a numeric vector.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, ones (2))
631s ***** error <proflik: missing VALUE for 'Display' argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "Display")
631s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "Display", 1)
631s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "Display", {1})
631s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "Display", {"on"})
631s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "Display", ["on"; "on"])
631s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "Display", "onnn")
631s ***** error <proflik: invalid NAME for optional arguments.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, "NAME", "on")
631s ***** error <proflik: invalid optional argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, {"NAME"}, "on")
631s ***** error <proflik: invalid optional argument.> ...
631s  proflik (InverseGaussianDistribution.fit (x), 1, {[1 2 3]}, "Display", "on")
631s ***** error <truncate: missing input argument.> ...
631s  truncate (InverseGaussianDistribution)
631s ***** error <truncate: missing input argument.> ...
631s  truncate (InverseGaussianDistribution, 2)
631s ***** error <truncate: invalid lower upper limits.> ...
631s  truncate (InverseGaussianDistribution, 4, 2)
631s ***** shared pd
631s  pd = InverseGaussianDistribution(1, 1);
631s  pd(2) = InverseGaussianDistribution(1, 3);
631s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
631s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
631s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
631s ***** error <mean: requires a scalar probability distribution.> mean (pd)
631s ***** error <median: requires a scalar probability distribution.> median (pd)
631s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
631s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
631s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
631s ***** error <plot: requires a scalar probability distribution.> plot (pd)
631s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
631s ***** error <random: requires a scalar probability distribution.> random (pd)
631s ***** error <std: requires a scalar probability distribution.> std (pd)
631s ***** error <truncate: requires a scalar probability distribution.> ...
631s  truncate (pd, 2, 4)
631s ***** error <var: requires a scalar probability distribution.> var (pd)
631s 96 tests, 96 passed, 0 known failure, 0 skipped
631s [inst/dist_obj/LoglogisticDistribution.m]
631s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/LoglogisticDistribution.m
631s ***** shared pd, t
631s  pd = LoglogisticDistribution;
631s  t = truncate (pd, 2, 4);
631s ***** assert (cdf (pd, [0:5]), [0, 0.5, 0.6667, 0.75, 0.8, 0.8333], 1e-4);
631s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.625, 1, 1], 1e-4);
631s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.6, 0.6667, 0.75, 0.8], 1e-4);
631s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.625, 1], 1e-4);
631s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.25, 0.6667, 1.5, 4, Inf], 1e-4);
631s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2609, 2.5714, 2.9474, 3.4118, 4], 1e-4);
631s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.6667, 1.5, 4, Inf, NaN], 1e-4);
631s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.5714, 2.9474, 3.4118, 4, NaN], 1e-4);
631s ***** assert (iqr (pd), 2.6667, 1e-4);
631s ***** assert (iqr (t), 0.9524, 1e-4);
631s ***** assert (mean (pd), Inf);
631s ***** assert (mean (t), 2.8312, 1e-4);
631s ***** assert (median (pd), 1, 1e-4);
631s ***** assert (median (t), 2.75, 1e-4);
631s ***** assert (pdf (pd, [0:5]), [0, 0.25, 0.1111, 0.0625, 0.04, 0.0278], 1e-4);
631s ***** assert (pdf (t, [0:5]), [0, 0, 0.8333, 0.4687, 0.3, 0], 1e-4);
631s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.25, 0.1111, 0.0625, 0.04, NaN], 1e-4);
631s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 0.8333, 0.4687, 0.3, NaN], 1e-4);
631s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
631s ***** assert (any (random (t, 1000, 1) < 2), false);
631s ***** assert (any (random (t, 1000, 1) > 4), false);
631s ***** assert (std (pd), Inf);
631s ***** assert (std (t), 0.5674, 1e-4);
631s ***** assert (var (pd), Inf);
631s ***** assert (var (t), 0.3220, 1e-4);
631s ***** error <LoglogisticDistribution: MU must be a nonnegative real scalar.> ...
631s  LoglogisticDistribution(Inf, 1)
631s ***** error <LoglogisticDistribution: MU must be a nonnegative real scalar.> ...
631s  LoglogisticDistribution(i, 1)
631s ***** error <LoglogisticDistribution: MU must be a nonnegative real scalar.> ...
631s  LoglogisticDistribution("a", 1)
631s ***** error <LoglogisticDistribution: MU must be a nonnegative real scalar.> ...
631s  LoglogisticDistribution([1, 2], 1)
631s ***** error <LoglogisticDistribution: MU must be a nonnegative real scalar.> ...
631s  LoglogisticDistribution(NaN, 1)
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, 0)
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, -1)
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, Inf)
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, i)
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, "a")
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, [1, 2])
631s ***** error <LoglogisticDistribution: SIGMA must be a positive real scalar.> ...
631s  LoglogisticDistribution(1, NaN)
631s ***** error <cdf: invalid argument for upper tail.> ...
631s  cdf (LoglogisticDistribution, 2, "uper")
631s ***** error <cdf: invalid argument for upper tail.> ...
631s  cdf (LoglogisticDistribution, 2, 3)
631s ***** shared x
631s  x = loglrnd (1, 1, [1, 100]);
631s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
631s  paramci (LoglogisticDistribution.fit (x), "alpha")
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (LoglogisticDistribution.fit (x), "alpha", 0)
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (LoglogisticDistribution.fit (x), "alpha", 1)
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (LoglogisticDistribution.fit (x), "alpha", [0.5 2])
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (LoglogisticDistribution.fit (x), "alpha", "")
631s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
631s  paramci (LoglogisticDistribution.fit (x), "alpha", {0.05})
632s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
632s  paramci (LoglogisticDistribution.fit (x), "parameter", "mu", "alpha", {0.05})
632s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
632s  paramci (LoglogisticDistribution.fit (x), "parameter", {"mu", "sigma", "pa"})
632s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
632s  paramci (LoglogisticDistribution.fit (x), "alpha", 0.01, ...
632s           "parameter", {"mu", "sigma", "param"})
632s ***** error <paramci: unknown distribution parameter.> ...
632s  paramci (LoglogisticDistribution.fit (x), "parameter", "param")
632s ***** error <paramci: unknown distribution parameter.> ...
632s  paramci (LoglogisticDistribution.fit (x), "alpha", 0.01, "parameter", "parm")
632s ***** error <paramci: invalid NAME for optional argument.> ...
632s  paramci (LoglogisticDistribution.fit (x), "NAME", "value")
632s ***** error <paramci: invalid NAME for optional argument.> ...
632s  paramci (LoglogisticDistribution.fit (x), "alpha", 0.01, "NAME", "value")
632s ***** error <paramci: invalid NAME for optional argument.> ...
632s  paramci (LoglogisticDistribution.fit (x), "alpha", 0.01, ...
632s           "parameter", "mu", "NAME", "value")
632s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
632s  plot (LoglogisticDistribution, "Parent")
632s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
632s  plot (LoglogisticDistribution, "PlotType", 12)
632s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
632s  plot (LoglogisticDistribution, "PlotType", {"pdf", "cdf"})
632s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
632s  plot (LoglogisticDistribution, "PlotType", "pdfcdf")
632s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
632s  plot (LoglogisticDistribution, "Discrete", "pdfcdf")
632s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
632s  plot (LoglogisticDistribution, "Discrete", [1, 0])
632s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
632s  plot (LoglogisticDistribution, "Discrete", {true})
632s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
632s  plot (LoglogisticDistribution, "Parent", 12)
632s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
632s  plot (LoglogisticDistribution, "Parent", "hax")
632s ***** error <plot: invalid NAME for optional argument.> ...
632s  plot (LoglogisticDistribution, "invalidNAME", "pdf")
632s ***** error <plot: no fitted DATA to plot a probability plot.> ...
632s  plot (LoglogisticDistribution, "PlotType", "probability")
632s ***** error <proflik: no fitted data available.> ...
632s  proflik (LoglogisticDistribution, 2)
632s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
632s  proflik (LoglogisticDistribution.fit (x), 3)
632s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
632s  proflik (LoglogisticDistribution.fit (x), [1, 2])
632s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
632s  proflik (LoglogisticDistribution.fit (x), {1})
632s ***** error <proflik: SETPARAM must be a numeric vector.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, ones (2))
632s ***** error <proflik: missing VALUE for 'Display' argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "Display")
632s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "Display", 1)
632s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "Display", {1})
632s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "Display", {"on"})
632s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "Display", ["on"; "on"])
632s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "Display", "onnn")
632s ***** error <proflik: invalid NAME for optional arguments.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, "NAME", "on")
632s ***** error <proflik: invalid optional argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, {"NAME"}, "on")
632s ***** error <proflik: invalid optional argument.> ...
632s  proflik (LoglogisticDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
632s ***** error <truncate: missing input argument.> ...
632s  truncate (LoglogisticDistribution)
632s ***** error <truncate: missing input argument.> ...
632s  truncate (LoglogisticDistribution, 2)
632s ***** error <truncate: invalid lower upper limits.> ...
632s  truncate (LoglogisticDistribution, 4, 2)
632s ***** shared pd
632s  pd = LoglogisticDistribution(1, 1);
632s  pd(2) = LoglogisticDistribution(1, 3);
632s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
632s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
632s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
632s ***** error <mean: requires a scalar probability distribution.> mean (pd)
632s ***** error <median: requires a scalar probability distribution.> median (pd)
632s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
632s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
632s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
632s ***** error <plot: requires a scalar probability distribution.> plot (pd)
632s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
632s ***** error <random: requires a scalar probability distribution.> random (pd)
632s ***** error <std: requires a scalar probability distribution.> std (pd)
632s ***** error <truncate: requires a scalar probability distribution.> ...
632s  truncate (pd, 2, 4)
632s ***** error <var: requires a scalar probability distribution.> var (pd)
632s 95 tests, 95 passed, 0 known failure, 0 skipped
632s [inst/dist_obj/GeneralizedExtremeValueDistribution.m]
632s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/GeneralizedExtremeValueDistribution.m
632s ***** shared pd, t
632s  pd = GeneralizedExtremeValueDistribution;
632s  t = truncate (pd, 2, 4);
632s ***** assert (cdf (pd, [0:5]), [0.3679, 0.6922, 0.8734, 0.9514, 0.9819, 0.9933], 1e-4);
632s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7195, 1, 1], 1e-4);
632s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.8, 0.8734, 0.9514, 0.9819], 1e-4);
632s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.7195, 1], 1e-4);
632s ***** assert (icdf (pd, [0:0.2:1]), [-Inf, -0.4759, 0.0874, 0.6717, 1.4999, Inf], 1e-4);
632s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1999, 2.4433, 2.7568, 3.2028, 4], 1e-4);
632s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.0874, 0.6717, 1.4999, Inf, NaN], 1e-4);
633s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4433, 2.7568, 3.2028, 4, NaN], 1e-4);
633s ***** assert (iqr (pd), 1.5725, 1e-4);
633s ***** assert (iqr (t), 0.8164, 1e-4);
633s ***** assert (mean (pd), 0.5772, 1e-4);
633s ***** assert (mean (t), 2.7043, 1e-4);
633s ***** assert (median (pd), 0.3665, 1e-4);
633s ***** assert (median (t), 2.5887, 1e-4);
633s ***** assert (pdf (pd, [0:5]), [0.3679, 0.2546, 0.1182, 0.0474, 0.0180, 0.0067], 1e-4);
633s ***** assert (pdf (t, [0:5]), [0, 0, 1.0902, 0.4369, 0.1659, 0], 1e-4);
633s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0.1794, 0.2546, 0.1182, 0.0474, 0.0180, NaN], 1e-4);
633s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 1.0902, 0.4369, 0.1659, NaN], 1e-4);
633s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
633s ***** assert (any (random (t, 1000, 1) < 2), false);
633s ***** assert (any (random (t, 1000, 1) > 4), false);
633s ***** assert (std (pd), 1.2825, 1e-4);
633s ***** assert (std (t), 0.5289, 1e-4);
633s ***** assert (var (pd), 1.6449, 1e-4);
633s ***** assert (var (t), 0.2798, 1e-4);
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(Inf, 1, 1)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(i, 1, 1)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution("a", 1, 1)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution([1, 2], 1, 1)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(NaN, 1, 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, 0, 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, -1, 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, Inf, 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, i, 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, "a", 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, [1, 2], 1)
633s ***** error <GeneralizedExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, NaN, 1)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, 1, Inf)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, 1, i)
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, 1, "a")
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, 1, [1, 2])
633s ***** error <GeneralizedExtremeValueDistribution: MU must be a real scalar.> ...
633s  GeneralizedExtremeValueDistribution(1, 1, NaN)
633s ***** error <cdf: invalid argument for upper tail.> ...
633s  cdf (GeneralizedExtremeValueDistribution, 2, "uper")
633s ***** error <cdf: invalid argument for upper tail.> ...
633s  cdf (GeneralizedExtremeValueDistribution, 2, 3)
633s ***** shared x
633s  x = gevrnd (1, 1, 1, [1, 100]);
633s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha")
633s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", 0)
633s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", 1)
633s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", [0.5 2])
633s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", "")
633s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", {0.05})
633s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), ...
633s           "parameter", "sigma", "alpha", {0.05})
633s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), ...
633s           "parameter", {"k", "sigma", "mu", "param"})
633s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", 0.01, ...
633s           "parameter", {"k", "sigma", "mu", "param"})
633s ***** error <paramci: unknown distribution parameter.> ...
633s  paramci (GeneralizedExtremeValueDistribution.fit (x), "parameter", "param")
634s ***** error <paramci: unknown distribution parameter.> ...
634s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", 0.01, ...
634s           "parameter", "param")
634s ***** error <paramci: invalid NAME for optional argument.> ...
634s  paramci (GeneralizedExtremeValueDistribution.fit (x), "NAME", "value")
634s ***** error <paramci: invalid NAME for optional argument.> ...
634s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", 0.01, ...
634s           "NAME", "value")
634s ***** error <paramci: invalid NAME for optional argument.> ...
634s  paramci (GeneralizedExtremeValueDistribution.fit (x), "alpha", 0.01, ...
634s           "parameter", "sigma", "NAME", "value")
634s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
634s  plot (GeneralizedExtremeValueDistribution, "Parent")
634s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "PlotType", 12)
634s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "PlotType", {"pdf", "cdf"})
634s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "PlotType", "pdfcdf")
634s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "Discrete", "pdfcdf")
634s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "Discrete", [1, 0])
634s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "Discrete", {true})
634s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "Parent", 12)
634s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "Parent", "hax")
634s ***** error <plot: invalid NAME for optional argument.> ...
634s  plot (GeneralizedExtremeValueDistribution, "invalidNAME", "pdf")
634s ***** error <plot: no fitted DATA to plot a probability plot.> ...
634s  plot (GeneralizedExtremeValueDistribution, "PlotType", "probability")
634s ***** error <proflik: no fitted data available.> ...
634s  proflik (GeneralizedExtremeValueDistribution, 2)
634s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), 4)
634s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), [1, 2])
634s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), {1})
634s ***** error <proflik: SETPARAM must be a numeric vector.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, ones (2))
634s ***** error <proflik: missing VALUE for 'Display' argument.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, "Display")
634s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, "Display", 1)
634s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
634s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, "Display", {1})
635s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
635s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, "Display", {"on"})
635s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
635s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, ...
635s           "Display", ["on"; "on"])
635s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
635s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, "Display", "onnn")
635s ***** error <proflik: invalid NAME for optional arguments.> ...
635s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, "NAME", "on")
635s ***** error <proflik: invalid optional argument.> ...
635s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, {"NAME"}, "on")
635s ***** error <proflik: invalid optional argument.> ...
635s  proflik (GeneralizedExtremeValueDistribution.fit (x), 1, {[1 2 3 4]}, ...
635s           "Display", "on")
635s ***** error <truncate: missing input argument.> ...
635s  truncate (GeneralizedExtremeValueDistribution)
635s ***** error <truncate: missing input argument.> ...
635s  truncate (GeneralizedExtremeValueDistribution, 2)
635s ***** error <truncate: invalid lower upper limits.> ...
635s  truncate (GeneralizedExtremeValueDistribution, 4, 2)
635s ***** shared pd
635s  pd = GeneralizedExtremeValueDistribution(1, 1, 1);
635s  pd(2) = GeneralizedExtremeValueDistribution(1, 3, 1);
635s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
635s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
635s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
635s ***** error <mean: requires a scalar probability distribution.> mean (pd)
635s ***** error <median: requires a scalar probability distribution.> median (pd)
635s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
635s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
635s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
635s ***** error <plot: requires a scalar probability distribution.> plot (pd)
635s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
635s ***** error <random: requires a scalar probability distribution.> random (pd)
635s ***** error <std: requires a scalar probability distribution.> std (pd)
635s ***** error <truncate: requires a scalar probability distribution.> ...
635s  truncate (pd, 2, 4)
635s ***** error <var: requires a scalar probability distribution.> var (pd)
635s 100 tests, 100 passed, 0 known failure, 0 skipped
635s [inst/dist_obj/TriangularDistribution.m]
635s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/TriangularDistribution.m
635s ***** shared pd, t
635s  pd = TriangularDistribution (0, 3, 5);
635s  t = truncate (pd, 2, 4);
635s ***** assert (cdf (pd, [0:5]), [0, 0.0667, 0.2667, 0.6000, 0.9000, 1], 1e-4);
635s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.5263, 1, 1], 1e-4);
635s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.1500, 0.2667, 0.6, 0.9, NaN], 1e-4);
635s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.5263, 1, NaN], 1e-4);
635s ***** assert (icdf (pd, [0:0.2:1]), [0, 1.7321, 2.4495, 3, 3.5858, 5], 1e-4);
635s ***** assert (icdf (t, [0:0.2:1]), [2, 2.4290, 2.7928, 3.1203, 3.4945, 4], 1e-4);
635s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4495, 3, 3.5858, 5, NaN], 1e-4);
635s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.7928, 3.1203, 3.4945, 4, NaN], 1e-4);
635s ***** assert (iqr (pd), 1.4824, 1e-4);
635s ***** assert (iqr (t), 0.8678, 1e-4);
635s ***** assert (mean (pd), 2.6667, 1e-4);
635s ***** assert (mean (t), 2.9649, 1e-4);
635s ***** assert (median (pd), 2.7386, 1e-4);
635s ***** assert (median (t), 2.9580, 1e-4);
635s ***** assert (pdf (pd, [0:5]), [0, 0.1333, 0.2667, 0.4, 0.2, 0], 1e-4);
635s ***** assert (pdf (t, [0:5]), [0, 0, 0.4211, 0.6316, 0.3158, 0], 1e-4);
635s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0.2, NaN], 1e-4);
635s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
635s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
635s ***** assert (any (random (t, 1000, 1) < 2), false);
635s ***** assert (any (random (t, 1000, 1) > 4), false);
635s ***** assert (std (pd), 1.0274, 1e-4);
635s ***** assert (std (t), 0.5369, 1e-4);
635s ***** assert (var (pd), 1.0556, 1e-4);
635s ***** assert (var (t), 0.2882, 1e-4);
635s ***** error <TriangularDistribution: lower limit A must be a real scalar.> ...
635s  TriangularDistribution (i, 1, 2)
635s ***** error <TriangularDistribution: lower limit A must be a real scalar.> ...
635s  TriangularDistribution (Inf, 1, 2)
635s ***** error <TriangularDistribution: lower limit A must be a real scalar.> ...
635s  TriangularDistribution ([1, 2], 1, 2)
635s ***** error <TriangularDistribution: lower limit A must be a real scalar.> ...
635s  TriangularDistribution ("a", 1, 2)
635s ***** error <TriangularDistribution: lower limit A must be a real scalar.> ...
635s  TriangularDistribution (NaN, 1, 2)
635s ***** error <TriangularDistribution: mode B must be a real scalar.> ...
635s  TriangularDistribution (1, i, 2)
635s ***** error <TriangularDistribution: mode B must be a real scalar.> ...
635s  TriangularDistribution (1, Inf, 2)
635s ***** error <TriangularDistribution: mode B must be a real scalar.> ...
635s  TriangularDistribution (1, [1, 2], 2)
635s ***** error <TriangularDistribution: mode B must be a real scalar.> ...
635s  TriangularDistribution (1, "a", 2)
635s ***** error <TriangularDistribution: mode B must be a real scalar.> ...
635s  TriangularDistribution (1, NaN, 2)
635s ***** error <TriangularDistribution: upper limit C must be a real scalar.> ...
635s  TriangularDistribution (1, 2, i)
635s ***** error <TriangularDistribution: upper limit C must be a real scalar.> ...
635s  TriangularDistribution (1, 2, Inf)
635s ***** error <TriangularDistribution: upper limit C must be a real scalar.> ...
635s  TriangularDistribution (1, 2, [1, 2])
635s ***** error <TriangularDistribution: upper limit C must be a real scalar.> ...
635s  TriangularDistribution (1, 2, "a")
635s ***** error <TriangularDistribution: upper limit C must be a real scalar.> ...
635s  TriangularDistribution (1, 2, NaN)
635s ***** error <TriangularDistribution: lower limit A must be less than upper limit C.> ...
635s  TriangularDistribution (1, 1, 1)
635s ***** error <TriangularDistribution: mode B must be within lower limit A and upper limit C.> ...
635s  TriangularDistribution (1, 0.5, 2)
635s ***** error <cdf: invalid argument for upper tail.> ...
635s  cdf (TriangularDistribution, 2, "uper")
635s ***** error <cdf: invalid argument for upper tail.> ...
635s  cdf (TriangularDistribution, 2, 3)
635s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
635s  plot (TriangularDistribution, "Parent")
635s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
635s  plot (TriangularDistribution, "PlotType", 12)
635s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
635s  plot (TriangularDistribution, "PlotType", {"pdf", "cdf"})
635s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
635s  plot (TriangularDistribution, "PlotType", "pdfcdf")
635s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
635s  plot (TriangularDistribution, "Discrete", "pdfcdf")
635s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
635s  plot (TriangularDistribution, "Discrete", [1, 0])
635s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
635s  plot (TriangularDistribution, "Discrete", {true})
635s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
635s  plot (TriangularDistribution, "Parent", 12)
635s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
635s  plot (TriangularDistribution, "Parent", "hax")
635s ***** error <plot: invalid NAME for optional argument.> ...
635s  plot (TriangularDistribution, "invalidNAME", "pdf")
635s ***** error <'probability' PlotType is not supported for 'TriangularDistribution'.> ...
635s  plot (TriangularDistribution, "PlotType", "probability")
635s ***** error <truncate: missing input argument.> ...
635s  truncate (TriangularDistribution)
635s ***** error <truncate: missing input argument.> ...
635s  truncate (TriangularDistribution, 2)
635s ***** error <truncate: invalid lower upper limits.> ...
635s  truncate (TriangularDistribution, 4, 2)
635s ***** shared pd
635s  pd = TriangularDistribution (0, 1, 2);
635s  pd(2) = TriangularDistribution (0, 1, 2);
635s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
635s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
635s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
635s ***** error <mean: requires a scalar probability distribution.> mean (pd)
635s ***** error <median: requires a scalar probability distribution.> median (pd)
635s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
635s ***** error <plot: requires a scalar probability distribution.> plot (pd)
635s ***** error <random: requires a scalar probability distribution.> random (pd)
635s ***** error <std: requires a scalar probability distribution.> std (pd)
635s ***** error <truncate: requires a scalar probability distribution.> ...
635s  truncate (pd, 2, 4)
635s ***** error <var: requires a scalar probability distribution.> var (pd)
635s 69 tests, 69 passed, 0 known failure, 0 skipped
635s [inst/dist_obj/MultinomialDistribution.m]
635s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/MultinomialDistribution.m
635s ***** shared pd, t
635s  pd = MultinomialDistribution ([0.1, 0.2, 0.3, 0.2, 0.1, 0.1]);
635s  t = truncate (pd, 2, 4);
635s ***** assert (cdf (pd, [2, 3, 4]), [0.3, 0.6, 0.8], eps);
635s ***** assert (cdf (t, [2, 3, 4]), [0.2857, 0.7143, 1], 1e-4);
635s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.1, 0.3, 0.6, 0.8], eps);
635s ***** assert (cdf (pd, [1.5, 2-eps, 3, 4]), [0.1, 0.1, 0.6, 0.8], eps);
635s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0.2857, 0.7143, 1], 1e-4);
635s ***** assert (cdf (t, [1.5, 2-eps, 3, 4]), [0, 0, 0.7143, 1], 1e-4);
635s ***** assert (cdf (pd, [1, 2.5, 4, 6]), [0.1, 0.3, 0.8, 1], eps);
635s ***** assert (icdf (pd, [0, 0.2857, 0.7143, 1]), [1, 2, 4, 6]);
635s ***** assert (icdf (t, [0, 0.2857, 0.7143, 1]), [2, 2, 4, 4]);
635s ***** assert (icdf (t, [0, 0.35, 0.7143, 1]), [2, 3, 4, 4]);
635s ***** assert (icdf (t, [0, 0.35, 0.7143, 1, NaN]), [2, 3, 4, 4, NaN]);
635s ***** assert (icdf (t, [-0.5, 0, 0.35, 0.7143, 1, NaN]), [NaN, 2, 3, 4, 4, NaN]);
635s ***** assert (icdf (pd, [-0.5, 0, 0.35, 0.7143, 1, NaN]), [NaN, 1, 3, 4, 6, NaN]);
635s ***** assert (iqr (pd), 2);
635s ***** assert (iqr (t), 2);
635s ***** assert (mean (pd), 3.3, 1e-14);
635s ***** assert (mean (t), 3, eps);
635s ***** assert (median (pd), 3);
635s ***** assert (median (t), 3);
635s ***** assert (pdf (pd, [-5, 1, 2.5, 4, 6, NaN, 9]), [0, 0.1, 0, 0.2, 0.1, NaN, 0]);
635s ***** assert (pdf (pd, [-5, 1, 2, 3, 4, 6, NaN, 9]), ...
635s  [0, 0.1, 0.2, 0.3, 0.2, 0.1, NaN, 0]);
635s ***** assert (pdf (t, [-5, 1, 2, 3, 4, 6, NaN, 0]), ...
635s  [0, 0, 0.2857, 0.4286, 0.2857, 0, NaN, 0], 1e-4);
635s ***** assert (pdf (t, [-5, 1, 2, 4, 6, NaN, 0]), ...
635s  [0, 0, 0.2857, 0.2857, 0, NaN, 0], 1e-4);
635s ***** assert (unique (random (pd, 1000, 5)), [1, 2, 3, 4, 5, 6]');
635s ***** assert (unique (random (t, 1000, 5)), [2, 3, 4]');
635s ***** assert (std (pd), 1.4177, 1e-4);
635s ***** assert (std (t), 0.7559, 1e-4);
635s ***** assert (var (pd), 2.0100, 1e-4);
635s ***** assert (var (t), 0.5714, 1e-4);
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution(0)
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution(-1)
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution(Inf)
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution(i)
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution("a")
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution([1, 2])
635s ***** error <MultinomialDistribution: PROBABILITIES must be a vector of positive real scalars that sum up to 1.> ...
635s  MultinomialDistribution(NaN)
635s ***** error <cdf: invalid argument for upper tail.> ...
635s  cdf (MultinomialDistribution, 2, "uper")
635s ***** error <cdf: invalid argument for upper tail.> ...
635s  cdf (MultinomialDistribution, 2, 3)
635s ***** error <cdf: X must be real.> ...
635s  cdf (MultinomialDistribution, i)
635s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
635s  plot (MultinomialDistribution, "Parent")
635s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
635s  plot (MultinomialDistribution, "PlotType", 12)
635s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
635s  plot (MultinomialDistribution, "PlotType", {"pdf", "cdf"})
635s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
635s  plot (MultinomialDistribution, "PlotType", "pdfcdf")
635s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
635s  plot (MultinomialDistribution, "Discrete", "pdfcdf")
635s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
635s  plot (MultinomialDistribution, "Discrete", [1, 0])
636s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
636s  plot (MultinomialDistribution, "Discrete", {true})
636s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
636s  plot (MultinomialDistribution, "Parent", 12)
636s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
636s  plot (MultinomialDistribution, "Parent", "hax")
636s ***** error <plot: invalid NAME for optional argument.> ...
636s  plot (MultinomialDistribution, "invalidNAME", "pdf")
636s ***** error <plot: 'probability' PlotType is not supported for 'MultinomialDistribution'.> ...
636s  plot (MultinomialDistribution, "PlotType", "probability")
636s ***** error <truncate: is_nan input argument.> ...
636s  truncate (MultinomialDistribution)
636s ***** error <truncate: is_nan input argument.> ...
636s  truncate (MultinomialDistribution, 2)
636s ***** error <truncate: invalid lower upper limits.> ...
636s  truncate (MultinomialDistribution, 4, 2)
636s ***** shared pd
636s  pd = MultinomialDistribution([0.1, 0.2, 0.3, 0.4]);
636s  pd(2) = MultinomialDistribution([0.1, 0.2, 0.3, 0.4]);
636s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
636s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
636s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
636s ***** error <mean: requires a scalar probability distribution.> mean (pd)
636s ***** error <median: requires a scalar probability distribution.> median (pd)
636s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
636s ***** error <plot: requires a scalar probability distribution.> plot (pd)
636s ***** error <random: requires a scalar probability distribution.> random (pd)
636s ***** error <std: requires a scalar probability distribution.> std (pd)
636s ***** error <truncate: requires a scalar probability distribution.> ...
636s  truncate (pd, 2, 4)
636s ***** error <var: requires a scalar probability distribution.> var (pd)
636s 64 tests, 64 passed, 0 known failure, 0 skipped
636s [inst/dist_obj/NegativeBinomialDistribution.m]
636s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/NegativeBinomialDistribution.m
636s ***** shared pd, t, t_inf
636s  pd = NegativeBinomialDistribution (5, 0.5);
636s  t = truncate (pd, 2, 4);
636s  t_inf = truncate (pd, 2, Inf);
636s ***** assert (cdf (pd, [0:5]), [0.0312, 0.1094, 0.2266, 0.3633, 0.5, 0.6230], 1e-4);
636s ***** assert (cdf (t, [0:5]), [0, 0, 0.3, 0.65, 1, 1], 1e-4);
636s ***** assert (cdf (t_inf, [0:5]), [0, 0, 0.1316, 0.2851, 0.4386, 0.5768], 1e-4);
636s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.1094, 0.2266, 0.3633, 0.5000], 1e-4);
636s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0.3, 0.65, 1], 1e-4);
636s ***** assert (icdf (pd, [0:0.2:1]), [0, 2, 4, 5, 7, Inf], 1e-4);
636s ***** assert (icdf (t, [0:0.2:1]), [2, 2, 3, 3, 4, 4], 1e-4);
636s ***** assert (icdf (t_inf, [0:0.2:1]), [2, 3, 4, 6, 8, Inf], 1e-4);
636s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 4, 5, 7, Inf, NaN], 1e-4);
636s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 3, 3, 4, 4, NaN], 1e-4);
636s ***** assert (iqr (pd), 4);
636s ***** assert (iqr (t), 2);
636s ***** assert (mean (pd), 5);
636s ***** assert (mean (t), 3.0500, 1e-4);
636s ***** assert (mean (t_inf), 5.5263, 1e-4);
636s ***** assert (median (pd), 4);
636s ***** assert (median (t), 3);
636s ***** assert (pdf (pd, [0:5]), [0.0312, 0.0781, 0.1172, 0.1367, 0.1367, 0.1230], 1e-4);
636s ***** assert (pdf (t, [0:5]), [0, 0, 0.3, 0.35, 0.35, 0], 1e-4);
636s ***** assert (pdf (t_inf, [0:5]), [0, 0, 0.1316, 0.1535, 0.1535, 0.1382], 1e-4);
636s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.0781, 0.1172, 0.1367, 0.1367, NaN], 1e-4);
636s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 0.3, 0.35, 0.35, NaN], 1e-4);
636s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
636s ***** assert (any (random (t, 1000, 1) < 2), false);
636s ***** assert (any (random (t, 1000, 1) > 4), false);
636s ***** assert (std (pd), 3.1623, 1e-4);
636s ***** assert (std (t), 0.8047, 1e-4);
636s ***** assert (std (t_inf), 2.9445, 1e-4);
636s ***** assert (var (pd), 10);
636s ***** assert (var (t), 0.6475, 1e-4);
636s ***** assert (var (t_inf), 8.6704, 1e-4);
636s ***** error <NegativeBinomialDistribution: R must be a positive scalar.> ...
636s  NegativeBinomialDistribution(Inf, 1)
636s ***** error <NegativeBinomialDistribution: R must be a positive scalar.> ...
636s  NegativeBinomialDistribution(i, 1)
636s ***** error <NegativeBinomialDistribution: R must be a positive scalar.> ...
636s  NegativeBinomialDistribution("a", 1)
636s ***** error <NegativeBinomialDistribution: R must be a positive scalar.> ...
636s  NegativeBinomialDistribution([1, 2], 1)
636s ***** error <NegativeBinomialDistribution: R must be a positive scalar.> ...
636s  NegativeBinomialDistribution(NaN, 1)
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, 0)
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, -1)
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, Inf)
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, i)
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, "a")
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, [1, 2])
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, NaN)
636s ***** error <NegativeBinomialDistribution: P must be a real scalar bounded in the range> ...
636s  NegativeBinomialDistribution(1, 1.2)
636s ***** error <cdf: invalid argument for upper tail.> ...
636s  cdf (NegativeBinomialDistribution, 2, "uper")
636s ***** error <cdf: invalid argument for upper tail.> ...
636s  cdf (NegativeBinomialDistribution, 2, 3)
636s ***** shared x
636s  x = nbinrnd (1, 0.5, [1, 100]);
636s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha")
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", 0)
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", 1)
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", [0.5 2])
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", "")
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", {0.05})
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "parameter", "R", ...
636s           "alpha", {0.05})
636s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), ...
636s           "parameter", {"R", "P", "param"})
636s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", 0.01, ...
636s           "parameter", {"R", "P", "param"})
636s ***** error <paramci: unknown distribution parameter.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "parameter", "param")
636s ***** error <paramci: unknown distribution parameter.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", 0.01, ...
636s           "parameter", "param")
636s ***** error <paramci: invalid NAME for optional argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "NAME", "value")
636s ***** error <paramci: invalid NAME for optional argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", 0.01, ...
636s           "NAME", "value")
636s ***** error <paramci: invalid NAME for optional argument.> ...
636s  paramci (NegativeBinomialDistribution.fit (x), "alpha", 0.01, ...
636s           "parameter", "R", "NAME", "value")
636s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
636s  plot (NegativeBinomialDistribution, "Parent")
636s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
636s  plot (NegativeBinomialDistribution, "PlotType", 12)
636s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
636s  plot (NegativeBinomialDistribution, "PlotType", {"pdf", "cdf"})
636s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
636s  plot (NegativeBinomialDistribution, "PlotType", "pdfcdf")
636s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
636s  plot (NegativeBinomialDistribution, "Discrete", "pdfcdf")
636s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
636s  plot (NegativeBinomialDistribution, "Discrete", [1, 0])
636s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
636s  plot (NegativeBinomialDistribution, "Discrete", {true})
636s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
636s  plot (NegativeBinomialDistribution, "Parent", 12)
636s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
636s  plot (NegativeBinomialDistribution, "Parent", "hax")
636s ***** error <plot: invalid NAME for optional argument.> ...
636s  plot (NegativeBinomialDistribution, "invalidNAME", "pdf")
636s ***** error <plot: no fitted DATA to plot a probability plot.> ...
636s  plot (NegativeBinomialDistribution, "PlotType", "probability")
636s ***** error <proflik: no fitted data available.> ...
636s  proflik (NegativeBinomialDistribution, 2)
636s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 3)
636s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), [1, 2])
636s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), {1})
636s ***** error <proflik: SETPARAM must be a numeric vector.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, ones (2))
636s ***** error <proflik: missing VALUE for 'Display' argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "Display")
636s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "Display", 1)
636s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "Display", {1})
636s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "Display", {"on"})
636s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "Display", ["on"; "on"])
636s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "Display", "onnn")
636s ***** error <proflik: invalid NAME for optional arguments.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, "NAME", "on")
636s ***** error <proflik: invalid optional argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, {"NAME"}, "on")
636s ***** error <proflik: invalid optional argument.> ...
636s  proflik (NegativeBinomialDistribution.fit (x), 1, {[1 2 3]}, "Display", "on")
636s ***** error <truncate: missing input argument.> ...
636s  truncate (NegativeBinomialDistribution)
636s ***** error <truncate: missing input argument.> ...
636s  truncate (NegativeBinomialDistribution, 2)
636s ***** error <truncate: invalid lower upper limits.> ...
636s  truncate (NegativeBinomialDistribution, 4, 2)
636s ***** shared pd
636s  pd = NegativeBinomialDistribution(1, 0.5);
636s  pd(2) = NegativeBinomialDistribution(1, 0.6);
636s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
636s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
636s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
636s ***** error <mean: requires a scalar probability distribution.> mean (pd)
636s ***** error <median: requires a scalar probability distribution.> median (pd)
636s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
636s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
636s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
636s ***** error <plot: requires a scalar probability distribution.> plot (pd)
636s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
636s ***** error <random: requires a scalar probability distribution.> random (pd)
636s ***** error <std: requires a scalar probability distribution.> std (pd)
636s ***** error <truncate: requires a scalar probability distribution.> ...
636s  truncate (pd, 2, 4)
636s ***** error <var: requires a scalar probability distribution.> var (pd)
636s 102 tests, 102 passed, 0 known failure, 0 skipped
636s [inst/dist_obj/GeneralizedParetoDistribution.m]
636s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/GeneralizedParetoDistribution.m
636s ***** shared pd, t
636s  pd = GeneralizedParetoDistribution (1, 1, 1);
636s  t = truncate (pd, 2, 4);
636s ***** assert (cdf (pd, [0:5]), [0, 0, 0.5, 0.6667, 0.75, 0.8], 1e-4);
636s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.6667, 1, 1], 1e-4);
636s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.3333, 0.5, 0.6667, 0.75], 1e-4);
636s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.6667, 1], 1e-4);
636s ***** assert (icdf (pd, [0:0.2:1]), [1, 1.25, 1.6667, 2.5, 5, Inf], 1e-4);
636s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2222, 2.5, 2.8571, 3.3333, 4], 1e-4);
636s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 1.6667, 2.5, 5, Inf, NaN], 1e-4);
636s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.5, 2.8571, 3.3333, 4, NaN], 1e-4);
636s ***** assert (iqr (pd), 2.6667, 1e-4);
636s ***** assert (iqr (t), 0.9143, 1e-4);
636s ***** assert (mean (pd), Inf);
636s ***** assert (mean (t), 2.7726, 1e-4);
636s ***** assert (median (pd), 2);
636s ***** assert (median (t), 2.6667, 1e-4);
636s ***** assert (pdf (pd, [0:5]), [0, 1, 0.25, 0.1111, 0.0625, 0.04], 1e-4);
636s ***** assert (pdf (t, [0:5]), [0, 0, 1, 0.4444, 0.25, 0], 1e-4);
636s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 1, 0.25, 0.1111, 0.0625, NaN], 1e-4);
636s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 1, 0.4444, 0.25, NaN], 1e-4);
636s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
636s ***** assert (any (random (t, 1000, 1) < 2), false);
636s ***** assert (any (random (t, 1000, 1) > 4), false);
636s ***** assert (std (pd), Inf);
636s ***** assert (std (t), 0.5592, 1e-4);
636s ***** assert (var (pd), Inf);
636s ***** assert (var (t), 0.3128, 1e-4);
636s ***** error <GeneralizedParetoDistribution: MU must be a real scalar.> ...
636s  GeneralizedParetoDistribution(Inf, 1, 1)
636s ***** error <GeneralizedParetoDistribution: MU must be a real scalar.> ...
636s  GeneralizedParetoDistribution(i, 1, 1)
636s ***** error <GeneralizedParetoDistribution: MU must be a real scalar.> ...
636s  GeneralizedParetoDistribution("a", 1, 1)
636s ***** error <GeneralizedParetoDistribution: MU must be a real scalar.> ...
636s  GeneralizedParetoDistribution([1, 2], 1, 1)
636s ***** error <GeneralizedParetoDistribution: MU must be a real scalar.> ...
636s  GeneralizedParetoDistribution(NaN, 1, 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, 0, 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, -1, 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, Inf, 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, i, 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, "a", 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, [1, 2], 1)
636s ***** error <GeneralizedParetoDistribution: SIGMA must be a positive real scalar.> ...
636s  GeneralizedParetoDistribution(1, NaN, 1)
636s ***** error <GeneralizedParetoDistribution: THETA must be a real scalar.> ...
636s  GeneralizedParetoDistribution(1, 1, Inf)
636s ***** error <GeneralizedParetoDistribution: THETA must be a real scalar.> ...
636s  GeneralizedParetoDistribution(1, 1, i)
636s ***** error <GeneralizedParetoDistribution: THETA must be a real scalar.> ...
636s  GeneralizedParetoDistribution(1, 1, "a")
636s ***** error <GeneralizedParetoDistribution: THETA must be a real scalar.> ...
636s  GeneralizedParetoDistribution(1, 1, [1, 2])
636s ***** error <GeneralizedParetoDistribution: THETA must be a real scalar.> ...
636s  GeneralizedParetoDistribution(1, 1, NaN)
636s ***** error <cdf: invalid argument for upper tail.> ...
636s  cdf (GeneralizedParetoDistribution, 2, "uper")
636s ***** error <cdf: invalid argument for upper tail.> ...
636s  cdf (GeneralizedParetoDistribution, 2, 3)
636s ***** shared x
636s  x = gprnd (1, 1, 1, [1, 100]);
636s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha")
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", 0)
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", 1)
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", [0.5 2])
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", "")
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", {0.05})
636s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), ...
636s           "parameter", "sigma", "alpha", {0.05})
636s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
636s  paramci (GeneralizedParetoDistribution.fit (x, 1), ...
636s           "parameter", {"k", "sigma", "param"})
637s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
637s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", 0.01, ...
637s           "parameter", {"k", "sigma", "param"})
637s ***** error <paramci: unknown distribution parameter.> ...
637s  paramci (GeneralizedParetoDistribution.fit (x, 1), "parameter", "param")
637s ***** error <paramci: unknown distribution parameter.> ...
637s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", 0.01, ...
637s           "parameter", "param")
637s ***** error <paramci: invalid NAME for optional argument.> ...
637s  paramci (GeneralizedParetoDistribution.fit (x, 1), "NAME", "value")
637s ***** error <paramci: invalid NAME for optional argument.> ...
637s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", 0.01, ...
637s           "NAME", "value")
637s ***** error <paramci: invalid NAME for optional argument.> ...
637s  paramci (GeneralizedParetoDistribution.fit (x, 1), "alpha", 0.01, ...
637s           "parameter", "sigma", "NAME", "value")
637s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
637s  plot (GeneralizedParetoDistribution, "Parent")
637s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
637s  plot (GeneralizedParetoDistribution, "PlotType", 12)
637s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
637s  plot (GeneralizedParetoDistribution, "PlotType", {"pdf", "cdf"})
637s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
637s  plot (GeneralizedParetoDistribution, "PlotType", "pdfcdf")
637s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
637s  plot (GeneralizedParetoDistribution, "Discrete", "pdfcdf")
637s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
637s  plot (GeneralizedParetoDistribution, "Discrete", [1, 0])
637s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
637s  plot (GeneralizedParetoDistribution, "Discrete", {true})
637s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
637s  plot (GeneralizedParetoDistribution, "Parent", 12)
637s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
637s  plot (GeneralizedParetoDistribution, "Parent", "hax")
637s ***** error <plot: invalid NAME for optional argument.> ...
637s  plot (GeneralizedParetoDistribution, "invalidNAME", "pdf")
637s ***** error <plot: no fitted DATA to plot a probability plot.> ...
637s  plot (GeneralizedParetoDistribution, "PlotType", "probability")
637s ***** error <proflik: no fitted data available.> ...
637s  proflik (GeneralizedParetoDistribution, 2)
637s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 3)
637s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), [1, 2])
637s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), {1})
637s ***** error <proflik: SETPARAM must be a numeric vector.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, ones (2))
637s ***** error <proflik: missing VALUE for 'Display' argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, "Display")
637s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, "Display", 1)
637s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, "Display", {1})
637s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, "Display", {"on"})
637s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, ...
637s           "Display", ["on"; "on"])
637s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, "Display", "onnn")
637s ***** error <proflik: invalid NAME for optional arguments.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, "NAME", "on")
637s ***** error <proflik: invalid optional argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, {"NAME"}, "on")
637s ***** error <proflik: invalid optional argument.> ...
637s  proflik (GeneralizedParetoDistribution.fit (x, 1), 1, {[1 2 3 4]}, ...
637s           "Display", "on")
637s ***** error <truncate: missing input argument.> ...
637s  truncate (GeneralizedParetoDistribution)
637s ***** error <truncate: missing input argument.> ...
637s  truncate (GeneralizedParetoDistribution, 2)
637s ***** error <truncate: invalid lower upper limits.> ...
637s  truncate (GeneralizedParetoDistribution, 4, 2)
637s ***** shared pd
637s  pd = GeneralizedParetoDistribution(1, 1, 1);
637s  pd(2) = GeneralizedParetoDistribution(1, 3, 1);
637s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
637s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
637s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
637s ***** error <mean: requires a scalar probability distribution.> mean (pd)
637s ***** error <median: requires a scalar probability distribution.> median (pd)
637s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
637s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
637s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
637s ***** error <plot: requires a scalar probability distribution.> plot (pd)
637s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
637s ***** error <random: requires a scalar probability distribution.> random (pd)
637s ***** error <std: requires a scalar probability distribution.> std (pd)
637s ***** error <truncate: requires a scalar probability distribution.> ...
637s  truncate (pd, 2, 4)
637s ***** error <var: requires a scalar probability distribution.> var (pd)
637s 100 tests, 100 passed, 0 known failure, 0 skipped
637s [inst/dist_obj/HalfNormalDistribution.m]
637s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/HalfNormalDistribution.m
637s ***** shared pd, t
637s  pd = HalfNormalDistribution (0, 1);
637s  t = truncate (pd, 2, 4);
637s ***** assert (cdf (pd, [0:5]), [0, 0.6827, 0.9545, 0.9973, 0.9999, 1], 1e-4);
637s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.9420, 1, 1], 1e-4);
637s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.8664, 0.9545, 0.9973, 0.9999], 1e-4);
637s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.9420, 1], 1e-4);
637s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.2533, 0.5244, 0.8416, 1.2816, Inf], 1e-4);
637s ***** assert (icdf (t, [0:0.2:1]), [2, 2.0923, 2.2068, 2.3607, 2.6064, 4], 1e-4);
637s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.5244, 0.8416, 1.2816, Inf, NaN], 1e-4);
637s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.2068, 2.3607, 2.6064, 4, NaN], 1e-4);
637s ***** assert (iqr (pd), 0.8317, 1e-4);
637s ***** assert (iqr (t), 0.4111, 1e-4);
637s ***** assert (mean (pd), 0.7979, 1e-4);
637s ***** assert (mean (t), 2.3706, 1e-4);
637s ***** assert (median (pd), 0.6745, 1e-4);
637s ***** assert (median (t), 2.2771, 1e-4);
637s ***** assert (pdf (pd, [0:5]), [0.7979, 0.4839, 0.1080, 0.0089, 0.0003, 0], 1e-4);
637s ***** assert (pdf (t, [0:5]), [0, 0, 2.3765, 0.1951, 0.0059, 0], 1e-4);
637s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.4839, 0.1080, 0.0089, 0.0003, NaN], 1e-4);
637s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 2.3765, 0.1951, 0.0059, NaN], 1e-4);
637s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
637s ***** assert (any (random (t, 1000, 1) < 2), false);
637s ***** assert (any (random (t, 1000, 1) > 4), false);
637s ***** assert (std (pd), 0.6028, 1e-4);
637s ***** assert (std (t), 0.3310, 1e-4);
637s ***** assert (var (pd), 0.3634, 1e-4);
637s ***** assert (var (t), 0.1096, 1e-4);
637s ***** error <HalfNormalDistribution: MU must be a real scalar.> ...
637s  HalfNormalDistribution(Inf, 1)
637s ***** error <HalfNormalDistribution: MU must be a real scalar.> ...
637s  HalfNormalDistribution(i, 1)
637s ***** error <HalfNormalDistribution: MU must be a real scalar.> ...
637s  HalfNormalDistribution("a", 1)
637s ***** error <HalfNormalDistribution: MU must be a real scalar.> ...
637s  HalfNormalDistribution([1, 2], 1)
637s ***** error <HalfNormalDistribution: MU must be a real scalar.> ...
637s  HalfNormalDistribution(NaN, 1)
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, 0)
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, -1)
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, Inf)
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, i)
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, "a")
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, [1, 2])
637s ***** error <HalfNormalDistribution: SIGMA must be a positive real scalar.> ...
637s  HalfNormalDistribution(1, NaN)
637s ***** error <cdf: invalid argument for upper tail.> ...
637s  cdf (HalfNormalDistribution, 2, "uper")
637s ***** error <cdf: invalid argument for upper tail.> ...
637s  cdf (HalfNormalDistribution, 2, 3)
637s ***** shared x
637s  x = hnrnd (1, 1, [1, 100]);
637s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha")
637s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", 0)
637s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", 1)
637s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", [0.5 2])
637s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", "")
637s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", {0.05})
637s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "parameter", "sigma", ...
637s           "alpha", {0.05})
637s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), ...
637s           "parameter", {"mu", "sigma", "param"})
637s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", 0.01, ...
637s           "parameter", {"mu", "sigma", "param"})
637s ***** error <paramci: unknown distribution parameter.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "parameter", "param")
637s ***** error <paramci: unknown distribution parameter.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", 0.01, ...
637s           "parameter", "param")
637s ***** error <paramci: invalid NAME for optional argument.> ...
637s  paramci (HalfNormalDistribution.fit (x, 1),"NAME", "value")
638s ***** error <paramci: invalid NAME for optional argument.> ...
638s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", 0.01, ...
638s           "NAME", "value")
638s ***** error <paramci: invalid NAME for optional argument.> ...
638s  paramci (HalfNormalDistribution.fit (x, 1), "alpha", 0.01, ...
638s           "parameter", "sigma", "NAME", "value")
638s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
638s  plot (HalfNormalDistribution, "Parent")
638s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
638s  plot (HalfNormalDistribution, "PlotType", 12)
638s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
638s  plot (HalfNormalDistribution, "PlotType", {"pdf", "cdf"})
638s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
638s  plot (HalfNormalDistribution, "PlotType", "pdfcdf")
638s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
638s  plot (HalfNormalDistribution, "Discrete", "pdfcdf")
638s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
638s  plot (HalfNormalDistribution, "Discrete", [1, 0])
638s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
638s  plot (HalfNormalDistribution, "Discrete", {true})
638s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
638s  plot (HalfNormalDistribution, "Parent", 12)
638s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
638s  plot (HalfNormalDistribution, "Parent", "hax")
638s ***** error <plot: invalid NAME for optional argument.> ...
638s  plot (HalfNormalDistribution, "invalidNAME", "pdf")
638s ***** error <plot: no fitted DATA to plot a probability plot.> ...
638s  plot (HalfNormalDistribution, "PlotType", "probability")
638s ***** error <proflik: no fitted data available.> ...
638s  proflik (HalfNormalDistribution, 2)
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 3)
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), [1, 2])
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), {1})
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 1)
638s ***** error <proflik: SETPARAM must be a numeric vector.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, ones (2))
638s ***** error <proflik: missing VALUE for 'Display' argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "Display")
638s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "Display", 1)
638s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "Display", {1})
638s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "Display", {"on"})
638s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "Display", ["on"; "on"])
638s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "Display", "onnn")
638s ***** error <proflik: invalid NAME for optional arguments.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, "NAME", "on")
638s ***** error <proflik: invalid optional argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, {"NAME"}, "on")
638s ***** error <proflik: invalid optional argument.> ...
638s  proflik (HalfNormalDistribution.fit (x, 1), 2, {[1 2 3 4]}, ...
638s           "Display", "on")
638s ***** error <truncate: missing input argument.> ...
638s  truncate (HalfNormalDistribution)
638s ***** error <truncate: missing input argument.> ...
638s  truncate (HalfNormalDistribution, 2)
638s ***** error <truncate: invalid lower upper limits.> ...
638s  truncate (HalfNormalDistribution, 4, 2)
638s ***** shared pd
638s  pd = HalfNormalDistribution(1, 1);
638s  pd(2) = HalfNormalDistribution(1, 3);
638s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
638s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
638s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
638s ***** error <mean: requires a scalar probability distribution.> mean (pd)
638s ***** error <median: requires a scalar probability distribution.> median (pd)
638s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
638s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
638s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
638s ***** error <plot: requires a scalar probability distribution.> plot (pd)
638s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
638s ***** error <random: requires a scalar probability distribution.> random (pd)
638s ***** error <std: requires a scalar probability distribution.> std (pd)
638s ***** error <truncate: requires a scalar probability distribution.> ...
638s  truncate (pd, 2, 4)
638s ***** error <var: requires a scalar probability distribution.> var (pd)
638s 96 tests, 96 passed, 0 known failure, 0 skipped
638s [inst/dist_obj/PoissonDistribution.m]
638s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/PoissonDistribution.m
638s ***** shared pd, t, t_inf
638s  pd = PoissonDistribution;
638s  t = truncate (pd, 2, 4);
638s  t_inf = truncate (pd, 2, Inf);
638s ***** assert (cdf (pd, [0:5]), [0.3679, 0.7358, 0.9197, 0.9810, 0.9963, 0.9994], 1e-4);
638s ***** assert (cdf (t, [0:5]), [0, 0, 0.7059, 0.9412, 1, 1], 1e-4);
638s ***** assert (cdf (t_inf, [0:5]), [0, 0, 0.6961, 0.9281, 0.9861, 0.9978], 1e-4);
638s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.7358, 0.9197, 0.9810, 0.9963], 1e-4);
638s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0.7059, 0.9412, 1], 1e-4);
638s ***** assert (icdf (pd, [0:0.2:1]), [0, 0, 1, 1, 2, Inf], 1e-4);
638s ***** assert (icdf (t, [0:0.2:1]), [2, 2, 2, 2, 3, 4], 1e-4);
638s ***** assert (icdf (t_inf, [0:0.2:1]), [2, 2, 2, 2, 3, Inf], 1e-4);
638s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 1, 1, 2, Inf, NaN], 1e-4);
638s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2, 2, 3, 4, NaN], 1e-4);
638s ***** assert (iqr (pd), 2);
638s ***** assert (iqr (t), 1);
638s ***** assert (mean (pd), 1);
638s ***** assert (mean (t), 2.3529, 1e-4);
638s ***** assert (mean (t_inf), 2.3922, 1e-4);
638s ***** assert (median (pd), 1);
638s ***** assert (median (t), 2);
638s ***** assert (median (t_inf), 2);
638s ***** assert (pdf (pd, [0:5]), [0.3679, 0.3679, 0.1839, 0.0613, 0.0153, 0.0031], 1e-4);
638s ***** assert (pdf (t, [0:5]), [0, 0, 0.7059, 0.2353, 0.0588, 0], 1e-4);
638s ***** assert (pdf (t_inf, [0:5]), [0, 0, 0.6961, 0.2320, 0.0580, 0.0116], 1e-4);
638s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.3679, 0.1839, 0.0613, 0.0153, NaN], 1e-4);
638s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 0.7059, 0.2353, 0.0588, NaN], 1e-4);
638s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
638s ***** assert (any (random (t, 1000, 1) < 2), false);
638s ***** assert (any (random (t, 1000, 1) > 4), false);
638s ***** assert (std (pd), 1);
638s ***** assert (std (t), 0.5882, 1e-4);
638s ***** assert (std (t_inf), 0.6738, 1e-4);
638s ***** assert (var (pd), 1);
638s ***** assert (var (t), 0.3460, 1e-4);
638s ***** assert (var (t_inf), 0.4540, 1e-4);
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution(0)
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution(-1)
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution(Inf)
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution(i)
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution("a")
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution([1, 2])
638s ***** error <PoissonDistribution: LAMBDA must be a positive real scalar.> ...
638s  PoissonDistribution(NaN)
638s ***** error <cdf: invalid argument for upper tail.> ...
638s  cdf (PoissonDistribution, 2, "uper")
638s ***** error <cdf: invalid argument for upper tail.> ...
638s  cdf (PoissonDistribution, 2, 3)
638s ***** shared x
638s  x = poissrnd (1, [1, 100]);
638s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha")
638s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", 0)
638s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", 1)
638s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", [0.5 2])
638s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", "")
638s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", {0.05})
638s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "parameter", "lambda", "alpha", {0.05})
638s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "parameter", {"lambda", "param"})
638s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", 0.01, ...
638s           "parameter", {"lambda", "param"})
638s ***** error <paramci: unknown distribution parameter.> ...
638s  paramci (PoissonDistribution.fit (x), "parameter", "param")
638s ***** error <paramci: unknown distribution parameter.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", 0.01, "parameter", "param")
638s ***** error <paramci: invalid NAME for optional argument.> ...
638s  paramci (PoissonDistribution.fit (x), "NAME", "value")
638s ***** error <paramci: invalid NAME for optional argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", 0.01, "NAME", "value")
638s ***** error <paramci: invalid NAME for optional argument.> ...
638s  paramci (PoissonDistribution.fit (x), "alpha", 0.01, ...
638s           "parameter", "lambda", "NAME", "value")
638s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
638s  plot (PoissonDistribution, "Parent")
638s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
638s  plot (PoissonDistribution, "PlotType", 12)
638s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
638s  plot (PoissonDistribution, "PlotType", {"pdf", "cdf"})
638s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
638s  plot (PoissonDistribution, "PlotType", "pdfcdf")
638s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
638s  plot (PoissonDistribution, "Discrete", "pdfcdf")
638s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
638s  plot (PoissonDistribution, "Discrete", [1, 0])
638s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
638s  plot (PoissonDistribution, "Discrete", {true})
638s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
638s  plot (PoissonDistribution, "Parent", 12)
638s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
638s  plot (PoissonDistribution, "Parent", "hax")
638s ***** error <plot: invalid NAME for optional argument.> ...
638s  plot (PoissonDistribution, "invalidNAME", "pdf")
638s ***** error <plot: no fitted DATA to plot a probability plot.> ...
638s  plot (PoissonDistribution, "PlotType", "probability")
638s ***** error <proflik: no fitted data available.> ...
638s  proflik (PoissonDistribution, 2)
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (PoissonDistribution.fit (x), 3)
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (PoissonDistribution.fit (x), [1, 2])
638s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
638s  proflik (PoissonDistribution.fit (x), {1})
638s ***** error <proflik: SETPARAM must be a numeric vector.> ...
638s  proflik (PoissonDistribution.fit (x), 1, ones (2))
638s ***** error <proflik: missing VALUE for 'Display' argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "Display")
638s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "Display", 1)
638s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "Display", {1})
638s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "Display", {"on"})
638s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "Display", ["on"; "on"])
638s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "Display", "onnn")
638s ***** error <proflik: invalid NAME for optional arguments.> ...
638s  proflik (PoissonDistribution.fit (x), 1, "NAME", "on")
638s ***** error <proflik: invalid optional argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, {"NAME"}, "on")
638s ***** error <proflik: invalid optional argument.> ...
638s  proflik (PoissonDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
638s ***** error <truncate: missing input argument.> ...
638s  truncate (PoissonDistribution)
638s ***** error <truncate: missing input argument.> ...
638s  truncate (PoissonDistribution, 2)
638s ***** error <truncate: invalid lower upper limits.> ...
638s  truncate (PoissonDistribution, 4, 2)
638s ***** shared pd
638s  pd = PoissonDistribution(1);
638s  pd(2) = PoissonDistribution(3);
638s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
638s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
638s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
638s ***** error <mean: requires a scalar probability distribution.> mean (pd)
638s ***** error <median: requires a scalar probability distribution.> median (pd)
638s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
639s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
639s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
639s ***** error <plot: requires a scalar probability distribution.> plot (pd)
639s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
639s ***** error <random: requires a scalar probability distribution.> random (pd)
639s ***** error <std: requires a scalar probability distribution.> std (pd)
639s ***** error <truncate: requires a scalar probability distribution.> ...
639s  truncate (pd, 2, 4)
639s ***** error <var: requires a scalar probability distribution.> var (pd)
639s 97 tests, 97 passed, 0 known failure, 0 skipped
639s [inst/dist_obj/PiecewiseLinearDistribution.m]
639s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/PiecewiseLinearDistribution.m
639s ***** shared pd, t
639s  load patients
639s  [f, x] = ecdf (Weight);
639s  f = f(1:5:end);
639s  x = x(1:5:end);
639s  pd = PiecewiseLinearDistribution (x, f);
639s  t = truncate (pd, 130, 180);
639s ***** assert (cdf (pd, [120, 130, 140, 150, 200]), [0.0767, 0.25, 0.4629, 0.5190, 0.9908], 1e-4);
639s ***** assert (cdf (t, [120, 130, 140, 150, 200]), [0, 0, 0.4274, 0.5403, 1], 1e-4);
639s ***** assert (cdf (pd, [100, 250, NaN]), [0, 1, NaN], 1e-4);
639s ***** assert (cdf (t, [115, 290, NaN]), [0, 1, NaN], 1e-4);
639s ***** assert (icdf (pd, [0:0.2:1]), [111, 127.5, 136.62, 169.67, 182.17, 202], 1e-2);
639s ***** assert (icdf (t, [0:0.2:1]), [130, 134.15, 139.26, 162.5, 173.99, 180], 1e-2);
639s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NA, 136.62, 169.67, 182.17, 202, NA], 1e-2);
639s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NA, 139.26, 162.5, 173.99, 180, NA], 1e-2);
639s ***** assert (iqr (pd), 50.0833, 1e-4);
639s ***** assert (iqr (t), 36.8077, 1e-4);
639s ***** assert (mean (pd), 153.61, 1e-10);
639s ***** assert (mean (t), 152.311, 1e-3);
643s ***** assert (median (pd), 142, 1e-10);
643s ***** assert (median (t), 141.9462, 1e-4);
643s ***** assert (pdf (pd, [120, 130, 140, 150, 200]), [0.0133, 0.0240, 0.0186, 0.0024, 0.0046], 1e-4);
643s ***** assert (pdf (t, [120, 130, 140, 150, 200]), [0, 0.0482, 0.0373, 0.0048, 0], 1e-4);
643s ***** assert (pdf (pd, [100, 250, NaN]), [0, 0, NaN], 1e-4);
643s ***** assert (pdf (t, [100, 250, NaN]), [0, 0, NaN], 1e-4);
643s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
643s ***** assert (any (random (t, 1000, 1) < 130), false);
643s ***** assert (any (random (t, 1000, 1) > 180), false);
643s ***** assert (std (pd), 26.5196, 1e-4);
643s ***** assert (std (t), 18.2941, 1e-4);
652s ***** assert (var (pd), 703.2879, 1e-4);
652s ***** assert (var (t), 334.6757, 1e-4);
661s ***** error <PiecewiseLinearDistribution: X must be a real vector.> ...
661s  PiecewiseLinearDistribution ([0, i], [0, 1])
661s ***** error <PiecewiseLinearDistribution: X must be a real vector.> ...
661s  PiecewiseLinearDistribution ([0, Inf], [0, 1])
661s ***** error <PiecewiseLinearDistribution: X must be a real vector.> ...
661s  PiecewiseLinearDistribution (["a", "c"], [0, 1])
661s ***** error <PiecewiseLinearDistribution: X must be a real vector.> ...
661s  PiecewiseLinearDistribution ([NaN, 1], [0, 1])
661s ***** error <PiecewiseLinearDistribution: Fx must be a real vector.> ...
661s  PiecewiseLinearDistribution ([0, 1], [0, i])
661s ***** error <PiecewiseLinearDistribution: Fx must be a real vector.> ...
661s  PiecewiseLinearDistribution ([0, 1], [0, Inf])
661s ***** error <PiecewiseLinearDistribution: Fx must be a real vector.> ...
661s  PiecewiseLinearDistribution ([0, 1], ["a", "c"])
661s ***** error <PiecewiseLinearDistribution: Fx must be a real vector.> ...
661s  PiecewiseLinearDistribution ([0, 1], [NaN, 1])
661s ***** error <PiecewiseLinearDistribution: X and FX must be vectors of equal size.> ...
661s  PiecewiseLinearDistribution ([0, 1], [0, 0.5, 1])
661s ***** error <PiecewiseLinearDistribution: X and FX must be at least two-elements long.> ...
661s  PiecewiseLinearDistribution ([0], [1])
661s ***** error <PiecewiseLinearDistribution: FX must be bounded in the range> ...
661s  PiecewiseLinearDistribution ([0, 0.5, 1], [0, 1, 1.5])
661s ***** error <cdf: invalid argument for upper tail.> ...
661s  cdf (PiecewiseLinearDistribution, 2, "uper")
661s ***** error <cdf: invalid argument for upper tail.> ...
661s  cdf (PiecewiseLinearDistribution, 2, 3)
661s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
661s  plot (PiecewiseLinearDistribution, "Parent")
661s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
661s  plot (PiecewiseLinearDistribution, "PlotType", 12)
661s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
661s  plot (PiecewiseLinearDistribution, "PlotType", {"pdf", "cdf"})
661s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
661s  plot (PiecewiseLinearDistribution, "PlotType", "pdfcdf")
661s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
661s  plot (PiecewiseLinearDistribution, "Discrete", "pdfcdf")
661s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
661s  plot (PiecewiseLinearDistribution, "Discrete", [1, 0])
661s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
661s  plot (PiecewiseLinearDistribution, "Discrete", {true})
661s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
661s  plot (PiecewiseLinearDistribution, "Parent", 12)
661s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
661s  plot (PiecewiseLinearDistribution, "Parent", "hax")
661s ***** error <plot: invalid NAME for optional argument.> ...
661s  plot (PiecewiseLinearDistribution, "invalidNAME", "pdf")
661s ***** error <plot: 'probability' PlotType is not supported for 'PiecewiseLinearDistribution'.> ...
661s  plot (PiecewiseLinearDistribution, "PlotType", "probability")
661s ***** error <truncate: missing input argument.> ...
661s  truncate (PiecewiseLinearDistribution)
661s ***** error <truncate: missing input argument.> ...
661s  truncate (PiecewiseLinearDistribution, 2)
661s ***** error <truncate: invalid lower upper limits.> ...
661s  truncate (PiecewiseLinearDistribution, 4, 2)
661s ***** shared pd
661s  pd = PiecewiseLinearDistribution ();
661s  pd(2) = PiecewiseLinearDistribution ();
661s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
661s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
661s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
661s ***** error <mean: requires a scalar probability distribution.> mean (pd)
661s ***** error <median: requires a scalar probability distribution.> median (pd)
661s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
661s ***** error <plot: requires a scalar probability distribution.> plot (pd)
661s ***** error <random: requires a scalar probability distribution.> random (pd)
661s ***** error <std: requires a scalar probability distribution.> std (pd)
661s ***** error <truncate: requires a scalar probability distribution.> ...
661s  truncate (pd, 2, 4)
661s ***** error <var: requires a scalar probability distribution.> var (pd)
661s 63 tests, 63 passed, 0 known failure, 0 skipped
661s [inst/dist_obj/LogisticDistribution.m]
661s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/LogisticDistribution.m
661s ***** shared pd, t
661s  pd = LogisticDistribution (0, 1);
661s  t = truncate (pd, 2, 4);
661s ***** assert (cdf (pd, [0:5]), [0.5, 0.7311, 0.8808, 0.9526, 0.9820, 0.9933], 1e-4);
661s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7091, 1, 1], 1e-4);
661s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.8176, 0.8808, 0.9526, 0.9820], 1e-4);
661s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.7091, 1], 1e-4);
661s ***** assert (icdf (pd, [0:0.2:1]), [-Inf, -1.3863, -0.4055, 0.4055, 1.3863, Inf], 1e-4);
661s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2088, 2.4599, 2.7789, 3.2252, 4], 1e-4);
661s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, -0.4055, 0.4055, 1.3863, Inf, NaN], 1e-4);
661s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4599, 2.7789, 3.2252, 4, NaN], 1e-4);
661s ***** assert (iqr (pd), 2.1972, 1e-4);
661s ***** assert (iqr (t), 0.8286, 1e-4);
661s ***** assert (mean (pd), 0, 1e-4);
661s ***** assert (mean (t), 2.7193, 1e-4);
661s ***** assert (median (pd), 0);
661s ***** assert (median (t), 2.6085, 1e-4);
661s ***** assert (pdf (pd, [0:5]), [0.25, 0.1966, 0.1050, 0.0452, 0.0177, 0.0066], 1e-4);
661s ***** assert (pdf (t, [0:5]), [0, 0, 1.0373, 0.4463, 0.1745, 0], 1e-4);
661s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0.1966, 0.1966, 0.1050, 0.0452, 0.0177, NaN], 1e-4);
661s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 1.0373, 0.4463, 0.1745, NaN], 1e-4);
661s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
661s ***** assert (any (random (t, 1000, 1) < 2), false);
661s ***** assert (any (random (t, 1000, 1) > 4), false);
661s ***** assert (std (pd), 1.8138, 1e-4);
661s ***** assert (std (t), 0.5320, 1e-4);
661s ***** assert (var (pd), 3.2899, 1e-4);
661s ***** assert (var (t), 0.2830, 1e-4);
661s ***** error <LogisticDistribution: MU must be a nonnegative real scalar.> ...
661s  LogisticDistribution(Inf, 1)
661s ***** error <LogisticDistribution: MU must be a nonnegative real scalar.> ...
661s  LogisticDistribution(i, 1)
661s ***** error <LogisticDistribution: MU must be a nonnegative real scalar.> ...
661s  LogisticDistribution("a", 1)
661s ***** error <LogisticDistribution: MU must be a nonnegative real scalar.> ...
661s  LogisticDistribution([1, 2], 1)
661s ***** error <LogisticDistribution: MU must be a nonnegative real scalar.> ...
661s  LogisticDistribution(NaN, 1)
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, 0)
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, -1)
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, Inf)
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, i)
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, "a")
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, [1, 2])
661s ***** error <LogisticDistribution: SIGMA must be a positive real scalar.> ...
661s  LogisticDistribution(1, NaN)
661s ***** error <cdf: invalid argument for upper tail.> ...
661s  cdf (LogisticDistribution, 2, "uper")
661s ***** error <cdf: invalid argument for upper tail.> ...
661s  cdf (LogisticDistribution, 2, 3)
661s ***** shared x
661s  x = logirnd (1, 1, [1, 100]);
661s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
661s  paramci (LogisticDistribution.fit (x), "alpha")
661s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "alpha", 0)
661s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "alpha", 1)
661s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "alpha", [0.5 2])
661s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "alpha", "")
661s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "alpha", {0.05})
661s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "parameter", "mu", "alpha", {0.05})
661s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
661s  paramci (LogisticDistribution.fit (x), "parameter", {"mu", "sigma", "param"})
662s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
662s  paramci (LogisticDistribution.fit (x), "alpha", 0.01, ...
662s           "parameter", {"mu", "sigma", "param"})
662s ***** error <paramci: unknown distribution parameter.> ...
662s  paramci (LogisticDistribution.fit (x), "parameter", "param")
662s ***** error <paramci: unknown distribution parameter.> ...
662s  paramci (LogisticDistribution.fit (x), "alpha", 0.01, "parameter", "param")
662s ***** error <paramci: invalid NAME for optional argument.> ...
662s  paramci (LogisticDistribution.fit (x), "NAME", "value")
662s ***** error <paramci: invalid NAME for optional argument.> ...
662s  paramci (LogisticDistribution.fit (x), "alpha", 0.01, "NAME", "value")
662s ***** error <paramci: invalid NAME for optional argument.> ...
662s  paramci (LogisticDistribution.fit (x), "alpha", 0.01, "parameter", "mu", ...
662s           "NAME", "value")
662s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
662s  plot (LogisticDistribution, "Parent")
662s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
662s  plot (LogisticDistribution, "PlotType", 12)
662s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
662s  plot (LogisticDistribution, "PlotType", {"pdf", "cdf"})
662s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
662s  plot (LogisticDistribution, "PlotType", "pdfcdf")
662s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
662s  plot (LogisticDistribution, "Discrete", "pdfcdf")
662s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
662s  plot (LogisticDistribution, "Discrete", [1, 0])
662s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
662s  plot (LogisticDistribution, "Discrete", {true})
662s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
662s  plot (LogisticDistribution, "Parent", 12)
662s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
662s  plot (LogisticDistribution, "Parent", "hax")
662s ***** error <plot: invalid NAME for optional argument.> ...
662s  plot (LogisticDistribution, "invalidNAME", "pdf")
662s ***** error <plot: no fitted DATA to plot a probability plot.> ...
662s  plot (LogisticDistribution, "PlotType", "probability")
662s ***** error <proflik: no fitted data available.> ...
662s  proflik (LogisticDistribution, 2)
662s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
662s  proflik (LogisticDistribution.fit (x), 3)
662s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
662s  proflik (LogisticDistribution.fit (x), [1, 2])
662s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
662s  proflik (LogisticDistribution.fit (x), {1})
662s ***** error <proflik: SETPARAM must be a numeric vector.> ...
662s  proflik (LogisticDistribution.fit (x), 1, ones (2))
662s ***** error <proflik: missing VALUE for 'Display' argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "Display")
662s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "Display", 1)
662s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "Display", {1})
662s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "Display", {"on"})
662s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "Display", ["on"; "on"])
662s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "Display", "onnn")
662s ***** error <proflik: invalid NAME for optional arguments.> ...
662s  proflik (LogisticDistribution.fit (x), 1, "NAME", "on")
662s ***** error <proflik: invalid optional argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, {"NAME"}, "on")
662s ***** error <proflik: invalid optional argument.> ...
662s  proflik (LogisticDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
662s ***** error <truncate: missing input argument.> ...
662s  truncate (LogisticDistribution)
662s ***** error <truncate: missing input argument.> ...
662s  truncate (LogisticDistribution, 2)
662s ***** error <truncate: invalid lower upper limits.> ...
662s  truncate (LogisticDistribution, 4, 2)
662s ***** shared pd
662s  pd = LogisticDistribution(1, 1);
662s  pd(2) = LogisticDistribution(1, 3);
662s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
662s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
662s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
662s ***** error <mean: requires a scalar probability distribution.> mean (pd)
662s ***** error <median: requires a scalar probability distribution.> median (pd)
662s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
662s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
662s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
662s ***** error <plot: requires a scalar probability distribution.> plot (pd)
662s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
662s ***** error <random: requires a scalar probability distribution.> random (pd)
662s ***** error <std: requires a scalar probability distribution.> std (pd)
662s ***** error <truncate: requires a scalar probability distribution.> ...
662s  truncate (pd, 2, 4)
662s ***** error <var: requires a scalar probability distribution.> var (pd)
662s 95 tests, 95 passed, 0 known failure, 0 skipped
662s [inst/dist_obj/BirnbaumSaundersDistribution.m]
662s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/BirnbaumSaundersDistribution.m
662s ***** demo
662s  ## Generate a data set of 5000 random samples from a Birnbaum-Saunders
662s  ## distribution with parameters β = 1 and γ = 0.5.  Fit a Birnbaum-Saunders
662s  ## distribution to this data and plot a PDF of the fitted distribution
662s  ## superimposed on a histogram of the data
662s 
662s  pd = makedist ("BirnbaumSaunders", "beta", 1, "gamma", 0.5)
662s  randg ("seed", 21);
662s  data = random (pd, 5000, 1);
662s  pd = fitdist (data, "BirnbaumSaunders")
662s  plot (pd)
662s  msg = "Fitted Birnbaum-Saunders distribution with a = %0.2f and b = %0.2f";
662s  title (sprintf (msg, pd.beta, pd.gamma))
662s ***** demo
662s  ## Plot the PDF of a Birnbaum-Saunders distribution, with parameters beta = 1
662s  ## and gamma = 0.5, truncated at [0, 2] intervals.  Generate 10000 random
662s  ## samples from this truncated distribution and superimpose a histogram with
662s  ## 100 bins scaled accordingly
662s 
662s  pd = makedist ("BirnbaumSaunders", "beta", 1, "gamma", 0.5)
662s  t = truncate (pd, 0, 2)
662s  randg ("seed", 21);
662s  data = random (t, 10000, 1);
662s  plot (t)
662s  title ("Birnbaum-Saunders distribution (a = 2, b = 4) truncated at [0.1, 0.8]")
662s  hold on
662s  hist (data, 100, 50)
662s  hold off
662s ***** demo
662s  ## Generate a data set of 100 random samples from a Birnbaum-Saunders
662s  ## distribution with parameters β = 1 and γ = 0.5.  Fit a Birnbaum-Saunders
662s  ## distribution to this data and plot its CDF superimposed over an empirical
662s  ## CDF of the data
662s 
662s  pd = makedist ("BirnbaumSaunders", "beta", 1, "gamma", 0.5)
662s  randg ("seed", 21);
662s  data = random (pd, 100, 1);
662s  pd = fitdist (data, "BirnbaumSaunders")
662s  plot (pd, "plottype", "cdf")
662s  title (sprintf ("Fitted Beta distribution with a = %0.2f and b = %0.2f", ...
662s                  pd.beta, pd.gamma))
662s  legend ({"empirical CDF", "fitted CDF"}, "location", "east")
662s ***** shared pd, t
662s  pd = BirnbaumSaundersDistribution;
662s  t = truncate (pd, 2, 4);
662s ***** assert (cdf (pd, [0:5]), [0, 0.5, 0.7602, 0.8759, 0.9332, 0.9632], 1e-4);
662s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.6687, 1, 1], 1e-4);
662s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.6585, 0.7602, 0.8759, 0.9332, NaN], 1e-4);
662s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.6687, 1, NaN], 1e-4);
662s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.4411, 0.7767, 1.2875, 2.2673, Inf], 1e-4);
662s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2293, 2.5073, 2.8567, 3.3210, 4], 1e-4);
662s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.7767, 1.2875, 2.2673, Inf, NaN], 1e-4);
662s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.5073, 2.8567, 3.3210, 4, NaN], 1e-4);
662s ***** assert (iqr (pd), 1.4236, 1e-4);
662s ***** assert (iqr (t), 0.8968, 1e-4);
662s ***** assert (mean (pd), 1.5, eps);
662s ***** assert (mean (t), 2.7723, 1e-4);
662s ***** assert (median (pd), 1, 1e-4);
662s ***** assert (median (t), 2.6711, 1e-4);
662s ***** assert (pdf (pd, [0:5]), [0, 0.3989, 0.1648, 0.0788, 0.0405, 0.0216], 1e-4);
662s ***** assert (pdf (t, [0:5]), [0, 0, 0.9528, 0.4559, 0.2340, 0], 1e-4);
662s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0.2497, NaN], 1e-4);
662s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
662s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
662s ***** assert (any (random (t, 1000, 1) < 2), false);
662s ***** assert (any (random (t, 1000, 1) > 4), false);
663s ***** assert (std (pd), 1.5, eps);
663s ***** assert (std (t), 0.5528, 1e-4);
663s ***** assert (var (pd), 2.25, eps);
663s ***** assert (var (t), 0.3056, 1e-4);
663s ***** error <BirnbaumSaundersDistribution: BETA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(0, 1)
663s ***** error <BirnbaumSaundersDistribution: BETA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(Inf, 1)
663s ***** error <BirnbaumSaundersDistribution: BETA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(i, 1)
663s ***** error <BirnbaumSaundersDistribution: BETA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution("beta", 1)
663s ***** error <BirnbaumSaundersDistribution: BETA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution([1, 2], 1)
663s ***** error <BirnbaumSaundersDistribution: BETA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(NaN, 1)
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, 0)
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, -1)
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, Inf)
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, i)
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, "beta")
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, [1, 2])
663s ***** error <BirnbaumSaundersDistribution: GAMMA must be a positive real scalar.> ...
663s  BirnbaumSaundersDistribution(1, NaN)
663s ***** error <cdf: invalid argument for upper tail.> ...
663s  cdf (BirnbaumSaundersDistribution, 2, "uper")
663s ***** error <cdf: invalid argument for upper tail.> ...
663s  cdf (BirnbaumSaundersDistribution, 2, 3)
663s ***** shared x
663s  rand ("seed", 5);
663s  x = bisarnd (1, 1, [100, 1]);
663s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha")
663s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", 0)
663s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", 1)
663s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", [0.5 2])
663s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", "")
663s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", {0.05})
663s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "parameter", ...
663s           "beta", "alpha", {0.05})
663s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), ...
663s           "parameter", {"beta", "gamma", "param"})
663s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", 0.01, ...
663s           "parameter", {"beta", "gamma", "param"})
663s ***** error <paramci: unknown distribution parameter.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "parameter", "param")
663s ***** error <paramci: unknown distribution parameter.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", 0.01, ...
663s           "parameter", "param")
663s ***** error <paramci: invalid NAME for optional argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "NAME", "value")
663s ***** error <paramci: invalid NAME for optional argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", 0.01, ...
663s           "NAME", "value")
663s ***** error <paramci: invalid NAME for optional argument.> ...
663s  paramci (BirnbaumSaundersDistribution.fit (x), "alpha", 0.01, ...
663s           "parameter", "beta", "NAME", "value")
663s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
663s  plot (BirnbaumSaundersDistribution, "Parent")
663s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "PlotType", 12)
663s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "PlotType", {"pdf", "cdf"})
663s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "PlotType", "pdfcdf")
663s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "Discrete", "pdfcdf")
663s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "Discrete", [1, 0])
663s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "Discrete", {true})
663s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "Parent", 12)
663s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
663s  plot (BirnbaumSaundersDistribution, "Parent", "hax")
663s ***** error <plot: invalid NAME for optional argument.> ...
663s  plot (BirnbaumSaundersDistribution, "invalidNAME", "pdf")
663s ***** error <plot: no fitted DATA to plot a probability plot.> ...
663s  plot (BirnbaumSaundersDistribution, "PlotType", "probability")
663s ***** error <proflik: no fitted data available.> ...
663s  proflik (BirnbaumSaundersDistribution, 2)
663s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 3)
663s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), [1, 2])
663s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), {1})
663s ***** error <proflik: SETPARAM must be a numeric vector.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 1, ones (2))
663s ***** error <proflik: missing VALUE for 'Display' argument.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "Display")
663s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "Display", 1)
663s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "Display", {1})
663s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "Display", {"on"})
663s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
663s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "Display", ["on"; "on"])
664s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
664s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "Display", "onnn")
664s ***** error <proflik: invalid NAME for optional arguments.> ...
664s  proflik (BirnbaumSaundersDistribution.fit (x), 1, "NAME", "on")
664s ***** error <proflik: invalid optional argument.> ...
664s  proflik (BirnbaumSaundersDistribution.fit (x), 1, {"NAME"}, "on")
664s ***** error <proflik: invalid optional argument.> ...
664s  proflik (BirnbaumSaundersDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
664s ***** error <truncate: missing input argument.> ...
664s  truncate (BirnbaumSaundersDistribution)
664s ***** error <truncate: missing input argument.> ...
664s  truncate (BirnbaumSaundersDistribution, 2)
664s ***** error <truncate: invalid lower upper limits.> ...
664s  truncate (BirnbaumSaundersDistribution, 4, 2)
664s ***** shared pd
664s  pd = BirnbaumSaundersDistribution(1, 1);
664s  pd(2) = BirnbaumSaundersDistribution(1, 3);
664s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
664s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
664s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
664s ***** error <mean: requires a scalar probability distribution.> mean (pd)
664s ***** error <median: requires a scalar probability distribution.> median (pd)
664s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
664s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
664s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
664s ***** error <plot: requires a scalar probability distribution.> plot (pd)
664s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
664s ***** error <random: requires a scalar probability distribution.> random (pd)
664s ***** error <std: requires a scalar probability distribution.> std (pd)
664s ***** error <truncate: requires a scalar probability distribution.> ...
664s  truncate (pd, 2, 4)
664s ***** error <var: requires a scalar probability distribution.> var (pd)
664s 96 tests, 96 passed, 0 known failure, 0 skipped
664s [inst/dist_obj/NormalDistribution.m]
664s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/NormalDistribution.m
664s ***** shared pd, t
664s  pd = NormalDistribution;
664s  t = truncate (pd, -2, 2);
664s ***** assert (cdf (pd, [0:5]), [0.5, 0.8413, 0.9772, 0.9987, 1, 1], 1e-4);
664s ***** assert (cdf (t, [0:5]), [0.5, 0.8576, 1, 1, 1, 1], 1e-4);
664s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.9332, 0.9772, 0.9987, 1], 1e-4);
664s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0.9538, 1, 1, 1], 1e-4);
664s ***** assert (icdf (pd, [0:0.2:1]), [-Inf, -0.8416, -0.2533, 0.2533, 0.8416, Inf], 1e-4);
664s ***** assert (icdf (t, [0:0.2:1]), [-2, -0.7938, -0.2416, 0.2416, 0.7938, 2], 1e-4);
664s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, -0.2533, 0.2533, 0.8416, Inf, NaN], 1e-4);
664s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, -0.2416, 0.2416, 0.7938, 2, NaN], 1e-4);
664s ***** assert (iqr (pd), 1.3490, 1e-4);
664s ***** assert (iqr (t), 1.2782, 1e-4);
664s ***** assert (mean (pd), 0);
664s ***** assert (mean (t), 0, 3e-16);
664s ***** assert (median (pd), 0);
664s ***** assert (median (t), 0, 3e-16);
664s ***** assert (pdf (pd, [0:5]), [0.3989, 0.2420, 0.0540, 0.0044, 0.0001, 0], 1e-4);
664s ***** assert (pdf (t, [0:5]), [0.4180, 0.2535, 0.0566, 0, 0, 0], 1e-4);
664s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0.2420, 0.2420, 0.0540, 0.0044, 0.0001, NaN], 1e-4);
664s ***** assert (pdf (t, [-1, 1:4, NaN]), [0.2535, 0.2535, 0.0566, 0, 0, NaN], 1e-4);
664s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
664s ***** assert (any (random (t, 1000, 1) < -2), false);
664s ***** assert (any (random (t, 1000, 1) > 2), false);
664s ***** assert (std (pd), 1);
664s ***** assert (std (t), 0.8796, 1e-4);
664s ***** assert (var (pd), 1);
664s ***** assert (var (t), 0.7737, 1e-4);
664s ***** error <NormalDistribution: MU must be a real scalar.> ...
664s  NormalDistribution(Inf, 1)
664s ***** error <NormalDistribution: MU must be a real scalar.> ...
664s  NormalDistribution(i, 1)
664s ***** error <NormalDistribution: MU must be a real scalar.> ...
664s  NormalDistribution("a", 1)
664s ***** error <NormalDistribution: MU must be a real scalar.> ...
664s  NormalDistribution([1, 2], 1)
664s ***** error <NormalDistribution: MU must be a real scalar.> ...
664s  NormalDistribution(NaN, 1)
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, 0)
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, -1)
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, Inf)
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, i)
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, "a")
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, [1, 2])
664s ***** error <NormalDistribution: SIGMA must be a positive real scalar.> ...
664s  NormalDistribution(1, NaN)
664s ***** error <cdf: invalid argument for upper tail.> ...
664s  cdf (NormalDistribution, 2, "uper")
664s ***** error <cdf: invalid argument for upper tail.> ...
664s  cdf (NormalDistribution, 2, 3)
664s ***** shared x
664s  x = normrnd (1, 1, [1, 100]);
664s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
664s  paramci (NormalDistribution.fit (x), "alpha")
664s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
664s  paramci (NormalDistribution.fit (x), "alpha", 0)
664s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
664s  paramci (NormalDistribution.fit (x), "alpha", 1)
664s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
664s  paramci (NormalDistribution.fit (x), "alpha", [0.5 2])
664s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
664s  paramci (NormalDistribution.fit (x), "alpha", "")
664s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
664s  paramci (NormalDistribution.fit (x), "alpha", {0.05})
664s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
664s  paramci (NormalDistribution.fit (x), "parameter", "mu", "alpha", {0.05})
664s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
664s  paramci (NormalDistribution.fit (x), "parameter", {"mu", "sigma", "param"})
664s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
664s  paramci (NormalDistribution.fit (x), "alpha", 0.01, ...
664s           "parameter", {"mu", "sigma", "param"})
665s ***** error <paramci: unknown distribution parameter.> ...
665s  paramci (NormalDistribution.fit (x), "parameter", "param")
665s ***** error <paramci: unknown distribution parameter.> ...
665s  paramci (NormalDistribution.fit (x), "alpha", 0.01, "parameter", "param")
665s ***** error <paramci: invalid NAME for optional argument.> ...
665s  paramci (NormalDistribution.fit (x), "NAME", "value")
665s ***** error <paramci: invalid NAME for optional argument.> ...
665s  paramci (NormalDistribution.fit (x), "alpha", 0.01, "NAME", "value")
665s ***** error <paramci: invalid NAME for optional argument.> ...
665s  paramci (NormalDistribution.fit (x), "alpha", 0.01, "parameter", "mu", ...
665s           "NAME", "value")
665s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
665s  plot (NormalDistribution, "Parent")
665s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
665s  plot (NormalDistribution, "PlotType", 12)
665s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
665s  plot (NormalDistribution, "PlotType", {"pdf", "cdf"})
665s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
665s  plot (NormalDistribution, "PlotType", "pdfcdf")
665s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
665s  plot (NormalDistribution, "Discrete", "pdfcdf")
665s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
665s  plot (NormalDistribution, "Discrete", [1, 0])
665s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
665s  plot (NormalDistribution, "Discrete", {true})
665s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
665s  plot (NormalDistribution, "Parent", 12)
665s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
665s  plot (NormalDistribution, "Parent", "hax")
665s ***** error <plot: invalid NAME for optional argument.> ...
665s  plot (NormalDistribution, "invalidNAME", "pdf")
665s ***** error <plot: no fitted DATA to plot a probability plot.> ...
665s  plot (NormalDistribution, "PlotType", "probability")
665s ***** error <proflik: no fitted data available.> ...
665s  proflik (NormalDistribution, 2)
665s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
665s  proflik (NormalDistribution.fit (x), 3)
665s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
665s  proflik (NormalDistribution.fit (x), [1, 2])
665s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
665s  proflik (NormalDistribution.fit (x), {1})
665s ***** error <proflik: SETPARAM must be a numeric vector.> ...
665s  proflik (NormalDistribution.fit (x), 1, ones (2))
665s ***** error <proflik: missing VALUE for 'Display' argument.> ...
665s  proflik (NormalDistribution.fit (x), 1, "Display")
665s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
665s  proflik (NormalDistribution.fit (x), 1, "Display", 1)
665s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
665s  proflik (NormalDistribution.fit (x), 1, "Display", {1})
665s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
665s  proflik (NormalDistribution.fit (x), 1, "Display", {"on"})
666s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
666s  proflik (NormalDistribution.fit (x), 1, "Display", ["on"; "on"])
666s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
666s  proflik (NormalDistribution.fit (x), 1, "Display", "onnn")
666s ***** error <proflik: invalid NAME for optional arguments.> ...
666s  proflik (NormalDistribution.fit (x), 1, "NAME", "on")
666s ***** error <proflik: invalid optional argument.> ...
666s  proflik (NormalDistribution.fit (x), 1, {"NAME"}, "on")
666s ***** error <proflik: invalid optional argument.> ...
666s  proflik (NormalDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
666s ***** error <truncate: missing input argument.> ...
666s  truncate (NormalDistribution)
666s ***** error <truncate: missing input argument.> ...
666s  truncate (NormalDistribution, 2)
666s ***** error <truncate: invalid lower upper limits.> ...
666s  truncate (NormalDistribution, 4, 2)
666s ***** shared pd
666s  pd = NormalDistribution(1, 1);
666s  pd(2) = NormalDistribution(1, 3);
666s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
666s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
666s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
666s ***** error <mean: requires a scalar probability distribution.> mean (pd)
666s ***** error <median: requires a scalar probability distribution.> median (pd)
666s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
666s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
666s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
666s ***** error <plot: requires a scalar probability distribution.> plot (pd)
666s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
666s ***** error <random: requires a scalar probability distribution.> random (pd)
666s ***** error <std: requires a scalar probability distribution.> std (pd)
666s ***** error <truncate: requires a scalar probability distribution.> ...
666s  truncate (pd, 2, 4)
666s ***** error <var: requires a scalar probability distribution.> var (pd)
666s 95 tests, 95 passed, 0 known failure, 0 skipped
666s [inst/dist_obj/BinomialDistribution.m]
666s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/BinomialDistribution.m
666s ***** shared pd, t, t_inf
666s  pd = BinomialDistribution (5, 0.5);
666s  t = truncate (pd, 2, 4);
666s  t_inf = truncate (pd, 2, Inf);
666s ***** assert (cdf (pd, [0:5]), [0.0312, 0.1875, 0.5, 0.8125, 0.9688, 1], 1e-4);
666s ***** assert (cdf (t, [0:5]), [0, 0, 0.4, 0.8, 1, 1], 1e-4);
666s ***** assert (cdf (t_inf, [0:5]), [0, 0, 0.3846, 0.7692, 0.9615, 1], 1e-4);
666s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.1875, 0.5, 0.8125, 0.9688, NaN], 1e-4);
666s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0.4, 0.8, 1, NaN], 1e-4);
666s ***** assert (icdf (pd, [0:0.2:1]), [0, 2, 2, 3, 3, 5], 1e-4);
666s ***** assert (icdf (t, [0:0.2:1]), [2, 2, 2, 3, 3, 4], 1e-4);
666s ***** assert (icdf (t_inf, [0:0.2:1]), [2, 2, 3, 3, 4, 5], 1e-4);
666s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 2, 3, 3, 5, NaN], 1e-4);
666s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2, 3, 3, 4, NaN], 1e-4);
666s ***** assert (iqr (pd), 1);
666s ***** assert (iqr (t), 1);
666s ***** assert (mean (pd), 2.5, 1e-10);
666s ***** assert (mean (t), 2.8, 1e-10);
666s ***** assert (mean (t_inf), 2.8846, 1e-4);
666s ***** assert (median (pd), 2.5);
666s ***** assert (median (t), 3);
666s ***** assert (pdf (pd, [0:5]), [0.0312, 0.1562, 0.3125, 0.3125, 0.1562, 0.0312], 1e-4);
666s ***** assert (pdf (t, [0:5]), [0, 0, 0.4, 0.4, 0.2, 0], 1e-4);
666s ***** assert (pdf (t_inf, [0:5]), [0, 0, 0.3846, 0.3846, 0.1923, 0.0385], 1e-4);
666s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
666s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
666s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
666s ***** assert (any (random (t, 1000, 1) < 2), false);
666s ***** assert (any (random (t, 1000, 1) > 4), false);
666s ***** assert (std (pd), 1.1180, 1e-4);
666s ***** assert (std (t), 0.7483, 1e-4);
666s ***** assert (std (t_inf), 0.8470, 1e-4);
666s ***** assert (var (pd), 1.2500, 1e-4);
666s ***** assert (var (t), 0.5600, 1e-4);
666s ***** assert (var (t_inf), 0.7175, 1e-4);
666s ***** error <BinomialDistribution: N must be a positive integer scalar.> ...
666s  BinomialDistribution(Inf, 0.5)
666s ***** error <BinomialDistribution: N must be a positive integer scalar.> ...
666s  BinomialDistribution(i, 0.5)
666s ***** error <BinomialDistribution: N must be a positive integer scalar.> ...
666s  BinomialDistribution("a", 0.5)
666s ***** error <BinomialDistribution: N must be a positive integer scalar.> ...
666s  BinomialDistribution([1, 2], 0.5)
666s ***** error <BinomialDistribution: N must be a positive integer scalar.> ...
666s  BinomialDistribution(NaN, 0.5)
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, 1.01)
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, -0.01)
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, Inf)
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, i)
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, "a")
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, [1, 2])
666s ***** error <BinomialDistribution: p must be a real scalar bounded in the range> ...
666s  BinomialDistribution(1, NaN)
666s ***** error <cdf: invalid argument for upper tail.> ...
666s  cdf (BinomialDistribution, 2, "uper")
666s ***** error <cdf: invalid argument for upper tail.> ...
666s  cdf (BinomialDistribution, 2, 3)
666s ***** shared x
666s  rand ("seed", 2);
666s  x = binornd (5, 0.5, [1, 100]);
666s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha")
666s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", 0)
666s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", 1)
666s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", [0.5 2])
666s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", "")
666s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", {0.05})
666s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "parameter", "p", ...
666s           "alpha", {0.05})
666s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), ...
666s           "parameter", {"N", "p", "param"})
666s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", 0.01, ...
666s           "parameter", {"N", "p", "param"})
666s ***** error <paramci: unknown distribution parameter.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "parameter", "param")
666s ***** error <paramci: unknown distribution parameter.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "parameter", "N")
666s ***** error <paramci: unknown distribution parameter.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", 0.01, ...
666s           "parameter", "param")
666s ***** error <paramci: invalid NAME for optional argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "NAME", "value")
666s ***** error <paramci: invalid NAME for optional argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", 0.01, ...
666s           "NAME", "value")
666s ***** error <paramci: invalid NAME for optional argument.> ...
666s  paramci (BinomialDistribution.fit (x, 6), "alpha", 0.01, ...
666s           "parameter", "p", "NAME", "value")
666s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
666s  plot (BinomialDistribution, "Parent")
666s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
666s  plot (BinomialDistribution, "PlotType", 12)
666s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
666s  plot (BinomialDistribution, "PlotType", {"pdf", "cdf"})
666s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
666s  plot (BinomialDistribution, "PlotType", "pdfcdf")
666s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
666s  plot (BinomialDistribution, "Discrete", "pdfcdf")
666s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
666s  plot (BinomialDistribution, "Discrete", [1, 0])
666s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
666s  plot (BinomialDistribution, "Discrete", {true})
666s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
666s  plot (BinomialDistribution, "Parent", 12)
666s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
666s  plot (BinomialDistribution, "Parent", "hax")
666s ***** error <plot: invalid NAME for optional argument.> ...
666s  plot (BinomialDistribution, "invalidNAME", "pdf")
666s ***** error <plot: no fitted DATA to plot a probability plot.> ...
666s  plot (BinomialDistribution, "PlotType", "probability")
666s ***** error <proflik: no fitted data available.> ...
666s  proflik (BinomialDistribution, 2)
666s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
666s  proflik (BinomialDistribution.fit (x, 6), 3)
666s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
666s  proflik (BinomialDistribution.fit (x, 6), [1, 2])
667s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
667s  proflik (BinomialDistribution.fit (x, 6), {1})
667s ***** error <proflik: SETPARAM must be a numeric vector.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, ones (2))
667s ***** error <proflik: missing VALUE for 'Display' argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "Display")
667s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "Display", 1)
667s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "Display", {1})
667s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "Display", {"on"})
667s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "Display", ["on"; "on"])
667s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "Display", "onnn")
667s ***** error <proflik: invalid NAME for optional arguments.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, "NAME", "on")
667s ***** error <proflik: invalid optional argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, {"NAME"}, "on")
667s ***** error <proflik: invalid optional argument.> ...
667s  proflik (BinomialDistribution.fit (x, 6), 2, {[1 2 3]}, "Display", "on")
667s ***** error <truncate: missing input argument.> ...
667s  truncate (BinomialDistribution)
667s ***** error <truncate: missing input argument.> ...
667s  truncate (BinomialDistribution, 2)
667s ***** error <truncate: invalid lower upper limits.> ...
667s  truncate (BinomialDistribution, 4, 2)
667s ***** shared pd
667s  pd = BinomialDistribution(1, 0.5);
667s  pd(2) = BinomialDistribution(1, 0.6);
667s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
667s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
667s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
667s ***** error <mean: requires a scalar probability distribution.> mean (pd)
667s ***** error <median: requires a scalar probability distribution.> median (pd)
667s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
667s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
667s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
667s ***** error <plot: requires a scalar probability distribution.> plot (pd)
667s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
667s ***** error <random: requires a scalar probability distribution.> random (pd)
667s ***** error <std: requires a scalar probability distribution.> std (pd)
667s ***** error <truncate: requires a scalar probability distribution.> ...
667s  truncate (pd, 2, 4)
667s ***** error <var: requires a scalar probability distribution.> var (pd)
667s 102 tests, 102 passed, 0 known failure, 0 skipped
667s [inst/dist_obj/tLocationScaleDistribution.m]
667s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/tLocationScaleDistribution.m
667s ***** shared pd, t
667s  pd = tLocationScaleDistribution;
667s  t = truncate (pd, 2, 4);
667s ***** assert (cdf (pd, [0:5]), [0.5, 0.8184, 0.9490, 0.9850, 0.9948, 0.9979], 1e-4);
667s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7841, 1, 1], 1e-4);
667s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.9030, 0.9490, 0.9850, 0.9948, NaN], 1e-4);
667s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.7841, 1, NaN], 1e-4);
667s ***** assert (icdf (pd, [0:0.2:1]), [-Inf, -0.9195, -0.2672, 0.2672, 0.9195, Inf], 1e-4);
667s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1559, 2.3533, 2.6223, 3.0432, 4], 1e-4);
667s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, -0.2672, 0.2672, 0.9195, Inf, NaN], 1e-4);
667s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.3533, 2.6223, 3.0432, 4, NaN], 1e-4);
667s ***** assert (iqr (pd), 1.4534, 1e-4);
667s ***** assert (iqr (t), 0.7139, 1e-4);
667s ***** assert (mean (pd), 0, eps);
667s ***** assert (mean (t), 2.6099, 1e-4);
667s ***** assert (median (pd), 0, eps);
667s ***** assert (median (t), 2.4758, 1e-4);
667s ***** assert (pdf (pd, [0:5]), [0.3796, 0.2197, 0.0651, 0.0173, 0.0051, 0.0018], 1e-4);
667s ***** assert (pdf (t, [0:5]), [0, 0, 1.4209, 0.3775, 0.1119, 0], 1e-4);
667s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0.2197, 0.1245, NaN], 1e-4);
667s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
667s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
667s ***** assert (any (random (t, 1000, 1) < 2), false);
667s ***** assert (any (random (t, 1000, 1) > 4), false);
667s ***** assert (std (pd), 1.2910, 1e-4);
667s ***** assert (std (t), 0.4989, 1e-4);
667s ***** assert (var (pd), 1.6667, 1e-4);
667s ***** assert (var (t), 0.2489, 1e-4);
667s ***** error <tLocationScaleDistribution: MU must be a real scalar.> ...
667s  tLocationScaleDistribution(i, 1, 1)
667s ***** error <tLocationScaleDistribution: MU must be a real scalar.> ...
667s  tLocationScaleDistribution(Inf, 1, 1)
667s ***** error <tLocationScaleDistribution: MU must be a real scalar.> ...
667s  tLocationScaleDistribution([1, 2], 1, 1)
667s ***** error <tLocationScaleDistribution: MU must be a real scalar.> ...
667s  tLocationScaleDistribution("a", 1, 1)
667s ***** error <tLocationScaleDistribution: MU must be a real scalar.> ...
667s  tLocationScaleDistribution(NaN, 1, 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 0, 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, -1, 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, Inf, 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, i, 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, "a", 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, [1, 2], 1)
667s ***** error <tLocationScaleDistribution: SIGMA must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, NaN, 1)
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, 0)
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, -1)
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, Inf)
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, i)
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, "a")
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, [1, 2])
667s ***** error <tLocationScaleDistribution: NU must be a positive real scalar.> ...
667s  tLocationScaleDistribution(0, 1, NaN)
667s ***** error <cdf: invalid argument for upper tail.> ...
667s  cdf (tLocationScaleDistribution, 2, "uper")
667s ***** error <cdf: invalid argument for upper tail.> ...
667s  cdf (tLocationScaleDistribution, 2, 3)
667s ***** shared x
667s  x = tlsrnd (0, 1, 1, [1, 100]);
667s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
667s  paramci (tLocationScaleDistribution.fit (x), "alpha")
667s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
667s  paramci (tLocationScaleDistribution.fit (x), "alpha", 0)
667s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
667s  paramci (tLocationScaleDistribution.fit (x), "alpha", 1)
667s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
667s  paramci (tLocationScaleDistribution.fit (x), "alpha", [0.5 2])
667s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
667s  paramci (tLocationScaleDistribution.fit (x), "alpha", "")
667s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
667s  paramci (tLocationScaleDistribution.fit (x), "alpha", {0.05})
668s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "parameter", "mu", ...
668s           "alpha", {0.05})
668s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
668s  paramci (tLocationScaleDistribution.fit (x), ...
668s           "parameter", {"mu", "sigma", "nu", "param"})
668s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "alpha", 0.01, ...
668s           "parameter", {"mu", "sigma", "nu", "param"})
668s ***** error <paramci: unknown distribution parameter.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "parameter", "param")
668s ***** error <paramci: unknown distribution parameter.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "alpha", 0.01, ...
668s           "parameter", "param")
668s ***** error <paramci: invalid NAME for optional argument.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "NAME", "value")
668s ***** error <paramci: invalid NAME for optional argument.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "alpha", 0.01, "NAME", "value")
668s ***** error <paramci: invalid NAME for optional argument.> ...
668s  paramci (tLocationScaleDistribution.fit (x), "alpha", 0.01, ...
668s           "parameter", "mu", "NAME", "value")
668s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
668s  plot (tLocationScaleDistribution, "Parent")
668s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
668s  plot (tLocationScaleDistribution, "PlotType", 12)
668s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
668s  plot (tLocationScaleDistribution, "PlotType", {"pdf", "cdf"})
668s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
668s  plot (tLocationScaleDistribution, "PlotType", "pdfcdf")
668s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
668s  plot (tLocationScaleDistribution, "Discrete", "pdfcdf")
668s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
668s  plot (tLocationScaleDistribution, "Discrete", [1, 0])
668s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
668s  plot (tLocationScaleDistribution, "Discrete", {true})
668s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
668s  plot (tLocationScaleDistribution, "Parent", 12)
668s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
668s  plot (tLocationScaleDistribution, "Parent", "hax")
668s ***** error <plot: invalid NAME for optional argument.> ...
668s  plot (tLocationScaleDistribution, "invalidNAME", "pdf")
668s ***** error <plot: no fitted DATA to plot a probability plot.> ...
668s  plot (tLocationScaleDistribution, "PlotType", "probability")
668s ***** error <proflik: no fitted data available.> ...
668s  proflik (tLocationScaleDistribution, 2)
668s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
668s  proflik (tLocationScaleDistribution.fit (x), 4)
668s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
668s  proflik (tLocationScaleDistribution.fit (x), [1, 2])
668s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
668s  proflik (tLocationScaleDistribution.fit (x), {1})
669s ***** error <proflik: SETPARAM must be a numeric vector.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, ones (2))
669s ***** error <proflik: missing VALUE for 'Display' argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "Display")
669s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "Display", 1)
669s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "Display", {1})
669s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "Display", {"on"})
669s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "Display", ["on"; "on"])
669s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "Display", "onnn")
669s ***** error <proflik: invalid NAME for optional arguments.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, "NAME", "on")
669s ***** error <proflik: invalid optional argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, {"NAME"}, "on")
669s ***** error <proflik: invalid optional argument.> ...
669s  proflik (tLocationScaleDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
669s ***** error <truncate: missing input argument.> ...
669s  truncate (tLocationScaleDistribution)
669s ***** error <truncate: missing input argument.> ...
669s  truncate (tLocationScaleDistribution, 2)
669s ***** error <truncate: invalid lower upper limits.> ...
669s  truncate (tLocationScaleDistribution, 4, 2)
669s ***** shared pd
669s  pd = tLocationScaleDistribution (0, 1, 1);
669s  pd(2) = tLocationScaleDistribution (0, 1, 3);
669s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
669s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
669s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
669s ***** error <mean: requires a scalar probability distribution.> mean (pd)
669s ***** error <median: requires a scalar probability distribution.> median (pd)
669s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
669s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
669s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
669s ***** error <plot: requires a scalar probability distribution.> plot (pd)
669s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
669s ***** error <random: requires a scalar probability distribution.> random (pd)
669s ***** error <std: requires a scalar probability distribution.> std (pd)
669s ***** error <truncate: requires a scalar probability distribution.> ...
669s  truncate (pd, 2, 4)
669s ***** error <var: requires a scalar probability distribution.> var (pd)
669s 102 tests, 102 passed, 0 known failure, 0 skipped
669s [inst/dist_obj/ExtremeValueDistribution.m]
669s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/ExtremeValueDistribution.m
669s ***** shared pd, t
669s  pd = ExtremeValueDistribution (0, 1);
669s  t = truncate (pd, 2, 4);
669s ***** assert (cdf (pd, [0:5]), [0.6321, 0.9340, 0.9994, 1, 1, 1], 1e-4);
669s ***** assert (cdf (t, [0:5]), [0, 0, 0, 1, 1, 1], 1e-4);
669s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.9887, 0.9994, 1, 1], 1e-4);
669s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 1, 1], 1e-4);
669s ***** assert (icdf (pd, [0:0.2:1]), [-Inf, -1.4999, -0.6717, -0.0874, 0.4759, Inf], 1e-4);
669s ***** assert (icdf (t, [0:0.2:1]), [2, 2.0298, 2.0668, 2.1169, 2.1971, 4], 1e-4);
669s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, -0.6717, -0.0874, 0.4759, Inf, NaN], 1e-4);
669s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.0668, 2.1169, 2.1971, 4, NaN], 1e-4);
669s ***** assert (iqr (pd), 1.5725, 1e-4);
669s ***** assert (iqr (t), 0.1338, 1e-4);
669s ***** assert (mean (pd), -0.5772, 1e-4);
669s ***** assert (mean (t), 2.1206, 1e-4);
669s ***** assert (median (pd), -0.3665, 1e-4);
669s ***** assert (median (t), 2.0897, 1e-4);
669s ***** assert (pdf (pd, [0:5]), [0.3679, 0.1794, 0.0046, 0, 0, 0], 1e-4);
670s ***** assert (pdf (t, [0:5]), [0, 0, 7.3891, 0.0001, 0, 0], 1e-4);
670s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0.2546, 0.1794, 0.0046, 0, 0, NaN], 1e-4);
670s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 7.3891, 0.0001, 0, NaN], 1e-4);
670s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
670s ***** assert (any (random (t, 1000, 1) < 2), false);
670s ***** assert (any (random (t, 1000, 1) > 4), false);
670s ***** assert (std (pd), 1.2825, 1e-4);
670s ***** assert (std (t), 0.1091, 1e-4);
670s ***** assert (var (pd), 1.6449, 1e-4);
670s ***** assert (var (t), 0.0119, 1e-4);
670s ***** error <ExtremeValueDistribution: MU must be a real scalar.> ...
670s  ExtremeValueDistribution(Inf, 1)
670s ***** error <ExtremeValueDistribution: MU must be a real scalar.> ...
670s  ExtremeValueDistribution(i, 1)
670s ***** error <ExtremeValueDistribution: MU must be a real scalar.> ...
670s  ExtremeValueDistribution("a", 1)
670s ***** error <ExtremeValueDistribution: MU must be a real scalar.> ...
670s  ExtremeValueDistribution([1, 2], 1)
670s ***** error <ExtremeValueDistribution: MU must be a real scalar.> ...
670s  ExtremeValueDistribution(NaN, 1)
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, 0)
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, -1)
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, Inf)
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, i)
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, "a")
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, [1, 2])
670s ***** error <ExtremeValueDistribution: SIGMA must be a positive real scalar.> ...
670s  ExtremeValueDistribution(1, NaN)
670s ***** error <cdf: invalid argument for upper tail.> ...
670s  cdf (ExtremeValueDistribution, 2, "uper")
670s ***** error <cdf: invalid argument for upper tail.> ...
670s  cdf (ExtremeValueDistribution, 2, 3)
670s ***** shared x
670s  rand ("seed", 1);
670s  x = evrnd (1, 1, [1000, 1]);
670s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha")
670s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", 0)
670s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", 1)
670s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", [0.5 2])
670s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", "")
670s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", {0.05})
670s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), ...
670s           "parameter", "mu", "alpha", {0.05})
670s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), ...
670s           "parameter", {"mu", "sigma", "param"})
670s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", 0.01, ...
670s           "parameter", {"mu", "sigma", "param"})
670s ***** error <paramci: unknown distribution parameter.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "parameter", "param")
670s ***** error <paramci: unknown distribution parameter.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", 0.01, ...
670s           "parameter", "param")
670s ***** error <paramci: invalid NAME for optional argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "NAME", "value")
670s ***** error <paramci: invalid NAME for optional argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", 0.01, "NAME", "value")
670s ***** error <paramci: invalid NAME for optional argument.> ...
670s  paramci (ExtremeValueDistribution.fit (x), "alpha", 0.01, ...
670s           "parameter", "mu", "NAME", "value")
670s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
670s  plot (ExtremeValueDistribution, "Parent")
670s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
670s  plot (ExtremeValueDistribution, "PlotType", 12)
670s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
670s  plot (ExtremeValueDistribution, "PlotType", {"pdf", "cdf"})
670s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
670s  plot (ExtremeValueDistribution, "PlotType", "pdfcdf")
670s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
670s  plot (ExtremeValueDistribution, "Discrete", "pdfcdf")
670s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
670s  plot (ExtremeValueDistribution, "Discrete", [1, 0])
670s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
670s  plot (ExtremeValueDistribution, "Discrete", {true})
670s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
670s  plot (ExtremeValueDistribution, "Parent", 12)
670s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
670s  plot (ExtremeValueDistribution, "Parent", "hax")
670s ***** error <plot: invalid NAME for optional argument.> ...
670s  plot (ExtremeValueDistribution, "invalidNAME", "pdf")
670s ***** error <plot: no fitted DATA to plot a probability plot.> ...
670s  plot (ExtremeValueDistribution, "PlotType", "probability")
670s ***** error <proflik: no fitted data available.> ...
670s  proflik (ExtremeValueDistribution, 2)
670s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 3)
670s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
670s  proflik (ExtremeValueDistribution.fit (x), [1, 2])
670s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
670s  proflik (ExtremeValueDistribution.fit (x), {1})
670s ***** error <proflik: SETPARAM must be a numeric vector.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, ones (2))
670s ***** error <proflik: missing VALUE for 'Display' argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "Display")
670s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "Display", 1)
670s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "Display", {1})
670s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "Display", {"on"})
670s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "Display", ["on"; "on"])
670s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "Display", "onnn")
670s ***** error <proflik: invalid NAME for optional arguments.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, "NAME", "on")
670s ***** error <proflik: invalid optional argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, {"NAME"}, "on")
670s ***** error <proflik: invalid optional argument.> ...
670s  proflik (ExtremeValueDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
670s ***** error <truncate: missing input argument.> ...
670s  truncate (ExtremeValueDistribution)
670s ***** error <truncate: missing input argument.> ...
670s  truncate (ExtremeValueDistribution, 2)
670s ***** error <truncate: invalid lower upper limits.> ...
670s  truncate (ExtremeValueDistribution, 4, 2)
670s ***** shared pd
670s  pd = ExtremeValueDistribution(1, 1);
670s  pd(2) = ExtremeValueDistribution(1, 3);
670s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
670s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
670s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
670s ***** error <mean: requires a scalar probability distribution.> mean (pd)
670s ***** error <median: requires a scalar probability distribution.> median (pd)
670s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
670s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
670s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
670s ***** error <plot: requires a scalar probability distribution.> plot (pd)
670s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
670s ***** error <random: requires a scalar probability distribution.> random (pd)
670s ***** error <std: requires a scalar probability distribution.> std (pd)
670s ***** error <truncate: requires a scalar probability distribution.> ...
670s  truncate (pd, 2, 4)
670s ***** error <var: requires a scalar probability distribution.> var (pd)
670s 95 tests, 95 passed, 0 known failure, 0 skipped
670s [inst/dist_obj/NakagamiDistribution.m]
670s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/NakagamiDistribution.m
670s ***** shared pd, t
670s  pd = NakagamiDistribution;
670s  t = truncate (pd, 2, 4);
670s ***** assert (cdf (pd, [0:5]), [0, 0.6321, 0.9817, 0.9999, 1, 1], 1e-4);
670s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.9933, 1, 1], 1e-4);
670s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.8946, 0.9817, 0.9999, 1], 1e-4);
670s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.9933, 1], 1e-4);
670s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.4724, 0.7147, 0.9572, 1.2686, Inf], 1e-4);
670s ***** assert (icdf (t, [0:0.2:1]), [2, 2.0550, 2.1239, 2.2173, 2.3684, 4], 1e-4);
670s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.7147, 0.9572, 1.2686, Inf, NaN], 1e-4);
670s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.1239, 2.2173, 2.3684, 4, NaN], 1e-4);
670s ***** assert (iqr (pd), 0.6411, 1e-4);
670s ***** assert (iqr (t), 0.2502, 1e-4);
670s ***** assert (mean (pd), 0.8862, 1e-4);
670s ***** assert (mean (t), 2.2263, 1e-4);
670s ***** assert (median (pd), 0.8326, 1e-4);
670s ***** assert (median (t), 2.1664, 1e-4);
670s ***** assert (pdf (pd, [0:5]), [0, 0.7358, 0.0733, 0.0007, 0, 0], 1e-4);
670s ***** assert (pdf (t, [0:5]), [0, 0, 4, 0.0404, 0, 0], 1e-4);
670s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.7358, 0.0733, 0.0007, 0, NaN], 1e-4);
670s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 4, 0.0404, 0, NaN], 1e-4);
670s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
670s ***** assert (any (random (t, 1000, 1) < 2), false);
670s ***** assert (any (random (t, 1000, 1) > 4), false);
670s ***** assert (std (pd), 0.4633, 1e-4);
670s ***** assert (std (t), 0.2083, 1e-4);
670s ***** assert (var (pd), 0.2146, 1e-4);
670s ***** assert (var (t), 0.0434, 1e-4);
670s ***** error <NakagamiDistribution: MU must be a real scalar of at least 0.5.> ...
670s  NakagamiDistribution(Inf, 1)
670s ***** error <NakagamiDistribution: MU must be a real scalar of at least 0.5.> ...
670s  NakagamiDistribution(i, 1)
670s ***** error <NakagamiDistribution: MU must be a real scalar of at least 0.5.> ...
670s  NakagamiDistribution("a", 1)
670s ***** error <NakagamiDistribution: MU must be a real scalar of at least 0.5.> ...
670s  NakagamiDistribution([1, 2], 1)
670s ***** error <NakagamiDistribution: MU must be a real scalar of at least 0.5.> ...
670s  NakagamiDistribution(NaN, 1)
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, 0)
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, -1)
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, Inf)
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, i)
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, "a")
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, [1, 2])
670s ***** error <NakagamiDistribution: OMEGA must be a positive real scalar.> ...
670s  NakagamiDistribution(1, NaN)
670s ***** error <cdf: invalid argument for upper tail.> ...
670s  cdf (NakagamiDistribution, 2, "uper")
670s ***** error <cdf: invalid argument for upper tail.> ...
670s  cdf (NakagamiDistribution, 2, 3)
671s ***** shared x
671s  x = nakarnd (1, 0.5, [1, 100]);
671s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha")
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", 0)
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", 1)
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", [0.5 2])
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", "")
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", {0.05})
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "parameter", "mu", "alpha", {0.05})
671s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "parameter", {"mu", "omega", "param"})
671s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", 0.01, ...
671s           "parameter", {"mu", "omega", "param"})
671s ***** error <paramci: unknown distribution parameter.> ...
671s  paramci (NakagamiDistribution.fit (x), "parameter", "param")
671s ***** error <paramci: unknown distribution parameter.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", 0.01, "parameter", "param")
671s ***** error <paramci: invalid NAME for optional argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "NAME", "value")
671s ***** error <paramci: invalid NAME for optional argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", 0.01, "NAME", "value")
671s ***** error <paramci: invalid NAME for optional argument.> ...
671s  paramci (NakagamiDistribution.fit (x), "alpha", 0.01, "parameter", "mu", ...
671s           "NAME", "value")
671s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
671s  plot (NakagamiDistribution, "Parent")
671s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
671s  plot (NakagamiDistribution, "PlotType", 12)
671s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
671s  plot (NakagamiDistribution, "PlotType", {"pdf", "cdf"})
671s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
671s  plot (NakagamiDistribution, "PlotType", "pdfcdf")
671s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
671s  plot (NakagamiDistribution, "Discrete", "pdfcdf")
671s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
671s  plot (NakagamiDistribution, "Discrete", [1, 0])
671s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
671s  plot (NakagamiDistribution, "Discrete", {true})
671s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
671s  plot (NakagamiDistribution, "Parent", 12)
671s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
671s  plot (NakagamiDistribution, "Parent", "hax")
671s ***** error <plot: invalid NAME for optional argument.> ...
671s  plot (NakagamiDistribution, "invalidNAME", "pdf")
671s ***** error <plot: no fitted DATA to plot a probability plot.> ...
671s  plot (NakagamiDistribution, "PlotType", "probability")
671s ***** error <proflik: no fitted data available.> ...
671s  proflik (NakagamiDistribution, 2)
671s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
671s  proflik (NakagamiDistribution.fit (x), 3)
671s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
671s  proflik (NakagamiDistribution.fit (x), [1, 2])
671s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
671s  proflik (NakagamiDistribution.fit (x), {1})
671s ***** error <proflik: SETPARAM must be a numeric vector.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, ones (2))
671s ***** error <proflik: missing VALUE for 'Display' argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "Display")
671s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "Display", 1)
671s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "Display", {1})
671s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "Display", {"on"})
671s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "Display", ["on"; "on"])
671s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "Display", "onnn")
671s ***** error <proflik: invalid NAME for optional arguments.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, "NAME", "on")
671s ***** error <proflik: invalid optional argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, {"NAME"}, "on")
671s ***** error <proflik: invalid optional argument.> ...
671s  proflik (NakagamiDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
671s ***** error <truncate: missing input argument.> ...
671s  truncate (NakagamiDistribution)
671s ***** error <truncate: missing input argument.> ...
671s  truncate (NakagamiDistribution, 2)
671s ***** error <truncate: invalid lower upper limits.> ...
671s  truncate (NakagamiDistribution, 4, 2)
671s ***** shared pd
671s  pd = NakagamiDistribution(1, 0.5);
671s  pd(2) = NakagamiDistribution(1, 0.6);
671s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
671s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
671s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
671s ***** error <mean: requires a scalar probability distribution.> mean (pd)
671s ***** error <median: requires a scalar probability distribution.> median (pd)
671s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
671s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
671s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
671s ***** error <plot: requires a scalar probability distribution.> plot (pd)
671s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
671s ***** error <random: requires a scalar probability distribution.> random (pd)
671s ***** error <std: requires a scalar probability distribution.> std (pd)
671s ***** error <truncate: requires a scalar probability distribution.> ...
671s  truncate (pd, 2, 4)
671s ***** error <var: requires a scalar probability distribution.> var (pd)
671s 95 tests, 95 passed, 0 known failure, 0 skipped
671s [inst/dist_obj/RayleighDistribution.m]
671s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/RayleighDistribution.m
671s ***** shared pd, t
671s  pd = RayleighDistribution;
671s  t = truncate (pd, 2, 4);
671s ***** assert (cdf (pd, [0:5]), [0, 0.3935, 0.8647, 0.9889, 0.9997, 1], 1e-4);
671s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.9202, 1, 1], 1e-4);
671s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.6753, 0.8647, 0.9889, 0.9997, NaN], 1e-4);
671s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.9202, 1, NaN], 1e-4);
671s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.6680, 1.0108, 1.3537, 1.7941, Inf], 1e-4);
671s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1083, 2.2402, 2.4135, 2.6831, 4], 1e-4);
671s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 1.0108, 1.3537, 1.7941, Inf, NaN], 1e-4);
671s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.2402, 2.4135, 2.6831, 4, NaN], 1e-4);
671s ***** assert (iqr (pd), 0.9066, 1e-4);
671s ***** assert (iqr (t), 0.4609, 1e-4);
671s ***** assert (mean (pd), 1.2533, 1e-4);
671s ***** assert (mean (t), 2.4169, 1e-4);
671s ***** assert (median (pd), 1.1774, 1e-4);
671s ***** assert (median (t), 2.3198, 1e-4);
671s ***** assert (pdf (pd, [0:5]), [0, 0.6065, 0.2707, 0.0333, 0.0013, 0], 1e-4);
671s ***** assert (pdf (t, [0:5]), [0, 0, 2.0050, 0.2469, 0.0099, 0], 1e-4);
671s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0.4870, NaN], 1e-4);
671s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
671s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
671s ***** assert (any (random (t, 1000, 1) < 2), false);
671s ***** assert (any (random (t, 1000, 1) > 4), false);
671s ***** assert (std (pd), 0.6551, 1e-4);
671s ***** assert (std (t), 0.3591, 1e-4);
671s ***** assert (var (pd), 0.4292, 1e-4);
671s ***** assert (var (t), 0.1290, 1e-4);
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution(0)
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution(-1)
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution(Inf)
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution(i)
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution("a")
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution([1, 2])
671s ***** error <RayleighDistribution: SIGMA must be a positive real scalar.> ...
671s  RayleighDistribution(NaN)
671s ***** error <cdf: invalid argument for upper tail.> ...
671s  cdf (RayleighDistribution, 2, "uper")
671s ***** error <cdf: invalid argument for upper tail.> ...
671s  cdf (RayleighDistribution, 2, 3)
671s ***** shared x
671s  x = raylrnd (1, [1, 100]);
671s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha")
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", 0)
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", 1)
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", [0.5 2])
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", "")
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", {0.05})
671s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "parameter", "sigma", "alpha", {0.05})
671s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "parameter", {"sigma", "param"})
671s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", 0.01, ...
671s           "parameter", {"sigma", "param"})
671s ***** error <paramci: unknown distribution parameter.> ...
671s  paramci (RayleighDistribution.fit (x), "parameter", "param")
671s ***** error <paramci: unknown distribution parameter.> ...
671s  paramci (RayleighDistribution.fit (x), "alpha", 0.01, "parameter", "param")
672s ***** error <paramci: invalid NAME for optional argument.> ...
672s  paramci (RayleighDistribution.fit (x), "NAME", "value")
672s ***** error <paramci: invalid NAME for optional argument.> ...
672s  paramci (RayleighDistribution.fit (x), "alpha", 0.01, "NAME", "value")
672s ***** error <paramci: invalid NAME for optional argument.> ...
672s  paramci (RayleighDistribution.fit (x), "alpha", 0.01, ...
672s           "parameter", "sigma", "NAME", "value")
672s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
672s  plot (RayleighDistribution, "Parent")
672s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
672s  plot (RayleighDistribution, "PlotType", 12)
672s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
672s  plot (RayleighDistribution, "PlotType", {"pdf", "cdf"})
672s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
672s  plot (RayleighDistribution, "PlotType", "pdfcdf")
672s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
672s  plot (RayleighDistribution, "Discrete", "pdfcdf")
672s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
672s  plot (RayleighDistribution, "Discrete", [1, 0])
672s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
672s  plot (RayleighDistribution, "Discrete", {true})
672s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
672s  plot (RayleighDistribution, "Parent", 12)
672s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
672s  plot (RayleighDistribution, "Parent", "hax")
672s ***** error <plot: invalid NAME for optional argument.> ...
672s  plot (RayleighDistribution, "invalidNAME", "pdf")
672s ***** error <plot: no fitted DATA to plot a probability plot.> ...
672s  plot (RayleighDistribution, "PlotType", "probability")
672s ***** error <proflik: no fitted data available.> ...
672s  proflik (RayleighDistribution, 2)
672s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
672s  proflik (RayleighDistribution.fit (x), 3)
672s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
672s  proflik (RayleighDistribution.fit (x), [1, 2])
672s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
672s  proflik (RayleighDistribution.fit (x), {1})
672s ***** error <proflik: SETPARAM must be a numeric vector.> ...
672s  proflik (RayleighDistribution.fit (x), 1, ones (2))
672s ***** error <proflik: missing VALUE for 'Display' argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "Display")
672s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "Display", 1)
672s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "Display", {1})
672s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "Display", {"on"})
672s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "Display", ["on"; "on"])
672s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "Display", "onnn")
672s ***** error <proflik: invalid NAME for optional arguments.> ...
672s  proflik (RayleighDistribution.fit (x), 1, "NAME", "on")
672s ***** error <proflik: invalid optional argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, {"NAME"}, "on")
672s ***** error <proflik: invalid optional argument.> ...
672s  proflik (RayleighDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
672s ***** error <truncate: missing input argument.> ...
672s  truncate (RayleighDistribution)
672s ***** error <truncate: missing input argument.> ...
672s  truncate (RayleighDistribution, 2)
672s ***** error <truncate: invalid lower upper limits.> ...
672s  truncate (RayleighDistribution, 4, 2)
672s ***** shared pd
672s  pd = RayleighDistribution(1);
672s  pd(2) = RayleighDistribution(3);
672s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
672s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
672s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
672s ***** error <mean: requires a scalar probability distribution.> mean (pd)
672s ***** error <median: requires a scalar probability distribution.> median (pd)
672s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
672s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
672s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
672s ***** error <plot: requires a scalar probability distribution.> plot (pd)
672s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
672s ***** error <random: requires a scalar probability distribution.> random (pd)
672s ***** error <std: requires a scalar probability distribution.> std (pd)
672s ***** error <truncate: requires a scalar probability distribution.> ...
672s  truncate (pd, 2, 4)
672s ***** error <var: requires a scalar probability distribution.> var (pd)
672s 90 tests, 90 passed, 0 known failure, 0 skipped
672s [inst/dist_obj/ExponentialDistribution.m]
672s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/ExponentialDistribution.m
672s ***** shared pd, t
672s  pd = ExponentialDistribution (1);
672s  t = truncate (pd, 2, 4);
672s ***** assert (cdf (pd, [0:5]), [0, 0.6321, 0.8647, 0.9502, 0.9817, 0.9933], 1e-4);
672s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7311, 1, 1], 1e-4);
672s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.7769, 0.8647, 0.9502, 0.9817], 1e-4);
672s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.7311, 1], 1e-4);
672s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.2231, 0.5108, 0.9163, 1.6094, Inf], 1e-4);
672s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1899, 2.4244, 2.7315, 3.1768, 4], 1e-4);
672s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.5108, 0.9163, 1.6094, Inf, NaN], 1e-4);
672s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4244, 2.7315, 3.1768, 4, NaN], 1e-4);
672s ***** assert (iqr (pd), 1.0986, 1e-4);
672s ***** assert (iqr (t), 0.8020, 1e-4);
672s ***** assert (mean (pd), 1);
672s ***** assert (mean (t), 2.6870, 1e-4);
672s ***** assert (median (pd), 0.6931, 1e-4);
672s ***** assert (median (t), 2.5662, 1e-4);
672s ***** assert (pdf (pd, [0:5]), [1, 0.3679, 0.1353, 0.0498, 0.0183, 0.0067], 1e-4);
672s ***** assert (pdf (t, [0:5]), [0, 0, 1.1565, 0.4255, 0.1565, 0], 1e-4);
672s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.3679, 0.1353, 0.0498, 0.0183, NaN], 1e-4);
672s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 1.1565, 0.4255, 0.1565, NaN], 1e-4);
672s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
672s ***** assert (any (random (t, 1000, 1) < 2), false);
672s ***** assert (any (random (t, 1000, 1) > 4), false);
672s ***** assert (std (pd), 1);
672s ***** assert (std (t), 0.5253, 1e-4);
672s ***** assert (var (pd), 1);
672s ***** assert (var (t), 0.2759, 1e-4);
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution(0)
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution(-1)
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution(Inf)
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution(i)
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution("a")
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution([1, 2])
672s ***** error <ExponentialDistribution: MU must be a positive real scalar.> ...
672s  ExponentialDistribution(NaN)
672s ***** error <cdf: invalid argument for upper tail.> ...
672s  cdf (ExponentialDistribution, 2, "uper")
672s ***** error <cdf: invalid argument for upper tail.> ...
672s  cdf (ExponentialDistribution, 2, 3)
672s ***** shared x
672s  x = exprnd (1, [100, 1]);
672s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha")
672s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", 0)
672s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", 1)
672s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", [0.5 2])
672s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", "")
672s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", {0.05})
672s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "parameter", "mu", ...
672s           "alpha", {0.05})
672s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "parameter", {"mu", "param"})
672s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", 0.01, ...
672s           "parameter", {"mu", "param"})
672s ***** error <paramci: unknown distribution parameter.> ...
672s  paramci (ExponentialDistribution.fit (x), "parameter", "param")
672s ***** error <paramci: unknown distribution parameter.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", 0.01, "parameter", "parm")
672s ***** error <paramci: invalid NAME for optional argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "NAME", "value")
672s ***** error <paramci: invalid NAME for optional argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", 0.01, "NAME", "value")
672s ***** error <paramci: invalid NAME for optional argument.> ...
672s  paramci (ExponentialDistribution.fit (x), "alpha", 0.01, ...
672s           "parameter", "mu", "NAME", "value")
672s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
672s  plot (ExponentialDistribution, "Parent")
672s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
672s  plot (ExponentialDistribution, "PlotType", 12)
672s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
672s  plot (ExponentialDistribution, "PlotType", {"pdf", "cdf"})
672s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
672s  plot (ExponentialDistribution, "PlotType", "pdfcdf")
672s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
672s  plot (ExponentialDistribution, "Discrete", "pdfcdf")
672s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
672s  plot (ExponentialDistribution, "Discrete", [1, 0])
672s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
672s  plot (ExponentialDistribution, "Discrete", {true})
672s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
672s  plot (ExponentialDistribution, "Parent", 12)
672s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
672s  plot (ExponentialDistribution, "Parent", "hax")
672s ***** error <plot: invalid NAME for optional argument.> ...
672s  plot (ExponentialDistribution, "invalidNAME", "pdf")
672s ***** error <plot: no fitted DATA to plot a probability plot.> ...
672s  plot (ExponentialDistribution, "PlotType", "probability")
672s ***** error <proflik: no fitted data available.> ...
672s  proflik (ExponentialDistribution, 2)
672s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
672s  proflik (ExponentialDistribution.fit (x), 3)
672s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
672s  proflik (ExponentialDistribution.fit (x), [1, 2])
672s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
672s  proflik (ExponentialDistribution.fit (x), {1})
672s ***** error <proflik: SETPARAM must be a numeric vector.> ...
672s  proflik (ExponentialDistribution.fit (x), 1, ones (2))
672s ***** error <proflik: missing VALUE for 'Display' argument.> ...
672s  proflik (ExponentialDistribution.fit (x), 1, "Display")
672s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
672s  proflik (ExponentialDistribution.fit (x), 1, "Display", 1)
673s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, "Display", {1})
673s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, "Display", {"on"})
673s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, "Display", ["on"; "on"])
673s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, "Display", "onnn")
673s ***** error <proflik: invalid NAME for optional arguments.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, "NAME", "on")
673s ***** error <proflik: invalid optional argument.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, {"NAME"}, "on")
673s ***** error <proflik: invalid optional argument.> ...
673s  proflik (ExponentialDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
673s ***** error <truncate: missing input argument.> ...
673s  truncate (ExponentialDistribution)
673s ***** error <truncate: missing input argument.> ...
673s  truncate (ExponentialDistribution, 2)
673s ***** error <truncate: invalid lower upper limits.> ...
673s  truncate (ExponentialDistribution, 4, 2)
673s ***** shared pd
673s  pd = ExponentialDistribution(1);
673s  pd(2) = ExponentialDistribution(3);
673s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
673s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
673s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
673s ***** error <mean: requires a scalar probability distribution.> mean (pd)
673s ***** error <median: requires a scalar probability distribution.> median (pd)
673s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
673s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
673s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
673s ***** error <plot: requires a scalar probability distribution.> plot (pd)
673s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
673s ***** error <random: requires a scalar probability distribution.> random (pd)
673s ***** error <std: requires a scalar probability distribution.> std (pd)
673s ***** error <truncate: requires a scalar probability distribution.> ...
673s  truncate (pd, 2, 4)
673s ***** error <var: requires a scalar probability distribution.> var (pd)
673s 90 tests, 90 passed, 0 known failure, 0 skipped
673s [inst/dist_obj/LognormalDistribution.m]
673s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/LognormalDistribution.m
673s ***** shared pd, t
673s  pd = LognormalDistribution;
673s  t = truncate (pd, 2, 4);
673s ***** assert (cdf (pd, [0:5]), [0, 0.5, 0.7559, 0.8640, 0.9172, 0.9462], 1e-4);
673s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.6705, 1, 1], 1e-4);
673s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.6574, 0.7559, 0.8640, 0.9172], 1e-4);
673s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.6705, 1], 1e-4);
673s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.4310, 0.7762, 1.2883, 2.3201, Inf], 1e-4);
673s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2256, 2.5015, 2.8517, 3.3199, 4], 1e-4);
673s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.7762, 1.2883, 2.3201, Inf, NaN], 1e-4);
673s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.5015, 2.8517, 3.3199, 4, NaN], 1e-4);
673s ***** assert (iqr (pd), 1.4536, 1e-4);
673s ***** assert (iqr (t), 0.8989, 1e-4);
673s ***** assert (mean (pd), 1.6487, 1e-4);
673s ***** assert (mean (t), 2.7692, 1e-4);
673s ***** assert (median (pd), 1, 1e-4);
673s ***** assert (median (t), 2.6653, 1e-4);
673s ***** assert (pdf (pd, [0:5]), [0, 0.3989, 0.1569, 0.0727, 0.0382, 0.0219], 1e-4);
673s ***** assert (pdf (t, [0:5]), [0, 0, 0.9727, 0.4509, 0.2366, 0], 1e-4);
673s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.3989, 0.1569, 0.0727, 0.0382, NaN], 1e-4);
673s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 0.9727, 0.4509, 0.2366, NaN], 1e-4);
673s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
673s ***** assert (any (random (t, 1000, 1) < 2), false);
673s ***** assert (any (random (t, 1000, 1) > 4), false);
673s ***** assert (std (pd), 2.1612, 1e-4);
673s ***** assert (std (t), 0.5540, 1e-4);
673s ***** assert (var (pd), 4.6708, 1e-4);
673s ***** assert (var (t), 0.3069, 1e-4);
673s ***** error <LognormalDistribution: MU must be a real scalar.> ...
673s  LognormalDistribution(Inf, 1)
673s ***** error <LognormalDistribution: MU must be a real scalar.> ...
673s  LognormalDistribution(i, 1)
673s ***** error <LognormalDistribution: MU must be a real scalar.> ...
673s  LognormalDistribution("a", 1)
673s ***** error <LognormalDistribution: MU must be a real scalar.> ...
673s  LognormalDistribution([1, 2], 1)
673s ***** error <LognormalDistribution: MU must be a real scalar.> ...
673s  LognormalDistribution(NaN, 1)
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, 0)
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, -1)
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, Inf)
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, i)
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, "a")
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, [1, 2])
673s ***** error <LognormalDistribution: SIGMA must be a positive real scalar.> ...
673s  LognormalDistribution(1, NaN)
673s ***** error <cdf: invalid argument for upper tail.> ...
673s  cdf (LognormalDistribution, 2, "uper")
673s ***** error <cdf: invalid argument for upper tail.> ...
673s  cdf (LognormalDistribution, 2, 3)
673s ***** shared x
673s  randn ("seed", 1);
673s  x = lognrnd (1, 1, [1, 100]);
673s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
673s  paramci (LognormalDistribution.fit (x), "alpha")
673s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
673s  paramci (LognormalDistribution.fit (x), "alpha", 0)
673s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
673s  paramci (LognormalDistribution.fit (x), "alpha", 1)
673s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
673s  paramci (LognormalDistribution.fit (x), "alpha", [0.5 2])
673s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
673s  paramci (LognormalDistribution.fit (x), "alpha", "")
673s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
673s  paramci (LognormalDistribution.fit (x), "alpha", {0.05})
673s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
673s  paramci (LognormalDistribution.fit (x), "parameter", "mu", "alpha", {0.05})
674s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
674s  paramci (LognormalDistribution.fit (x), "parameter", {"mu", "sigma", "parm"})
674s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
674s  paramci (LognormalDistribution.fit (x), "alpha", 0.01, ...
674s           "parameter", {"mu", "sigma", "param"})
674s ***** error <paramci: unknown distribution parameter.> ...
674s  paramci (LognormalDistribution.fit (x), "parameter", "param")
674s ***** error <paramci: unknown distribution parameter.> ...
674s  paramci (LognormalDistribution.fit (x), "alpha", 0.01, "parameter", "param")
674s ***** error <paramci: invalid NAME for optional argument.> ...
674s  paramci (LognormalDistribution.fit (x), "NAME", "value")
674s ***** error <paramci: invalid NAME for optional argument.> ...
674s  paramci (LognormalDistribution.fit (x), "alpha", 0.01, "NAME", "value")
674s ***** error <paramci: invalid NAME for optional argument.> ...
674s  paramci (LognormalDistribution.fit (x), "alpha", 0.01, "parameter", "mu", ...
674s           "NAME", "value")
674s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
674s  plot (LognormalDistribution, "Parent")
674s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
674s  plot (LognormalDistribution, "PlotType", 12)
674s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
674s  plot (LognormalDistribution, "PlotType", {"pdf", "cdf"})
674s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
674s  plot (LognormalDistribution, "PlotType", "pdfcdf")
674s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
674s  plot (LognormalDistribution, "Discrete", "pdfcdf")
674s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
674s  plot (LognormalDistribution, "Discrete", [1, 0])
674s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
674s  plot (LognormalDistribution, "Discrete", {true})
674s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
674s  plot (LognormalDistribution, "Parent", 12)
674s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
674s  plot (LognormalDistribution, "Parent", "hax")
674s ***** error <plot: invalid NAME for optional argument.> ...
674s  plot (LognormalDistribution, "invalidNAME", "pdf")
674s ***** error <plot: no fitted DATA to plot a probability plot.> ...
674s  plot (LognormalDistribution, "PlotType", "probability")
674s ***** error <proflik: no fitted data available.> ...
674s  proflik (LognormalDistribution, 2)
674s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
674s  proflik (LognormalDistribution.fit (x), 3)
674s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
674s  proflik (LognormalDistribution.fit (x), [1, 2])
674s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
674s  proflik (LognormalDistribution.fit (x), {1})
674s ***** error <proflik: SETPARAM must be a numeric vector.> ...
674s  proflik (LognormalDistribution.fit (x), 1, ones (2))
674s ***** error <proflik: missing VALUE for 'Display' argument.> ...
674s  proflik (LognormalDistribution.fit (x), 1, "Display")
674s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
674s  proflik (LognormalDistribution.fit (x), 1, "Display", 1)
674s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
674s  proflik (LognormalDistribution.fit (x), 1, "Display", {1})
674s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
674s  proflik (LognormalDistribution.fit (x), 1, "Display", {"on"})
674s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
674s  proflik (LognormalDistribution.fit (x), 1, "Display", ["on"; "on"])
675s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
675s  proflik (LognormalDistribution.fit (x), 1, "Display", "onnn")
675s ***** error <proflik: invalid NAME for optional arguments.> ...
675s  proflik (LognormalDistribution.fit (x), 1, "NAME", "on")
675s ***** error <proflik: invalid optional argument.> ...
675s  proflik (LognormalDistribution.fit (x), 1, {"NAME"}, "on")
675s ***** error <proflik: invalid optional argument.> ...
675s  proflik (LognormalDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
675s ***** error <truncate: missing input argument.> ...
675s  truncate (LognormalDistribution)
675s ***** error <truncate: missing input argument.> ...
675s  truncate (LognormalDistribution, 2)
675s ***** error <truncate: invalid lower upper limits.> ...
675s  truncate (LognormalDistribution, 4, 2)
675s ***** shared pd
675s  pd = LognormalDistribution(1, 1);
675s  pd(2) = LognormalDistribution(1, 3);
675s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
675s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
675s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
675s ***** error <mean: requires a scalar probability distribution.> mean (pd)
675s ***** error <median: requires a scalar probability distribution.> median (pd)
675s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
675s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
675s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
675s ***** error <plot: requires a scalar probability distribution.> plot (pd)
675s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
675s ***** error <random: requires a scalar probability distribution.> random (pd)
675s ***** error <std: requires a scalar probability distribution.> std (pd)
675s ***** error <truncate: requires a scalar probability distribution.> ...
675s  truncate (pd, 2, 4)
675s ***** error <var: requires a scalar probability distribution.> var (pd)
675s 95 tests, 95 passed, 0 known failure, 0 skipped
675s [inst/dist_obj/BetaDistribution.m]
675s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/BetaDistribution.m
675s ***** demo
675s  ## Generate a data set of 5000 random samples from a Beta distribution with
675s  ## parameters a = 2 and b = 4.  Fit a Beta distribution to this data and plot
675s  ## a PDF of the fitted distribution superimposed on a histogram of the data
675s 
675s  pd = makedist ("Beta", "a", 2, "b", 4)
675s  randg ("seed", 21);
675s  data = random (pd, 5000, 1);
675s  pd = fitdist (data, "Beta")
675s  plot (pd)
675s  title (sprintf ("Fitted Beta distribution with a = %0.2f and b = %0.2f", ...
675s                  pd.a, pd.b))
675s ***** demo
675s  ## Plot the PDF of a Beta distribution, with parameters a = 2 and b = 4,
675s  ## truncated at [0.1, 0.8] intervals.  Generate 10000 random samples from
675s  ## this truncated distribution and superimpose a histogram with 100 bins
675s  ## scaled accordingly
675s 
675s  pd = makedist ("Beta", "a", 2, "b", 4)
675s  t = truncate (pd, 0.1, 0.8)
675s  randg ("seed", 21);
675s  data = random (t, 10000, 1);
675s  plot (t)
675s  title ("Beta distribution (a = 2, b = 4) truncated at [0.1, 0.8]")
675s  hold on
675s  hist (data, 100, 140)
675s  hold off
675s ***** demo
675s  ## Generate a data set of 100 random samples from a Beta distribution with
675s  ## parameters a = 2 and b = 4.  Fit a Beta distribution to this data and plot
675s  ## its CDF superimposed over an empirical CDF of the data
675s 
675s  pd = makedist ("Beta", "a", 2, "b", 4)
675s  randg ("seed", 21);
675s  data = random (pd, 100, 1);
675s  pd = fitdist (data, "Beta")
675s  plot (pd, "plottype", "cdf")
675s  title (sprintf ("Fitted Beta distribution with a = %0.2f and b = %0.2f", ...
675s                  pd.a, pd.b))
675s  legend ({"empirical CDF", "fitted CDF"}, "location", "east")
675s ***** demo
675s  ## Generate a data set of 200 random samples from a Beta distribution with
675s  ## parameters a = 2 and b = 4.  Display a probability plot for the Beta
675s  ## distribution fit to the data.
675s 
675s  pd = makedist ("Beta", "a", 2, "b", 4)
675s  randg ("seed", 21);
675s  data = random (pd, 200, 1);
675s  pd = fitdist (data, "Beta")
675s  plot (pd, "plottype", "probability")
675s  title (sprintf ("Probability plot of a fitted Beta distribution with a = %0.2f and b = %0.2f", ...
675s                  pd.a, pd.b))
675s  legend ({"empirical CDF", "fitted CDF"}, "location", "southeast")
675s ***** shared pd, t
675s  pd = BetaDistribution;
675s  t = truncate (pd, 0.2, 0.8);
675s ***** assert (cdf (pd, [0:0.2:1]), [0, 0.2, 0.4, 0.6, 0.8, 1], 1e-4);
675s ***** assert (cdf (t, [0:0.2:1]), [0, 0, 0.3333, 0.6667, 1, 1], 1e-4);
675s ***** assert (cdf (pd, [-1, 1, NaN]), [0, 1, NaN], 1e-4);
675s ***** assert (cdf (t, [-1, 1, NaN]), [0, 1, NaN], 1e-4);
675s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.2, 0.4, 0.6, 0.8, 1], 1e-4);
675s ***** assert (icdf (t, [0:0.2:1]), [0.2, 0.32, 0.44, 0.56, 0.68, 0.8], 1e-4);
675s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.4, 0.6, 0.8, 1, NaN], 1e-4);
675s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 0.44, 0.56, 0.68, 0.8, NaN], 1e-4);
675s ***** assert (iqr (pd), 0.5, 1e-4);
675s ***** assert (iqr (t), 0.3, 1e-4);
675s ***** assert (mean (pd), 0.5);
675s ***** assert (mean (t), 0.5, 1e-6);
675s ***** assert (median (pd), 0.5);
675s ***** assert (median (t), 0.5, 1e-6);
675s ***** assert (pdf (pd, [0:0.2:1]), [1, 1, 1, 1, 1, 1], 1e-4);
675s ***** assert (pdf (t, [0:0.2:1]), [0, 1.6667, 1.6667, 1.6667, 1.6667, 0], 1e-4);
675s ***** assert (pdf (pd, [-1, 1, NaN]), [0, 1, NaN], 1e-4);
675s ***** assert (pdf (t, [-1, 1, NaN]), [0, 0, NaN], 1e-4);
675s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
675s ***** assert (any (random (t, 1000, 1) < 0.2), false);
675s ***** assert (any (random (t, 1000, 1) > 0.8), false);
675s ***** assert (std (pd), 0.2887, 1e-4);
675s ***** assert (std (t), 0.1732, 1e-4);
675s ***** assert (var (pd), 0.0833, 1e-4);
675s ***** assert (var (t), 0.0300, 1e-4);
676s ***** error <BetaDistribution: A must be a positive real scalar.> ...
676s  BetaDistribution(0, 1)
676s ***** error <BetaDistribution: A must be a positive real scalar.> ...
676s  BetaDistribution(Inf, 1)
676s ***** error <BetaDistribution: A must be a positive real scalar.> ...
676s  BetaDistribution(i, 1)
676s ***** error <BetaDistribution: A must be a positive real scalar.> ...
676s  BetaDistribution("a", 1)
676s ***** error <BetaDistribution: A must be a positive real scalar.> ...
676s  BetaDistribution([1, 2], 1)
676s ***** error <BetaDistribution: A must be a positive real scalar.> ...
676s  BetaDistribution(NaN, 1)
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, 0)
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, -1)
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, Inf)
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, i)
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, "a")
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, [1, 2])
676s ***** error <BetaDistribution: B must be a positive real scalar.> ...
676s  BetaDistribution(1, NaN)
676s ***** error <cdf: invalid argument for upper tail.> ...
676s  cdf (BetaDistribution, 2, "uper")
676s ***** error <cdf: invalid argument for upper tail.> ...
676s  cdf (BetaDistribution, 2, 3)
676s ***** shared x
676s  randg ("seed", 1);
676s  x = betarnd (1, 1, [100, 1]);
676s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
676s  paramci (BetaDistribution.fit (x), "alpha")
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", 0)
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", 1)
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", [0.5 2])
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", "")
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", {0.05})
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (BetaDistribution.fit (x), "parameter", "a", "alpha", {0.05})
676s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
676s  paramci (BetaDistribution.fit (x), "parameter", {"a", "b", "param"})
676s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", 0.01, ...
676s           "parameter", {"a", "b", "param"})
676s ***** error <paramci: unknown distribution parameter.> ...
676s  paramci (BetaDistribution.fit (x), "parameter", "param")
676s ***** error <paramci: unknown distribution parameter.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", 0.01, "parameter", "param")
676s ***** error <paramci: invalid NAME for optional argument.> ...
676s  paramci (BetaDistribution.fit (x), "NAME", "value")
676s ***** error <paramci: invalid NAME for optional argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", 0.01, "NAME", "value")
676s ***** error <paramci: invalid NAME for optional argument.> ...
676s  paramci (BetaDistribution.fit (x), "alpha", 0.01, "parameter", "a", ...
676s           "NAME", "value")
676s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
676s  plot (BetaDistribution, "Parent")
676s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
676s  plot (BetaDistribution, "PlotType", 12)
676s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
676s  plot (BetaDistribution, "PlotType", {"pdf", "cdf"})
676s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
676s  plot (BetaDistribution, "PlotType", "pdfcdf")
676s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
676s  plot (BetaDistribution, "Discrete", "pdfcdf")
676s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
676s  plot (BetaDistribution, "Discrete", [1, 0])
676s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
676s  plot (BetaDistribution, "Discrete", {true})
676s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
676s  plot (BetaDistribution, "Parent", 12)
676s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
676s  plot (BetaDistribution, "Parent", "hax")
676s ***** error <plot: invalid NAME for optional argument.> ...
676s  plot (BetaDistribution, "invalidNAME", "pdf")
676s ***** error <plot: no fitted DATA to plot a probability plot.> ...
676s  plot (BetaDistribution, "PlotType", "probability")
676s ***** error <proflik: no fitted data available.> ...
676s  proflik (BetaDistribution, 2)
676s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
676s  proflik (BetaDistribution.fit (x), 3)
676s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
676s  proflik (BetaDistribution.fit (x), [1, 2])
676s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
676s  proflik (BetaDistribution.fit (x), {1})
676s ***** error <proflik: SETPARAM must be a numeric vector.> ...
676s  proflik (BetaDistribution.fit (x), 1, ones (2))
676s ***** error <proflik: missing VALUE for 'Display' argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, "Display")
676s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, "Display", 1)
676s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, "Display", {1})
676s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, "Display", {"on"})
676s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, "Display", ["on"; "on"])
676s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, "Display", "onnn")
676s ***** error <proflik: invalid NAME for optional arguments.> ...
676s  proflik (BetaDistribution.fit (x), 1, "NAME", "on")
676s ***** error <proflik: invalid optional argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, {"NAME"}, "on")
676s ***** error <proflik: invalid optional argument.> ...
676s  proflik (BetaDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
676s ***** error <truncate: missing input argument.> ...
676s  truncate (BetaDistribution)
676s ***** error <truncate: missing input argument.> ...
676s  truncate (BetaDistribution, 2)
676s ***** error <truncate: invalid lower upper limits.> ...
676s  truncate (BetaDistribution, 4, 2)
676s ***** shared pd
676s  pd = BetaDistribution(1, 1);
676s  pd(2) = BetaDistribution(1, 3);
676s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
676s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
676s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
676s ***** error <mean: requires a scalar probability distribution.> mean (pd)
676s ***** error <median: requires a scalar probability distribution.> median (pd)
676s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
676s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
676s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
676s ***** error <plot: requires a scalar probability distribution.> plot (pd)
676s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
676s ***** error <random: requires a scalar probability distribution.> random (pd)
676s ***** error <std: requires a scalar probability distribution.> std (pd)
676s ***** error <truncate: requires a scalar probability distribution.> ...
676s  truncate (pd, 2, 4)
676s ***** error <var: requires a scalar probability distribution.> var (pd)
676s 96 tests, 96 passed, 0 known failure, 0 skipped
676s [inst/dist_obj/GammaDistribution.m]
676s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/GammaDistribution.m
676s ***** shared pd, t
676s  pd = GammaDistribution (1, 1);
676s  t = truncate (pd, 2, 4);
676s ***** assert (cdf (pd, [0:5]), [0, 0.6321, 0.8647, 0.9502, 0.9817, 0.9933], 1e-4);
676s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7311, 1, 1], 1e-4);
676s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.7769, 0.8647, 0.9502, 0.9817], 1e-4);
676s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.7311, 1], 1e-4);
676s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.2231, 0.5108, 0.9163, 1.6094, Inf], 1e-4);
676s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1899, 2.4244, 2.7315, 3.1768, 4], 1e-4);
676s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.5108, 0.9163, 1.6094, Inf, NaN], 1e-4);
676s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4244, 2.7315, 3.1768, 4, NaN], 1e-4);
676s ***** assert (iqr (pd), 1.0986, 1e-4);
676s ***** assert (iqr (t), 0.8020, 1e-4);
676s ***** assert (mean (pd), 1);
676s ***** assert (mean (t), 2.6870, 1e-4);
676s ***** assert (median (pd), 0.6931, 1e-4);
676s ***** assert (median (t), 2.5662, 1e-4);
676s ***** assert (pdf (pd, [0:5]), [1, 0.3679, 0.1353, 0.0498, 0.0183, 0.0067], 1e-4);
676s ***** assert (pdf (t, [0:5]), [0, 0, 1.1565, 0.4255, 0.1565, 0], 1e-4);
676s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.3679, 0.1353, 0.0498, 0.0183, NaN], 1e-4);
676s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 1.1565, 0.4255, 0.1565, NaN], 1e-4);
676s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
676s ***** assert (any (random (t, 1000, 1) < 2), false);
676s ***** assert (any (random (t, 1000, 1) > 4), false);
676s ***** assert (std (pd), 1);
676s ***** assert (std (t), 0.5253, 1e-4);
676s ***** assert (var (pd), 1);
676s ***** assert (var (t), 0.2759, 1e-4);
676s ***** error <GammaDistribution: A must be a positive real scalar.> ...
676s  GammaDistribution(0, 1)
676s ***** error <GammaDistribution: A must be a positive real scalar.> ...
676s  GammaDistribution(Inf, 1)
676s ***** error <GammaDistribution: A must be a positive real scalar.> ...
676s  GammaDistribution(i, 1)
676s ***** error <GammaDistribution: A must be a positive real scalar.> ...
676s  GammaDistribution("a", 1)
676s ***** error <GammaDistribution: A must be a positive real scalar.> ...
676s  GammaDistribution([1, 2], 1)
676s ***** error <GammaDistribution: A must be a positive real scalar.> ...
676s  GammaDistribution(NaN, 1)
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, 0)
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, -1)
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, Inf)
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, i)
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, "a")
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, [1, 2])
676s ***** error <GammaDistribution: B must be a positive real scalar.> ...
676s  GammaDistribution(1, NaN)
676s ***** error <cdf: invalid argument for upper tail.> ...
676s  cdf (GammaDistribution, 2, "uper")
676s ***** error <cdf: invalid argument for upper tail.> ...
676s  cdf (GammaDistribution, 2, 3)
676s ***** shared x
676s  x = gamrnd (1, 1, [100, 1]);
676s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
676s  paramci (GammaDistribution.fit (x), "alpha")
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (GammaDistribution.fit (x), "alpha", 0)
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (GammaDistribution.fit (x), "alpha", 1)
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (GammaDistribution.fit (x), "alpha", [0.5 2])
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (GammaDistribution.fit (x), "alpha", "")
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (GammaDistribution.fit (x), "alpha", {0.05})
676s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
676s  paramci (GammaDistribution.fit (x), "parameter", "a", "alpha", {0.05})
676s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
676s  paramci (GammaDistribution.fit (x), "parameter", {"a", "b", "param"})
676s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
676s  paramci (GammaDistribution.fit (x), "alpha", 0.01, ...
676s           "parameter", {"a", "b", "param"})
677s ***** error <paramci: unknown distribution parameter.> ...
677s  paramci (GammaDistribution.fit (x), "parameter", "param")
677s ***** error <paramci: unknown distribution parameter.> ...
677s  paramci (GammaDistribution.fit (x), "alpha", 0.01, "parameter", "param")
677s ***** error <paramci: invalid NAME for optional argument.> ...
677s  paramci (GammaDistribution.fit (x), "NAME", "value")
677s ***** error <paramci: invalid NAME for optional argument.> ...
677s  paramci (GammaDistribution.fit (x), "alpha", 0.01, "NAME", "value")
677s ***** error <paramci: invalid NAME for optional argument.> ...
677s  paramci (GammaDistribution.fit (x), "alpha", 0.01, "parameter", "a", ...
677s           "NAME", "value")
677s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
677s  plot (GammaDistribution, "Parent")
677s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
677s  plot (GammaDistribution, "PlotType", 12)
677s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
677s  plot (GammaDistribution, "PlotType", {"pdf", "cdf"})
677s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
677s  plot (GammaDistribution, "PlotType", "pdfcdf")
677s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
677s  plot (GammaDistribution, "Discrete", "pdfcdf")
677s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
677s  plot (GammaDistribution, "Discrete", [1, 0])
677s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
677s  plot (GammaDistribution, "Discrete", {true})
677s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
677s  plot (GammaDistribution, "Parent", 12)
677s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
677s  plot (GammaDistribution, "Parent", "hax")
677s ***** error <plot: invalid NAME for optional argument.> ...
677s  plot (GammaDistribution, "invalidNAME", "pdf")
677s ***** error <plot: no fitted DATA to plot a probability plot.> ...
677s  plot (GammaDistribution, "PlotType", "probability")
677s ***** error <proflik: no fitted data available.> ...
677s  proflik (GammaDistribution, 2)
677s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
677s  proflik (GammaDistribution.fit (x), 3)
677s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
677s  proflik (GammaDistribution.fit (x), [1, 2])
677s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
677s  proflik (GammaDistribution.fit (x), {1})
677s ***** error <proflik: SETPARAM must be a numeric vector.> ...
677s  proflik (GammaDistribution.fit (x), 1, ones (2))
677s ***** error <proflik: missing VALUE for 'Display' argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, "Display")
677s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, "Display", 1)
677s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, "Display", {1})
677s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, "Display", {"on"})
677s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, "Display", ["on"; "on"])
677s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, "Display", "onnn")
677s ***** error <proflik: invalid NAME for optional arguments.> ...
677s  proflik (GammaDistribution.fit (x), 1, "NAME", "on")
677s ***** error <proflik: invalid optional argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, {"NAME"}, "on")
677s ***** error <proflik: invalid optional argument.> ...
677s  proflik (GammaDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
677s ***** error <truncate: missing input argument.> ...
677s  truncate (GammaDistribution)
677s ***** error <truncate: missing input argument.> ...
677s  truncate (GammaDistribution, 2)
677s ***** error <truncate: invalid lower upper limits.> ...
677s  truncate (GammaDistribution, 4, 2)
677s ***** shared pd
677s  pd = GammaDistribution(1, 1);
677s  pd(2) = GammaDistribution(1, 3);
677s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
677s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
677s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
677s ***** error <mean: requires a scalar probability distribution.> mean (pd)
677s ***** error <median: requires a scalar probability distribution.> median (pd)
677s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
677s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
677s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
677s ***** error <plot: requires a scalar probability distribution.> plot (pd)
677s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
677s ***** error <random: requires a scalar probability distribution.> random (pd)
677s ***** error <std: requires a scalar probability distribution.> std (pd)
677s ***** error <truncate: requires a scalar probability distribution.> ...
677s  truncate (pd, 2, 4)
677s ***** error <var: requires a scalar probability distribution.> var (pd)
677s 96 tests, 96 passed, 0 known failure, 0 skipped
677s [inst/dist_obj/BurrDistribution.m]
677s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/BurrDistribution.m
677s ***** demo
677s  ## Generate a data set of 5000 random samples from a Burr type XII
677s  ## distribution with parameters alpha = 1, c = 2, and k = 1.  Fit a Burr type
677s  ## XII distribution to this data and plot a PDF of the fitted distribution
677s  ## superimposed on a histogram of the data
677s 
677s  pd = makedist ("Burr", "alpha", 1, "c", 2, "k", 1)
677s  rand ("seed", 21);
677s  data = random (pd, 5000, 1);
677s  pd = fitdist (data, "Burr")
677s  plot (pd)
677s  msg = strcat (["Fitted Burr type XII distribution with"], ...
677s                 [" alpha = %0.2f, c =  %0.2f, and k = %0.2f"]);
677s  title (sprintf (msg, pd.alpha, pd.c, pd.k))
677s ***** demo
677s  ## Plot the PDF of a Burr type XII distribution, with parameters alpha = 1,
677s  ## c = 2, and k = 1, truncated at [0, 2] intervals. Generate 10000 random
677s  ## samples from this truncated distribution and superimpose a histogram with
677s  ## 100 bins scaled accordingly
677s 
677s  pd = makedist ("Burr", "alpha", 1, "c", 2, "k", 1)
677s  t = truncate (pd, 0.5, 2.5)
677s  rand ("seed", 21);
677s  data = random (t, 10000, 1);
677s  plot (t)
677s  title ("Burr type XII distribution (alpha = 1, c = 2, k = 1) truncated at [0.5, 2.5]")
677s  hold on
677s  hist (data, 100, 50)
677s  hold off
677s ***** demo
677s  ## Generate a data set of 100 random samples from a Burr type XII
677s  ## distribution with parameters alpha = 1, c = 2, and k = 1.  Fit a Burr type
677s  ## XII  distribution to this data and plot its CDF superimposed over an
677s  ## empirical CDF of the data
677s 
677s  pd = makedist ("Burr", "alpha", 1, "c", 2, "k", 1)
677s  rand ("seed", 21);
677s  data = random (pd, 100, 1);
677s  pd = fitdist (data, "Burr")
677s  plot (pd, "plottype", "cdf")
677s  msg = strcat (["Fitted Burr type XII distribution with"], ...
677s                 [" alpha = %0.2f, c =  %0.2f, and k = %0.2f"]);
677s  title (sprintf (msg, pd.alpha, pd.c, pd.k))
677s  legend ({"empirical CDF", "fitted CDF"}, "location", "east")
677s ***** shared pd, t
677s  pd = BurrDistribution;
677s  t = truncate (pd, 2, 4);
677s ***** assert (cdf (pd, [0:5]), [0, 0.5, 0.6667, 0.75, 0.8, 0.8333], 1e-4);
677s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.625, 1, 1], 1e-4);
677s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.6, 0.6667, 0.75, 0.8], 1e-4);
677s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.625, 1], 1e-4);
677s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.25, 0.6667, 1.5, 4, Inf], 1e-4);
677s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2609, 2.5714, 2.9474, 3.4118, 4], 1e-4);
677s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.6667, 1.5, 4, Inf, NaN], 1e-4);
677s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.5714, 2.9474, 3.4118, 4, NaN], 1e-4);
677s ***** assert (iqr (pd), 2.6667, 1e-4);
677s ***** assert (iqr (t), 0.9524, 1e-4);
677s ***** assert (mean (pd), Inf);
677s ***** assert (mean (t), 2.8312, 1e-4);
677s ***** assert (median (pd), 1, 1e-4);
677s ***** assert (median (t), 2.75, 1e-4);
677s ***** assert (pdf (pd, [0:5]), [1, 0.25, 0.1111, 0.0625, 0.04, 0.0278], 1e-4);
677s ***** assert (pdf (t, [0:5]), [0, 0, 0.8333, 0.4687, 0.3, 0], 1e-4);
677s ***** assert (pdf (pd, [-1, 1:4, NaN]), [0, 0.25, 0.1111, 0.0625, 0.04, NaN], 1e-4);
677s ***** assert (pdf (t, [-1, 1:4, NaN]), [0, 0, 0.8333, 0.4687, 0.3, NaN], 1e-4);
677s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
677s ***** assert (any (random (t, 1000, 1) < 2), false);
677s ***** assert (any (random (t, 1000, 1) > 4), false);
677s ***** assert (std (pd), Inf);
677s ***** assert (std (t), 0.5674, 1e-4);
677s ***** assert (var (pd), Inf);
677s ***** assert (var (t), 0.3220, 1e-4);
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution(0, 1, 1)
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution(-1, 1, 1)
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution(Inf, 1, 1)
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution(i, 1, 1)
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution("a", 1, 1)
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution([1, 2], 1, 1)
677s ***** error <BurrDistribution: ALPHA must be a positive real scalar.> ...
677s  BurrDistribution(NaN, 1, 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, 0, 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, -1, 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, Inf, 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, i, 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, "a", 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, [1, 2], 1)
677s ***** error <BurrDistribution: C must be a positive real scalar.> ...
677s  BurrDistribution(1, NaN, 1)
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, 0)
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, -1)
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, Inf)
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, i)
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, "a")
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, [1, 2])
677s ***** error <BurrDistribution: K must be a positive real scalar.> ...
677s  BurrDistribution(1, 1, NaN)
677s ***** error <cdf: invalid argument for upper tail.> ...
677s  cdf (BurrDistribution, 2, "uper")
677s ***** error <cdf: invalid argument for upper tail.> ...
677s  cdf (BurrDistribution, 2, 3)
677s ***** shared x
677s  rand ("seed", 4);
677s  x = burrrnd (1, 1, 1, [1, 100]);
677s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
677s  paramci (BurrDistribution.fit (x), "alpha")
677s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
677s  paramci (BurrDistribution.fit (x), "alpha", 0)
677s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
677s  paramci (BurrDistribution.fit (x), "alpha", 1)
677s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
677s  paramci (BurrDistribution.fit (x), "alpha", [0.5 2])
677s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
677s  paramci (BurrDistribution.fit (x), "alpha", "")
678s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
678s  paramci (BurrDistribution.fit (x), "alpha", {0.05})
678s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
678s  paramci (BurrDistribution.fit (x), "parameter", "c", "alpha", {0.05})
678s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
678s  paramci (BurrDistribution.fit (x), "parameter", {"alpha", "c", "k", "param"})
678s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
678s  paramci (BurrDistribution.fit (x), "alpha", 0.01, ...
678s           "parameter", {"alpha", "c", "k", "param"})
678s ***** error <paramci: unknown distribution parameter.> ...
678s  paramci (BurrDistribution.fit (x), "parameter", "param")
678s ***** error <paramci: unknown distribution parameter.> ...
678s  paramci (BurrDistribution.fit (x), "alpha", 0.01, "parameter", "param")
678s ***** error <paramci: invalid NAME for optional argument.> ...
678s  paramci (BurrDistribution.fit (x), "NAME", "value")
678s ***** error <paramci: invalid NAME for optional argument.> ...
678s  paramci (BurrDistribution.fit (x), "alpha", 0.01, "NAME", "value")
678s ***** error <paramci: invalid NAME for optional argument.> ...
678s  paramci (BurrDistribution.fit (x), "alpha", 0.01, "parameter", "c", ...
678s           "NAME", "value")
678s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
678s  plot (BurrDistribution, "Parent")
678s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
678s  plot (BurrDistribution, "PlotType", 12)
678s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
678s  plot (BurrDistribution, "PlotType", {"pdf", "cdf"})
678s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
678s  plot (BurrDistribution, "PlotType", "pdfcdf")
678s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
678s  plot (BurrDistribution, "Discrete", "pdfcdf")
678s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
678s  plot (BurrDistribution, "Discrete", [1, 0])
678s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
678s  plot (BurrDistribution, "Discrete", {true})
678s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
678s  plot (BurrDistribution, "Parent", 12)
678s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
678s  plot (BurrDistribution, "Parent", "hax")
678s ***** error <plot: invalid NAME for optional argument.> ...
678s  plot (BurrDistribution, "invalidNAME", "pdf")
678s ***** error <plot: no fitted DATA to plot a probability plot.> ...
678s  plot (BurrDistribution, "PlotType", "probability")
678s ***** error <proflik: no fitted data available.> ...
678s  proflik (BurrDistribution, 2)
678s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
678s  proflik (BurrDistribution.fit (x), 4)
678s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
678s  proflik (BurrDistribution.fit (x), [1, 2])
678s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
678s  proflik (BurrDistribution.fit (x), {1})
679s ***** error <proflik: SETPARAM must be a numeric vector.> ...
679s  proflik (BurrDistribution.fit (x), 1, ones (2))
679s ***** error <proflik: missing VALUE for 'Display' argument.> ...
679s  proflik (BurrDistribution.fit (x), 1, "Display")
680s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, "Display", 1)
680s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, "Display", {1})
680s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, "Display", {"on"})
680s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, "Display", ["on"; "on"])
680s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, "Display", "onnn")
680s ***** error <proflik: invalid NAME for optional arguments.> ...
680s  proflik (BurrDistribution.fit (x), 1, "NAME", "on")
680s ***** error <proflik: invalid optional argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, {"NAME"}, "on")
680s ***** error <proflik: invalid optional argument.> ...
680s  proflik (BurrDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
680s ***** error <truncate: missing input argument.> ...
680s  truncate (BurrDistribution)
680s ***** error <truncate: missing input argument.> ...
680s  truncate (BurrDistribution, 2)
680s ***** error <truncate: invalid lower upper limits.> ...
680s  truncate (BurrDistribution, 4, 2)
680s ***** shared pd
680s  pd = BurrDistribution(1, 1, 1);
680s  pd(2) = BurrDistribution(1, 3, 1);
680s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
680s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
680s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
680s ***** error <mean: requires a scalar probability distribution.> mean (pd)
680s ***** error <median: requires a scalar probability distribution.> median (pd)
680s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
680s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
680s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
680s ***** error <plot: requires a scalar probability distribution.> plot (pd)
680s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
680s ***** error <random: requires a scalar probability distribution.> random (pd)
680s ***** error <std: requires a scalar probability distribution.> std (pd)
680s ***** error <truncate: requires a scalar probability distribution.> ...
680s  truncate (pd, 2, 4)
680s ***** error <var: requires a scalar probability distribution.> var (pd)
680s 104 tests, 104 passed, 0 known failure, 0 skipped
680s [inst/dist_obj/LoguniformDistribution.m]
680s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/LoguniformDistribution.m
680s ***** shared pd, t
680s  pd = LoguniformDistribution (1, 4);
680s  t = truncate (pd, 2, 4);
680s ***** assert (cdf (pd, [0, 1, 2, 3, 4, 5]), [0, 0, 0.5, 0.7925, 1, 1], 1e-4);
680s ***** assert (cdf (t, [0, 1, 2, 3, 4, 5]), [0, 0, 0, 0.5850, 1, 1], 1e-4);
680s ***** assert (cdf (pd, [1.5, 2, 3, 4]), [0.2925, 0.5, 0.7925, 1], 1e-4);
680s ***** assert (cdf (t, [1.5, 2, 3, 4]), [0, 0, 0.5850, 1], 1e-4);
680s ***** assert (icdf (pd, [0:0.2:1]), [1, 1.3195, 1.7411, 2.2974, 3.0314, 4], 1e-4);
680s ***** assert (icdf (t, [0:0.2:1]), [2, 2.2974, 2.6390, 3.0314, 3.4822, 4], 1e-4);
680s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 1.7411, 2.2974, 3.0314, 4, NaN], 1e-4);
680s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.6390, 3.0314, 3.4822, 4, NaN], 1e-4);
680s ***** assert (iqr (pd), 1.4142, 1e-4);
680s ***** assert (iqr (t), 0.9852, 1e-4);
680s ***** assert (mean (pd), 2.1640, 1e-4);
680s ***** assert (mean (t), 2.8854, 1e-4);
680s ***** assert (median (pd), 2);
680s ***** assert (median (t), 2.8284, 1e-4);
680s ***** assert (pdf (pd, [0, 1, 2, 3, 4, 5]), [0, 0.7213, 0.3607, 0.2404, 0.1803, 0], 1e-4);
680s ***** assert (pdf (t, [0, 1, 2, 3, 4, 5]), [0, 0, 0.7213, 0.4809, 0.3607, 0], 1e-4);
680s ***** assert (pdf (pd, [-1, 1, 2, 3, 4, NaN]), [0, 0.7213, 0.3607, 0.2404, 0.1803, NaN], 1e-4);
680s ***** assert (pdf (t, [-1, 1, 2, 3, 4, NaN]), [0, 0, 0.7213, 0.4809, 0.3607, NaN], 1e-4);
680s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
680s ***** assert (any (random (pd, 1000, 1) < 1), false);
680s ***** assert (any (random (pd, 1000, 1) > 4), false);
680s ***** assert (any (random (t, 1000, 1) < 2), false);
680s ***** assert (any (random (t, 1000, 1) > 4), false);
680s ***** assert (std (pd), 0.8527, 1e-4);
680s ***** assert (std (t), 0.5751, 1e-4);
680s ***** assert (var (pd), 0.7270, 1e-4);
680s ***** assert (var (t), 0.3307, 1e-4);
680s ***** error <LoguniformDistribution: LOWER must be a positive real scalar.> ...
680s  LoguniformDistribution (i, 1)
680s ***** error <LoguniformDistribution: LOWER must be a positive real scalar.> ...
680s  LoguniformDistribution (Inf, 1)
680s ***** error <LoguniformDistribution: LOWER must be a positive real scalar.> ...
680s  LoguniformDistribution ([1, 2], 1)
680s ***** error <LoguniformDistribution: LOWER must be a positive real scalar.> ...
680s  LoguniformDistribution ("a", 1)
680s ***** error <LoguniformDistribution: LOWER must be a positive real scalar.> ...
680s  LoguniformDistribution (NaN, 1)
680s ***** error <LoguniformDistribution: UPPER must be a real scalar.> ...
680s  LoguniformDistribution (1, i)
680s ***** error <LoguniformDistribution: UPPER must be a real scalar.> ...
680s  LoguniformDistribution (1, Inf)
680s ***** error <LoguniformDistribution: UPPER must be a real scalar.> ...
680s  LoguniformDistribution (1, [1, 2])
680s ***** error <LoguniformDistribution: UPPER must be a real scalar.> ...
680s  LoguniformDistribution (1, "a")
680s ***** error <LoguniformDistribution: UPPER must be a real scalar.> ...
680s  LoguniformDistribution (1, NaN)
680s ***** error <LoguniformDistribution: LOWER must be less than UPPER.> ...
680s  LoguniformDistribution (2, 1)
680s ***** error <cdf: invalid argument for upper tail.> ...
680s  cdf (LoguniformDistribution, 2, "uper")
680s ***** error <cdf: invalid argument for upper tail.> ...
680s  cdf (LoguniformDistribution, 2, 3)
680s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
680s  plot (LoguniformDistribution, "Parent")
680s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
680s  plot (LoguniformDistribution, "PlotType", 12)
680s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
680s  plot (LoguniformDistribution, "PlotType", {"pdf", "cdf"})
680s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
680s  plot (LoguniformDistribution, "PlotType", "pdfcdf")
680s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
680s  plot (LoguniformDistribution, "Discrete", "pdfcdf")
680s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
680s  plot (LoguniformDistribution, "Discrete", [1, 0])
680s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
680s  plot (LoguniformDistribution, "Discrete", {true})
680s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
680s  plot (LoguniformDistribution, "Parent", 12)
680s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
680s  plot (LoguniformDistribution, "Parent", "hax")
680s ***** error <plot: invalid NAME for optional argument.> ...
680s  plot (LoguniformDistribution, "invalidNAME", "pdf")
680s ***** error <plot: 'probability' PlotType is not supported for 'LoguniformDistribution'.> ...
680s  plot (LoguniformDistribution, "PlotType", "probability")
680s ***** error <truncate: missing input argument.> ...
680s  truncate (LoguniformDistribution)
680s ***** error <truncate: missing input argument.> ...
680s  truncate (LoguniformDistribution, 2)
680s ***** error <truncate: invalid lower upper limits.> ...
680s  truncate (LoguniformDistribution, 4, 2)
680s ***** shared pd
680s  pd = LoguniformDistribution(1, 4);
680s  pd(2) = LoguniformDistribution(2, 5);
680s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
680s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
680s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
680s ***** error <mean: requires a scalar probability distribution.> mean (pd)
680s ***** error <median: requires a scalar probability distribution.> median (pd)
680s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
680s ***** error <plot: requires a scalar probability distribution.> plot (pd)
680s ***** error <random: requires a scalar probability distribution.> random (pd)
680s ***** error <std: requires a scalar probability distribution.> std (pd)
680s ***** error <truncate: requires a scalar probability distribution.> ...
680s  truncate (pd, 2, 4)
680s ***** error <var: requires a scalar probability distribution.> var (pd)
680s 65 tests, 65 passed, 0 known failure, 0 skipped
680s [inst/dist_obj/RicianDistribution.m]
680s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/RicianDistribution.m
680s ***** shared pd, t
680s  pd = RicianDistribution;
680s  t = truncate (pd, 2, 4);
680s ***** assert (cdf (pd, [0:5]), [0, 0.2671, 0.7310, 0.9563, 0.9971, 0.9999], 1e-4);
680s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.8466, 1, 1], 1e-4);
680s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.5120, 0.7310, 0.9563, 0.9971, NaN], 1e-4);
680s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.8466, 1, NaN], 1e-4);
680s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.8501, 1.2736, 1.6863, 2.2011, Inf], 1e-4);
680s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1517, 2.3296, 2.5545, 2.8868, 4], 1e-4);
680s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 1.2736, 1.6863, 2.2011, Inf, NaN], 1e-4);
680s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.3296, 2.5545, 2.8868, 4, NaN], 1e-4);
680s ***** assert (iqr (pd), 1.0890, 1e-4);
680s ***** assert (iqr (t), 0.5928, 1e-4);
680s ***** assert (mean (pd), 1.5486, 1e-4);
680s ***** assert (mean (t), 2.5380, 1e-4);
680s ***** assert (median (pd), 1.4755, 1e-4);
680s ***** assert (median (t), 2.4341, 1e-4);
680s ***** assert (pdf (pd, [0:5]), [0, 0.4658, 0.3742, 0.0987, 0.0092, 0.0003], 1e-4);
680s ***** assert (pdf (t, [0:5]), [0, 0, 1.4063, 0.3707, 0.0346, 0], 1e-4);
680s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0.4864, NaN], 1e-4);
680s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
680s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
680s ***** assert (any (random (t, 1000, 1) < 2), false);
680s ***** assert (any (random (t, 1000, 1) > 4), false);
680s ***** assert (std (pd), 0.7758, 1e-4);
680s ***** assert (std (t), 0.4294, 1e-4);
680s ***** assert (var (pd), 0.6019, 1e-4);
680s ***** assert (var (t), 0.1844, 1e-4);
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution(-eps, 1)
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution(-1, 1)
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution(Inf, 1)
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution(i, 1)
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution("a", 1)
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution([1, 2], 1)
680s ***** error <RicianDistribution: NU must be a non-negative real scalar.> ...
680s  RicianDistribution(NaN, 1)
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, 0)
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, -1)
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, Inf)
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, i)
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, "a")
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, [1, 2])
680s ***** error <RicianDistribution: SIGMA must be a positive real scalar.> ...
680s  RicianDistribution(1, NaN)
680s ***** error <cdf: invalid argument for upper tail.> ...
680s  cdf (RicianDistribution, 2, "uper")
680s ***** error <cdf: invalid argument for upper tail.> ...
680s  cdf (RicianDistribution, 2, 3)
680s ***** shared x
680s  x = gevrnd (1, 1, 1, [1, 100]);
680s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
680s  paramci (RicianDistribution.fit (x), "alpha")
680s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
680s  paramci (RicianDistribution.fit (x), "alpha", 0)
680s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
680s  paramci (RicianDistribution.fit (x), "alpha", 1)
680s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
680s  paramci (RicianDistribution.fit (x), "alpha", [0.5 2])
680s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
680s  paramci (RicianDistribution.fit (x), "alpha", "")
681s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
681s  paramci (RicianDistribution.fit (x), "alpha", {0.05})
681s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
681s  paramci (RicianDistribution.fit (x), "parameter", "s", "alpha", {0.05})
681s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
681s  paramci (RicianDistribution.fit (x), "parameter", {"s", "sigma", "param"})
681s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
681s  paramci (RicianDistribution.fit (x), "alpha", 0.01, ...
681s           "parameter", {"s", "sigma", "param"})
681s ***** error <paramci: unknown distribution parameter.> ...
681s  paramci (RicianDistribution.fit (x), "parameter", "param")
681s ***** error <paramci: unknown distribution parameter.> ...
681s  paramci (RicianDistribution.fit (x), "alpha", 0.01, "parameter", "param")
681s ***** error <paramci: invalid NAME for optional argument.> ...
681s  paramci (RicianDistribution.fit (x), "NAME", "value")
681s ***** error <paramci: invalid NAME for optional argument.> ...
681s  paramci (RicianDistribution.fit (x), "alpha", 0.01, "NAME", "value")
681s ***** error <paramci: invalid NAME for optional argument.> ...
681s  paramci (RicianDistribution.fit (x), "alpha", 0.01, "parameter", "s", ...
681s           "NAME", "value")
681s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
681s  plot (RicianDistribution, "Parent")
681s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
681s  plot (RicianDistribution, "PlotType", 12)
681s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
681s  plot (RicianDistribution, "PlotType", {"pdf", "cdf"})
681s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
681s  plot (RicianDistribution, "PlotType", "pdfcdf")
681s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
681s  plot (RicianDistribution, "Discrete", "pdfcdf")
681s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
681s  plot (RicianDistribution, "Discrete", [1, 0])
681s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
681s  plot (RicianDistribution, "Discrete", {true})
681s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
681s  plot (RicianDistribution, "Parent", 12)
681s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
681s  plot (RicianDistribution, "Parent", "hax")
681s ***** error <plot: invalid NAME for optional argument.> ...
681s  plot (RicianDistribution, "invalidNAME", "pdf")
681s ***** error <plot: no fitted DATA to plot a probability plot.> ...
681s  plot (RicianDistribution, "PlotType", "probability")
681s ***** error <proflik: no fitted data available.> ...
681s  proflik (RicianDistribution, 2)
681s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
681s  proflik (RicianDistribution.fit (x), 3)
681s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
681s  proflik (RicianDistribution.fit (x), [1, 2])
681s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
681s  proflik (RicianDistribution.fit (x), {1})
681s ***** error <proflik: SETPARAM must be a numeric vector.> ...
681s  proflik (RicianDistribution.fit (x), 1, ones (2))
681s ***** error <proflik: missing VALUE for 'Display' argument.> ...
681s  proflik (RicianDistribution.fit (x), 1, "Display")
681s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
681s  proflik (RicianDistribution.fit (x), 1, "Display", 1)
681s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
681s  proflik (RicianDistribution.fit (x), 1, "Display", {1})
682s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
682s  proflik (RicianDistribution.fit (x), 1, "Display", {"on"})
682s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
682s  proflik (RicianDistribution.fit (x), 1, "Display", ["on"; "on"])
682s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
682s  proflik (RicianDistribution.fit (x), 1, "Display", "onnn")
682s ***** error <proflik: invalid NAME for optional arguments.> ...
682s  proflik (RicianDistribution.fit (x), 1, "NAME", "on")
682s ***** error <proflik: invalid optional argument.> ...
682s  proflik (RicianDistribution.fit (x), 1, {"NAME"}, "on")
682s ***** error <proflik: invalid optional argument.> ...
682s  proflik (RicianDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
682s ***** error <truncate: missing input argument.> ...
682s  truncate (RicianDistribution)
682s ***** error <truncate: missing input argument.> ...
682s  truncate (RicianDistribution, 2)
682s ***** error <truncate: invalid lower upper limits.> ...
682s  truncate (RicianDistribution, 4, 2)
682s ***** shared pd
682s  pd = RicianDistribution(1, 1);
682s  pd(2) = RicianDistribution(1, 3);
682s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
682s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
682s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
682s ***** error <mean: requires a scalar probability distribution.> mean (pd)
682s ***** error <median: requires a scalar probability distribution.> median (pd)
682s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
682s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
682s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
682s ***** error <plot: requires a scalar probability distribution.> plot (pd)
682s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
682s ***** error <random: requires a scalar probability distribution.> random (pd)
682s ***** error <std: requires a scalar probability distribution.> std (pd)
682s ***** error <truncate: requires a scalar probability distribution.> ...
682s  truncate (pd, 2, 4)
682s ***** error <var: requires a scalar probability distribution.> var (pd)
682s 97 tests, 97 passed, 0 known failure, 0 skipped
682s [inst/dist_obj/WeibullDistribution.m]
682s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_obj/WeibullDistribution.m
682s ***** shared pd, t
682s  pd = WeibullDistribution;
682s  t = truncate (pd, 2, 4);
682s ***** assert (cdf (pd, [0:5]), [0, 0.6321, 0.8647, 0.9502, 0.9817, 0.9933], 1e-4);
682s ***** assert (cdf (t, [0:5]), [0, 0, 0, 0.7311, 1, 1], 1e-4);
682s ***** assert (cdf (pd, [1.5, 2, 3, 4, NaN]), [0.7769, 0.8647, 0.9502, 0.9817, NaN], 1e-4);
682s ***** assert (cdf (t, [1.5, 2, 3, 4, NaN]), [0, 0, 0.7311, 1, NaN], 1e-4);
682s ***** assert (icdf (pd, [0:0.2:1]), [0, 0.2231, 0.5108, 0.9163, 1.6094, Inf], 1e-4);
682s ***** assert (icdf (t, [0:0.2:1]), [2, 2.1899, 2.4244, 2.7315, 3.1768, 4], 1e-4);
682s ***** assert (icdf (pd, [-1, 0.4:0.2:1, NaN]), [NaN, 0.5108, 0.9163, 1.6094, Inf, NaN], 1e-4);
682s ***** assert (icdf (t, [-1, 0.4:0.2:1, NaN]), [NaN, 2.4244, 2.7315, 3.1768, 4, NaN], 1e-4);
682s ***** assert (iqr (pd), 1.0986, 1e-4);
682s ***** assert (iqr (t), 0.8020, 1e-4);
682s ***** assert (mean (pd), 1, 1e-14);
682s ***** assert (mean (t), 2.6870, 1e-4);
682s ***** assert (median (pd), 0.6931, 1e-4);
682s ***** assert (median (t), 2.5662, 1e-4);
682s ***** assert (pdf (pd, [0:5]), [1, 0.3679, 0.1353, 0.0498, 0.0183, 0.0067], 1e-4);
682s ***** assert (pdf (t, [0:5]), [0, 0, 1.1565, 0.4255, 0.1565, 0], 1e-4);
682s ***** assert (pdf (pd, [-1, 1.5, NaN]), [0, 0.2231, NaN], 1e-4);
682s ***** assert (pdf (t, [-1, 1.5, NaN]), [0, 0, NaN], 1e-4);
682s ***** assert (isequal (size (random (pd, 100, 50)), [100, 50]))
682s ***** assert (any (random (t, 1000, 1) < 2), false);
682s ***** assert (any (random (t, 1000, 1) > 4), false);
682s ***** assert (std (pd), 1, 1e-14);
682s ***** assert (std (t), 0.5253, 1e-4);
682s ***** assert (var (pd), 1, 1e-14);
682s ***** assert (var (t), 0.2759, 1e-4);
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution(0, 1)
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution(-1, 1)
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution(Inf, 1)
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution(i, 1)
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution("a", 1)
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution([1, 2], 1)
682s ***** error <WeibullDistribution: LAMBDA must be a positive real scalar.> ...
682s  WeibullDistribution(NaN, 1)
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, 0)
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, -1)
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, Inf)
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, i)
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, "a")
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, [1, 2])
682s ***** error <WeibullDistribution: K must be a positive real scalar.> ...
682s  WeibullDistribution(1, NaN)
682s ***** error <cdf: invalid argument for upper tail.> ...
682s  cdf (WeibullDistribution, 2, "uper")
682s ***** error <cdf: invalid argument for upper tail.> ...
682s  cdf (WeibullDistribution, 2, 3)
682s ***** shared x
682s  x = wblrnd (1, 1, [1, 100]);
682s ***** error <paramci: optional arguments must be in NAME-VALUE pairs.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha")
682s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", 0)
682s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", 1)
682s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", [0.5 2])
682s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", "")
682s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", {0.05})
682s ***** error <paramci: invalid VALUE for 'Alpha' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "parameter", "k", "alpha", {0.05})
682s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "parameter", {"lambda", "k", "param"})
682s ***** error <paramci: invalid VALUE size for 'Parameter' argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", 0.01, ...
682s           "parameter", {"lambda", "k", "param"})
682s ***** error <paramci: unknown distribution parameter.> ...
682s  paramci (WeibullDistribution.fit (x), "parameter", "param")
682s ***** error <paramci: unknown distribution parameter.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", 0.01, "parameter", "param")
682s ***** error <paramci: invalid NAME for optional argument.> ...
682s  paramci (WeibullDistribution.fit (x), "NAME", "value")
682s ***** error <paramci: invalid NAME for optional argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", 0.01, "NAME", "value")
682s ***** error <paramci: invalid NAME for optional argument.> ...
682s  paramci (WeibullDistribution.fit (x), "alpha", 0.01, "parameter", "k", ...
682s           "NAME", "value")
682s ***** error <plot: optional arguments must be in NAME-VALUE pairs.> ...
682s  plot (WeibullDistribution, "Parent")
682s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
682s  plot (WeibullDistribution, "PlotType", 12)
682s ***** error <plot: invalid VALUE size for 'Parameter' argument.> ...
682s  plot (WeibullDistribution, "PlotType", {"pdf", "cdf"})
682s ***** error <plot: invalid VALUE for 'PlotType' argument.> ...
682s  plot (WeibullDistribution, "PlotType", "pdfcdf")
682s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
682s  plot (WeibullDistribution, "Discrete", "pdfcdf")
682s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
682s  plot (WeibullDistribution, "Discrete", [1, 0])
682s ***** error <plot: invalid VALUE for 'Discrete' argument.> ...
682s  plot (WeibullDistribution, "Discrete", {true})
682s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
682s  plot (WeibullDistribution, "Parent", 12)
682s ***** error <plot: invalid VALUE for 'Parent' argument.> ...
682s  plot (WeibullDistribution, "Parent", "hax")
682s ***** error <plot: invalid NAME for optional argument.> ...
682s  plot (WeibullDistribution, "invalidNAME", "pdf")
682s ***** error <plot: no fitted DATA to plot a probability plot.> ...
682s  plot (WeibullDistribution, "PlotType", "probability")
682s ***** error <proflik: no fitted data available.> ...
682s  proflik (WeibullDistribution, 2)
682s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
682s  proflik (WeibullDistribution.fit (x), 3)
682s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
682s  proflik (WeibullDistribution.fit (x), [1, 2])
682s ***** error <proflik: PNUM must be a scalar number indexing a non-fixed parameter.> ...
682s  proflik (WeibullDistribution.fit (x), {1})
682s ***** error <proflik: SETPARAM must be a numeric vector.> ...
682s  proflik (WeibullDistribution.fit (x), 1, ones (2))
682s ***** error <proflik: missing VALUE for 'Display' argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "Display")
682s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "Display", 1)
682s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "Display", {1})
682s ***** error <proflik: invalid VALUE type for 'Display' argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "Display", {"on"})
682s ***** error <proflik: invalid VALUE size for 'Display' argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "Display", ["on"; "on"])
682s ***** error <proflik: invalid VALUE for 'Display' argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "Display", "onnn")
682s ***** error <proflik: invalid NAME for optional arguments.> ...
682s  proflik (WeibullDistribution.fit (x), 1, "NAME", "on")
682s ***** error <proflik: invalid optional argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, {"NAME"}, "on")
682s ***** error <proflik: invalid optional argument.> ...
682s  proflik (WeibullDistribution.fit (x), 1, {[1 2 3 4]}, "Display", "on")
682s ***** error <truncate: missing input argument.> ...
682s  truncate (WeibullDistribution)
682s ***** error <truncate: missing input argument.> ...
682s  truncate (WeibullDistribution, 2)
682s ***** error <truncate: invalid lower upper limits.> ...
682s  truncate (WeibullDistribution, 4, 2)
682s ***** shared pd
682s  pd = WeibullDistribution(1, 1);
682s  pd(2) = WeibullDistribution(1, 3);
682s ***** error <cdf: requires a scalar probability distribution.> cdf (pd, 1)
682s ***** error <icdf: requires a scalar probability distribution.> icdf (pd, 0.5)
682s ***** error <iqr: requires a scalar probability distribution.> iqr (pd)
682s ***** error <mean: requires a scalar probability distribution.> mean (pd)
682s ***** error <median: requires a scalar probability distribution.> median (pd)
682s ***** error <negloglik: requires a scalar probability distribution.> negloglik (pd)
682s ***** error <paramci: requires a scalar probability distribution.> paramci (pd)
682s ***** error <pdf: requires a scalar probability distribution.> pdf (pd, 1)
682s ***** error <plot: requires a scalar probability distribution.> plot (pd)
682s ***** error <proflik: requires a scalar probability distribution.> proflik (pd, 2)
682s ***** error <random: requires a scalar probability distribution.> random (pd)
682s ***** error <std: requires a scalar probability distribution.> std (pd)
682s ***** error <truncate: requires a scalar probability distribution.> ...
682s  truncate (pd, 2, 4)
682s ***** error <var: requires a scalar probability distribution.> var (pd)
682s 97 tests, 97 passed, 0 known failure, 0 skipped
682s [inst/crossval.m]
682s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/crossval.m
682s ***** test
682s  load fisheriris
682s  y = meas(:, 1);
682s  X = [ones(size(y)) meas(:, 2:4)];
682s  f = @(X1, y1, X2, y2) meansq (y2 - X2*regress(y1, X1));
682s  results0 = crossval (f, X, y);
682s  results1 = crossval (f, X, y, 'KFold', 10);
682s  folds = 5;
682s  results2 = crossval (f, X, y, 'KFold', folds);
682s  results3 = crossval (f, X, y, 'Partition', cvpartition (numel (y), 'KFold', folds));
682s  results4 = crossval (f, X, y, 'LeaveOut', 1);
682s  mcreps = 2; n_holdout = 20;
682s  results5 = crossval (f, X, y, 'HoldOut', n_holdout, 'mcreps', mcreps);
682s 
682s  ## ensure equal representation of iris species in the training set -- tends
682s  ## to slightly reduce cross-validation mean square error
682s  results6 = crossval (f, X, y, 'KFold', 5, 'stratify', grp2idx(species));
682s 
682s  assert (results0, results1, 2e-15);
682s  assert (results2, results3, 5e-17);
682s  assert (size(results4), [1 numel(y)]);
682s  assert (mean(results4), 0.1018, 1e-4);
682s  assert (size(results5), [mcreps 1]);
682s warning: strmatch is obsolete; use strncmp or strcmp instead
682s 1 test, 1 passed, 0 known failure, 0 skipped
682s [inst/anova2.m]
682s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/anova2.m
682s ***** demo
682s 
682s  # Factorial (Crossed) Two-way ANOVA with Interaction
682s 
682s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
682s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
682s 
682s  [p, atab, stats] = anova2(popcorn, 3, "on");
682s ***** demo
682s 
682s  # One-way Repeated Measures ANOVA (Rows are a crossed random factor)
682s 
682s  data = [54, 43, 78, 111;
682s          23, 34, 37, 41;
682s          45, 65, 99, 78;
682s          31, 33, 36, 35;
682s          15, 25, 30, 26];
682s 
682s  [p, atab, stats] = anova2 (data, 1, "on", "linear");
682s ***** demo
682s 
682s  # Balanced Nested One-way ANOVA (Rows are a nested random factor)
682s 
682s  data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ...
682s          6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ...
682s          5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ...
682s          6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203];
682s 
682s  [p, atab, stats] = anova2 (data, 4, "on", "nested");
682s ***** test
682s  ## Test for anova2 ("interaction")
682s  ## comparison with results from Matlab for column effect
682s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
682s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
682s  [p, atab, stats] = anova2 (popcorn, 3, "off");
682s  assert (p(1), 7.678957383294716e-07, 1e-14);
682s  assert (p(2), 0.0001003738963050171, 1e-14);
682s  assert (p(3), 0.7462153966366274, 1e-14);
682s  assert (atab{2,5}, 56.700, 1e-14);
682s  assert (atab{2,3}, 2, 0);
682s  assert (atab{4,2}, 0.08333333333333348, 1e-14);
682s  assert (atab{5,4}, 0.1388888888888889, 1e-14);
682s  assert (atab{5,2}, 1.666666666666667, 1e-14);
682s  assert (atab{6,2}, 22);
682s  assert (stats.source, "anova2");
682s  assert (stats.colmeans, [6.25, 4.75, 4]);
682s  assert (stats.inter, 1, 0);
682s  assert (stats.pval, 0.7462153966366274, 1e-14);
682s  assert (stats.df, 12);
682s ***** test
682s  ## Test for anova2 ("linear") - comparison with results from GraphPad Prism 8
682s  data = [54, 43, 78, 111;
682s          23, 34, 37, 41;
682s          45, 65, 99, 78;
682s          31, 33, 36, 35;
682s          15, 25, 30, 26];
682s  [p, atab, stats] = anova2 (data, 1, "off", "linear");
682s  assert (atab{2,2}, 2174.95, 1e-10);
682s  assert (atab{3,2}, 8371.7, 1e-10);
682s  assert (atab{4,2}, 2404.3, 1e-10);
682s  assert (atab{5,2}, 12950.95, 1e-10);
682s  assert (atab{2,4}, 724.983333333333, 1e-10);
682s  assert (atab{3,4}, 2092.925, 1e-10);
682s  assert (atab{4,4}, 200.358333333333, 1e-10);
682s  assert (atab{2,5}, 3.61843363972882, 1e-10);
682s  assert (atab{3,5}, 10.445909412303, 1e-10);
682s  assert (atab{2,6}, 0.087266112738617, 1e-10);
682s  assert (atab{3,6}, 0.000698397753556, 1e-10);
682s ***** test
682s  ## Test for anova2 ("nested") - comparison with results from GraphPad Prism 8
682s  data = [4.5924 7.3809 21.322; -0.5488 9.2085 25.0426; ...
682s          6.1605 13.1147 22.66; 2.3374 15.2654 24.1283; ...
682s          5.1873 12.4188 16.5927; 3.3579 14.3951 10.2129; ...
682s          6.3092 8.5986 9.8934; 3.2831 3.4945 10.0203];
682s  [p, atab, stats] = anova2 (data, 4, "off", "nested");
682s  assert (atab{2,2}, 745.360306290833, 1e-10);
682s  assert (atab{3,2}, 278.01854140125, 1e-10);
682s  assert (atab{4,2}, 180.180377467501, 1e-10);
682s  assert (atab{5,2}, 1203.55922515958, 1e-10);
682s  assert (atab{2,4}, 372.680153145417, 1e-10);
682s  assert (atab{3,4}, 92.67284713375, 1e-10);
682s  assert (atab{4,4}, 10.0100209704167, 1e-10);
682s  assert (atab{2,5}, 4.02146005730833, 1e-10);
682s  assert (atab{3,5}, 9.25800729165627, 1e-10);
682s  assert (atab{2,6}, 0.141597630656771, 1e-10);
682s  assert (atab{3,6}, 0.000636643812875719, 1e-10);
682s 3 tests, 3 passed, 0 known failure, 0 skipped
682s [inst/confusionchart.m]
682s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/confusionchart.m
682s ***** demo
682s  ## Setting the chart properties
682s  Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]';
682s  Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]';
682s  confusionchart (Yt, Yp, "Title", ...
682s    "Demonstration with summaries","Normalization",...
682s    "absolute","ColumnSummary", "column-normalized","RowSummary",...
682s    "row-normalized")
682s ***** demo
682s  ## Cellstr as inputs
682s  Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"};
682s  Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"};
682s  m = confusionmat (Yt, Yp);
682s  confusionchart (m, {"Positive", "Negative"});
682s ***** demo
682s  ## Editing the object properties
682s  Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"};
682s  Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"};
682s  cm = confusionchart (Yt, Yp);
682s  cm.Title = "This is an example with a green diagonal";
682s  cm.DiagonalColor = [0.4660, 0.6740, 0.1880];
682s ***** demo
682s  ## Confusion chart in a uipanel
682s  h = uipanel ();
682s  Yt = {"Positive", "Positive", "Positive", "Negative", "Negative"};
682s  Yp = {"Positive", "Positive", "Negative", "Negative", "Negative"};
682s  cm = confusionchart (h, Yt, Yp);
682s ***** demo
682s  ## Sorting classes
682s  Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]';
682s  Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]';
682s  cm = confusionchart (Yt, Yp, "Title", ...
682s    "Classes are sorted in ascending order");
682s  cm = confusionchart (Yt, Yp, "Title", ...
682s    "Classes are sorted according to clusters");
682s  sortClasses (cm, "cluster");
682s ***** shared visibility_setting
682s  visibility_setting = get (0, "DefaultFigureVisible");
682s ***** test
682s  set (0, "DefaultFigureVisible", "off");
682s  fail ("confusionchart ()", "Invalid call");
682s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 1; 2 2; 3 3])", "invalid argument");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'xxx', 1)", "invalid property");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'XLabel', 1)", "XLabel .* string");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'YLabel', [1 0])", ...
683s        ".* YLabel .* string");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'Title', .5)", ".* Title .* string");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'FontName', [])", ...
683s        ".* FontName .* string");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'FontSize', 'b')", ...
683s        ".* FontSize .* numeric");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'DiagonalColor', 'h')", ...
683s        ".* DiagonalColor .* color");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'OffDiagonalColor', [])", ...
683s        ".* OffDiagonalColor .* color");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'Normalization', '')", ...
683s        ".* invalid .* Normalization");
683s  set (0, "DefaultFigureVisible", visibility_setting);
683s ***** test
683s  set (0, "DefaultFigureVisible", "off");
683s  fail ("confusionchart ([1 2], [0 1], 'ColumnSummary', [])", ...
683s        ".* invalid .* ColumnSummary");
683s  set (0, "DefaultFigureVisible", visibility_setting);
684s ***** test
684s  set (0, "DefaultFigureVisible", "off");
684s  fail ("confusionchart ([1 2], [0 1], 'RowSummary', 1)", ...
684s        ".* invalid .* RowSummary");
684s  set (0, "DefaultFigureVisible", visibility_setting);
684s ***** test
684s  set (0, "DefaultFigureVisible", "off");
684s  fail ("confusionchart ([1 2], [0 1], 'GridVisible', .1)", ...
684s        ".* invalid .* GridVisible");
684s  set (0, "DefaultFigureVisible", visibility_setting);
684s ***** test
684s  set (0, "DefaultFigureVisible", "off");
684s  fail ("confusionchart ([1 2], [0 1], 'HandleVisibility', .1)", ...
684s        ".* invalid .* HandleVisibility");
684s  set (0, "DefaultFigureVisible", visibility_setting);
684s ***** test
684s  set (0, "DefaultFigureVisible", "off");
684s  fail ("confusionchart ([1 2], [0 1], 'OuterPosition', .1)", ...
684s        ".* invalid .* OuterPosition");
684s  set (0, "DefaultFigureVisible", visibility_setting);
684s ***** test
684s  set (0, "DefaultFigureVisible", "off");
684s  fail ("confusionchart ([1 2], [0 1], 'Position', .1)", ...
684s        ".* invalid .* Position");
684s  set (0, "DefaultFigureVisible", visibility_setting);
684s ***** test
684s  set (0, "DefaultFigureVisible", "off");
684s  fail ("confusionchart ([1 2], [0 1], 'Units', .1)", ".* invalid .* Units");
684s  set (0, "DefaultFigureVisible", visibility_setting);
684s 18 tests, 18 passed, 0 known failure, 0 skipped
684s [inst/regression_ttest.m]
684s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/regression_ttest.m
684s ***** error<Invalid call to regression_ttest.  Correct usage> regression_ttest ();
686s ***** error<Invalid call to regression_ttest.  Correct usage> regression_ttest (1);
686s ***** error<regression_ttest: Y must contain finite real numbers.> ...
686s  regression_ttest ([1 2 NaN]', [2 3 4]');
686s ***** error<regression_ttest: Y must contain finite real numbers.> ...
686s  regression_ttest ([1 2 Inf]', [2 3 4]');
686s ***** error<regression_ttest: Y must contain finite real numbers.> ...
686s  regression_ttest ([1 2 3+i]', [2 3 4]');
686s ***** error<regression_ttest: X must contain finite real numbers.> ...
686s  regression_ttest ([1 2 3]', [2 3 NaN]');
686s ***** error<regression_ttest: X must contain finite real numbers.> ...
686s  regression_ttest ([1 2 3]', [2 3 Inf]');
686s ***** error<regression_ttest: X must contain finite real numbers.> ...
686s  regression_ttest ([1 2 3]', [3 4 3+i]');
686s ***** error<regression_ttest: Y and X must be vectors of equal length.> ...
686s  regression_ttest ([1 2 3]', [3 4 4 5]');
686s ***** error<regression_ttest: invalid value for alpha.> ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "alpha", 0);
686s ***** error<regression_ttest: invalid value for alpha.> ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "alpha", 1.2);
686s ***** error<regression_ttest: invalid value for alpha.> ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "alpha", [.02 .1]);
686s ***** error<regression_ttest: invalid value for alpha.> ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "alpha", "a");
686s ***** error<regression_ttest: invalid Name argument.> ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "some", 0.05);
686s ***** error<regression_ttest: invalid value for tail.>  ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "tail", "val");
686s ***** error<regression_ttest: invalid value for tail.>  ...
686s  regression_ttest ([1 2 3]', [2 3 4]', "alpha", 0.01, "tail", "val");
686s 16 tests, 16 passed, 0 known failure, 0 skipped
686s [inst/tiedrank.m]
686s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/tiedrank.m
686s ***** test
686s  [r,tieadj] = tiedrank ([10, 20, 30, 40, 20]);
686s  assert (r, [1, 2.5, 4, 5, 2.5]);
686s  assert (tieadj, 3);
686s ***** test
686s  [r,tieadj] = tiedrank ([10; 20; 30; 40; 20]);
686s  assert (r, [1; 2.5; 4; 5; 2.5]);
686s  assert (tieadj, 3);
686s ***** test
686s  [r,tieadj] = tiedrank ([10, 20, 30, 40, 20], 1);
686s  assert (r, [1, 2.5, 4, 5, 2.5]);
686s  assert (tieadj, [1; 0; 18]);
686s ***** test
686s  [r,tieadj] = tiedrank ([10, 20, 30, 40, 20], 0, 1);
686s  assert (r, [1, 2.5, 2, 1, 2.5]);
686s  assert (tieadj, 3);
686s ***** test
686s  [r,tieadj] = tiedrank ([10, 20, 30, 40, 20], 1, 1);
686s  assert (r, [1, 2.5, 2, 1, 2.5]);
686s  assert (tieadj, [1; 0; 18]);
686s ***** error <tiedrank: X must be a vector.> tiedrank (ones (2))
686s ***** error <tiedrank: TIEFLAG must be a numeric or boolean scalar.> ...
686s  tiedrank ([1, 2, 3, 4, 5], [1, 1])
686s ***** error <tiedrank: TIEFLAG must be a numeric or boolean scalar.> ...
686s  tiedrank ([1, 2, 3, 4, 5], "A")
686s ***** error <tiedrank: TIEFLAG must be a numeric or boolean scalar.> ...
686s  tiedrank ([1, 2, 3, 4, 5], [true, true])
686s ***** error <tiedrank: BIDIR must be a numeric or boolean scalar.> ...
686s  tiedrank ([1, 2, 3, 4, 5], 0, [1, 1])
686s ***** error <tiedrank: BIDIR must be a numeric or boolean scalar.> ...
686s  tiedrank ([1, 2, 3, 4, 5], 0, "A")
686s ***** error <tiedrank: BIDIR must be a numeric or boolean scalar.> ...
686s  tiedrank ([1, 2, 3, 4, 5], 0, [true, true])
686s 12 tests, 12 passed, 0 known failure, 0 skipped
686s [inst/dendrogram.m]
686s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dendrogram.m
686s ***** demo
686s  ## simple dendrogram
686s  y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10];
686s  y(:,3) = 1:5;
686s  dendrogram (y);
686s  title ("simple dendrogram");
686s ***** demo
686s  ## another simple dendrogram
686s  v = 2 * rand (30, 1) - 1;
686s  d = abs (bsxfun (@minus, v(:, 1), v(:, 1)'));
686s  y = linkage (squareform (d, "tovector"));
686s  dendrogram (y);
686s  title ("another simple dendrogram");
686s ***** demo
686s  ## collapsed tree, find all the leaves of node 5
686s  X = randn (60, 2);
686s  D = pdist (X);
686s  y = linkage (D, "average");
686s  subplot (2, 1, 1);
686s  title ("original tree");
686s  dendrogram (y, 0);
686s  subplot (2, 1, 2);
686s  title ("collapsed tree");
686s  [~, t] = dendrogram (y, 20);
686s  find(t == 5)
686s ***** demo
686s  ## optimal leaf order
686s  X = randn (30, 2);
686s  D = pdist (X);
686s  y = linkage (D, "average");
686s  order = optimalleaforder (y, D);
686s  subplot (2, 1, 1);
686s  title ("original leaf order");
686s  dendrogram (y);
686s  subplot (2, 1, 2);
686s  title ("optimal leaf order");
686s  dendrogram (y, "Reorder", order);
686s ***** demo
686s  ## horizontal orientation and labels
686s  X = randn (8, 2);
686s  D = pdist (X);
686s  L = ["Snow White"; "Doc"; "Grumpy"; "Happy"; "Sleepy"; "Bashful"; ...
686s       "Sneezy"; "Dopey"];
686s  y = linkage (D, "average");
686s  dendrogram (y, "Orientation", "left", "Labels", L);
686s  title ("horizontal orientation and labels");
686s ***** shared visibility_setting
686s  visibility_setting = get (0, "DefaultFigureVisible");
686s ***** test
686s  hf = figure ("visible", "off");
686s  unwind_protect
686s    y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10];
686s    y(:,3) = 1:5;
686s    dendrogram (y);
686s  unwind_protect_cleanup
686s    close (hf);
686s  end_unwind_protect
686s ***** test
686s  hf = figure ("visible", "off");
686s  unwind_protect
686s    y = [4, 5; 2, 6; 3, 7; 8, 9; 1, 10];
686s    y(:,3) = 1:5;
686s    dendrogram (y);
686s  unwind_protect_cleanup
686s    close (hf);
686s  end_unwind_protect
686s ***** test
686s  hf = figure ("visible", "off");
686s  unwind_protect
686s    v = 2 * rand (30, 1) - 1;
686s    d = abs (bsxfun (@minus, v(:, 1), v(:, 1)'));
686s    y = linkage (squareform (d, "tovector"));
686s    dendrogram (y);
686s  unwind_protect_cleanup
686s    close (hf);
686s  end_unwind_protect
686s ***** test
686s  hf = figure ("visible", "off");
686s  unwind_protect
686s    X = randn (30, 2);
686s    D = pdist (X);
686s    y = linkage (D, "average");
686s    order = optimalleaforder (y, D);
686s    subplot (2, 1, 1);
686s    title ("original leaf order");
686s    dendrogram (y);
686s    subplot (2, 1, 2);
686s    title ("optimal leaf order");
686s    dendrogram (y, "Reorder", order);
686s  unwind_protect_cleanup
686s    close (hf);
686s  end_unwind_protect
687s ***** error dendrogram ();
687s ***** error <tree must be .*> dendrogram (ones (2, 2), 1);
687s ***** error <unknown property .*> dendrogram ([1 2 1], 1, "xxx", "xxx");
687s ***** error <reorder.*> dendrogram ([1 2 1], "Reorder", "xxx");
687s ***** error <reorder.*> dendrogram ([1 2 1], "Reorder", [1 2 3 4]);
687s  fail ('dendrogram ([1 2 1], "Orientation", "north")', "invalid orientation .*")
687s 9 tests, 9 passed, 0 known failure, 0 skipped
687s [inst/linkage.m]
687s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/linkage.m
687s ***** shared x, t
687s  x = reshape (mod (magic (6),5), [], 3);
687s  t = 1e-6;
687s ***** assert (cond (linkage (pdist (x))),                   34.119045, t);
687s ***** assert (cond (linkage (pdist (x), "complete")),       21.793345, t);
687s ***** assert (cond (linkage (pdist (x), "average")),        27.045012, t);
687s ***** assert (cond (linkage (pdist (x), "weighted")),       27.412889, t);
687s  lastwarn(); # Clear last warning before the test
687s ***** warning <cluster distances> linkage (pdist (x), "centroid");
687s ***** test
687s  warning off Octave:clustering
687s  assert (cond (linkage (pdist (x), "centroid")),      27.457477, t);
687s  warning on Octave:clustering
687s ***** warning <cluster distances> linkage (pdist (x), "median");
687s ***** test
687s  warning off Octave:clustering
687s  assert (cond (linkage (pdist (x), "median")),        27.683325, t);
687s  warning on Octave:clustering
687s ***** assert (cond (linkage (pdist (x), "ward")),           17.195198, t);
687s ***** assert (cond (linkage (x, "ward", "euclidean")),      17.195198, t);
687s ***** assert (cond (linkage (x, "ward", {"euclidean"})),    17.195198, t);
687s ***** assert (cond (linkage (x, "ward", {"minkowski", 2})), 17.195198, t);
687s 12 tests, 12 passed, 0 known failure, 0 skipped
687s [inst/hotelling_t2test2.m]
687s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/hotelling_t2test2.m
687s ***** error<Invalid call to hotelling_t2test2.  Correct usage> hotelling_t2test2 ();
687s ***** error<Invalid call to hotelling_t2test2.  Correct usage> ...
687s  hotelling_t2test2 ([2, 3, 4, 5, 6]);
687s ***** error<hotelling_t2test2: X must be a vector or a 2D matrix.> ...
687s  hotelling_t2test2 (1, [2, 3, 4, 5, 6]);
687s ***** error<hotelling_t2test2: X must be a vector or a 2D matrix.> ...
687s  hotelling_t2test2 (ones (2,2,2), [2, 3, 4, 5, 6]);
687s ***** error<hotelling_t2test2: Y must be a vector or a 2D matrix.> ...
687s  hotelling_t2test2 ([2, 3, 4, 5, 6], 2);
687s ***** error<hotelling_t2test2: Y must be a vector or a 2D matrix.> ...
687s  hotelling_t2test2 ([2, 3, 4, 5, 6], ones (2,2,2));
687s ***** error<hotelling_t2test2: invalid value for alpha.> ...
687s  hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", 1);
687s ***** error<hotelling_t2test2: invalid value for alpha.> ...
687s  hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", -0.2);
687s ***** error<hotelling_t2test2: invalid value for alpha.> ...
687s  hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", "a");
687s ***** error<hotelling_t2test2: invalid value for alpha.> ...
687s  hotelling_t2test2 (ones (20,2), ones (20,2), "alpha", [0.01, 0.05]);
687s ***** error<hotelling_t2test2: invalid Name argument.> ...
687s  hotelling_t2test2 (ones (20,2), ones (20,2), "name", 0.01);
687s ***** error<hotelling_t2test2: if X is a vector, Y must also be a vector.> ...
687s  hotelling_t2test2 (ones (20,1), ones (20,2));
687s ***** error<hotelling_t2test2: X and Y must have the same number of columns.> ...
687s  hotelling_t2test2 (ones (20,2), ones (25,3));
687s ***** test
687s  randn ("seed", 1);
687s  x1 = randn (60000, 5);
687s  randn ("seed", 5);
687s  x2 = randn (30000, 5);
687s  [h, pval, stats] = hotelling_t2test2 (x1, x2);
687s  assert (h, 0);
687s  assert (stats.df1, 5);
687s  assert (stats.df2, 89994);
687s 14 tests, 14 passed, 0 known failure, 0 skipped
687s [inst/chi2gof.m]
687s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/chi2gof.m
687s ***** demo
687s  x = normrnd (50, 5, 100, 1);
687s  [h, p, stats] = chi2gof (x)
687s  [h, p, stats] = chi2gof (x, "cdf", @(x)normcdf (x, mean(x), std(x)))
687s  [h, p, stats] = chi2gof (x, "cdf", {@normcdf, mean(x), std(x)})
687s ***** demo
687s  x = rand (100,1 );
687s  n = length (x);
687s  binedges = linspace (0, 1, 11);
687s  expectedCounts = n * diff (binedges);
687s  [h, p, stats] = chi2gof (x, "binedges", binedges, "expected", expectedCounts)
687s ***** demo
687s  bins = 0:5;
687s  obsCounts = [6 16 10 12 4 2];
687s  n = sum(obsCounts);
687s  lambdaHat = sum(bins.*obsCounts) / n;
687s  expCounts = n * poisspdf(bins,lambdaHat);
687s  [h, p, stats] = chi2gof (bins, "binctrs", bins, "frequency", obsCounts, ...
687s                           "expected", expCounts, "nparams",1)
687s ***** error chi2gof ()
687s ***** error chi2gof ([2,3;3,4])
687s ***** error chi2gof ([1,2,3,4], "nbins", 3, "ctrs", [2,3,4])
687s ***** error chi2gof ([1,2,3,4], "frequency", [2,3,2])
687s ***** error chi2gof ([1,2,3,4], "frequency", [2,3,2,-2])
687s ***** error chi2gof ([1,2,3,4], "frequency", [2,3,2,2], "nparams", i)
687s ***** error chi2gof ([1,2,3,4], "frequency", [2,3,2,2], "alpha", 1.3)
687s ***** error chi2gof ([1,2,3,4], "expected", [-3,2,2])
687s ***** error chi2gof ([1,2,3,4], "expected", [3,2,2], "nbins", 5)
687s ***** error chi2gof ([1,2,3,4], "cdf", @normcdff)
687s ***** test
687s  x = [1 2 1 3 2 4 3 2 4 3 2 2];
687s  [h, p, stats] = chi2gof (x);
687s  assert (h, 0);
687s  assert (p, NaN);
687s  assert (stats.chi2stat, 0.1205375022748029, 1e-14);
687s  assert (stats.df, 0);
687s  assert (stats.edges, [1, 2.5, 4], 1e-14);
687s  assert (stats.O, [7, 5], 1e-14);
687s  assert (stats.E, [6.399995519909668, 5.600004480090332], 1e-14);
687s 11 tests, 11 passed, 0 known failure, 0 skipped
687s [inst/ranksum.m]
687s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ranksum.m
687s ***** test
687s  mileage = [33.3, 34.5, 37.4; 33.4, 34.8, 36.8; ...
687s             32.9, 33.8, 37.6; 32.6, 33.4, 36.6; ...
687s             32.5, 33.7, 37.0; 33.0, 33.9, 36.7];
687s  [p,h,stats] = ranksum(mileage(:,1),mileage(:,2));
687s  assert (p, 0.004329004329004329, 1e-14);
687s  assert (h, true);
687s  assert (stats.ranksum, 21.5);
687s ***** test
687s  year1 = [51 52 62 62 52 52 51 53 59 63 59 56 63 74 68 86 82 70 69 75 73 ...
687s           49 47 50 60 59 60 62 61 71]';
687s  year2 = [54 53 64 66 57 53 54 54 62 66 59 59 67 76 75 86 82 67 74 80 75 ...
687s           54 50 53 62 62 62 72 60 67]';
687s  [p,h,stats] = ranksum(year1, year2, "alpha", 0.01, "tail", "left");
687s  assert (p, 0.1270832752950605, 1e-14);
687s  assert (h, false);
687s  assert (stats.ranksum, 837.5);
687s  assert (stats.zval, -1.140287483634606, 1e-14);
687s  [p,h,stats] = ranksum(year1, year2, "alpha", 0.01, "tail", "left", ...
687s                        "method", "exact");
687s  assert (p, 0.127343916432862, 1e-14);
687s  assert (h, false);
687s  assert (stats.ranksum, 837.5);
697s 2 tests, 2 passed, 0 known failure, 0 skipped
697s [inst/ridge.m]
697s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ridge.m
697s ***** demo
697s  ## Perform ridge regression for a range of ridge parameters and observe
697s  ## how the coefficient estimates change based on the acetylene dataset.
697s 
697s  load acetylene
697s 
697s  X = [x1, x2, x3];
697s 
697s  x1x2 = x1 .* x2;
697s  x1x3 = x1 .* x3;
697s  x2x3 = x2 .* x3;
697s 
697s  D = [x1, x2, x3, x1x2, x1x3, x2x3];
697s 
697s  k = 0:1e-5:5e-3;
697s 
697s  b = ridge (y, D, k);
697s 
697s  figure
697s  plot (k, b, "LineWidth", 2)
697s  ylim ([-100, 100])
697s  grid on
697s  xlabel ("Ridge Parameter")
697s  ylabel ("Standardized Coefficient")
697s  title ("Ridge Trace")
697s  legend ("x1", "x2", "x3", "x1x2", "x1x3", "x2x3")
697s 
697s ***** demo
697s 
697s  load carbig
697s  X = [Acceleration Weight Displacement Horsepower];
697s  y = MPG;
697s 
697s  n = length(y);
697s 
697s  rand("seed",1); % For reproducibility
697s 
697s  c = cvpartition(n,'HoldOut',0.3);
697s  idxTrain = training(c,1);
697s  idxTest = ~idxTrain;
697s 
697s  idxTrain = training(c,1);
697s  idxTest = ~idxTrain;
697s 
697s  k = 5;
697s  b = ridge(y(idxTrain),X(idxTrain,:),k,0);
697s 
697s  % Predict MPG values for the test data using the model.
697s  yhat = b(1) + X(idxTest,:)*b(2:end);
697s  scatter(y(idxTest),yhat)
697s 
697s  hold on
697s  plot(y(idxTest),y(idxTest),"r")
697s  xlabel('Actual MPG')
697s  ylabel('Predicted MPG')
697s  hold off
697s 
697s ***** test
697s  b = ridge ([1 2 3 4]', [1 2 3 4; 2 3 4 5]', 1);
697s  assert (b, [0.5533; 0.5533], 1e-4);
697s ***** test
697s  b = ridge ([1 2 3 4]', [1 2 3 4; 2 3 4 5]', 2);
697s  assert (b, [0.4841; 0.4841], 1e-4);
697s ***** test
697s  load acetylene
697s  x = [x1, x2, x3];
697s  b = ridge (y, x, 0);
697s  assert (b,[10.2273;1.97128;-0.601818],1e-4);
697s ***** test
697s  load acetylene
697s  x = [x1, x2, x3];
697s  b = ridge (y, x, 0.0005);
697s  assert (b,[10.2233;1.9712;-0.6056],1e-4);
697s ***** test
697s  load acetylene
697s  x = [x1, x2, x3];
697s  b = ridge (y, x, 0.001);
697s  assert (b,[10.2194;1.9711;-0.6094],1e-4);
697s ***** test
697s  load acetylene
697s  x = [x1, x2, x3];
697s  b = ridge (y, x, 0.002);
697s  assert (b,[10.2116;1.9709;-0.6169],1e-4);
697s ***** test
697s  load acetylene
697s  x = [x1, x2, x3];
697s  b = ridge (y, x, 0.005);
697s  assert (b,[10.1882;1.9704;-0.6393],1e-4);
697s ***** test
697s  load acetylene
697s  x = [x1, x2, x3];
697s  b = ridge (y, x, 0.01);
697s  assert (b,[10.1497;1.9695;-0.6761],1e-4);
697s ***** error<ridge: function called with too few input arguments.> ridge (1)
697s ***** error<ridge: function called with too few input arguments.> ridge (1, 2)
697s ***** error<ridge: Y must be a numeric column vector.> ridge (ones (3), ones (3), 2)
697s ***** error<ridge: Y must be a numeric column vector.> ridge ([1, 2], ones (2), 2)
697s ***** error<ridge: Y must be a numeric column vector.> ridge ([], ones (3), 2)
697s ***** error<ridge: X must be a numeric matrix.> ridge (ones (5,1), [], 2)
697s ***** error<ridge: Y and X must contain the same number of rows.> ...
697s  ridge ([1; 2; 3; 4; 5], ones (3), 3)
697s ***** error<ridge: wrong value for SCALED argument.> ...
697s  ridge ([1; 2; 3], ones (3), 3, 2)
697s ***** error<ridge: wrong value for SCALED argument.> ...
697s  ridge ([1; 2; 3], ones (3), 3, "some")
697s 17 tests, 17 passed, 0 known failure, 0 skipped
697s [inst/vartest.m]
697s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/vartest.m
697s ***** error<vartest: too few input arguments.> vartest ();
697s ***** error<vartest: invalid value for variance.> vartest ([1, 2, 3, 4], -0.5);
697s ***** error<vartest: invalid value for alpha.> ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", 0);
697s ***** error<vartest: invalid value for alpha.> ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", 1.2);
697s ***** error<vartest: invalid value for alpha.> ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", "val");
697s ***** error<vartest: invalid value for tail.>  ...
697s  vartest ([1, 2, 3, 4], 1, "tail", "val");
697s ***** error<vartest: invalid value for tail.>  ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail", "val");
697s ***** error<vartest: invalid value for operating dimension.> ...
697s  vartest ([1, 2, 3, 4], 1, "dim", 3);
697s ***** error<vartest: invalid value for operating dimension.> ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail", "both", "dim", 3);
697s ***** error<vartest: invalid name for optional arguments.> ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail", "both", "badoption", 3);
697s ***** error<vartest: optional arguments must be in name/value pairs.> ...
697s  vartest ([1, 2, 3, 4], 1, "alpha", 0.01, "tail");
697s ***** test
697s  load carsmall
697s  [h, pval, ci] = vartest (MPG, 7^2);
697s  assert (h, 1);
697s  assert (pval, 0.04335086742174443, 1e-14);
697s  assert (ci, [49.397; 88.039], 1e-3);
697s 12 tests, 12 passed, 0 known failure, 0 skipped
697s [inst/inconsistent.m]
697s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/inconsistent.m
697s ***** error inconsistent ()
697s ***** error inconsistent ([1 2 1], 2, 3)
697s ***** error <Z must be .* generated by the linkage .*> inconsistent (ones (2, 2))
697s ***** error <d must be a positive integer scalar> inconsistent ([1 2 1], -1)
697s ***** error <d must be a positive integer scalar> inconsistent ([1 2 1], 1.3)
697s ***** error <d must be a positive integer scalar> inconsistent ([1 2 1], [1 1])
697s ***** error <Z must be .* generated by the linkage .*> inconsistent (ones (2, 3))
697s ***** test
697s  load fisheriris;
697s  Z = linkage(meas, 'average', 'chebychev');
697s  assert (cond (inconsistent (Z)), 39.9, 1e-3);
697s 8 tests, 8 passed, 0 known failure, 0 skipped
697s [inst/crosstab.m]
697s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/crosstab.m
697s ***** error crosstab ()
697s ***** error crosstab (1)
697s ***** error <crosstab: x1, x2 ... xn must be vectors.> crosstab (ones (2), [1 1])
697s ***** error <crosstab: x1, x2 ... xn must be vectors.> crosstab ([1 1], ones (2))
697s ***** error <x1, x2 .* must be vectors of the same length> crosstab ([1], [1 2])
697s ***** error <x1, x2 .* must be vectors of the same length> crosstab ([1 2], [1])
697s ***** test
697s  load carbig
697s  [table, chisq, p, labels] = crosstab (cyl4, when, org);
697s  assert (table(2,3,1), 38);
697s  assert (labels{3,3}, "Japan");
697s ***** test
697s  load carbig
697s  [table, chisq, p, labels] = crosstab (cyl4, when, org);
697s  assert (table(2,3,2), 17);
697s  assert (labels{1,3}, "USA");
697s 8 tests, 8 passed, 0 known failure, 0 skipped
697s [inst/Regression/RegressionGAM.m]
697s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Regression/RegressionGAM.m
697s ***** demo
697s  ## Train a RegressionGAM Model for synthetic values
697s  f1 = @(x) cos (3 * x);
697s  f2 = @(x) x .^ 3;
697s  x1 = 2 * rand (50, 1) - 1;
697s  x2 = 2 * rand (50, 1) - 1;
697s  y = f1(x1) + f2(x2);
697s  y = y + y .* 0.2 .* rand (50,1);
697s  X = [x1, x2];
697s  a = fitrgam (X, y, "tol", 1e-3)
697s ***** demo
697s  ## Declare two different functions
697s  f1 = @(x) cos (3 * x);
697s  f2 = @(x) x .^ 3;
697s 
697s  ## Generate 80 samples for f1 and f2
697s  x = [-4*pi:0.1*pi:4*pi-0.1*pi]';
697s  X1 = f1 (x);
697s  X2 = f2 (x);
697s 
697s  ## Create a synthetic response by adding noise
697s  rand ("seed", 3);
697s  Ytrue = X1 + X2;
697s  Y = Ytrue + Ytrue .* 0.2 .* rand (80,1);
697s 
697s  ## Assemble predictor data
697s  X = [X1, X2];
697s 
697s  ## Train the GAM and test on the same data
697s  a = fitrgam (X, Y, "order", [5, 5]);
697s  [ypred, ySDsd, yInt] = predict (a, X);
697s 
697s  ## Plot the results
697s  figure
697s  [sortedY, indY] = sort (Ytrue);
697s  plot (sortedY, "r-");
697s  xlim ([0, 80]);
697s  hold on
697s  plot (ypred(indY), "g+")
697s  plot (yInt(indY,1), "k:")
697s  plot (yInt(indY,2), "k:")
697s  xlabel ("Predictor samples");
697s  ylabel ("Response");
697s  title ("actual vs predicted values for function f1(x) = cos (3x) ");
697s  legend ({"Theoretical Response", "Predicted Response", "Prediction Intervals"});
697s 
697s  ## Use 30% Holdout partitioning for training and testing data
697s  C = cvpartition (80, "HoldOut", 0.3);
697s  [ypred, ySDsd, yInt] = predict (a, X(test(C),:));
697s 
697s  ## Plot the results
697s  figure
697s  [sortedY, indY] = sort (Ytrue(test(C)));
697s  plot (sortedY, 'r-');
697s  xlim ([0, sum(test(C))]);
697s  hold on
697s  plot (ypred(indY), "g+")
697s  plot (yInt(indY,1),'k:')
697s  plot (yInt(indY,2),'k:')
697s  xlabel ("Predictor samples");
697s  ylabel ("Response");
697s  title ("actual vs predicted values for function f1(x) = cos (3x) ");
697s  legend ({"Theoretical Response", "Predicted Response", "Prediction Intervals"});
697s ***** test
697s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
697s  y = [1; 2; 3; 4];
697s  a = RegressionGAM (x, y);
697s  assert ({a.X, a.Y}, {x, y})
697s  assert ({a.BaseModel.Intercept}, {2.5000})
697s  assert ({a.Knots, a.Order, a.DoF}, {[5, 5, 5], [3, 3, 3], [8, 8, 8]})
697s  assert ({a.NumObservations, a.NumPredictors}, {4, 3})
697s  assert ({a.ResponseName, a.PredictorNames}, {"Y", {"x1", "x2", "x3"}})
697s  assert ({a.Formula}, {[]})
697s ***** test
697s  x = [1, 2, 3, 4; 4, 5, 6, 7; 7, 8, 9, 1; 3, 2, 1, 2];
697s  y = [1; 2; 3; 4];
697s  pnames = {"A", "B", "C", "D"};
697s  formula = "Y ~ A + B + C + D + A:C";
697s  intMat = logical ([1,0,0,0;0,1,0,0;0,0,1,0;0,0,0,1;1,0,1,0]);
697s  a = RegressionGAM (x, y, "predictors", pnames, "formula", formula);
697s  assert ({a.IntMatrix}, {intMat})
697s  assert ({a.ResponseName, a.PredictorNames}, {"Y", pnames})
697s  assert ({a.Formula}, {formula})
698s ***** error<RegressionGAM: too few input arguments.> RegressionGAM ()
698s ***** error<RegressionGAM: too few input arguments.> RegressionGAM (ones(10,2))
698s ***** error<RegressionGAM: number of rows in X and Y must be equal.> ...
698s  RegressionGAM (ones(10,2), ones (5,1))
698s ***** error<RegressionGAM: invalid values in X.> ...
698s  RegressionGAM ([1;2;3;"a";4], ones (5,1))
698s ***** error<RegressionGAM: invalid parameter name in optional pair arguments.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "some", "some")
698s ***** error<RegressionGAM: Formula must be a string.>
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", {"y~x1+x2"})
698s ***** error<RegressionGAM: Formula must be a string.>
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", [0, 1, 0])
698s ***** error<RegressionGAM: invalid syntax in Formula.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", "something")
698s ***** error<RegressionGAM: no predictor terms in Formula.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", "something~")
698s ***** error<RegressionGAM: no predictor terms in Formula.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", "something~")
698s ***** error<RegressionGAM: some predictors have not been identified> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", "something~x1:")
698s ***** error<RegressionGAM: invalid Interactions parameter.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "interactions", "some")
698s ***** error<RegressionGAM: invalid Interactions parameter.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "interactions", -1)
698s ***** error<RegressionGAM: invalid Interactions parameter.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "interactions", [1 2 3 4])
698s ***** error<RegressionGAM: number of interaction terms requested is larger than> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "interactions", 3)
698s ***** error<RegressionGAM: Formula has been already defined.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "formula", "y ~ x1 + x2", "interactions", 1)
698s ***** error<RegressionGAM: Interactions have been already defined.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "interactions", 1, "formula", "y ~ x1 + x2")
698s ***** error<RegressionGAM: invalid value for Knots.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "knots", "a")
698s ***** error<RegressionGAM: DoF and Order have been set already.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "order", 3, "dof", 2, "knots", 5)
698s ***** error<RegressionGAM: invalid value for DoF.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "dof", 'a')
698s ***** error<RegressionGAM: Knots and Order have been set already.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "knots", 5, "order", 3, "dof", 2)
698s ***** error<RegressionGAM: invalid value for Order.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "order", 'a')
698s ***** error<RegressionGAM: DoF and Knots have been set already.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "knots", 5, "dof", 2, "order", 2)
698s ***** error<RegressionGAM: Tolerance must be a Positive scalar.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "tol", -1)
698s ***** error<RegressionGAM: ResponseName must be a char string.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "responsename", -1)
698s ***** error<RegressionGAM: PredictorNames must be a cellstring array.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "predictors", -1)
698s ***** error<RegressionGAM: PredictorNames must be a cellstring array.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "predictors", ['a','b','c'])
698s ***** error<RegressionGAM: PredictorNames must have same number of columns as X.> ...
698s  RegressionGAM (ones(10,2), ones (10,1), "predictors", {'a','b','c'})
698s ***** error<RegressionGAM.predict: too few arguments.> ...
698s  predict (RegressionGAM (ones(10,1), ones(10,1)))
698s ***** error<RegressionGAM.predict: Xfit is empty.> ...
698s  predict (RegressionGAM (ones(10,1), ones(10,1)), [])
698s ***** error<RegressionGAM.predict: Xfit must have the same number of features> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), 2)
698s ***** error<RegressionGAM.predict: invalid NAME in optional pairs of arguments.> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "some", "some")
698s ***** error<RegressionGAM.predict: includeinteractions must be a logical value.> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "includeinteractions", "some")
698s ***** error<RegressionGAM.predict: includeinteractions must be a logical value.> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "includeinteractions", 5)
698s ***** error<RegressionGAM.predict: alpha must be a scalar value between 0 and 1.> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "alpha", 5)
698s ***** error<RegressionGAM.predict: alpha must be a scalar value between 0 and 1.> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "alpha", -1)
698s ***** error<RegressionGAM.predict: alpha must be a scalar value between 0 and 1.> ...
698s  predict (RegressionGAM(ones(10,2), ones(10,1)), ones (10,2), "alpha", 'a')
698s 39 tests, 39 passed, 0 known failure, 0 skipped
698s [inst/kstest2.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/kstest2.m
698s ***** error kstest2 ([1,2,3,4,5,5])
698s ***** error kstest2 (ones(2,4), [1,2,3,4,5,5])
698s ***** error kstest2 ([2,3,5,7,3+3i], [1,2,3,4,5,5])
698s ***** error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"tail")
698s ***** error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"tail", "whatever")
698s ***** error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"badoption", 0.51)
698s ***** error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"tail", 0)
698s ***** error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"alpha", 0)
698s ***** error kstest2 ([2,3,4,5,6],[3;5;7;8;7;6;5],"alpha", NaN)
698s ***** error kstest2 ([NaN,NaN,NaN,NaN,NaN],[3;5;7;8;7;6;5],"tail", "unequal")
698s ***** test
698s  load examgrades
698s  [h, p] = kstest2 (grades(:,1), grades(:,2));
698s  assert (h, false);
698s  assert (p, 0.1222791870137312, 1e-14);
698s ***** test
698s  load examgrades
698s  [h, p] = kstest2 (grades(:,1), grades(:,2), "tail", "larger");
698s  assert (h, false);
698s  assert (p, 0.1844421391011258, 1e-14);
698s ***** test
698s  load examgrades
698s  [h, p] = kstest2 (grades(:,1), grades(:,2), "tail", "smaller");
698s  assert (h, false);
698s  assert (p, 0.06115357930171663, 1e-14);
698s ***** test
698s  load examgrades
698s  [h, p] = kstest2 (grades(:,1), grades(:,2), "tail", "smaller", "alpha", 0.1);
698s  assert (h, true);
698s  assert (p, 0.06115357930171663, 1e-14);
698s 14 tests, 14 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/test.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/test.m
698s ***** shared C
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s ***** assert (test (C, 1), logical ([1 1 0 0 0 0 0 0 0 0]'))
698s ***** assert (test (C, 2), logical ([0 0 1 1 0 0 0 0 0 0]'))
698s ***** assert (test (C, 3), logical ([0 0 0 0 1 1 0 0 0 0]'))
698s ***** assert (test (C, 4), logical ([0 0 0 0 0 0 1 1 0 0]'))
698s ***** assert (test (C, 5), logical ([0 0 0 0 0 0 0 0 1 1]'))
698s ***** test
698s  C = set (C, "inds", [1 2 2 2 3 4 3 4 5 5]');
698s ***** assert (test (C), logical ([1 0 0 0 0 0 0 0 0 0]'))
698s ***** assert (test (C, 2), logical ([0 1 1 1 0 0 0 0 0 0]'))
698s ***** assert (test (C, 3), logical ([0 0 0 0 1 0 1 0 0 0]'))
698s 9 tests, 9 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/cvpartition.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/cvpartition.m
698s ***** demo
698s  ## Partition with Fisher iris dataset (n = 150)
698s  ## Stratified by species
698s  load fisheriris
698s  y = species;
698s  ## 10-fold cross-validation partition
698s  c = cvpartition (species, 'KFold', 10)
698s  ## leave-10-out partition
698s  c1 = cvpartition (species, 'HoldOut', 10)
698s  idx1 = test (c, 2);
698s  idx2 = training (c, 2);
698s  ## another leave-10-out partition
698s  c2 = repartition (c1)
698s ***** test
698s  C = cvpartition (ones (10, 1));
698s  assert (isa (C, "cvpartition"), true);
698s ***** test
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s  assert (get (C, "NumObservations"), 10);
698s  assert (get (C, "NumTestSets"), 5);
698s  assert (get (C, "TrainSize"), ones(5,1) * 8);
698s  assert (get (C, "TestSize"), ones (5,1) * 2);
698s  assert (get (C, "inds"), [1 1 2 2 3 3 4 4 5 5]');
698s  assert (get (C, "Type"), "kfold");
698s ***** test
698s  C = cvpartition (ones (10, 1), "KFold", 2);
698s  assert (get (C, "NumObservations"), 10);
698s  assert (get (C, "NumTestSets"), 2);
698s  assert (get (C, "TrainSize"), [5; 5]);
698s  assert (get (C, "TestSize"), [5; 5]);
698s  assert (get (C, "inds"), [1 1 1 1 1 2 2 2 2 2]');
698s  assert (get (C, "Type"), "kfold");
698s ***** test
698s  C = cvpartition (ones (10, 1), "HoldOut", 5);
698s  assert (get (C, "NumObservations"), 10);
698s  assert (get (C, "NumTestSets"), 1);
698s  assert (get (C, "TrainSize"), 5);
698s  assert (get (C, "TestSize"), 5);
698s  assert (class (get (C, "inds")), "logical");
698s  assert (length (get (C, "inds")), 10);
698s  assert (get (C, "Type"), "holdout");
698s ***** test
698s  C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "LeaveOut", 5);
698s  assert (get (C, "NumObservations"), 10);
698s  assert (get (C, "NumTestSets"), 10);
698s  assert (get (C, "TrainSize"), ones (10, 1));
698s  assert (get (C, "TestSize"), ones (10, 1) * 9);
698s  assert (get (C, "inds"), []);
698s  assert (get (C, "Type"), "leaveout");
698s ***** test
698s  C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "resubstitution", 5);
698s  assert (get (C, "NumObservations"), 10);
698s  assert (get (C, "NumTestSets"), 1);
698s  assert (get (C, "TrainSize"), 10);
698s  assert (get (C, "TestSize"), 10);
698s  assert (get (C, "inds"), []);
698s  assert (get (C, "Type"), "resubstitution");
698s ***** test
698s  C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "Given", 2);
698s  assert (get (C, "NumObservations"), 10);
698s  assert (get (C, "NumTestSets"), 10);
698s  assert (get (C, "TrainSize"), ones (10, 1) * 9);
698s  assert (get (C, "TestSize"), ones (10, 1));
698s  assert (get (C, "inds"), [1:10]');
698s  assert (get (C, "Type"), "given");
698s ***** warning<cvpartition: unrecognized type, using KFold.> ...
698s  C = cvpartition ([1 2 3 4 5 6 7 8 9 10], "some", 2);
698s 8 tests, 8 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/set.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/set.m
698s ***** shared C
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s ***** test
698s  Cnew = set (C, "inds", [1 2 2 2 3 4 3 4 5 5]');
698s  assert (get (Cnew, "inds"), [1 2 2 2 3 4 3 4 5 5]');
698s ***** error<set: expecting field/value pairs.> set (C)
698s ***** error<set: expecting field/value pairs.> set (C, "NumObservations")
698s ***** error<set: invalid field some.> set (C, "some", 15)
698s ***** error<set: expecting the field to be a string.> set (C, 15, 15)
698s 5 tests, 5 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/display.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/display.m
698s ***** test
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s  s = evalc ("display (C)");
698s  sout = "K-fold cross validation partition";
698s  assert (strcmpi (s(1:length (sout)), sout), true);
698s ***** test
698s  C = cvpartition (ones (10, 1), "HoldOut", 5);
698s  s = evalc ("display (C)");
698s  sout = "HoldOut cross validation partition";
698s  assert (strcmpi (s(1:length (sout)), sout), true);
698s ***** test
698s  C = cvpartition (ones (10, 1), "LeaveOut", 5);
698s  s = evalc ("display (C)");
698s  sout = "Leave-One-Out cross validation partition";
698s  assert (strcmpi (s(1:length (sout)), sout), true);
698s ***** test
698s  C = cvpartition (ones (10, 1), "resubstitution", 5);
698s  s = evalc ("display (C)");
698s  sout = "Resubstitution cross validation partition";
698s  assert (strcmpi (s(1:length (sout)), sout), true);
698s ***** test
698s  C = cvpartition (ones (10, 1), "Given", 5);
698s  s = evalc ("display (C)");
698s  sout = "Given cross validation partition";
698s  assert (strcmpi (s(1:length (sout)), sout), true);
698s ***** error<Invalid call to display.  Correct usage is> display ()
698s 6 tests, 6 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/repartition.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/repartition.m
698s ***** test
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s  Cnew = repartition (C);
698s  assert (isa (Cnew, "cvpartition"), true);
698s ***** test
698s  C = cvpartition (ones (100, 1), "HoldOut", 5);
698s  Cnew = repartition (C);
698s  indC = get (C, "inds");
698s  indCnew = get (Cnew, "inds");
698s  assert (isequal (indC, indCnew), false);
698s 2 tests, 2 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/get.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/get.m
698s ***** shared C
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s ***** assert (get (C, "NumObservations"), 10);
698s ***** assert (get (C, "NumTestSets"), 5);
698s ***** assert (get (C, "TrainSize"), ones(5,1) * 8);
698s ***** assert (get (C, "TestSize"), ones (5,1) * 2);
698s ***** assert (get (C, "inds"), [1 1 2 2 3 3 4 4 5 5]');
698s ***** assert (get (C, "Type"), "kfold");
698s ***** error<get: invalid property some.> get (C, "some")
698s ***** error<get: expecting the property to be a string.> get (C, 25)
698s ***** error<get: expecting the property to be a string.> get (C, {25})
698s 9 tests, 9 passed, 0 known failure, 0 skipped
698s [inst/@cvpartition/training.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/@cvpartition/training.m
698s ***** shared C
698s  C = cvpartition (ones (10, 1), "KFold", 5);
698s ***** assert (training (C, 1), logical ([0 0 1 1 1 1 1 1 1 1]'))
698s ***** assert (training (C, 2), logical ([1 1 0 0 1 1 1 1 1 1]'))
698s ***** assert (training (C, 3), logical ([1 1 1 1 0 0 1 1 1 1]'))
698s ***** assert (training (C, 4), logical ([1 1 1 1 1 1 0 0 1 1]'))
698s ***** assert (training (C, 5), logical ([1 1 1 1 1 1 1 1 0 0]'))
698s ***** test
698s  C = set (C, "inds", [1 2 2 2 3 4 3 4 5 5]');
698s ***** assert (training (C), logical ([0 1 1 1 1 1 1 1 1 1]'))
698s ***** assert (training (C, 2), logical ([1 0 0 0 1 1 1 1 1 1]'))
698s ***** assert (training (C, 3), logical ([1 1 1 1 0 1 0 1 1 1]'))
698s 9 tests, 9 passed, 0 known failure, 0 skipped
698s [inst/probit.m]
698s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/probit.m
698s ***** assert (probit ([-1, 0, 0.5, 1, 2]), [NaN, -Inf, 0, Inf, NaN])
698s ***** assert (probit ([0.2, 0.99]), norminv ([0.2, 0.99]))
698s ***** error probit ()
699s ***** error probit (1, 2)
699s 4 tests, 4 passed, 0 known failure, 0 skipped
699s [inst/signtest.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/signtest.m
699s ***** test
699s  [pval, h, stats] = signtest ([-ones(1, 1000) 1], 0, "tail", "left");
699s  assert (pval, 1.091701889420221e-218, 1e-14);
699s  assert (h, 1);
699s  assert (stats.zval, -31.5437631079266, 1e-14);
699s ***** test
699s  [pval, h, stats] = signtest ([-2 -1 0 2 1 3 1], 0);
699s  assert (pval, 0.6875000000000006, 1e-14);
699s  assert (h, 0);
699s  assert (stats.zval, NaN);
699s  assert (stats.sign, 4);
699s ***** test
699s  [pval, h, stats] = signtest ([-2 -1 0 2 1 3 1], 0, "method", "approximate");
699s  assert (pval, 0.6830913983096086, 1e-14);
699s  assert (h, 0);
699s  assert (stats.zval, 0.4082482904638631, 1e-14);
699s  assert (stats.sign, 4);
699s ***** error <signtest: X must be a vector.> signtest (ones (2))
699s ***** error <signtest: Y must be either a scalar of a vector.> ...
699s  signtest ([1, 2, 3, 4], ones (2))
699s ***** error <signtest: X and Y vectors have different lengths.> ...
699s  signtest ([1, 2, 3, 4], [1, 2, 3])
699s ***** error <signtest: optional arguments must be in pairs.> ...
699s  signtest ([1, 2, 3, 4], [], 'tail')
699s ***** error <signtest: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
699s  signtest ([1, 2, 3, 4], [], 'alpha', 1.2)
699s ***** error <signtest: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
699s  signtest ([1, 2, 3, 4], [], 'alpha', 0)
699s ***** error <signtest: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
699s  signtest ([1, 2, 3, 4], [], 'alpha', -0.05)
699s ***** error <signtest: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
699s  signtest ([1, 2, 3, 4], [], 'alpha', "a")
699s ***** error <signtest: 'alpha' must be a numeric scalar in the range 0 to 1.> ...
699s  signtest ([1, 2, 3, 4], [], 'alpha', [0.01, 0.05])
699s ***** error <signtest: 'tail' argument must be a character vector.> ...
699s  signtest ([1, 2, 3, 4], [], 'tail', 0.01)
699s ***** error <signtest: 'tail' argument must be a character vector.> ...
699s  signtest ([1, 2, 3, 4], [], 'tail', {"both"})
699s ***** error <signtest: 'tail' value must be either 'both', right' or 'left'.> ...
699s  signtest ([1, 2, 3, 4], [], 'tail', "some")
699s ***** error <signtest: 'tail' value must be either 'both', right' or 'left'.> ...
699s  signtest ([1, 2, 3, 4], [], 'method', 'exact', 'tail', "some")
699s ***** error <signtest: 'method' argument must be a character vector.> ...
699s  signtest ([1, 2, 3, 4], [], 'method', 0.01)
699s ***** error <signtest: 'method' argument must be a character vector.> ...
699s  signtest ([1, 2, 3, 4], [], 'method', {"exact"})
699s ***** error <signtest: 'method' value must be either 'exact' or 'approximate'.> ...
699s  signtest ([1, 2, 3, 4], [], 'method', "some")
699s ***** error <signtest: 'method' value must be either 'exact' or 'approximate'.> ...
699s  signtest ([1, 2, 3, 4], [], 'tail', "both", 'method', "some")
699s 20 tests, 20 passed, 0 known failure, 0 skipped
699s [inst/cl_multinom.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cl_multinom.m
699s ***** demo
699s  CL = cl_multinom ([27; 43; 19; 11], 10000, 0.05)
699s ***** error<Invalid call to cl_multinom.  Correct usage> cl_multinom ();
699s ***** error cl_multinom (1, 2, 3, 4, 5);
699s ***** error<cl_multinom: argument method must be a string.> ...
699s  cl_multinom (1, 2, 3, 4);
699s ***** error<cl_multinom: unknown calculation type.> ...
699s  cl_multinom (1, 2, 3, "some string");
699s 4 tests, 4 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/unidstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/unidstat.m
699s ***** error<unidstat: function called with too few input arguments.> unidstat ()
699s ***** error<unidstat: N must be numeric.> unidstat ({})
699s ***** error<unidstat: N must be numeric.> unidstat ("")
699s ***** error<unidstat: N must not be complex.> unidstat (i)
699s ***** test
699s  N = 1:6;
699s  [m, v] = unidstat (N);
699s  expected_m = [1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000];
699s  expected_v = [0.0000, 0.2500, 0.6667, 1.2500, 2.0000, 2.9167];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s 5 tests, 5 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/nctstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/nctstat.m
699s ***** error<nctstat: function called with too few input arguments.> nctstat ()
699s ***** error<nctstat: function called with too few input arguments.> nctstat (1)
699s ***** error<nctstat: DF and MU must be numeric.> nctstat ({}, 2)
699s ***** error<nctstat: DF and MU must be numeric.> nctstat (1, "")
699s ***** error<nctstat: DF and MU must not be complex.> nctstat (i, 2)
699s ***** error<nctstat: DF and MU must not be complex.> nctstat (1, i)
699s ***** error<nctstat: DF and MU must be of common size or scalars.> ...
699s  nctstat (ones (3), ones (2))
699s ***** error<nctstat: DF and MU must be of common size or scalars.> ...
699s  nctstat (ones (2), ones (3))
699s ***** shared df, mu
699s  df = [2, 0, -1, 1, 4];
699s  mu = [1, NaN, 3, -1, 2];
699s ***** assert (nctstat (df, mu), [1.7725, NaN, NaN, NaN, 2.5066], 1e-4);
699s ***** assert (nctstat ([df(1:2), df(4:5)], 1), [1.7725, NaN, NaN, 1.2533], 1e-4);
699s ***** assert (nctstat ([df(1:2), df(4:5)], 3), [5.3174, NaN, NaN, 3.7599], 1e-4);
699s ***** assert (nctstat ([df(1:2), df(4:5)], 2), [3.5449, NaN, NaN, 2.5066], 1e-4);
699s ***** assert (nctstat (2, [mu(1), mu(3:5)]), [1.7725,5.3174,-1.7725,3.5449], 1e-4);
699s ***** assert (nctstat (0, [mu(1), mu(3:5)]), [NaN, NaN, NaN, NaN]);
699s ***** assert (nctstat (1, [mu(1), mu(3:5)]), [NaN, NaN, NaN, NaN]);
699s ***** assert (nctstat (4, [mu(1), mu(3:5)]), [1.2533,3.7599,-1.2533,2.5066], 1e-4);
699s 16 tests, 16 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/fstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/fstat.m
699s ***** error<fstat: function called with too few input arguments.> fstat ()
699s ***** error<fstat: function called with too few input arguments.> fstat (1)
699s ***** error<fstat: DF1 and DF2 must be numeric.> fstat ({}, 2)
699s ***** error<fstat: DF1 and DF2 must be numeric.> fstat (1, "")
699s ***** error<fstat: DF1 and DF2 must not be complex.> fstat (i, 2)
699s ***** error<fstat: DF1 and DF2 must not be complex.> fstat (1, i)
699s ***** error<fstat: DF1 and DF2 must be of common size or scalars.> ...
699s  fstat (ones (3), ones (2))
699s ***** error<fstat: DF1 and DF2 must be of common size or scalars.> ...
699s  fstat (ones (2), ones (3))
699s ***** test
699s  df1 = 1:6;
699s  df2 = 5:10;
699s  [m, v] = fstat (df1, df2);
699s  expected_mn = [1.6667, 1.5000, 1.4000, 1.3333, 1.2857, 1.2500];
699s  expected_v = [22.2222, 6.7500, 3.4844, 2.2222, 1.5869, 1.2153];
699s  assert (m, expected_mn, 0.001);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  df1 = 1:6;
699s  [m, v] = fstat (df1, 5);
699s  expected_mn = [1.6667, 1.6667, 1.6667, 1.6667, 1.6667, 1.6667];
699s  expected_v = [22.2222, 13.8889, 11.1111, 9.7222, 8.8889, 8.3333];
699s  assert (m, expected_mn, 0.001);
699s  assert (v, expected_v, 0.001);
699s 10 tests, 10 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/expstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/expstat.m
699s ***** error<expstat: function called with too few input arguments.> expstat ()
699s ***** error<expstat: MU must be numeric.> expstat ({})
699s ***** error<expstat: MU must be numeric.> expstat ("")
699s ***** error<expstat: MU must not be complex.> expstat (i)
699s ***** test
699s  mu = 1:6;
699s  [m, v] = expstat (mu);
699s  assert (m, [1, 2, 3, 4, 5, 6], 0.001);
699s  assert (v, [1, 4, 9, 16, 25, 36], 0.001);
699s 5 tests, 5 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/gevstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/gevstat.m
699s ***** error<gevstat: function called with too few input arguments.> gevstat ()
699s ***** error<gevstat: function called with too few input arguments.> gevstat (1)
699s ***** error<gevstat: function called with too few input arguments.> gevstat (1, 2)
699s ***** error<gevstat: K, SIGMA, and MU must be numeric.> gevstat ({}, 2, 3)
699s ***** error<gevstat: K, SIGMA, and MU must be numeric.> gevstat (1, "", 3)
699s ***** error<gevstat: K, SIGMA, and MU must be numeric.> gevstat (1, 2, "")
699s ***** error<gevstat: K, SIGMA, and MU must not be complex.> gevstat (i, 2, 3)
699s ***** error<gevstat: K, SIGMA, and MU must not be complex.> gevstat (1, i, 3)
699s ***** error<gevstat: K, SIGMA, and MU must not be complex.> gevstat (1, 2, i)
699s ***** error<gevstat: K, SIGMA, and MU must be of common size or scalars.> ...
699s  gevstat (ones (3), ones (2), 3)
699s ***** error<gevstat: K, SIGMA, and MU must be of common size or scalars.> ...
699s  gevstat (ones (2), 2, ones (3))
699s ***** error<gevstat: K, SIGMA, and MU must be of common size or scalars.> ...
699s  gevstat (1, ones (2), ones (3))
699s ***** test
699s  k = [-1, -0.5, 0, 0.2, 0.4, 0.5, 1];
699s  sigma = 2;
699s  mu = 1;
699s  [m, v] = gevstat (k, sigma, mu);
699s  expected_m = [1, 1.4551, 2.1544, 2.6423, 3.4460, 4.0898, Inf];
699s  expected_v = [4, 3.4336, 6.5797, 13.3761, 59.3288, Inf, Inf];
699s  assert (m, expected_m, -0.001);
699s  assert (v, expected_v, -0.001);
699s 13 tests, 13 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/loglstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/loglstat.m
699s ***** error<loglstat: function called with too few input arguments.> loglstat ()
699s ***** error<loglstat: function called with too few input arguments.> loglstat (1)
699s ***** error<loglstat: MU and SIGMA must be numeric.> loglstat ({}, 2)
699s ***** error<loglstat: MU and SIGMA must be numeric.> loglstat (1, "")
699s ***** error<loglstat: MU and SIGMA must not be complex.> loglstat (i, 2)
699s ***** error<loglstat: MU and SIGMA must not be complex.> loglstat (1, i)
699s ***** error<loglstat: MU and SIGMA must be of common size or scalars.> ...
699s  loglstat (ones (3), ones (2))
699s ***** error<loglstat: MU and SIGMA must be of common size or scalars.> ...
699s  loglstat (ones (2), ones (3))
699s ***** test
699s  [m, v] = loglstat (0, 1);
699s  assert (m, Inf, 0.001);
699s  assert (v, Inf, 0.001);
699s ***** test
699s  [m, v] = loglstat (0, 0.8);
699s  assert (m, 4.2758, 0.001);
699s  assert (v, Inf, 0.001);
699s ***** test
699s  [m, v] = loglstat (0, 0.6);
699s  assert (m, 1.9820, 0.001);
699s  assert (v, Inf, 0.001);
699s ***** test
699s  [m, v] = loglstat (0, 0.4);
699s  assert (m, 1.3213, 0.001);
699s  assert (v, 2.5300, 0.001);
699s ***** test
699s  [m, v] = loglstat (0, 0.2);
699s  assert (m, 1.0690, 0.001);
699s  assert (v, 0.1786, 0.001);
699s 13 tests, 13 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/nakastat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/nakastat.m
699s ***** error<nakastat: function called with too few input arguments.> nakastat ()
699s ***** error<nakastat: function called with too few input arguments.> nakastat (1)
699s ***** error<nakastat: MU and OMEGA must be numeric.> nakastat ({}, 2)
699s ***** error<nakastat: MU and OMEGA must be numeric.> nakastat (1, "")
699s ***** error<nakastat: MU and OMEGA must not be complex.> nakastat (i, 2)
699s ***** error<nakastat: MU and OMEGA must not be complex.> nakastat (1, i)
699s ***** error<nakastat: MU and OMEGA must be of common size or scalars.> ...
699s  nakastat (ones (3), ones (2))
699s ***** error<nakastat: MU and OMEGA must be of common size or scalars.> ...
699s  nakastat (ones (2), ones (3))
699s ***** test
699s  [m, v] = nakastat (1, 1);
699s  assert (m, 0.8862269254, 1e-10);
699s  assert (v, 0.2146018366, 1e-10);
699s ***** test
699s  [m, v] = nakastat (1, 2);
699s  assert (m, 1.25331413731, 1e-10);
699s  assert (v, 0.42920367321, 1e-10);
699s ***** test
699s  [m, v] = nakastat (2, 1);
699s  assert (m, 0.93998560299, 1e-10);
699s  assert (v, 0.11642706618, 1e-10);
699s 11 tests, 11 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/hnstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/hnstat.m
699s ***** error<hnstat: function called with too few input arguments.> hnstat ()
699s ***** error<hnstat: function called with too few input arguments.> hnstat (1)
699s ***** error<hnstat: MU and SIGMA must be numeric.> hnstat ({}, 2)
699s ***** error<hnstat: MU and SIGMA must be numeric.> hnstat (1, "")
699s ***** error<hnstat: MU and SIGMA must not be complex.> hnstat (i, 2)
699s ***** error<hnstat: MU and SIGMA must not be complex.> hnstat (1, i)
699s ***** error<hnstat: MU and SIGMA must be of common size or scalars.> ...
699s  hnstat (ones (3), ones (2))
699s ***** error<hnstat: MU and SIGMA must be of common size or scalars.> ...
699s  hnstat (ones (2), ones (3))
699s ***** test
699s  [m, v] = hnstat (0, 1);
699s  assert (m, 0.7979, 1e-4);
699s  assert (v, 0.3634, 1e-4);
699s ***** test
699s  [m, v] = hnstat (2, 1);
699s  assert (m, 2.7979, 1e-4);
699s  assert (v, 0.3634, 1e-4);
699s ***** test
699s  [m, v] = hnstat (2, 2);
699s  assert (m, 3.5958, 1e-4);
699s  assert (v, 1.4535, 1e-4);
699s ***** test
699s  [m, v] = hnstat (2, 2.5);
699s  assert (m, 3.9947, 1e-4);
699s  assert (v, 2.2711, 1e-4);
699s ***** test
699s  [m, v] = hnstat (1.5, 0.5);
699s  assert (m, 1.8989, 1e-4);
699s  assert (v, 0.0908, 1e-4);
699s ***** test
699s  [m, v] = hnstat (-1.5, 0.5);
699s  assert (m, -1.1011, 1e-4);
699s  assert (v, 0.0908, 1e-4);
699s 14 tests, 14 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/ricestat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/ricestat.m
699s ***** error<ricestat: function called with too few input arguments.> ricestat ()
699s ***** error<ricestat: function called with too few input arguments.> ricestat (1)
699s ***** error<ricestat: S and SIGMA must be numeric.> ricestat ({}, 2)
699s ***** error<ricestat: S and SIGMA must be numeric.> ricestat (1, "")
699s ***** error<ricestat: S and SIGMA must not be complex.> ricestat (i, 2)
699s ***** error<ricestat: S and SIGMA must not be complex.> ricestat (1, i)
699s ***** error<ricestat: S and SIGMA must be of common size or scalars.> ...
699s  ricestat (ones (3), ones (2))
699s ***** error<ricestat: S and SIGMA must be of common size or scalars.> ...
699s  ricestat (ones (2), ones (3))
699s ***** shared s, sigma
699s  s = [2, 0, -1, 1, 4];
699s  sigma = [1, NaN, 3, -1, 2];
699s ***** assert (ricestat (s, sigma), [2.2724, NaN, NaN, NaN, 4.5448], 1e-4);
699s ***** assert (ricestat ([s(1:2), s(4:5)], 1), [2.2724, 1.2533, 1.5486, 4.1272], 1e-4);
699s ***** assert (ricestat ([s(1:2), s(4:5)], 3), [4.1665, 3.7599, 3.8637, 5.2695], 1e-4);
699s ***** assert (ricestat ([s(1:2), s(4:5)], 2), [3.0971, 2.5066, 2.6609, 4.5448], 1e-4);
699s ***** assert (ricestat (2, [sigma(1), sigma(3:5)]), [2.2724, 4.1665, NaN, 3.0971], 1e-4);
699s ***** assert (ricestat (0, [sigma(1), sigma(3:5)]), [1.2533, 3.7599, NaN, 2.5066], 1e-4);
699s ***** assert (ricestat (1, [sigma(1), sigma(3:5)]), [1.5486, 3.8637, NaN, 2.6609], 1e-4);
699s ***** assert (ricestat (4, [sigma(1), sigma(3:5)]), [4.1272, 5.2695, NaN, 4.5448], 1e-4);
699s 16 tests, 16 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/gpstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/gpstat.m
699s ***** error<gpstat: function called with too few input arguments.> gpstat ()
699s ***** error<gpstat: function called with too few input arguments.> gpstat (1)
699s ***** error<gpstat: function called with too few input arguments.> gpstat (1, 2)
699s ***** error<gpstat: K, SIGMA, and MU must be numeric.> gpstat ({}, 2, 3)
699s ***** error<gpstat: K, SIGMA, and MU must be numeric.> gpstat (1, "", 3)
699s ***** error<gpstat: K, SIGMA, and MU must be numeric.> gpstat (1, 2, "")
699s ***** error<gpstat: K, SIGMA, and MU must not be complex.> gpstat (i, 2, 3)
699s ***** error<gpstat: K, SIGMA, and MU must not be complex.> gpstat (1, i, 3)
699s ***** error<gpstat: K, SIGMA, and MU must not be complex.> gpstat (1, 2, i)
699s ***** error<gpstat: K, SIGMA, and MU must be of common size or scalars.> ...
699s  gpstat (ones (3), ones (2), 3)
699s ***** error<gpstat: K, SIGMA, and MU must be of common size or scalars.> ...
699s  gpstat (ones (2), 2, ones (3))
699s ***** error<gpstat: K, SIGMA, and MU must be of common size or scalars.> ...
699s  gpstat (1, ones (2), ones (3))
699s ***** shared x, y
699s  x = [-Inf, -1, 0, 1/2, 1, Inf];
699s  y = [0, 0.5, 1, 2, Inf, Inf];
699s ***** assert (gpstat (x, ones (1,6), zeros (1,6)), y, eps)
699s ***** assert (gpstat (single (x), 1, 0), single (y), eps("single"))
699s ***** assert (gpstat (x, single (1), 0), single (y), eps("single"))
699s ***** assert (gpstat (x, 1, single (0)), single (y), eps("single"))
699s ***** assert (gpstat (single ([x, NaN]), 1, 0), single ([y, NaN]), eps("single"))
699s ***** assert (gpstat ([x, NaN], single (1), 0), single ([y, NaN]), eps("single"))
699s ***** assert (gpstat ([x, NaN], 1, single (0)), single ([y, NaN]), eps("single"))
699s 19 tests, 19 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/betastat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/betastat.m
699s ***** error<betastat: function called with too few input arguments.> betastat ()
699s ***** error<betastat: function called with too few input arguments.> betastat (1)
699s ***** error<betastat: A and B must be numeric.> betastat ({}, 2)
699s ***** error<betastat: A and B must be numeric.> betastat (1, "")
699s ***** error<betastat: A and B must not be complex.> betastat (i, 2)
699s ***** error<betastat: A and B must not be complex.> betastat (1, i)
699s ***** error<betastat: A and B must be of common size or scalars.> ...
699s  betastat (ones (3), ones (2))
699s ***** error<betastat: A and B must be of common size or scalars.> ...
699s  betastat (ones (2), ones (3))
699s ***** test
699s  a = -2:6;
699s  b = 0.4:0.2:2;
699s  [m, v] = betastat (a, b);
699s  expected_m = [NaN NaN NaN 1/2 2/3.2 3/4.4 4/5.6 5/6.8 6/8];
699s  expected_v = [NaN NaN NaN 0.0833, 0.0558, 0.0402, 0.0309, 0.0250, 0.0208];
699s  assert (m, expected_m, eps*100);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  a = -2:1:6;
699s  [m, v] = betastat (a, 1.5);
699s  expected_m = [NaN NaN NaN 1/2.5 2/3.5 3/4.5 4/5.5 5/6.5 6/7.5];
699s  expected_v = [NaN NaN NaN 0.0686, 0.0544, 0.0404, 0.0305, 0.0237, 0.0188];
699s  assert (m, expected_m);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  a = [14  Inf   10  NaN  10];
699s  b = [12    9  NaN  Inf  12];
699s  [m, v] = betastat (a, b);
699s  expected_m = [14/26 NaN NaN NaN 10/22];
699s  expected_v = [168/18252 NaN NaN NaN 120/11132];
699s  assert (m, expected_m);
699s  assert (v, expected_v);
699s ***** assert (nthargout (1:2, @betastat, 5, []), {[], []})
699s ***** assert (nthargout (1:2, @betastat, [], 5), {[], []})
699s ***** assert (size (betastat (rand (10, 5, 4), rand (10, 5, 4))), [10 5 4])
699s ***** assert (size (betastat (rand (10, 5, 4), 7)), [10 5 4])
699s 15 tests, 15 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/logistat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/logistat.m
699s ***** error<logistat: function called with too few input arguments.> logistat ()
699s ***** error<logistat: function called with too few input arguments.> logistat (1)
699s ***** error<logistat: MU and SIGMA must be numeric.> logistat ({}, 2)
699s ***** error<logistat: MU and SIGMA must be numeric.> logistat (1, "")
699s ***** error<logistat: MU and SIGMA must not be complex.> logistat (i, 2)
699s ***** error<logistat: MU and SIGMA must not be complex.> logistat (1, i)
699s ***** error<logistat: MU and SIGMA must be of common size or scalars.> ...
699s  logistat (ones (3), ones (2))
699s ***** error<logistat: MU and SIGMA must be of common size or scalars.> ...
699s  logistat (ones (2), ones (3))
699s ***** test
699s  [m, v] = logistat (0, 1);
699s  assert (m, 0);
699s  assert (v, 3.2899, 0.001);
699s ***** test
699s  [m, v] = logistat (0, 0.8);
699s  assert (m, 0);
699s  assert (v, 2.1055, 0.001);
699s ***** test
699s  [m, v] = logistat (1, 0.6);
699s  assert (m, 1);
699s  assert (v, 1.1844, 0.001);
699s ***** test
699s  [m, v] = logistat (0, 0.4);
699s  assert (m, 0);
699s  assert (v, 0.5264, 0.001);
699s ***** test
699s  [m, v] = logistat (-1, 0.2);
699s  assert (m, -1);
699s  assert (v, 0.1316, 0.001);
699s 13 tests, 13 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/nbinstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/nbinstat.m
699s ***** error<nbinstat: function called with too few input arguments.> nbinstat ()
699s ***** error<nbinstat: function called with too few input arguments.> nbinstat (1)
699s ***** error<nbinstat: R and PS must be numeric.> nbinstat ({}, 2)
699s ***** error<nbinstat: R and PS must be numeric.> nbinstat (1, "")
699s ***** error<nbinstat: R and PS must not be complex.> nbinstat (i, 2)
699s ***** error<nbinstat: R and PS must not be complex.> nbinstat (1, i)
699s ***** error<nbinstat: R and PS must be of common size or scalars.> ...
699s  nbinstat (ones (3), ones (2))
699s ***** error<nbinstat: R and PS must be of common size or scalars.> ...
699s  nbinstat (ones (2), ones (3))
699s ***** test
699s  r = 1:4;
699s  ps = 0.2:0.2:0.8;
699s  [m, v] = nbinstat (r, ps);
699s  expected_m = [ 4.0000, 3.0000, 2.0000, 1.0000];
699s  expected_v = [20.0000, 7.5000, 3.3333, 1.2500];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  r = 1:4;
699s  [m, v] = nbinstat (r, 0.5);
699s  expected_m = [1, 2, 3, 4];
699s  expected_v = [2, 4, 6, 8];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s 10 tests, 10 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/unifstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/unifstat.m
699s ***** error<unifstat: function called with too few input arguments.> unifstat ()
699s ***** error<unifstat: function called with too few input arguments.> unifstat (1)
699s ***** error<unifstat: A and B must be numeric.> unifstat ({}, 2)
699s ***** error<unifstat: A and B must be numeric.> unifstat (1, "")
699s ***** error<unifstat: A and B must not be complex.> unifstat (i, 2)
699s ***** error<unifstat: A and B must not be complex.> unifstat (1, i)
699s ***** error<unifstat: A and B must be of common size or scalars.> ...
699s  unifstat (ones (3), ones (2))
699s ***** error<unifstat: A and B must be of common size or scalars.> ...
699s  unifstat (ones (2), ones (3))
699s ***** test
699s  a = 1:6;
699s  b = 2:2:12;
699s  [m, v] = unifstat (a, b);
699s  expected_m = [1.5000, 3.0000, 4.5000, 6.0000, 7.5000, 9.0000];
699s  expected_v = [0.0833, 0.3333, 0.7500, 1.3333, 2.0833, 3.0000];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  a = 1:6;
699s  [m, v] = unifstat (a, 10);
699s  expected_m = [5.5000, 6.0000, 6.5000, 7.0000, 7.5000, 8.0000];
699s  expected_v = [6.7500, 5.3333, 4.0833, 3.0000, 2.0833, 1.3333];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s 10 tests, 10 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/binostat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/binostat.m
699s ***** error<binostat: function called with too few input arguments.> binostat ()
699s ***** error<binostat: function called with too few input arguments.> binostat (1)
699s ***** error<binostat: N and PS must be numeric.> binostat ({}, 2)
699s ***** error<binostat: N and PS must be numeric.> binostat (1, "")
699s ***** error<binostat: N and PS must not be complex.> binostat (i, 2)
699s ***** error<binostat: N and PS must not be complex.> binostat (1, i)
699s ***** error<binostat: N and PS must be of common size or scalars.> ...
699s  binostat (ones (3), ones (2))
699s ***** error<binostat: N and PS must be of common size or scalars.> ...
699s  binostat (ones (2), ones (3))
699s ***** test
699s  n = 1:6;
699s  ps = 0:0.2:1;
699s  [m, v] = binostat (n, ps);
699s  expected_m = [0.00, 0.40, 1.20, 2.40, 4.00, 6.00];
699s  expected_v = [0.00, 0.32, 0.72, 0.96, 0.80, 0.00];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  n = 1:6;
699s  [m, v] = binostat (n, 0.5);
699s  expected_m = [0.50, 1.00, 1.50, 2.00, 2.50, 3.00];
699s  expected_v = [0.25, 0.50, 0.75, 1.00, 1.25, 1.50];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s ***** test
699s  n = [-Inf -3 5 0.5 3 NaN 100, Inf];
699s  [m, v] = binostat (n, 0.5);
699s  assert (isnan (m), [true true false true false true false false])
699s  assert (isnan (v), [true true false true false true false false])
699s  assert (m(end), Inf);
699s  assert (v(end), Inf);
699s ***** assert (nthargout (1:2, @binostat, 5, []), {[], []})
699s ***** assert (nthargout (1:2, @binostat, [], 5), {[], []})
699s ***** assert (size (binostat (randi (100, 10, 5, 4), rand (10, 5, 4))), [10 5 4])
699s ***** assert (size (binostat (randi (100, 10, 5, 4), 7)), [10 5 4])
699s 15 tests, 15 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/invgstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/invgstat.m
699s ***** error<invgstat: function called with too few input arguments.> invgstat ()
699s ***** error<invgstat: function called with too few input arguments.> invgstat (1)
699s ***** error<invgstat: MU and LAMBDA must be numeric.> invgstat ({}, 2)
699s ***** error<invgstat: MU and LAMBDA must be numeric.> invgstat (1, "")
699s ***** error<invgstat: MU and LAMBDA must not be complex.> invgstat (i, 2)
699s ***** error<invgstat: MU and LAMBDA must not be complex.> invgstat (1, i)
699s ***** error<invgstat: MU and LAMBDA must be of common size or scalars.> ...
699s  invgstat (ones (3), ones (2))
699s ***** error<invgstat: MU and LAMBDA must be of common size or scalars.> ...
699s  invgstat (ones (2), ones (3))
699s ***** test
699s  [m, v] = invgstat (1, 1);
699s  assert (m, 1);
699s  assert (v, 1);
699s ***** test
699s  [m, v] = invgstat (2, 1);
699s  assert (m, 2);
699s  assert (v, 8);
699s ***** test
699s  [m, v] = invgstat (2, 2);
699s  assert (m, 2);
699s  assert (v, 4);
699s ***** test
699s  [m, v] = invgstat (2, 2.5);
699s  assert (m, 2);
699s  assert (v, 3.2);
699s ***** test
699s  [m, v] = invgstat (1.5, 0.5);
699s  assert (m, 1.5);
699s  assert (v, 6.75);
699s 13 tests, 13 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/raylstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/raylstat.m
699s ***** error<raylstat: function called with too few input arguments.> raylstat ()
699s ***** error<raylstat: SIGMA must be numeric.> raylstat ({})
699s ***** error<raylstat: SIGMA must be numeric.> raylstat ("")
699s ***** error<raylstat: SIGMA must not be complex.> raylstat (i)
699s ***** test
699s  sigma = 1:6;
699s  [m, v] = raylstat (sigma);
699s  expected_m = [1.2533, 2.5066, 3.7599, 5.0133, 6.2666, 7.5199];
699s  expected_v = [0.4292, 1.7168, 3.8628, 6.8673, 10.7301, 15.4513];
699s  assert (m, expected_m, 0.001);
699s  assert (v, expected_v, 0.001);
699s 5 tests, 5 passed, 0 known failure, 0 skipped
699s [inst/dist_stat/poisstat.m]
699s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/poisstat.m
699s ***** error<poisstat: function called with too few input arguments.> poisstat ()
699s ***** error<poisstat: SIGMA must be numeric.> poisstat ({})
699s ***** error<poisstat: SIGMA must be numeric.> poisstat ("")
699s ***** error<poisstat: SIGMA must not be complex.> poisstat (i)
700s ***** test
700s  lambda = 1 ./ (1:6);
700s  [m, v] = poisstat (lambda);
700s  assert (m, lambda);
700s  assert (v, lambda);
700s 5 tests, 5 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/tlsstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/tlsstat.m
700s ***** error<tlsstat: function called with too few input arguments.> tlsstat ()
700s ***** error<tlsstat: function called with too few input arguments.> tlsstat (1)
700s ***** error<tlsstat: function called with too few input arguments.> tlsstat (1, 2)
700s ***** error<tlsstat: MU, SIGMA, and NU must be numeric.> tlsstat ({}, 2, 3)
700s ***** error<tlsstat: MU, SIGMA, and NU must be numeric.> tlsstat (1, "", 3)
700s ***** error<tlsstat: MU, SIGMA, and NU must be numeric.> tlsstat (1, 2, ["d"])
700s ***** error<tlsstat: MU, SIGMA, and NU must not be complex.> tlsstat (i, 2, 3)
700s ***** error<tlsstat: MU, SIGMA, and NU must not be complex.> tlsstat (1, i, 3)
700s ***** error<tlsstat: MU, SIGMA, and NU must not be complex.> tlsstat (1, 2, i)
700s ***** error<tlsstat: MU, SIGMA, and NU must be of common size or scalars.> ...
700s  tlsstat (ones (3), ones (2), 1)
700s ***** error<tlsstat: MU, SIGMA, and NU must be of common size or scalars.> ...
700s  tlsstat (ones (2), 1, ones (3))
700s ***** error<tlsstat: MU, SIGMA, and NU must be of common size or scalars.> ...
700s  tlsstat (1, ones (2), ones (3))
700s ***** test
700s  [m, v] = tlsstat (0, 1, 0);
700s  assert (m, NaN);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (0, 1, 1);
700s  assert (m, NaN);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (2, 1, 1);
700s  assert (m, NaN);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (-2, 1, 1);
700s  assert (m, NaN);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (0, 1, 2);
700s  assert (m, 0);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (2, 1, 2);
700s  assert (m, 2);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (-2, 1, 2);
700s  assert (m, -2);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (0, 2, 2);
700s  assert (m, 0);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (2, 2, 2);
700s  assert (m, 2);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (-2, 2, 2);
700s  assert (m, -2);
700s  assert (v, NaN);
700s ***** test
700s  [m, v] = tlsstat (0, 1, 3);
700s  assert (m, 0);
700s  assert (v, 3);
700s ***** test
700s  [m, v] = tlsstat (0, 2, 3);
700s  assert (m, 0);
700s  assert (v, 6);
700s ***** test
700s  [m, v] = tlsstat (2, 1, 3);
700s  assert (m, 2);
700s  assert (v, 3);
700s ***** test
700s  [m, v] = tlsstat (2, 2, 3);
700s  assert (m, 2);
700s  assert (v, 6);
700s ***** test
700s  [m, v] = tlsstat (-2, 1, 3);
700s  assert (m, -2);
700s  assert (v, 3);
700s ***** test
700s  [m, v] = tlsstat (-2, 2, 3);
700s  assert (m, -2);
700s  assert (v, 6);
700s 28 tests, 28 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/bisastat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/bisastat.m
700s ***** error<bisastat: function called with too few input arguments.> bisastat ()
700s ***** error<bisastat: function called with too few input arguments.> bisastat (1)
700s ***** error<bisastat: BETA and GAMMA must be numeric.> bisastat ({}, 2)
700s ***** error<bisastat: BETA and GAMMA must be numeric.> bisastat (1, "")
700s ***** error<bisastat: BETA and GAMMA must not be complex.> bisastat (i, 2)
700s ***** error<bisastat: BETA and GAMMA must not be complex.> bisastat (1, i)
700s ***** error<bisastat: BETA and GAMMA must be of common size or scalars.> ...
700s  bisastat (ones (3), ones (2))
700s ***** error<bisastat: BETA and GAMMA must be of common size or scalars.> ...
700s  bisastat (ones (2), ones (3))
700s ***** test
700s  beta = 1:6;
700s  gamma = 1:0.2:2;
700s  [m, v] = bisastat (beta, gamma);
700s  expected_m = [1.50, 3.44, 5.94,  9.12,  13.10, 18];
700s  expected_v = [2.25, 16.128, 60.858, 172.032, 409.050, 864];
700s  assert (m, expected_m, 1e-2);
700s  assert (v, expected_v, 1e-3);
700s ***** test
700s  beta = 1:6;
700s  [m, v] = bisastat (beta, 1.5);
700s  expected_m = [2.125, 4.25, 6.375, 8.5, 10.625, 12.75];
700s  expected_v = [8.5781, 34.3125, 77.2031, 137.2500, 214.4531, 308.8125];
700s  assert (m, expected_m, 1e-3);
700s  assert (v, expected_v, 1e-4);
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/gamstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/gamstat.m
700s ***** error<gamstat: function called with too few input arguments.> gamstat ()
700s ***** error<gamstat: function called with too few input arguments.> gamstat (1)
700s ***** error<gamstat: A and B must be numeric.> gamstat ({}, 2)
700s ***** error<gamstat: A and B must be numeric.> gamstat (1, "")
700s ***** error<gamstat: A and B must not be complex.> gamstat (i, 2)
700s ***** error<gamstat: A and B must not be complex.> gamstat (1, i)
700s ***** error<gamstat: A and B must be of common size or scalars.> ...
700s  gamstat (ones (3), ones (2))
700s ***** error<gamstat: A and B must be of common size or scalars.> ...
700s  gamstat (ones (2), ones (3))
700s ***** test
700s  a = 1:6;
700s  b = 1:0.2:2;
700s  [m, v] = gamstat (a, b);
700s  expected_m = [1.00, 2.40, 4.20,  6.40,  9.00, 12.00];
700s  expected_v = [1.00, 2.88, 5.88, 10.24, 16.20, 24.00];
700s  assert (m, expected_m, 0.001);
700s  assert (v, expected_v, 0.001);
700s ***** test
700s  a = 1:6;
700s  [m, v] = gamstat (a, 1.5);
700s  expected_m = [1.50, 3.00, 4.50, 6.00,  7.50,  9.00];
700s  expected_v = [2.25, 4.50, 6.75, 9.00, 11.25, 13.50];
700s  assert (m, expected_m, 0.001);
700s  assert (v, expected_v, 0.001);
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/ncfstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/ncfstat.m
700s ***** error<ncfstat: function called with too few input arguments.> ncfstat ()
700s ***** error<ncfstat: function called with too few input arguments.> ncfstat (1)
700s ***** error<ncfstat: function called with too few input arguments.> ncfstat (1, 2)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must be numeric.> ncfstat ({}, 2, 3)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must be numeric.> ncfstat (1, "", 3)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must be numeric.> ncfstat (1, 2, "")
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must not be complex.> ncfstat (i, 2, 3)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must not be complex.> ncfstat (1, i, 3)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must not be complex.> ncfstat (1, 2, i)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must be of common size or scalars.> ...
700s  ncfstat (ones (3), ones (2), 3)
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must be of common size or scalars.> ...
700s  ncfstat (ones (2), 2, ones (3))
700s ***** error<ncfstat: DF1, DF2, and LAMBDA must be of common size or scalars.> ...
700s  ncfstat (1, ones (2), ones (3))
700s ***** shared df1, df2, lambda
700s  df1 = [2, 0, -1, 1, 4, 5];
700s  df2 = [2, 4, -1, 5, 6, 7];
700s  lambda = [1, NaN, 3, 0, 2, -1];
700s ***** assert (ncfstat (df1, df2, lambda), [NaN, NaN, NaN, 1.6667, 2.25, 1.12], 1e-4);
700s ***** assert (ncfstat (df1(4:6), df2(4:6), 1), [3.3333, 1.8750, 1.6800], 1e-4);
700s ***** assert (ncfstat (df1(4:6), df2(4:6), 2), [5.0000, 2.2500, 1.9600], 1e-4);
700s ***** assert (ncfstat (df1(4:6), df2(4:6), 3), [6.6667, 2.6250, 2.2400], 1e-4);
700s ***** assert (ncfstat (2, [df2(1), df2(4:6)], 5), [NaN,5.8333,5.2500,4.9000], 1e-4);
700s ***** assert (ncfstat (0, [df2(1), df2(4:6)], 5), [NaN, Inf, Inf, Inf]);
700s ***** assert (ncfstat (1, [df2(1), df2(4:6)], 5), [NaN, 10, 9, 8.4], 1e-14);
700s ***** assert (ncfstat (4, [df2(1), df2(4:6)], 5), [NaN, 3.75, 3.375, 3.15], 1e-14);
700s 20 tests, 20 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/hygestat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/hygestat.m
700s ***** error<hygestat: function called with too few input arguments.> hygestat ()
700s ***** error<hygestat: function called with too few input arguments.> hygestat (1)
700s ***** error<hygestat: function called with too few input arguments.> hygestat (1, 2)
700s ***** error<hygestat: M, K, and N must be numeric.> hygestat ({}, 2, 3)
700s ***** error<hygestat: M, K, and N must be numeric.> hygestat (1, "", 3)
700s ***** error<hygestat: M, K, and N must be numeric.> hygestat (1, 2, "")
700s ***** error<hygestat: M, K, and N must not be complex.> hygestat (i, 2, 3)
700s ***** error<hygestat: M, K, and N must not be complex.> hygestat (1, i, 3)
700s ***** error<hygestat: M, K, and N must not be complex.> hygestat (1, 2, i)
700s ***** error<hygestat: M, K, and N must be of common size or scalars.> ...
700s  hygestat (ones (3), ones (2), 3)
700s ***** error<hygestat: M, K, and N must be of common size or scalars.> ...
700s  hygestat (ones (2), 2, ones (3))
700s ***** error<hygestat: M, K, and N must be of common size or scalars.> ...
700s  hygestat (1, ones (2), ones (3))
700s ***** test
700s  m = 4:9;
700s  k = 0:5;
700s  n = 1:6;
700s  [mn, v] = hygestat (m, k, n);
700s  expected_mn = [0.0000, 0.4000, 1.0000, 1.7143, 2.5000, 3.3333];
700s  expected_v = [0.0000, 0.2400, 0.4000, 0.4898, 0.5357, 0.5556];
700s  assert (mn, expected_mn, 0.001);
700s  assert (v, expected_v, 0.001);
700s ***** test
700s  m = 4:9;
700s  k = 0:5;
700s  [mn, v] = hygestat (m, k, 2);
700s  expected_mn = [0.0000, 0.4000, 0.6667, 0.8571, 1.0000, 1.1111];
700s  expected_v = [0.0000, 0.2400, 0.3556, 0.4082, 0.4286, 0.4321];
700s  assert (mn, expected_mn, 0.001);
700s  assert (v, expected_v, 0.001);
700s 14 tests, 14 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/normstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/normstat.m
700s ***** error<normstat: function called with too few input arguments.> normstat ()
700s ***** error<normstat: function called with too few input arguments.> normstat (1)
700s ***** error<normstat: MU and SIGMA must be numeric.> normstat ({}, 2)
700s ***** error<normstat: MU and SIGMA must be numeric.> normstat (1, "")
700s ***** error<normstat: MU and SIGMA must not be complex.> normstat (i, 2)
700s ***** error<normstat: MU and SIGMA must not be complex.> normstat (1, i)
700s ***** error<normstat: MU and SIGMA must be of common size or scalars.> ...
700s  normstat (ones (3), ones (2))
700s ***** error<normstat: MU and SIGMA must be of common size or scalars.> ...
700s  normstat (ones (2), ones (3))
700s ***** test
700s  mu = 1:6;
700s  sigma = 0.2:0.2:1.2;
700s  [m, v] = normstat (mu, sigma);
700s  expected_v = [0.0400, 0.1600, 0.3600, 0.6400, 1.0000, 1.4400];
700s  assert (m, mu);
700s  assert (v, expected_v, 0.001);
700s ***** test
700s  sigma = 0.2:0.2:1.2;
700s  [m, v] = normstat (0, sigma);
700s  expected_mn = [0, 0, 0, 0, 0, 0];
700s  expected_v = [0.0400, 0.1600, 0.3600, 0.6400, 1.0000, 1.4400];
700s  assert (m, expected_mn, 0.001);
700s  assert (v, expected_v, 0.001);
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/wblstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/wblstat.m
700s ***** error<wblstat: function called with too few input arguments.> wblstat ()
700s ***** error<wblstat: function called with too few input arguments.> wblstat (1)
700s ***** error<wblstat: LAMBDA and K must be numeric.> wblstat ({}, 2)
700s ***** error<wblstat: LAMBDA and K must be numeric.> wblstat (1, "")
700s ***** error<wblstat: LAMBDA and K must not be complex.> wblstat (i, 2)
700s ***** error<wblstat: LAMBDA and K must not be complex.> wblstat (1, i)
700s ***** error<wblstat: LAMBDA and K must be of common size or scalars.> ...
700s  wblstat (ones (3), ones (2))
700s ***** error<wblstat: LAMBDA and K must be of common size or scalars.> ...
700s  wblstat (ones (2), ones (3))
700s ***** test
700s  lambda = 3:8;
700s  k = 1:6;
700s  [m, v] = wblstat (lambda, k);
700s  expected_m = [3.0000, 3.5449, 4.4649, 5.4384, 6.4272, 7.4218];
700s  expected_v = [9.0000, 3.4336, 2.6333, 2.3278, 2.1673, 2.0682];
700s  assert (m, expected_m, 0.001);
700s  assert (v, expected_v, 0.001);
700s ***** test
700s  k = 1:6;
700s  [m, v] = wblstat (6, k);
700s  expected_m = [ 6.0000, 5.3174, 5.3579, 5.4384, 5.5090, 5.5663];
700s  expected_v = [36.0000, 7.7257, 3.7920, 2.3278, 1.5923, 1.1634];
700s  assert (m, expected_m, 0.001);
700s  assert (v, expected_v, 0.001);
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/ncx2stat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/ncx2stat.m
700s ***** error<ncx2stat: function called with too few input arguments.> ncx2stat ()
700s ***** error<ncx2stat: function called with too few input arguments.> ncx2stat (1)
700s ***** error<ncx2stat: DF and LAMBDA must be numeric.> ncx2stat ({}, 2)
700s ***** error<ncx2stat: DF and LAMBDA must be numeric.> ncx2stat (1, "")
700s ***** error<ncx2stat: DF and LAMBDA must not be complex.> ncx2stat (i, 2)
700s ***** error<ncx2stat: DF and LAMBDA must not be complex.> ncx2stat (1, i)
700s ***** error<ncx2stat: DF and LAMBDA must be of common size or scalars.> ...
700s  ncx2stat (ones (3), ones (2))
700s ***** error<ncx2stat: DF and LAMBDA must be of common size or scalars.> ...
700s  ncx2stat (ones (2), ones (3))
700s ***** shared df, d1
700s  df = [2, 0, -1, 1, 4];
700s  d1 = [1, NaN, 3, -1, 2];
700s ***** assert (ncx2stat (df, d1), [3, NaN, NaN, NaN, 6]);
700s ***** assert (ncx2stat ([df(1:2), df(4:5)], 1), [3, NaN, 2, 5]);
700s ***** assert (ncx2stat ([df(1:2), df(4:5)], 3), [5, NaN, 4, 7]);
700s ***** assert (ncx2stat ([df(1:2), df(4:5)], 2), [4, NaN, 3, 6]);
700s ***** assert (ncx2stat (2, [d1(1), d1(3:5)]), [3, 5, NaN, 4]);
700s ***** assert (ncx2stat (0, [d1(1), d1(3:5)]), [NaN, NaN, NaN, NaN]);
700s ***** assert (ncx2stat (1, [d1(1), d1(3:5)]), [2, 4, NaN, 3]);
700s ***** assert (ncx2stat (4, [d1(1), d1(3:5)]), [5, 7, NaN, 6]);
700s 16 tests, 16 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/tristat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/tristat.m
700s ***** error<tristat: function called with too few input arguments.> tristat ()
700s ***** error<tristat: function called with too few input arguments.> tristat (1)
700s ***** error<tristat: function called with too few input arguments.> tristat (1, 2)
700s ***** error<tristat: A, B, and C must be numeric.> tristat ("i", 2, 1)
700s ***** error<tristat: A, B, and C must be numeric.> tristat (0, "d", 1)
700s ***** error<tristat: A, B, and C must be numeric.> tristat (0, 3, {})
700s ***** error<tristat: A, B, and C must be real.> tristat (i, 2, 1)
700s ***** error<tristat: A, B, and C must be real.> tristat (0, i, 1)
700s ***** error<tristat: A, B, and C must be real.> tristat (0, 3, i)
700s ***** test
700s  a = 1:5;
700s  b = 3:7;
700s  c = 5:9;
700s  [m, v] = tristat (a, b, c);
700s  expected_m = [3, 4, 5, 6, 7];
700s  assert (m, expected_m);
700s  assert (v, ones (1, 5) * (2/3));
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/plstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/plstat.m
700s ***** shared x, Fx
700s  x = [0, 1, 3, 4, 7, 10];
700s  Fx = [0, 0.2, 0.5, 0.6, 0.7, 1];
700s ***** assert (plstat (x, Fx), 4.15)
700s ***** test
700s  [m, v] = plstat (x, Fx);
700s  assert (v, 10.3775, 1e-14)
700s ***** error<plstat: function called with too few input arguments.> plstat ()
700s ***** error<plstat: function called with too few input arguments.> plstat (1)
700s ***** error<plstat: X and FX must be vectors of equal size.> ...
700s  plstat ([0, 1, 2], [0, 1])
700s ***** error<plstat: X and FX must be at least two-elements long.> ...
700s  plstat ([0], [1])
700s ***** error<plstat: FX must be bounded in the range> ...
700s  plstat ([0, 1, 2], [0, 1, 1.5])
700s ***** error<plstat: FX must be bounded in the range> ...
700s  plstat ([0, 1, 2], [0, i, 1])
700s ***** error<plstat: X and FX must not be complex.> ...
700s  plstat ([0, i, 2], [0, 0.5, 1])
700s ***** error<plstat: X and FX must not be complex.> ...
700s  plstat ([0, i, 2], [0, 0.5i, 1])
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/lognstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/lognstat.m
700s ***** error<lognstat: function called with too few input arguments.> lognstat ()
700s ***** error<lognstat: function called with too few input arguments.> lognstat (1)
700s ***** error<lognstat: MU and SIGMA must be numeric.> lognstat ({}, 2)
700s ***** error<lognstat: MU and SIGMA must be numeric.> lognstat (1, "")
700s ***** error<lognstat: MU and SIGMA must not be complex.> lognstat (i, 2)
700s ***** error<lognstat: MU and SIGMA must not be complex.> lognstat (1, i)
700s ***** error<lognstat: MU and SIGMA must be of common size or scalars.> ...
700s  lognstat (ones (3), ones (2))
700s ***** error<lognstat: MU and SIGMA must be of common size or scalars.> ...
700s  lognstat (ones (2), ones (3))
700s ***** test
700s  mu = 0:0.2:1;
700s  sigma = 0.2:0.2:1.2;
700s  [m, v] = lognstat (mu, sigma);
700s  expected_m = [1.0202, 1.3231, 1.7860, 2.5093,  3.6693,   5.5845];
700s  expected_v = [0.0425, 0.3038, 1.3823, 5.6447, 23.1345, 100.4437];
700s  assert (m, expected_m, 0.001);
700s  assert (v, expected_v, 0.001);
700s ***** test
700s  sigma = 0.2:0.2:1.2;
700s  [m, v] = lognstat (0, sigma);
700s  expected_m = [1.0202, 1.0833, 1.1972, 1.3771, 1.6487,  2.0544];
700s  expected_v = [0.0425, 0.2036, 0.6211, 1.7002, 4.6708, 13.5936];
700s  assert (m, expected_m, 0.001);
700s  assert (v, expected_v, 0.001);
700s 10 tests, 10 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/geostat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/geostat.m
700s ***** error<geostat: function called with too few input arguments.> geostat ()
700s ***** error<geostat: PS must be numeric.> geostat ({})
700s ***** error<geostat: PS must be numeric.> geostat ("")
700s ***** error<geostat: PS must not be complex.> geostat (i)
700s ***** test
700s  ps = 1 ./ (1:6);
700s  [m, v] = geostat (ps);
700s  assert (m, [0, 1, 2, 3, 4, 5], 0.001);
700s  assert (v, [0, 2, 6, 12, 20, 30], 0.001);
700s 5 tests, 5 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/tstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/tstat.m
700s ***** error<tstat: function called with too few input arguments.> tstat ()
700s ***** error<tstat: DF must be numeric.> tstat ({})
700s ***** error<tstat: DF must be numeric.> tstat ("")
700s ***** error<tstat: DF must not be complex.> tstat (i)
700s ***** test
700s  df = 3:8;
700s  [m, v] = tstat (df);
700s  expected_m = [0, 0, 0, 0, 0, 0];
700s  expected_v = [3.0000, 2.0000, 1.6667, 1.5000, 1.4000, 1.3333];
700s  assert (m, expected_m);
700s  assert (v, expected_v, 0.001);
700s 5 tests, 5 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/evstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/evstat.m
700s ***** error<evstat: function called with too few input arguments.> evstat ()
700s ***** error<evstat: function called with too few input arguments.> evstat (1)
700s ***** error<evstat: MU and SIGMA must be numeric.> evstat ({}, 2)
700s ***** error<evstat: MU and SIGMA must be numeric.> evstat (1, "")
700s ***** error<evstat: MU and SIGMA must not be complex.> evstat (i, 2)
700s ***** error<evstat: MU and SIGMA must not be complex.> evstat (1, i)
700s ***** error<evstat: MU and SIGMA must be of common size or scalars.> ...
700s  evstat (ones (3), ones (2))
700s ***** error<evstat: MU and SIGMA must be of common size or scalars.> ...
700s  evstat (ones (2), ones (3))
700s ***** shared x, y0, y1
700s  x = [-5, 0, 1, 2, 3];
700s  y0 = [NaN, NaN, 0.4228, 0.8456, 1.2684];
700s  y1 = [-5.5772, -3.4633, -3.0405, -2.6177, -2.1949];
700s ***** assert (evstat (x, x), y0, 1e-4)
700s ***** assert (evstat (x, x+6), y1, 1e-4)
700s ***** assert (evstat (x, x-6), NaN (1,5))
700s 11 tests, 11 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/chi2stat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/chi2stat.m
700s ***** error<chi2stat: function called with too few input arguments.> chi2stat ()
700s ***** error<chi2stat: DF must be numeric.> chi2stat ({})
700s ***** error<chi2stat: DF must be numeric.> chi2stat ("")
700s ***** error<chi2stat: DF must not be complex.> chi2stat (i)
700s ***** test
700s  df = 1:6;
700s  [m, v] = chi2stat (df);
700s  assert (m, df);
700s  assert (v, [2, 4, 6, 8, 10, 12], 0.001);
700s 5 tests, 5 passed, 0 known failure, 0 skipped
700s [inst/dist_stat/burrstat.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dist_stat/burrstat.m
700s ***** error<burrstat: function called with too few input arguments.> burrstat ()
700s ***** error<burrstat: function called with too few input arguments.> burrstat (1)
700s ***** error<burrstat: function called with too few input arguments.> burrstat (1, 2)
700s ***** error<burrstat: LAMBDA, C, and K must be numeric.> burrstat ({}, 2, 3)
700s ***** error<burrstat: LAMBDA, C, and K must be numeric.> burrstat (1, "", 3)
700s ***** error<burrstat: LAMBDA, C, and K must be numeric.> burrstat (1, 2, "")
700s ***** error<burrstat: LAMBDA, C, and K must not be complex.> burrstat (i, 2, 3)
700s ***** error<burrstat: LAMBDA, C, and K must not be complex.> burrstat (1, i, 3)
700s ***** error<burrstat: LAMBDA, C, and K must not be complex.> burrstat (1, 2, i)
700s ***** error<burrstat: LAMBDA, C, and K must be of common size or scalars.> ...
700s  burrstat (ones (3), ones (2), 3)
700s ***** error<burrstat: LAMBDA, C, and K must be of common size or scalars.> ...
700s  burrstat (ones (2), 2, ones (3))
700s ***** error<burrstat: LAMBDA, C, and K must be of common size or scalars.> ...
700s  burrstat (1, ones (2), ones (3))
700s ***** test
700s  [m, v] = burrstat (1, 2, 5);
700s  assert (m, 0.4295, 1e-4);
700s  assert (v, 0.0655, 1e-4);
700s ***** test
700s  [m, v] = burrstat (1, 1, 1);
700s  assert (m, Inf);
700s  assert (v, Inf);
700s ***** test
700s  [m, v] = burrstat (2, 4, 1);
700s  assert (m, 2.2214, 1e-4);
700s  assert (v, 1.3484, 1e-4);
700s 15 tests, 15 passed, 0 known failure, 0 skipped
700s [inst/Classification/ClassificationDiscriminant.m]
700s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ClassificationDiscriminant.m
700s ***** demo
700s  ## Create discriminant classifier
700s  ## Evaluate some model predictions on new data.
700s 
700s  load fisheriris
700s  x = meas;
700s  y = species;
700s  xc = [min(x); mean(x); max(x)];
700s  obj = fitcdiscr (x, y);
700s  [label, score, cost] = predict (obj, xc);
700s ***** demo
700s  load fisheriris
700s  model = fitcdiscr (meas, species);
700s  X = mean (meas);
700s  Y = {'versicolor'};
700s  ## Compute loss for discriminant model
700s  L = loss (model, X, Y)
700s ***** demo
700s  load fisheriris
700s  mdl = fitcdiscr (meas, species);
700s  X = mean (meas);
700s  Y = {'versicolor'};
700s  ## Margin for discriminant model
700s  m = margin (mdl, X, Y)
700s ***** demo
700s  load fisheriris
700s  x = meas;
700s  y = species;
700s  obj = fitcdiscr (x, y, "gamma", 0.4);
700s  ## Cross-validation for discriminant model
700s  CVMdl = crossval (obj)
700s ***** test
700s  load fisheriris
700s  x = meas;
700s  y = species;
700s  PredictorNames = {'Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'};
700s  Mdl = ClassificationDiscriminant (x, y, "PredictorNames", PredictorNames);
700s  sigma = [0.265008, 0.092721, 0.167514, 0.038401; ...
700s           0.092721, 0.115388, 0.055244, 0.032710; ...
700s           0.167514, 0.055244, 0.185188, 0.042665; ...
700s           0.038401, 0.032710, 0.042665, 0.041882];
700s  mu = [5.0060, 3.4280, 1.4620, 0.2460; ...
700s        5.9360, 2.7700, 4.2600, 1.3260; ...
700s        6.5880, 2.9740, 5.5520, 2.0260];
700s  xCentered = [ 9.4000e-02,  7.2000e-02, -6.2000e-02, -4.6000e-02; ...
700s               -1.0600e-01, -4.2800e-01, -6.2000e-02, -4.6000e-02; ...
700s               -3.0600e-01, -2.2800e-01, -1.6200e-01, -4.6000e-02];
700s  assert (class (Mdl), "ClassificationDiscriminant");
700s  assert ({Mdl.X, Mdl.Y, Mdl.NumObservations}, {x, y, 150})
700s  assert ({Mdl.DiscrimType, Mdl.ResponseName}, {"linear", "Y"})
700s  assert ({Mdl.Gamma, Mdl.MinGamma}, {0, 0}, 1e-15)
700s  assert (Mdl.ClassNames, unique (species))
700s  assert (Mdl.Sigma, sigma, 1e-6)
700s  assert (Mdl.Mu, mu, 1e-14)
700s  assert (Mdl.XCentered([1:3],:), xCentered, 1e-14)
700s  assert (Mdl.LogDetSigma, -9.9585, 1e-4)
700s  assert (Mdl.PredictorNames, PredictorNames)
700s ***** test
700s  load fisheriris
700s  x = meas;
700s  y = species;
700s  Mdl = ClassificationDiscriminant (x, y, "Gamma", 0.5);
700s  sigma = [0.265008, 0.046361, 0.083757, 0.019201; ...
700s           0.046361, 0.115388, 0.027622, 0.016355; ...
700s           0.083757, 0.027622, 0.185188, 0.021333; ...
700s           0.019201, 0.016355, 0.021333, 0.041882];
700s  mu = [5.0060, 3.4280, 1.4620, 0.2460; ...
700s        5.9360, 2.7700, 4.2600, 1.3260; ...
700s        6.5880, 2.9740, 5.5520, 2.0260];
700s  xCentered = [ 9.4000e-02,  7.2000e-02, -6.2000e-02, -4.6000e-02; ...
700s               -1.0600e-01, -4.2800e-01, -6.2000e-02, -4.6000e-02; ...
700s               -3.0600e-01, -2.2800e-01, -1.6200e-01, -4.6000e-02];
700s  assert (class (Mdl), "ClassificationDiscriminant");
700s  assert ({Mdl.X, Mdl.Y, Mdl.NumObservations}, {x, y, 150})
700s  assert ({Mdl.DiscrimType, Mdl.ResponseName}, {"linear", "Y"})
700s  assert ({Mdl.Gamma, Mdl.MinGamma}, {0.5, 0})
700s  assert (Mdl.ClassNames, unique (species))
700s  assert (Mdl.Sigma, sigma, 1e-6)
700s  assert (Mdl.Mu, mu, 1e-14)
700s  assert (Mdl.XCentered([1:3],:), xCentered, 1e-14)
700s  assert (Mdl.LogDetSigma, -8.6884, 1e-4)
700s ***** shared X, Y, MODEL
700s  X = rand (10,2);
700s  Y = [ones(5,1);2*ones(5,1)];
700s  MODEL = ClassificationDiscriminant (X, Y);
700s ***** error<ClassificationDiscriminant: too few input arguments.> ClassificationDiscriminant ()
700s ***** error<ClassificationDiscriminant: too few input arguments.> ...
700s  ClassificationDiscriminant (ones(4, 1))
700s ***** error<ClassificationDiscriminant: number of rows in X and Y must be equal.> ...
700s  ClassificationDiscriminant (ones (4,2), ones (1,4))
700s ***** error<ClassificationDiscriminant: 'PredictorNames' must be supplied as a cellstring array.> ...
700s  ClassificationDiscriminant (X, Y, "PredictorNames", ["A"])
700s ***** error<ClassificationDiscriminant: 'PredictorNames' must be supplied as a cellstring array.> ...
700s  ClassificationDiscriminant (X, Y, "PredictorNames", "A")
700s ***** error<ClassificationDiscriminant: 'PredictorNames' must equal the number of columns in X.> ...
700s  ClassificationDiscriminant (X, Y, "PredictorNames", {"A", "B", "C"})
700s ***** error<ClassificationDiscriminant: 'ResponseName' must be a character vector.> ...
700s  ClassificationDiscriminant (X, Y, "ResponseName", {"Y"})
700s ***** error<ClassificationDiscriminant: 'ResponseName' must be a character vector.> ...
700s  ClassificationDiscriminant (X, Y, "ResponseName", 1)
700s ***** error<ClassificationDiscriminant: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
700s  ClassificationDiscriminant (X, Y, "ClassNames", @(x)x)
700s ***** error<ClassificationDiscriminant: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
700s  ClassificationDiscriminant (X, Y, "ClassNames", ['a'])
700s ***** error<ClassificationDiscriminant: not all 'ClassNames' are present in Y.> ...
700s  ClassificationDiscriminant (X, ones (10,1), "ClassNames", [1, 2])
700s ***** error<ClassificationDiscriminant: not all 'ClassNames' are present in Y.> ...
700s  ClassificationDiscriminant ([1;2;3;4;5], {'a';'b';'a';'a';'b'}, "ClassNames", {'a','c'})
700s ***** error<ClassificationDiscriminant: not all 'ClassNames' are present in Y.> ...
700s  ClassificationDiscriminant (X, logical (ones (10,1)), "ClassNames", [true, false])
700s ***** error<ClassificationDiscriminant: 'Prior' must be either a numeric or a character vector.> ...
700s  ClassificationDiscriminant (X, Y, "Prior", {"1", "2"})
700s ***** error<ClassificationDiscriminant: the elements in 'Prior' do not correspond to the selected classes in Y.> ...
700s  ClassificationDiscriminant (X, ones (10,1), "Prior", [1 2])
700s ***** error<ClassificationDiscriminant: 'Cost' must be a numeric square matrix.> ...
700s  ClassificationDiscriminant (X, Y, "Cost", [1, 2])
700s ***** error<ClassificationDiscriminant: 'Cost' must be a numeric square matrix.> ...
700s  ClassificationDiscriminant (X, Y, "Cost", "string")
700s ***** error<ClassificationDiscriminant: 'Cost' must be a numeric square matrix.> ...
700s  ClassificationDiscriminant (X, Y, "Cost", {eye(2)})
700s ***** error<ClassificationDiscriminant: the number of rows and columns in 'Cost' must correspond to selected classes in Y.> ...
700s  ClassificationDiscriminant (X, Y, "Cost", ones (3))
700s ***** error<ClassificationDiscriminant: Predictor 'x1' has zero within-class variance.> ...
700s  ClassificationDiscriminant (ones (5,2), [1; 1; 2; 2; 2])
700s ***** error<ClassificationDiscriminant: Predictor 'A' has zero within-class variance.> ...
700s  ClassificationDiscriminant (ones (5,2), [1; 1; 2; 2; 2], "PredictorNames", {"A", "B"})
700s ***** error<ClassificationDiscriminant: Predictor 'x2' has zero within-class variance.> ...
700s  ClassificationDiscriminant ([1,2;2,2;3,2;4,2;5,2], ones (5, 1))
700s ***** error<ClassificationDiscriminant: Predictor 'B' has zero within-class variance.> ...
700s  ClassificationDiscriminant ([1,2;2,2;3,2;4,2;5,2], ones (5, 1), "PredictorNames", {"A", "B"})
700s ***** test
700s  load fisheriris
700s  x = meas;
700s  y = species;
700s  Mdl = fitcdiscr (meas, species, "Gamma", 0.5);
700s  [label, score, cost] = predict (Mdl, [2, 2, 2, 2]);
700s  assert (label, {'versicolor'})
700s  assert (score, [0, 0.9999, 0.0001], 1e-4)
700s  assert (cost, [1, 0.0001, 0.9999], 1e-4)
700s  [label, score, cost] = predict (Mdl, [2.5, 2.5, 2.5, 2.5]);
700s  assert (label, {'versicolor'})
700s  assert (score, [0, 0.6368, 0.3632], 1e-4)
700s  assert (cost, [1, 0.3632, 0.6368], 1e-4)
700s ***** test
700s  load fisheriris
700s  x = meas;
700s  y = species;
700s  xc = [min(x); mean(x); max(x)];
700s  Mdl = fitcdiscr (x, y);
700s  [label, score, cost] = predict (Mdl, xc);
700s  l = {'setosa'; 'versicolor'; 'virginica'};
700s  s = [1, 0, 0; 0, 1, 0; 0, 0, 1];
700s  c = [0, 1, 1; 1, 0, 1; 1, 1, 0];
700s  assert (label, l)
700s  assert (score, s, 1e-4)
700s  assert (cost, c, 1e-4)
700s ***** error<ClassificationDiscriminant.predict: too few input arguments.> ...
700s  predict (MODEL)
700s ***** error<ClassificationDiscriminant.predict: XC is empty.> ...
700s  predict (MODEL, [])
700s ***** error<ClassificationDiscriminant.predict: XC must have the same number of predictors as the trained model.> ...
700s  predict (MODEL, 1)
700s ***** test
700s  load fisheriris
700s  model = fitcdiscr (meas, species);
700s  x = mean (meas);
700s  y = {'versicolor'};
700s  L = loss (model, x, y);
700s  assert (L, 0)
700s ***** test
700s  x = [1, 2; 3, 4; 5, 6];
700s  y = {'A'; 'B'; 'A'};
700s  model = fitcdiscr (x, y, "Gamma", 0.4);
700s  x_test = [1, 6; 3, 3];
700s  y_test = {'A'; 'B'};
700s  L = loss (model, x_test, y_test);
700s  assert (L, 0.3333, 1e-4)
700s ***** test
700s  x = [1, 2; 3, 4; 5, 6; 7, 8];
700s  y = ['1'; '2'; '3'; '1'];
700s  model = fitcdiscr (x, y, "gamma" , 0.5);
700s  x_test = [3, 3];
700s  y_test = ['1'];
700s  L = loss (model, x_test, y_test, 'LossFun', 'quadratic');
700s  assert (L, 0.2423, 1e-4)
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6; 7, 8];
701s  y = ['1'; '2'; '3'; '1'];
701s  model = fitcdiscr (x, y, "gamma" , 0.5);
701s  x_test = [3, 3; 5, 7];
701s  y_test = ['1'; '2'];
701s  L = loss (model, x_test, y_test, 'LossFun', 'classifcost');
701s  assert (L, 0.3333, 1e-4)
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6; 7, 8];
701s  y = ['1'; '2'; '3'; '1'];
701s  model = fitcdiscr (x, y, "gamma" , 0.5);
701s  x_test = [3, 3; 5, 7];
701s  y_test = ['1'; '2'];
701s  L = loss (model, x_test, y_test, 'LossFun', 'hinge');
701s  assert (L, 0.5886, 1e-4)
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6; 7, 8];
701s  y = ['1'; '2'; '3'; '1'];
701s  model = fitcdiscr (x, y, "gamma" , 0.5);
701s  x_test = [3, 3; 5, 7];
701s  y_test = ['1'; '2'];
701s  W = [1; 2];
701s  L = loss (model, x_test, y_test, 'LossFun', 'logit', 'Weights', W);
701s  assert (L, 0.5107, 1e-4)
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6];
701s  y = {'A'; 'B'; 'A'};
701s  model = fitcdiscr (x, y, "gamma" , 0.5);
701s  x_with_nan = [1, 2; NaN, 4];
701s  y_test = {'A'; 'B'};
701s  L = loss (model, x_with_nan, y_test);
701s  assert (L, 0.3333, 1e-4)
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6];
701s  y = {'A'; 'B'; 'A'};
701s  model = fitcdiscr (x, y);
701s  x_with_nan = [1, 2; NaN, 4];
701s  y_test = {'A'; 'B'};
701s  L = loss (model, x_with_nan, y_test, 'LossFun', 'logit');
701s  assert (isnan (L))
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6];
701s  y = {'A'; 'B'; 'A'};
701s  model = fitcdiscr (x, y);
701s  customLossFun = @(C, S, W, Cost) sum (W .* sum (abs (C - S), 2));
701s  L = loss (model, x, y, 'LossFun', customLossFun);
701s  assert (L, 0.8889, 1e-4)
701s ***** test
701s  x = [1, 2; 3, 4; 5, 6];
701s  y = [1; 2; 1];
701s  model = fitcdiscr (x, y);
701s  L = loss (model, x, y, 'LossFun', 'classiferror');
701s  assert (L, 0.3333, 1e-4)
701s ***** error<ClassificationDiscriminant.loss: too few input arguments.> ...
701s  loss (MODEL)
701s ***** error<ClassificationDiscriminant.loss: too few input arguments.> ...
701s  loss (MODEL, ones (4,2))
701s ***** error<ClassificationDiscriminant.loss: X is empty.> ...
701s  loss (MODEL, [], zeros (2))
701s ***** error<ClassificationDiscriminant.loss: X must have the same number of predictors as the trained model.> ...
701s  loss (MODEL, 1, zeros (2))
701s ***** error<ClassificationDiscriminant.loss: name-value arguments must be in pairs.> ...
701s  loss (MODEL, ones (4,2), ones (4,1), 'LossFun')
701s ***** error<ClassificationDiscriminant.loss: Y must have the same number of rows as X.> ...
701s  loss (MODEL, ones (4,2), ones (3,1))
701s ***** error<ClassificationDiscriminant.loss: invalid loss function.> ...
701s  loss (MODEL, ones (4,2), ones (4,1), 'LossFun', 'a')
701s ***** error<ClassificationDiscriminant.loss: invalid 'Weights'.> ...
701s  loss (MODEL, ones (4,2), ones (4,1), 'Weights', 'w')
701s  load fisheriris
701s  mdl = fitcdiscr (meas, species);
701s  X = mean (meas);
701s  Y = {'versicolor'};
701s  m = margin (mdl, X, Y);
701s  assert (m, 1, 1e-6)
701s ***** test
701s  X = [1, 2; 3, 4; 5, 6];
701s  Y = [1; 2; 1];
701s  mdl = fitcdiscr (X, Y, "gamma", 0.5);
701s  m = margin (mdl, X, Y);
701s  assert (m, [0.3333; -0.3333; 0.3333], 1e-4)
701s ***** error<ClassificationDiscriminant.margin: too few input arguments.> ...
701s  margin (MODEL)
701s ***** error<ClassificationDiscriminant.margin: too few input arguments.> ...
701s  margin (MODEL, ones (4,2))
701s ***** error<ClassificationDiscriminant.margin: X is empty.> ...
701s  margin (MODEL, [], zeros (2))
701s ***** error<ClassificationDiscriminant.margin: X must have the same number of predictors as the trained model.> ...
701s  margin (MODEL, 1, zeros (2))
701s ***** error<ClassificationDiscriminant.margin: Y must have the same number of rows as X.> ...
701s  margin (MODEL, ones (4,2), ones (3,1))
701s ***** shared x, y, obj
701s  load fisheriris
701s  x = meas;
701s  y = species;
701s  obj = fitcdiscr (x, y, "gamma", 0.4);
701s ***** test
701s  CVMdl = crossval (obj);
701s  assert (class (CVMdl), "ClassificationPartitionedModel")
701s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
701s  assert (CVMdl.KFold == 10)
701s  assert (class (CVMdl.Trained{1}), "CompactClassificationDiscriminant")
701s  assert (CVMdl.CrossValidatedModel, "ClassificationDiscriminant")
701s ***** test
701s  CVMdl = crossval (obj, "KFold", 3);
701s  assert (class (CVMdl), "ClassificationPartitionedModel")
701s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
701s  assert (CVMdl.KFold == 3)
701s  assert (class (CVMdl.Trained{1}), "CompactClassificationDiscriminant")
701s  assert (CVMdl.CrossValidatedModel, "ClassificationDiscriminant")
701s ***** test
701s  CVMdl = crossval (obj, "HoldOut", 0.2);
701s  assert (class (CVMdl), "ClassificationPartitionedModel")
701s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
701s  assert (class (CVMdl.Trained{1}), "CompactClassificationDiscriminant")
701s  assert (CVMdl.CrossValidatedModel, "ClassificationDiscriminant")
701s ***** test
701s  CVMdl = crossval (obj, "LeaveOut", 'on');
701s  assert (class (CVMdl), "ClassificationPartitionedModel")
701s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
701s  assert (class (CVMdl.Trained{1}), "CompactClassificationDiscriminant")
701s  assert (CVMdl.CrossValidatedModel, "ClassificationDiscriminant")
703s ***** test
703s  partition = cvpartition (y, 'KFold', 3);
703s  CVMdl = crossval (obj, 'cvPartition', partition);
703s  assert (class (CVMdl), "ClassificationPartitionedModel")
703s  assert (CVMdl.KFold == 3)
703s  assert (class (CVMdl.Trained{1}), "CompactClassificationDiscriminant")
703s  assert (CVMdl.CrossValidatedModel, "ClassificationDiscriminant")
703s ***** error<ClassificationDiscriminant.crossval: Name-Value arguments must be in pairs.> ...
703s  crossval (obj, "kfold")
703s ***** error<ClassificationDiscriminant.crossval: specify only one of the optional Name-Value paired arguments.>...
703s  crossval (obj, "kfold", 12, "holdout", 0.2)
703s ***** error<ClassificationDiscriminant.crossval: 'KFold' must be an integer value greater than 1.> ...
703s  crossval (obj, "kfold", 'a')
703s ***** error<ClassificationDiscriminant.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
703s  crossval (obj, "holdout", 2)
703s ***** error<ClassificationDiscriminant.crossval: 'Leaveout' must be either 'on' or 'off'.> ...
703s  crossval (obj, "leaveout", 1)
703s ***** error<ClassificationDiscriminant.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
703s  crossval (obj, "cvpartition", 1)
703s 65 tests, 65 passed, 0 known failure, 0 skipped
703s [inst/Classification/CompactClassificationGAM.m]
703s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/CompactClassificationGAM.m
703s ***** demo
703s  ## Create a generalized additive model classifier and its compact version
703s  # and compare their size
703s 
703s  load fisheriris
703s  X = meas;
703s  Y = species;
703s 
703s  Mdl = fitcdiscr (X, Y, 'ClassNames', unique (species))
703s  CMdl = crossval (Mdl)
703s ***** test
703s  Mdl = CompactClassificationGAM ();
703s  assert (class (Mdl), "CompactClassificationGAM")
703s ***** test
703s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
703s  y = [0; 0; 1; 1];
703s  PredictorNames = {'Feature1', 'Feature2', 'Feature3'};
703s  Mdl = fitcgam (x, y, "PredictorNames", PredictorNames);
703s  CMdl = compact (Mdl);
703s  assert (class (CMdl), "CompactClassificationGAM");
703s  assert ({CMdl.NumPredictors, CMdl.ResponseName}, {3, "Y"})
703s  assert (CMdl.ClassNames, {'0'; '1'})
703s  assert (CMdl.PredictorNames, PredictorNames)
703s  assert (CMdl.BaseModel.Intercept, 0)
704s ***** test
704s  load fisheriris
704s  inds = strcmp (species,'versicolor') | strcmp (species,'virginica');
704s  X = meas(inds, :);
704s  Y = species(inds, :)';
704s  Y = strcmp (Y, 'virginica')';
704s  Mdl = fitcgam (X, Y, 'Formula', 'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3');
704s  CMdl = compact (Mdl);
704s  assert (class (CMdl), "CompactClassificationGAM");
704s  assert ({CMdl.NumPredictors, CMdl.ResponseName}, {4, "Y"})
704s  assert (CMdl.ClassNames, {'0'; '1'})
704s  assert (CMdl.Formula, 'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3')
704s  assert (CMdl.PredictorNames, {'x1', 'x2', 'x3', 'x4'})
704s  assert (CMdl.ModelwInt.Intercept, 0)
709s ***** test
709s  X = [2, 3, 5; 4, 6, 8; 1, 2, 3; 7, 8, 9; 5, 4, 3];
709s  Y = [0; 1; 0; 1; 1];
709s  Mdl = fitcgam (X, Y, 'Knots', [4, 4, 4], 'Order', [3, 3, 3]);
709s  CMdl = compact (Mdl);
709s  assert (class (CMdl), "CompactClassificationGAM");
709s  assert ({CMdl.NumPredictors, CMdl.ResponseName}, {3, "Y"})
709s  assert (CMdl.ClassNames, {'0'; '1'})
709s  assert (CMdl.PredictorNames, {'x1', 'x2', 'x3'})
709s  assert (CMdl.Knots, [4, 4, 4])
709s  assert (CMdl.Order, [3, 3, 3])
709s  assert (CMdl.DoF, [7, 7, 7])
709s  assert (CMdl.BaseModel.Intercept, 0.4055, 1e-1)
711s ***** error<CompactClassificationGAM: invalid classification object.> ...
711s  CompactClassificationGAM (1)
711s ***** test
711s  x = [1, 2; 3, 4; 5, 6; 7, 8; 9, 10];
711s  y = [1; 0; 1; 0; 1];
711s  Mdl = fitcgam (x, y, "interactions", "all");
711s  CMdl = compact (Mdl);
711s  l = {'0'; '0'; '0'; '0'; '0'};
711s  s = [0.3760, 0.6240; 0.4259, 0.5741; 0.3760, 0.6240; ...
711s       0.4259, 0.5741; 0.3760, 0.6240];
711s  [labels, scores] = predict (CMdl, x);
711s  assert (class (CMdl), "CompactClassificationGAM");
711s  assert ({CMdl.NumPredictors, CMdl.ResponseName}, {2, "Y"})
711s  assert (CMdl.ClassNames, {'1'; '0'})
711s  assert (CMdl.PredictorNames, {'x1', 'x2'})
711s  assert (CMdl.ModelwInt.Intercept, 0.4055, 1e-1)
711s  assert (labels, l)
711s  assert (scores, s, 1e-1)
713s ***** test
713s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
713s  y = [0; 0; 1; 1];
713s  interactions = [false, true, false; true, false, true; false, true, false];
713s  Mdl = fitcgam (x, y, "learningrate", 0.2, "interactions", interactions);
713s  CMdl = compact (Mdl);
713s  [label, score] = predict (CMdl, x, "includeinteractions", true);
713s  l = {'0'; '0'; '1'; '1'};
713s  s = [0.5106, 0.4894; 0.5135, 0.4865; 0.4864, 0.5136; 0.4847, 0.5153];
713s  assert (class (CMdl), "CompactClassificationGAM");
713s  assert ({CMdl.NumPredictors, CMdl.ResponseName}, {3, "Y"})
713s  assert (CMdl.ClassNames, {'0'; '1'})
713s  assert (CMdl.PredictorNames, {'x1', 'x2', 'x3'})
713s  assert (CMdl.ModelwInt.Intercept, 0)
713s  assert (label, l)
713s  assert (score, s, 1e-1)
717s ***** shared CMdl
717s  Mdl = fitcgam (ones (4,2), ones (4,1));
717s  CMdl = compact (Mdl);
718s ***** error<CompactClassificationGAM.predict: too few input arguments.> ...
718s  predict (CMdl)
718s ***** error<CompactClassificationGAM.predict: XC is empty.> ...
718s  predict (CMdl, [])
718s ***** error<CompactClassificationGAM.predict: XC must have the same number of features as the trained model.> ...
718s  predict (CMdl, 1)
718s 10 tests, 10 passed, 0 known failure, 0 skipped
718s [inst/Classification/ConfusionMatrixChart.m]
718s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ConfusionMatrixChart.m
718s ***** demo
718s  ## Create a simple ConfusionMatrixChart Object
718s 
718s  cm = ConfusionMatrixChart (gca, [1 2; 1 2], {"A","B"}, {"XLabel","LABEL A"})
718s  NormalizedValues = cm.NormalizedValues
718s  ClassLabels = cm.ClassLabels
718s ***** test
718s  hf = figure ("visible", "off");
718s  unwind_protect
718s    cm = ConfusionMatrixChart (gca, [1 2; 1 2], {"A","B"}, {"XLabel","LABEL A"});
718s    assert (isa (cm, "ConfusionMatrixChart"), true);
718s  unwind_protect_cleanup
718s    close (hf);
718s  end_unwind_protect
718s 1 test, 1 passed, 0 known failure, 0 skipped
718s [inst/Classification/CompactClassificationDiscriminant.m]
718s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/CompactClassificationDiscriminant.m
718s ***** demo
718s  ## Create a discriminant analysis classifier and its compact version
718s  # and compare their size
718s 
718s  load fisheriris
718s  X = meas;
718s  Y = species;
718s 
718s  Mdl = fitcdiscr (X, Y, 'ClassNames', unique (species))
718s  CMdl = crossval (Mdl)
718s ***** test
718s  load fisheriris
718s  x = meas;
718s  y = species;
718s  PredictorNames = {'Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'};
718s  Mdl = fitcdiscr (x, y, "PredictorNames", PredictorNames);
718s  CMdl = compact (Mdl);
718s  sigma = [0.265008, 0.092721, 0.167514, 0.038401; ...
718s           0.092721, 0.115388, 0.055244, 0.032710; ...
718s           0.167514, 0.055244, 0.185188, 0.042665; ...
718s           0.038401, 0.032710, 0.042665, 0.041882];
718s  mu = [5.0060, 3.4280, 1.4620, 0.2460; ...
718s        5.9360, 2.7700, 4.2600, 1.3260; ...
718s        6.5880, 2.9740, 5.5520, 2.0260];
718s  xCentered = [ 9.4000e-02,  7.2000e-02, -6.2000e-02, -4.6000e-02; ...
718s               -1.0600e-01, -4.2800e-01, -6.2000e-02, -4.6000e-02; ...
718s               -3.0600e-01, -2.2800e-01, -1.6200e-01, -4.6000e-02];
718s  assert (class (CMdl), "CompactClassificationDiscriminant");
718s  assert ({CMdl.DiscrimType, CMdl.ResponseName}, {"linear", "Y"})
718s  assert ({CMdl.Gamma, CMdl.MinGamma}, {0, 0}, 1e-15)
718s  assert (CMdl.ClassNames, unique (species))
718s  assert (CMdl.Sigma, sigma, 1e-6)
718s  assert (CMdl.Mu, mu, 1e-14)
718s  assert (CMdl.XCentered([1:3],:), xCentered, 1e-14)
718s  assert (CMdl.LogDetSigma, -9.9585, 1e-4)
718s  assert (CMdl.PredictorNames, PredictorNames)
718s ***** test
718s  load fisheriris
718s  x = meas;
718s  y = species;
718s  Mdl = fitcdiscr (x, y, "Gamma", 0.5);
718s  CMdl = compact (Mdl);
718s  sigma = [0.265008, 0.046361, 0.083757, 0.019201; ...
718s           0.046361, 0.115388, 0.027622, 0.016355; ...
718s           0.083757, 0.027622, 0.185188, 0.021333; ...
718s           0.019201, 0.016355, 0.021333, 0.041882];
718s  mu = [5.0060, 3.4280, 1.4620, 0.2460; ...
718s        5.9360, 2.7700, 4.2600, 1.3260; ...
718s        6.5880, 2.9740, 5.5520, 2.0260];
718s  xCentered = [ 9.4000e-02,  7.2000e-02, -6.2000e-02, -4.6000e-02; ...
718s               -1.0600e-01, -4.2800e-01, -6.2000e-02, -4.6000e-02; ...
718s               -3.0600e-01, -2.2800e-01, -1.6200e-01, -4.6000e-02];
718s  assert (class (CMdl), "CompactClassificationDiscriminant");
718s  assert ({CMdl.DiscrimType, CMdl.ResponseName}, {"linear", "Y"})
718s  assert ({CMdl.Gamma, CMdl.MinGamma}, {0.5, 0})
718s  assert (CMdl.ClassNames, unique (species))
718s  assert (CMdl.Sigma, sigma, 1e-6)
718s  assert (CMdl.Mu, mu, 1e-14)
718s  assert (CMdl.XCentered([1:3],:), xCentered, 1e-14)
718s  assert (CMdl.LogDetSigma, -8.6884, 1e-4)
718s ***** error<CompactClassificationDiscriminant: invalid classification object.> ...
718s  CompactClassificationDiscriminant (1)
718s ***** test
718s  load fisheriris
718s  x = meas;
718s  y = species;
718s  Mdl = fitcdiscr (meas, species, "Gamma", 0.5);
718s  CMdl = compact (Mdl);
718s  [label, score, cost] = predict (CMdl, [2, 2, 2, 2]);
718s  assert (label, {'versicolor'})
718s  assert (score, [0, 0.9999, 0.0001], 1e-4)
718s  assert (cost, [1, 0.0001, 0.9999], 1e-4)
718s  [label, score, cost] = predict (CMdl, [2.5, 2.5, 2.5, 2.5]);
718s  assert (label, {'versicolor'})
718s  assert (score, [0, 0.6368, 0.3632], 1e-4)
718s  assert (cost, [1, 0.3632, 0.6368], 1e-4)
718s ***** test
718s  load fisheriris
718s  x = meas;
718s  y = species;
718s  xc = [min(x); mean(x); max(x)];
718s  Mdl = fitcdiscr (x, y);
718s  CMdl = compact (Mdl);
718s  [label, score, cost] = predict (CMdl, xc);
718s  l = {'setosa'; 'versicolor'; 'virginica'};
718s  s = [1, 0, 0; 0, 1, 0; 0, 0, 1];
718s  c = [0, 1, 1; 1, 0, 1; 1, 1, 0];
718s  assert (label, l)
718s  assert (score, s, 1e-4)
718s  assert (cost, c, 1e-4)
718s ***** shared MODEL
718s  X = rand (10,2);
718s  Y = [ones(5,1);2*ones(5,1)];
718s  MODEL = compact (ClassificationDiscriminant (X, Y));
718s ***** error<CompactClassificationDiscriminant.predict: too few input arguments.> ...
718s  predict (MODEL)
718s ***** error<CompactClassificationDiscriminant.predict: XC is empty.> ...
718s  predict (MODEL, [])
718s ***** error<CompactClassificationDiscriminant.predict: XC must have the same number of features as the trained model.> ...
718s  predict (MODEL, 1)
718s ***** test
718s  load fisheriris
718s  model = fitcdiscr (meas, species);
718s  x = mean (meas);
718s  y = {'versicolor'};
718s  L = loss (model, x, y);
718s  assert (L, 0)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6];
718s  y = {'A'; 'B'; 'A'};
718s  model = fitcdiscr (x, y, "Gamma", 0.4);
718s  x_test = [1, 6; 3, 3];
718s  y_test = {'A'; 'B'};
718s  L = loss (model, x_test, y_test);
718s  assert (L, 0.3333, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6; 7, 8];
718s  y = ['1'; '2'; '3'; '1'];
718s  model = fitcdiscr (x, y, "gamma" , 0.5);
718s  x_test = [3, 3];
718s  y_test = ['1'];
718s  L = loss (model, x_test, y_test, 'LossFun', 'quadratic');
718s  assert (L, 0.2423, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6; 7, 8];
718s  y = ['1'; '2'; '3'; '1'];
718s  model = fitcdiscr (x, y, "gamma" , 0.5);
718s  x_test = [3, 3; 5, 7];
718s  y_test = ['1'; '2'];
718s  L = loss (model, x_test, y_test, 'LossFun', 'classifcost');
718s  assert (L, 0.3333, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6; 7, 8];
718s  y = ['1'; '2'; '3'; '1'];
718s  model = fitcdiscr (x, y, "gamma" , 0.5);
718s  x_test = [3, 3; 5, 7];
718s  y_test = ['1'; '2'];
718s  L = loss (model, x_test, y_test, 'LossFun', 'hinge');
718s  assert (L, 0.5886, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6; 7, 8];
718s  y = ['1'; '2'; '3'; '1'];
718s  model = fitcdiscr (x, y, "gamma" , 0.5);
718s  x_test = [3, 3; 5, 7];
718s  y_test = ['1'; '2'];
718s  W = [1; 2];
718s  L = loss (model, x_test, y_test, 'LossFun', 'logit', 'Weights', W);
718s  assert (L, 0.5107, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6];
718s  y = {'A'; 'B'; 'A'};
718s  model = fitcdiscr (x, y, "gamma" , 0.5);
718s  x_with_nan = [1, 2; NaN, 4];
718s  y_test = {'A'; 'B'};
718s  L = loss (model, x_with_nan, y_test);
718s  assert (L, 0.3333, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6];
718s  y = {'A'; 'B'; 'A'};
718s  model = fitcdiscr (x, y);
718s  x_with_nan = [1, 2; NaN, 4];
718s  y_test = {'A'; 'B'};
718s  L = loss (model, x_with_nan, y_test, 'LossFun', 'logit');
718s  assert (isnan (L))
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6];
718s  y = {'A'; 'B'; 'A'};
718s  model = fitcdiscr (x, y);
718s  customLossFun = @(C, S, W, Cost) sum (W .* sum (abs (C - S), 2));
718s  L = loss (model, x, y, 'LossFun', customLossFun);
718s  assert (L, 0.8889, 1e-4)
718s ***** test
718s  x = [1, 2; 3, 4; 5, 6];
718s  y = [1; 2; 1];
718s  model = fitcdiscr (x, y);
718s  L = loss (model, x, y, 'LossFun', 'classiferror');
718s  assert (L, 0.3333, 1e-4)
718s ***** error<CompactClassificationDiscriminant.loss: too few input arguments.> ...
718s  loss (MODEL)
718s ***** error<CompactClassificationDiscriminant.loss: too few input arguments.> ...
718s  loss (MODEL, ones (4,2))
718s ***** error<CompactClassificationDiscriminant.loss: name-value arguments must be in pairs.> ...
718s  loss (MODEL, ones (4,2), ones (4,1), 'LossFun')
718s ***** error<CompactClassificationDiscriminant.loss: Y must have the same number of rows as X.> ...
718s  loss (MODEL, ones (4,2), ones (3,1))
718s ***** error<CompactClassificationDiscriminant.loss: invalid loss function.> ...
718s  loss (MODEL, ones (4,2), ones (4,1), 'LossFun', 'a')
718s ***** error<CompactClassificationDiscriminant.loss: invalid 'Weights'.> ...
718s  loss (MODEL, ones (4,2), ones (4,1), 'Weights', 'w')
718s  load fisheriris
718s  mdl = fitcdiscr (meas, species);
718s  X = mean (meas);
718s  Y = {'versicolor'};
718s  m = margin (mdl, X, Y);
718s  assert (m, 1, 1e-6)
719s ***** test
719s  X = [1, 2; 3, 4; 5, 6];
719s  Y = [1; 2; 1];
719s  mdl = fitcdiscr (X, Y, "gamma", 0.5);
719s  m = margin (mdl, X, Y);
719s  assert (m, [0.3333; -0.3333; 0.3333], 1e-4)
719s ***** error<CompactClassificationDiscriminant.margin: too few input arguments.> ...
719s  margin (MODEL)
719s ***** error<CompactClassificationDiscriminant.margin: too few input arguments.> ...
719s  margin (MODEL, ones (4,2))
719s ***** error<CompactClassificationDiscriminant.margin: Y must have the same number of rows as X.> ...
719s  margin (MODEL, ones (4,2), ones (3,1))
719s 28 tests, 28 passed, 0 known failure, 0 skipped
719s [inst/Classification/ClassificationNeuralNetwork.m]
719s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ClassificationNeuralNetwork.m
719s ***** error<ClassificationNeuralNetwork: too few input arguments.> ...
719s  ClassificationNeuralNetwork ()
719s ***** error<ClassificationNeuralNetwork: too few input arguments.> ...
719s  ClassificationNeuralNetwork (ones(10,2))
719s ***** error<ClassificationNeuralNetwork: number of rows in X and Y must be equal.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones (5,1))
719s ***** error<ClassificationNeuralNetwork: 'Standardize' must be either true or false.> ...
719s  ClassificationNeuralNetwork (ones (5,3), ones (5,1), "standardize", "a")
719s ***** error<ClassificationNeuralNetwork: 'PredictorNames' must be supplied as a cellstring array.> ...
719s  ClassificationNeuralNetwork (ones (5,2), ones (5,1), "PredictorNames", ["A"])
719s ***** error<ClassificationNeuralNetwork: 'PredictorNames' must be supplied as a cellstring array.> ...
719s  ClassificationNeuralNetwork (ones (5,2), ones (5,1), "PredictorNames", "A")
719s ***** error<ClassificationNeuralNetwork: 'PredictorNames' must have the same number of columns as X.> ...
719s  ClassificationNeuralNetwork (ones (5,2), ones (5,1), "PredictorNames", {"A", "B", "C"})
719s ***** error<ClassificationNeuralNetwork: 'ResponseName' must be a character vector.> ...
719s  ClassificationNeuralNetwork (ones (5,2), ones (5,1), "ResponseName", {"Y"})
719s ***** error<ClassificationNeuralNetwork: 'ResponseName' must be a character vector.> ...
719s  ClassificationNeuralNetwork (ones (5,2), ones (5,1), "ResponseName", 1)
719s ***** error<ClassificationNeuralNetwork: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones (10,1), "ClassNames", @(x)x)
719s ***** error<ClassificationNeuralNetwork: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones (10,1), "ClassNames", ['a'])
719s ***** error<ClassificationNeuralNetwork: not all 'ClassNames' are present in Y.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones (10,1), "ClassNames", [1, 2])
719s ***** error<ClassificationNeuralNetwork: not all 'ClassNames' are present in Y.> ...
719s  ClassificationNeuralNetwork (ones(5,2), {'a';'b';'a';'a';'b'}, "ClassNames", {'a','c'})
719s ***** error<ClassificationNeuralNetwork: not all 'ClassNames' are present in Y.> ...
719s  ClassificationNeuralNetwork (ones(10,2), logical (ones (10,1)), "ClassNames", [true, false])
719s ***** error<ClassificationNeuralNetwork: 'LayerSizes' must be a positive integer vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LayerSizes", -1)
719s ***** error<ClassificationNeuralNetwork: 'LayerSizes' must be a positive integer vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LayerSizes", 0.5)
719s ***** error<ClassificationNeuralNetwork: 'LayerSizes' must be a positive integer vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LayerSizes", [1,-2])
719s ***** error<ClassificationNeuralNetwork: 'LayerSizes' must be a positive integer vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LayerSizes", [10,20,30.5])
719s ***** error<ClassificationNeuralNetwork: 'LearningRate' must be a positive scalar.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LearningRate", -0.1)
719s ***** error<ClassificationNeuralNetwork: 'LearningRate' must be a positive scalar.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LearningRate", [0.1, 0.01])
719s ***** error<ClassificationNeuralNetwork: 'LearningRate' must be a positive scalar.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LearningRate", "a")
719s ***** error<ClassificationNeuralNetwork: 'Activations' must be a character vector or a cellstring vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "Activations", 123)
719s ***** error<ClassificationNeuralNetwork: unsupported 'Activation' function.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "Activations", "unsupported_type")
719s ***** error<ClassificationNeuralNetwork: unsupported 'Activation' functions.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "LayerSizes", [10, 5], ...
719s  "Activations", {"sigmoid", "unsupported_type"})
719s ***** error<ClassificationNeuralNetwork: 'Activations' vector does not match the number of layers.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "Activations", {"sigmoid", "relu", "softmax"})
719s ***** error<ClassificationNeuralNetwork: 'OutputLayerActivation' must be a character vector.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "OutputLayerActivation", 123)
719s ***** error<ClassificationNeuralNetwork: unsupported 'OutputLayerActivation' function.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "OutputLayerActivation", "unsupported_type")
719s ***** error<ClassificationNeuralNetwork: 'IterationLimit' must be a positive integer.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "IterationLimit", -1)
719s ***** error<ClassificationNeuralNetwork: 'IterationLimit' must be a positive integer.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "IterationLimit", 0.5)
719s ***** error<ClassificationNeuralNetwork: 'IterationLimit' must be a positive integer.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "IterationLimit", [1,2])
719s ***** error<ClassificationNeuralNetwork: 'ScoreTransform' must be a character vector or a function handle.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "ScoreTransform", [1,2])
719s ***** error<ClassificationNeuralNetwork: unrecognized 'ScoreTransform' function.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "ScoreTransform", "unsupported_type")
719s ***** error<ClassificationNeuralNetwork: invalid parameter name in optional pair arguments.> ...
719s  ClassificationNeuralNetwork (ones(10,2), ones(10,1), "some", "some")
719s ***** error<ClassificationNeuralNetwork: invalid values in X.> ...
719s  ClassificationNeuralNetwork ([1;2;3;'a';4], ones (5,1))
719s ***** error<ClassificationNeuralNetwork: invalid values in X.> ...
719s  ClassificationNeuralNetwork ([1;2;3;Inf;4], ones (5,1))
719s ***** shared x, y, objST, Mdl
719s  load fisheriris
719s  x = meas;
719s  y = grp2idx (species);
719s  Mdl = fitcnet (x, y, "IterationLimit", 100);
719s ***** error<ClassificationNeuralNetwork.predict: too few input arguments.> ...
719s  predict (Mdl)
719s ***** error<ClassificationNeuralNetwork.predict: XC is empty.> ...
719s  predict (Mdl, [])
719s ***** error<ClassificationNeuralNetwork.predict: XC must have the same number of predictors as the trained model.> ...
719s  predict (Mdl, 1)
719s ***** test
719s  objST = fitcnet (x, y, "IterationLimit", 100);
719s  objST.ScoreTransform = "a";
719s ***** error<ClassificationNeuralNetwork.predict: 'ScoreTransform' must be a 'function_handle' object.> ...
719s  [labels, scores] = predict (objST, x);
719s ***** error<ClassificationNeuralNetwork.resubPredict: 'ScoreTransform' must be a 'function_handle' object.> ...
719s  [labels, scores] = resubPredict (objST);
719s ***** test
719s  CVMdl = crossval (Mdl, "KFold", 5);
719s  assert (class (CVMdl), "ClassificationPartitionedModel")
719s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
719s  assert (CVMdl.KFold == 5)
719s  assert (class (CVMdl.Trained{1}), "CompactClassificationNeuralNetwork")
719s  assert (CVMdl.CrossValidatedModel, "ClassificationNeuralNetwork")
719s ***** test
719s  CVMdl = crossval (Mdl, "HoldOut", 0.2);
719s  assert (class (CVMdl), "ClassificationPartitionedModel")
719s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
719s  assert (class (CVMdl.Trained{1}), "CompactClassificationNeuralNetwork")
719s  assert (CVMdl.CrossValidatedModel, "ClassificationNeuralNetwork")
719s ***** error<ClassificationNeuralNetwork.crossval: Name-Value arguments must be in pairs.> ...
719s  crossval (Mdl, "KFold")
719s ***** error<ClassificationNeuralNetwork.crossval: specify only one of the optional Name-Value paired arguments.> ...
719s  crossval (Mdl, "KFold", 5, "leaveout", 'on')
719s ***** error<ClassificationNeuralNetwork.crossval: 'KFold' must be an integer value greater than 1.> ...
719s  crossval (Mdl, "KFold", 'a')
719s ***** error<ClassificationNeuralNetwork.crossval: 'KFold' must be an integer value greater than 1.> ...
719s  crossval (Mdl, "KFold", 1)
719s ***** error<ClassificationNeuralNetwork.crossval: 'KFold' must be an integer value greater than 1.> ...
719s  crossval (Mdl, "KFold", -1)
719s ***** error<ClassificationNeuralNetwork.crossval: 'KFold' must be an integer value greater than 1.> ...
719s  crossval (Mdl, "KFold", 11.5)
719s ***** error<ClassificationNeuralNetwork.crossval: 'KFold' must be an integer value greater than 1.> ...
719s  crossval (Mdl, "KFold", [1,2])
719s ***** error<ClassificationNeuralNetwork.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
719s  crossval (Mdl, "Holdout", 'a')
719s ***** error<ClassificationNeuralNetwork.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
719s  crossval (Mdl, "Holdout", 11.5)
719s ***** error<ClassificationNeuralNetwork.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
719s  crossval (Mdl, "Holdout", -1)
719s ***** error<ClassificationNeuralNetwork.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
719s  crossval (Mdl, "Holdout", 0)
719s ***** error<ClassificationNeuralNetwork.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
719s  crossval (Mdl, "Holdout", 1)
719s ***** error<ClassificationNeuralNetwork.crossval: 'Leaveout' must be either 'on' or 'off'.> ...
719s  crossval (Mdl, "Leaveout", 1)
719s ***** error<ClassificationNeuralNetwork.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
719s  crossval (Mdl, "CVPartition", 1)
719s ***** error<ClassificationNeuralNetwork.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
719s  crossval (Mdl, "CVPartition", 'a')
719s ***** error<ClassificationNeuralNetwork.crossval: invalid parameter name in optional paired arguments> ...
719s  crossval (Mdl, "some", "some")
719s 59 tests, 59 passed, 0 known failure, 0 skipped
719s [inst/Classification/CompactClassificationNeuralNetwork.m]
719s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/CompactClassificationNeuralNetwork.m
719s ***** demo
719s  ## Create a neural network classifier and its compact version
719s  # and compare their size
719s 
719s  load fisheriris
719s  X = meas;
719s  Y = species;
719s 
719s  Mdl = fitcnet (X, Y, 'ClassNames', unique (species))
719s  CMdl = crossval (Mdl)
719s ***** error<CompactClassificationDiscriminant: invalid classification object.> ...
719s  CompactClassificationDiscriminant (1)
719s ***** shared x, y, CMdl
719s  load fisheriris
719s  x = meas;
719s  y = grp2idx (species);
719s  Mdl = fitcnet (x, y, "IterationLimit", 100);
719s  CMdl = compact (Mdl);
719s ***** error<CompactClassificationNeuralNetwork.predict: too few input arguments.> ...
719s  predict (CMdl)
719s ***** error<CompactClassificationNeuralNetwork.predict: XC is empty.> ...
719s  predict (CMdl, [])
719s ***** error<CompactClassificationNeuralNetwork.predict: XC must have the same number of predictors as the trained neural network.> ...
719s  predict (CMdl, 1)
719s ***** test
719s  CMdl.ScoreTransform = "a";
719s ***** error<CompactClassificationNeuralNetwork.predict: 'ScoreTransform' must be a 'function_handle' object.> ...
719s  [labels, scores] = predict (CMdl, x);
719s 6 tests, 6 passed, 0 known failure, 0 skipped
719s [inst/Classification/CompactClassificationSVM.m]
719s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/CompactClassificationSVM.m
719s ***** demo
719s  ## Create a support vectors machine classifier and its compact version
719s  # and compare their size
719s 
719s  load fisheriris
719s  X = meas;
719s  Y = species;
719s 
719s  Mdl = fitcsvm (X, Y, 'ClassNames', unique (species))
719s  CMdl = crossval (Mdl)
719s ***** error<CompactClassificationSVM: invalid classification object.> ...
719s  CompactClassificationSVM (1)
719s ***** shared x, y, CMdl
719s  load fisheriris
719s  inds = ! strcmp (species, 'setosa');
719s  x = meas(inds, 3:4);
719s  y = grp2idx (species(inds));
720s ***** test
720s  xc = [min(x); mean(x); max(x)];
720s  Mdl = fitcsvm (x, y, 'KernelFunction', 'rbf', 'Tolerance', 1e-7);
720s  CMdl = compact (Mdl);
720s  assert (isempty (CMdl.Alpha), true)
720s  assert (sum (CMdl.IsSupportVector), numel (CMdl.Beta))
720s  [label, score] = predict (CMdl, xc);
720s  assert (label, [1; 2; 2]);
720s  assert (score(:,1), [0.99285; -0.080296; -0.93694], 1e-5);
720s  assert (score(:,1), -score(:,2), eps)
720s ***** test
720s  Mdl = fitcsvm (x, y);
720s  CMdl = compact (Mdl);
720s  assert (isempty (CMdl.Beta), true)
720s  assert (sum (CMdl.IsSupportVector), numel (CMdl.Alpha))
720s  assert (numel (CMdl.Alpha), 24)
720s  assert (CMdl.Bias, -14.415, 1e-3)
720s  xc = [min(x); mean(x); max(x)];
720s  label = predict (CMdl, xc);
720s  assert (label, [1; 2; 2]);
720s ***** error<CompactClassificationSVM.predict: too few input arguments.> ...
720s  predict (CMdl)
720s ***** error<CompactClassificationSVM.predict: XC is empty.> ...
720s  predict (CMdl, [])
720s ***** error<CompactClassificationSVM.predict: XC must have the same number of predictors as the trained SVM model.> ...
720s  predict (CMdl, 1)
720s ***** test
720s  CMdl.ScoreTransform = "a";
720s ***** error<CompactClassificationSVM.predict: 'ScoreTransform' must be a 'function_handle' object.> ...
720s  [labels, scores] = predict (CMdl, x);
720s ***** test
720s  rand ("seed", 1);
720s  C = cvpartition (y, 'HoldOut', 0.15);
720s  Mdl = fitcsvm (x(training (C),:), y(training (C)), ...
720s                 'KernelFunction', 'rbf', 'Tolerance', 1e-7);
720s  CMdl = compact (Mdl);
720s  testInds = test (C);
720s  expected_margin = [2.0000;  0.8579;  1.6690;  3.4141;  3.4552; ...
720s                     2.6605;  3.5251; -4.0000; -6.3411; -6.4511; ...
720s                    -3.0532; -7.5054; -1.6700; -5.6227; -7.3640];
720s  computed_margin = margin (CMdl, x(testInds,:), y(testInds,:));
720s  assert (computed_margin, expected_margin, 1e-4);
720s ***** error<CompactClassificationSVM.margin: too few input arguments.> ...
720s  margin (CMdl)
720s ***** error<CompactClassificationSVM.margin: too few input arguments.> ...
720s  margin (CMdl, zeros (2))
720s ***** error<CompactClassificationSVM.margin: X is empty.> ...
720s  margin (CMdl, [], 1)
720s ***** error<CompactClassificationSVM.margin: X must have the same number of predictors as the trained SVM model.> ...
720s  margin (CMdl, 1, 1)
720s ***** error<CompactClassificationSVM.margin: Y is empty.> ...
720s  margin (CMdl, [1, 2], [])
720s ***** error<CompactClassificationSVM.margin: Y must have the same number of rows as X.> ...
720s  margin (CMdl, [1, 2], [1; 2])
720s ***** test
720s  rand ("seed", 1);
720s  C = cvpartition (y, 'HoldOut', 0.15);
720s  Mdl = fitcsvm (x(training (C),:), y(training (C)), ...
720s                 'KernelFunction', 'rbf', 'Tolerance', 1e-7);
720s  CMdl = compact (Mdl);
720s  testInds = test (C);
720s  L1 = loss (CMdl, x(testInds,:), y(testInds,:), 'LossFun', 'binodeviance');
720s  L2 = loss (CMdl, x(testInds,:), y(testInds,:), 'LossFun', 'classiferror');
720s  L3 = loss (CMdl, x(testInds,:), y(testInds,:), 'LossFun', 'exponential');
720s  L4 = loss (CMdl, x(testInds,:), y(testInds,:), 'LossFun', 'hinge');
720s  L5 = loss (CMdl, x(testInds,:), y(testInds,:), 'LossFun', 'logit');
720s  L6 = loss (CMdl, x(testInds,:), y(testInds,:), 'LossFun', 'quadratic');
720s  assert (L1, 2.8711, 1e-4);
720s  assert (L2, 0.5333, 1e-4);
720s  assert (L3, 10.9685, 1e-4);
720s  assert (L4, 1.9827, 1e-4);
720s  assert (L5, 1.5849, 1e-4);
720s  assert (L6, 7.6739, 1e-4);
720s ***** error<CompactClassificationSVM.loss: too few input arguments.> ...
720s  loss (CMdl)
720s ***** error<CompactClassificationSVM.loss: too few input arguments.> ...
720s  loss (CMdl, zeros (2))
720s ***** error<CompactClassificationSVM.loss: Name-Value arguments must be in pairs.> ...
720s  loss (CMdl, [1, 2], 1, "LossFun")
720s ***** error<CompactClassificationSVM.loss: X is empty.> ...
720s  loss (CMdl, [], zeros (2))
720s ***** error<CompactClassificationSVM.loss: X must have the same number of predictors as the trained SVM model.> ...
720s  loss (CMdl, 1, zeros (2))
720s ***** error<CompactClassificationSVM.loss: Y is empty.> ...
720s  loss (CMdl, [1, 2], [])
720s ***** error<CompactClassificationSVM.loss: Y must have the same number of rows as X.> ...
720s  loss (CMdl, [1, 2], [1; 2])
720s ***** error<CompactClassificationSVM.loss: 'LossFun' must be a character vector.> ...
720s  loss (CMdl, [1, 2], 1, "LossFun", 1)
720s ***** error<CompactClassificationSVM.loss: unsupported Loss function.> ...
720s  loss (CMdl, [1, 2], 1, "LossFun", "some")
720s ***** error<CompactClassificationSVM.loss: 'Weights' must be a numeric vector.> ...
720s  loss (CMdl, [1, 2], 1, "Weights", ['a', 'b'])
720s ***** error<CompactClassificationSVM.loss: 'Weights' must be a numeric vector.> ...
720s  loss (CMdl, [1, 2], 1, "Weights", 'a')
720s ***** error<CompactClassificationSVM.loss: size of 'Weights' must be equal to the number of rows in X.> ...
720s  loss (CMdl, [1, 2], 1, "Weights", [1, 2])
720s ***** error<CompactClassificationSVM.loss: invalid parameter name in optional pair arguments.> ...
720s  loss (CMdl, [1, 2], 1, "some", "some")
720s 29 tests, 29 passed, 0 known failure, 0 skipped
720s [inst/Classification/ClassificationKNN.m]
720s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ClassificationKNN.m
720s ***** demo
720s  ## Create a k-nearest neighbor classifier for Fisher's iris data with k = 5.
720s  ## Evaluate some model predictions on new data.
720s 
720s  load fisheriris
720s  x = meas;
720s  y = species;
720s  xc = [min(x); mean(x); max(x)];
720s  obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1);
720s  [label, score, cost] = predict (obj, xc)
720s ***** demo
720s  load fisheriris
720s  x = meas;
720s  y = species;
720s  obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1);
720s 
720s  ## Create a cross-validated model
720s  CVMdl = crossval (obj)
720s ***** demo
720s  load fisheriris
720s  x = meas;
720s  y = species;
720s  covMatrix = cov (x);
720s 
720s  ## Fit the k-NN model using the 'mahalanobis' distance
720s  ## and the custom covariance matrix
720s  obj = fitcknn(x, y, 'NumNeighbors', 5, 'Distance','mahalanobis', ...
720s  'Cov', covMatrix);
720s 
720s  ## Create a partition model using cvpartition
720s  Partition = cvpartition (size (x, 1), 'kfold', 12);
720s 
720s  ## Create cross-validated model using 'cvPartition' name-value argument
720s  CVMdl = crossval (obj, 'cvPartition', Partition)
720s 
720s  ## Access the trained model from first fold of cross-validation
720s  CVMdl.Trained{1}
720s ***** demo
720s  X = [1, 2; 3, 4; 5, 6];
720s  Y = {'A'; 'B'; 'A'};
720s  model = fitcknn (X, Y);
720s  customLossFun = @(C, S, W, Cost) sum (W .* sum (abs (C - S), 2));
720s  ## Calculate loss using custom loss function
720s  L = loss (model, X, Y, 'LossFun', customLossFun)
720s ***** demo
720s  X = [1, 2; 3, 4; 5, 6];
720s  Y = {'A'; 'B'; 'A'};
720s  model = fitcknn (X, Y);
720s  ## Calculate loss using 'mincost' loss function
720s  L = loss (model, X, Y, 'LossFun', 'mincost')
720s ***** demo
720s  X = [1, 2; 3, 4; 5, 6];
720s  Y = ['1'; '2'; '3'];
720s  model = fitcknn (X, Y);
720s  X_test = [3, 3; 5, 7];
720s  Y_test = ['1'; '2'];
720s  ## Specify custom Weights
720s  W = [1; 2];
720s  L = loss (model, X_test, Y_test, 'LossFun', 'logit', 'Weights', W);
720s ***** demo
720s  load fisheriris
720s  mdl = fitcknn (meas, species);
720s  X = mean (meas);
720s  Y = {'versicolor'};
720s  m = margin (mdl, X, Y)
720s ***** demo
720s  X = [1, 2; 4, 5; 7, 8; 3, 2];
720s  Y = [2; 1; 3; 2];
720s  ## Train the model
720s  mdl = fitcknn (X, Y);
720s  ## Specify Vars and Labels
720s  Vars = 1;
720s  Labels = 2;
720s  ## Calculate partialDependence
720s  [pd, x, y] = partialDependence (mdl, Vars, Labels);
720s ***** demo
720s  X = [1, 2; 4, 5; 7, 8; 3, 2];
720s  Y = [2; 1; 3; 2];
720s  ## Train the model
720s  mdl = fitcknn (X, Y);
720s  ## Specify Vars and Labels
720s  Vars = 1;
720s  Labels = 1;
720s  queryPoints = [linspace(0, 1, 3)', linspace(0, 1, 3)'];
720s  ## Calculate partialDependence using queryPoints
720s  [pd, x, y] = partialDependence (mdl, Vars, Labels, 'QueryPoints', ...
720s  queryPoints)
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y);
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y, "NSMethod", "exhaustive");
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  k = 10;
720s  a = ClassificationKNN (x, y, "NumNeighbors" ,k);
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = ones (4, 11);
720s  y = ["a"; "a"; "b"; "b"];
720s  k = 10;
720s  a = ClassificationKNN (x, y, "NumNeighbors" ,k);
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  k = 10;
720s  a = ClassificationKNN (x, y, "NumNeighbors" ,k, "NSMethod", "exhaustive");
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  k = 10;
720s  a = ClassificationKNN (x, y, "NumNeighbors" ,k, "Distance", "hamming");
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 10})
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  weights = ones (4,1);
720s  a = ClassificationKNN (x, y, "Standardize", 1);
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.Standardize}, {true})
720s  assert ({a.Sigma}, {std(x, [], 1)})
720s  assert ({a.Mu}, {[3.75, 4.25, 4.75]})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  weights = ones (4,1);
720s  a = ClassificationKNN (x, y, "Standardize", false);
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.X, a.Y, a.NumNeighbors}, {x, y, 1})
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.Standardize}, {false})
720s  assert ({a.Sigma}, {[]})
720s  assert ({a.Mu}, {[]})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  s = ones (1, 3);
720s  a = ClassificationKNN (x, y, "Scale" , s, "Distance", "seuclidean");
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.DistParameter}, {s})
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "seuclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y, "Exponent" , 5, "Distance", "minkowski");
720s  assert (class (a), "ClassificationKNN");
720s  assert (a.DistParameter, 5)
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "minkowski"})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y, "Exponent" , 5, "Distance", "minkowski", ...
720s                         "NSMethod", "exhaustive");
720s  assert (class (a), "ClassificationKNN");
720s  assert (a.DistParameter, 5)
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "minkowski"})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y, "BucketSize" , 20, "distance", "mahalanobis");
720s  assert (class (a), "ClassificationKNN");
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "mahalanobis"})
720s  assert ({a.BucketSize}, {20})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y, "IncludeTies", true);
720s  assert (class (a), "ClassificationKNN");
720s  assert (a.IncludeTies, true);
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y);
720s  assert (class (a), "ClassificationKNN");
720s  assert (a.IncludeTies, false);
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  a = ClassificationKNN (x, y);
720s  assert (class (a), "ClassificationKNN")
720s  assert (a.Prior, [0.5; 0.5])
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  prior = [0.5; 0.5];
720s  a = ClassificationKNN (x, y, "Prior", "empirical");
720s  assert (class (a), "ClassificationKNN")
720s  assert (a.Prior, prior)
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "a"; "b"];
720s  prior = [0.75; 0.25];
720s  a = ClassificationKNN (x, y, "Prior", "empirical");
720s  assert (class (a), "ClassificationKNN")
720s  assert (a.Prior, prior)
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "a"; "b"];
720s  prior = [0.5; 0.5];
720s  a = ClassificationKNN (x, y, "Prior", "uniform");
720s  assert (class (a), "ClassificationKNN")
720s  assert (a.Prior, prior)
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  cost = eye (2);
720s  a = ClassificationKNN (x, y, "Cost", cost);
720s  assert (class (a), "ClassificationKNN")
720s  assert (a.Cost, [1, 0; 0, 1])
720s  assert ({a.NSMethod, a.Distance}, {"kdtree", "euclidean"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
720s  y = ["a"; "a"; "b"; "b"];
720s  cost = eye (2);
720s  a = ClassificationKNN (x, y, "Cost", cost, "Distance", "hamming" );
720s  assert (class (a), "ClassificationKNN")
720s  assert (a.Cost, [1, 0; 0, 1])
720s  assert ({a.NSMethod, a.Distance}, {"exhaustive", "hamming"})
720s  assert ({a.BucketSize}, {50})
720s ***** test
720s  x = [1, 2; 3, 4; 5,6; 5, 8];
720s  y = {'9'; '9'; '6'; '7'};
720s  a = ClassificationKNN (x, y);
720s  assert (a.Prior, [0.5; 0.25; 0.25])
720s ***** test
720s  load fisheriris
720s  x = meas;
720s  y = species;
720s  ClassNames = {'setosa', 'versicolor', 'virginica'};
720s  a = ClassificationKNN (x, y, 'ClassNames', ClassNames);
720s  assert (a.ClassNames, ClassNames')
720s ***** error<ClassificationKNN: too few input arguments.> ClassificationKNN ()
720s ***** error<ClassificationKNN: too few input arguments.> ...
720s  ClassificationKNN (ones(4, 1))
720s ***** error<ClassificationKNN: number of rows in X and Y must be equal.> ...
720s  ClassificationKNN (ones (4,2), ones (1,4))
720s ***** error<ClassificationKNN: 'Standardize' must be either true or false.> ...
720s  ClassificationKNN (ones (5,3), ones (5,1), "standardize", "a")
720s ***** error<ClassificationKNN: 'Standardize' cannot simultaneously be specified with> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "scale", [1 1], "standardize", true)
720s ***** error<ClassificationKNN: 'PredictorNames' must be supplied as a cellstring array.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "PredictorNames", ["A"])
720s ***** error<ClassificationKNN: 'PredictorNames' must be supplied as a cellstring array.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "PredictorNames", "A")
720s ***** error<ClassificationKNN: 'PredictorNames' must have the same number of columns as X.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "PredictorNames", {"A", "B", "C"})
720s ***** error<ClassificationKNN: 'ResponseName' must be a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "ResponseName", {"Y"})
720s ***** error<ClassificationKNN: 'ResponseName' must be a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "ResponseName", 1)
720s ***** error<ClassificationKNN: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
720s  ClassificationKNN (ones(10,2), ones (10,1), "ClassNames", @(x)x)
720s ***** error<ClassificationKNN: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
720s  ClassificationKNN (ones(10,2), ones (10,1), "ClassNames", ['a'])
720s ***** error<ClassificationKNN: not all 'ClassNames' are present in Y.> ...
720s  ClassificationKNN (ones(10,2), ones (10,1), "ClassNames", [1, 2])
720s ***** error<ClassificationKNN: not all 'ClassNames' are present in Y.> ...
720s  ClassificationKNN (ones(5,2), {'a';'b';'a';'a';'b'}, "ClassNames", {'a','c'})
720s ***** error<ClassificationKNN: not all 'ClassNames' are present in Y.> ...
720s  ClassificationKNN (ones(10,2), logical (ones (10,1)), "ClassNames", [true, false])
720s ***** error<ClassificationKNN: 'BreakTies' must be a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BreakTies", 1)
720s ***** error<ClassificationKNN: 'BreakTies' must be a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BreakTies", {"1"})
720s ***** error<ClassificationKNN: invalid value for 'BreakTies'.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BreakTies", "some")
720s ***** error<ClassificationKNN: 'Prior' must be either a numeric vector or a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Prior", {"1", "2"})
720s ***** error<ClassificationKNN: 'Cost' must be a numeric square matrix.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cost", [1, 2])
720s ***** error<ClassificationKNN: 'Cost' must be a numeric square matrix.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cost", "string")
720s ***** error<ClassificationKNN: 'Cost' must be a numeric square matrix.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cost", {eye(2)})
720s ***** error<ClassificationKNN: 'NumNeighbors' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "NumNeighbors", 0)
720s ***** error<ClassificationKNN: 'NumNeighbors' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "NumNeighbors", 15.2)
720s ***** error<ClassificationKNN: 'NumNeighbors' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "NumNeighbors", "asd")
720s ***** error<ClassificationKNN: unsupported distance metric.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", "somemetric")
720s ***** error<ClassificationKNN: invalid function handle for distance metric.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", ...
720s                     @(v,m)sqrt(repmat(v,rows(m),1)-m,2))
720s ***** error<ClassificationKNN: custom distance function produces wrong output size.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", ...
720s                     @(v,m)sqrt(sum(sumsq(repmat(v,rows(m),1)-m,2))))
720s ***** error<ClassificationKNN: invalid distance metric.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", [1 2 3])
720s ***** error<ClassificationKNN: invalid distance metric.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", {"mahalanobis"})
720s ***** error<ClassificationKNN: invalid distance metric.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", logical (5))
720s ***** error<ClassificationKNN: function handle for distance weight must return the> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "DistanceWeight", @(x)sum(x))
720s ***** error<ClassificationKNN: invalid distance weight.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "DistanceWeight", "text")
720s ***** error<ClassificationKNN: invalid distance weight.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "DistanceWeight", [1 2 3])
720s ***** error<ClassificationKNN: 'Scale' must be a numeric vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Scale", "scale")
720s ***** error<ClassificationKNN: 'Scale' must be a numeric vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Scale", {[1 2 3]})
720s ***** error<ClassificationKNN: 'Scale' cannot simultaneously be specified with> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "standardize", true, "scale", [1 1])
720s ***** error<ClassificationKNN: 'Cov' must be a symmetric positive definite matrix.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cov", ones (2), "Distance", "mahalanobis")
720s ***** error<ClassificationKNN: 'Cov' cannot simultaneously be specified with> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "scale", [1 1], "Cov", ones (2))
720s ***** error<ClassificationKNN: 'Exponent' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Exponent", 12.5)
720s ***** error<ClassificationKNN: 'Exponent' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Exponent", -3)
720s ***** error<ClassificationKNN: 'Exponent' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Exponent", "three")
720s ***** error<ClassificationKNN: 'Exponent' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Exponent", {3})
720s ***** error<ClassificationKNN: 'NSMethod' must be a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "NSMethod", {"kdtree"})
720s ***** error<ClassificationKNN: 'NSMethod' must be a character vector.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "NSMethod", 3)
720s ***** error<ClassificationKNN: 'NSMethod' must be either 'kdtree' or 'exhaustive'.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "NSMethod", "some")
720s ***** error<ClassificationKNN: 'IncludeTies' must be either true or false.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "IncludeTies", "some")
720s ***** error<ClassificationKNN: 'BucketSize' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", 42.5)
720s ***** error<ClassificationKNN: 'BucketSize' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", -50)
720s ***** error<ClassificationKNN: 'BucketSize' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", "some")
720s ***** error<ClassificationKNN: 'BucketSize' must be a positive integer.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "BucketSize", {50})
720s ***** error<ClassificationKNN: invalid parameter name in optional pair arguments.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "some", "some")
720s ***** error<ClassificationKNN: invalid values in X.> ...
720s  ClassificationKNN ([1;2;3;'a';4], ones (5,1))
720s ***** error<ClassificationKNN: invalid values in X.> ...
720s  ClassificationKNN ([1;2;3;Inf;4], ones (5,1))
720s ***** error<ClassificationKNN: the elements in 'Prior' do not correspond to selected classes in Y.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Prior", [1 2])
720s ***** error<ClassificationKNN: the number of rows and columns in 'Cost' must correspond to selected classes in Y.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cost", [1 2; 1 3])
720s ***** error<ClassificationKNN: 'Scale' is only valid when distance metric is seuclidean.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Scale", [1 1])
720s ***** error<ClassificationKNN: 'Scale' vector must have equal length to the number of columns in X.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Scale", [1 1 1], "Distance", "seuclidean")
720s ***** error<ClassificationKNN: 'Scale' vector must contain nonnegative scalar values.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Scale", [1 -1], "Distance", "seuclidean")
720s ***** error<ClassificationKNN: 'Cov' is only valid when distance metric is 'mahalanobis'.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cov", eye (2))
720s ***** error<ClassificationKNN: 'Cov' matrix must have equal columns as X.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Cov", eye (3), "Distance", "mahalanobis")
720s ***** error<ClassificationKNN: 'Exponent' is only valid when distance metric is 'minkowski'.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Exponent", 3)
720s ***** error<ClassificationKNN: 'kdtree' method is only valid for 'euclidean', 'cityblock', 'manhattan', 'minkowski', and 'chebychev' distance metrics.> ...
720s  ClassificationKNN (ones (5,2), ones (5,1), "Distance", "hamming", "NSMethod", "kdtree")
720s ***** shared x, y
720s  load fisheriris
720s  x = meas;
720s  y = species;
720s ***** test
720s  xc = [min(x); mean(x); max(x)];
720s  obj = fitcknn (x, y, "NumNeighbors", 5);
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"setosa"; "versicolor"; "virginica"})
720s  assert (s, [1, 0, 0; 0, 1, 0; 0, 0, 1])
720s  assert (c, [0, 1, 1; 1, 0, 1; 1, 1, 0])
720s ***** test
720s  xc = [min(x); mean(x); max(x)];
720s  obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1);
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"versicolor"; "versicolor"; "virginica"})
720s  assert (s, [0.4, 0.6, 0; 0, 1, 0; 0, 0, 1])
720s  assert (c, [0.6, 0.4, 1; 1, 0, 1; 1, 1, 0])
720s ***** test
720s  xc = [min(x); mean(x); max(x)];
720s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "mahalanobis");
720s  [l, s, c] = predict (obj, xc);
720s  assert (s, [0.3, 0.7, 0; 0, 0.9, 0.1; 0.2, 0.2, 0.6], 1e-4)
720s  assert (c, [0.7, 0.3, 1; 1, 0.1, 0.9; 0.8, 0.8, 0.4], 1e-4)
720s ***** test
720s  xc = [min(x); mean(x); max(x)];
720s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "cosine");
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"setosa"; "versicolor"; "virginica"})
720s  assert (s, [1, 0, 0; 0, 1, 0; 0, 0.3, 0.7], 1e-4)
720s  assert (c, [0, 1, 1; 1, 0, 1; 1, 0.7, 0.3], 1e-4)
720s ***** test
720s  xc = [5.2, 4.1, 1.5, 0.1; 5.1, 3.8, 1.9, 0.4; ...
720s          5.1, 3.8, 1.5, 0.3; 4.9, 3.6, 1.4, 0.1];
720s  obj = fitcknn (x, y, "NumNeighbors", 5);
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"setosa"; "setosa"; "setosa"; "setosa"})
720s  assert (s, [1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0])
720s  assert (c, [0, 1, 1; 0, 1, 1; 0, 1, 1; 0, 1, 1])
720s ***** test
720s  xc = [5, 3, 5, 1.45];
720s  obj = fitcknn (x, y, "NumNeighbors", 5);
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"versicolor"})
720s  assert (s, [0, 0.6, 0.4], 1e-4)
720s  assert (c, [1, 0.4, 0.6], 1e-4)
720s ***** test
720s  xc = [5, 3, 5, 1.45];
720s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "minkowski", "Exponent", 5);
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"versicolor"})
720s  assert (s, [0, 0.5, 0.5], 1e-4)
720s  assert (c, [1, 0.5, 0.5], 1e-4)
720s ***** test
720s  xc = [5, 3, 5, 1.45];
720s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "jaccard");
720s  [l, s, c] = predict (obj, xc);
720s  assert (l, {"setosa"})
720s  assert (s, [0.9, 0.1, 0], 1e-4)
720s  assert (c, [0.1, 0.9, 1], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "mahalanobis");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"versicolor"})
721s  assert (s, [0.1000, 0.5000, 0.4000], 1e-4)
721s  assert (c, [0.9000, 0.5000, 0.6000], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 5, "distance", "jaccard");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"setosa"})
721s  assert (s, [0.8, 0.2, 0], 1e-4)
721s  assert (c, [0.2, 0.8, 1], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 5, "distance", "seuclidean");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"versicolor"})
721s  assert (s, [0, 1, 0], 1e-4)
721s  assert (c, [1, 0, 1], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "chebychev");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"versicolor"})
721s  assert (s, [0, 0.7, 0.3], 1e-4)
721s  assert (c, [1, 0.3, 0.7], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "cityblock");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"versicolor"})
721s  assert (s, [0, 0.6, 0.4], 1e-4)
721s  assert (c, [1, 0.4, 0.6], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "cosine");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"virginica"})
721s  assert (s, [0, 0.1, 0.9], 1e-4)
721s  assert (c, [1, 0.9, 0.1], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "correlation");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"virginica"})
721s  assert (s, [0, 0.1, 0.9], 1e-4)
721s  assert (c, [1, 0.9, 0.1], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 30, "distance", "spearman");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"versicolor"})
721s  assert (s, [0, 1, 0], 1e-4)
721s  assert (c, [1, 0, 1], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 30, "distance", "hamming");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"setosa"})
721s  assert (s, [0.4333, 0.3333, 0.2333], 1e-4)
721s  assert (c, [0.5667, 0.6667, 0.7667], 1e-4)
721s ***** test
721s  xc = [5, 3, 5, 1.45];
721s  obj = fitcknn (x, y, "NumNeighbors", 5, "distance", "hamming");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"setosa"})
721s  assert (s, [0.8, 0.2, 0], 1e-4)
721s  assert (c, [0.2, 0.8, 1], 1e-4)
721s ***** test
721s  xc = [min(x); mean(x); max(x)];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "correlation");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"setosa"; "versicolor"; "virginica"})
721s  assert (s, [1, 0, 0; 0, 1, 0; 0, 0.4, 0.6], 1e-4)
721s  assert (c, [0, 1, 1; 1, 0, 1; 1, 0.6, 0.4], 1e-4)
721s ***** test
721s  xc = [min(x); mean(x); max(x)];
721s  obj = fitcknn (x, y, "NumNeighbors", 10, "distance", "hamming");
721s  [l, s, c] = predict (obj, xc);
721s  assert (l, {"setosa";"setosa";"setosa"})
721s  assert (s, [0.9, 0.1, 0; 1, 0, 0; 0.5, 0, 0.5], 1e-4)
721s  assert (c, [0.1, 0.9, 1; 0, 1, 1; 0.5, 1, 0.5], 1e-4)
721s ***** error<ClassificationKNN.predict: too few input arguments.> ...
721s  predict (ClassificationKNN (ones (4,2), ones (4,1)))
721s ***** error<ClassificationKNN.predict: XC is empty.> ...
721s  predict (ClassificationKNN (ones (4,2), ones (4,1)), [])
721s ***** error<ClassificationKNN.predict: XC must have the same number of predictors as the trained model.> ...
721s  predict (ClassificationKNN (ones (4,2), ones (4,1)), 1)
721s ***** test
721s  load fisheriris
721s  model = fitcknn (meas, species, 'NumNeighbors', 5);
721s  X = mean (meas);
721s  Y = {'versicolor'};
721s  L = loss (model, X, Y);
721s  assert (L, 0)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = {'A'; 'B'; 'A'};
721s  model = fitcknn (X, Y);
721s  X_test = [1, 6; 3, 3];
721s  Y_test = {'A'; 'B'};
721s  L = loss (model, X_test, Y_test);
721s  assert (abs (L - 0.6667) > 1e-5)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = {'A'; 'B'; 'A'};
721s  model = fitcknn (X, Y);
721s  X_with_nan = [1, 2; NaN, 4];
721s  Y_test = {'A'; 'B'};
721s  L = loss (model, X_with_nan, Y_test);
721s  assert (abs (L - 0.3333) < 1e-4)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = {'A'; 'B'; 'A'};
721s  model = fitcknn (X, Y);
721s  X_with_nan = [1, 2; NaN, 4];
721s  Y_test = {'A'; 'B'};
721s  L = loss (model, X_with_nan, Y_test, 'LossFun', 'logit');
721s  assert (isnan (L))
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = {'A'; 'B'; 'A'};
721s  model = fitcknn (X, Y);
721s  customLossFun = @(C, S, W, Cost) sum (W .* sum (abs (C - S), 2));
721s  L = loss (model, X, Y, 'LossFun', customLossFun);
721s  assert (L, 0)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = [1; 2; 1];
721s  model = fitcknn (X, Y);
721s  L = loss (model, X, Y, 'LossFun', 'classiferror');
721s  assert (L, 0)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = [true; false; true];
721s  model = fitcknn (X, Y);
721s  L = loss (model, X, Y, 'LossFun', 'binodeviance');
721s  assert (abs (L - 0.1269) < 1e-4)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = ['1'; '2'; '1'];
721s  model = fitcknn (X, Y);
721s  L = loss (model, X, Y, 'LossFun', 'classiferror');
721s  assert (L, 0)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = ['1'; '2'; '3'];
721s  model = fitcknn (X, Y);
721s  X_test = [3, 3];
721s  Y_test = ['1'];
721s  L = loss (model, X_test, Y_test, 'LossFun', 'quadratic');
721s  assert (L, 1)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = ['1'; '2'; '3'];
721s  model = fitcknn (X, Y);
721s  X_test = [3, 3; 5, 7];
721s  Y_test = ['1'; '2'];
721s  L = loss (model, X_test, Y_test, 'LossFun', 'classifcost');
721s  assert (L, 1)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = ['1'; '2'; '3'];
721s  model = fitcknn (X, Y);
721s  X_test = [3, 3; 5, 7];
721s  Y_test = ['1'; '2'];
721s  L = loss (model, X_test, Y_test, 'LossFun', 'hinge');
721s  assert (L, 1)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = ['1'; '2'; '3'];
721s  model = fitcknn (X, Y);
721s  X_test = [3, 3; 5, 7];
721s  Y_test = ['1'; '2'];
721s  W = [1; 2];
721s  L = loss (model, X_test, Y_test, 'LossFun', 'logit', 'Weights', W);
721s  assert (abs (L - 0.6931) < 1e-4)
721s ***** error<ClassificationKNN.loss: too few input arguments.> ...
721s  loss (ClassificationKNN (ones (4,2), ones (4,1)))
721s ***** error<ClassificationKNN.loss: too few input arguments.> ...
721s  loss (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2))
721s ***** error<ClassificationKNN.loss: X is empty.> ...
721s  loss (ClassificationKNN (ones (40,2), randi ([1, 2], 40, 1)), [], zeros (2))
721s ***** error<ClassificationKNN.loss: X must have the same number of predictors as the trained model.> ...
721s  loss (ClassificationKNN (ones (40,2), randi ([1, 2], 40, 1)), 1, zeros (2))
721s ***** error<ClassificationKNN.loss: name-value arguments must be in pairs.> ...
721s  loss (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2), ...
721s         ones (4,1), 'LossFun')
721s ***** error<ClassificationKNN.loss: Y must have the same number of rows as X.> ...
721s  loss (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2), ones (3,1))
721s ***** error<ClassificationKNN.loss: invalid loss function.> ...
721s  loss (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2), ...
721s         ones (4,1), 'LossFun', 'a')
721s ***** error<ClassificationKNN.loss: invalid Weights.> ...
721s  loss (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2), ...
721s         ones (4,1), 'Weights', 'w')
721s ***** test
721s  load fisheriris
721s  mdl = fitcknn (meas, species, 'NumNeighbors', 5);
721s  X = mean (meas);
721s  Y = {'versicolor'};
721s  m = margin (mdl, X, Y);
721s  assert (m, 1)
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = [1; 2; 3];
721s  mdl = fitcknn (X, Y);
721s  m = margin (mdl, X, Y);
721s  assert (m, [1; 1; 1])
721s ***** test
721s  X = [7, 8; 9, 10];
721s  Y = ['1'; '2'];
721s  mdl = fitcknn (X, Y);
721s  m = margin (mdl, X, Y);
721s  assert (m, [1; 1])
721s ***** test
721s  X = [11, 12];
721s  Y = {'1'};
721s  mdl = fitcknn (X, Y);
721s  m = margin (mdl, X, Y);
721s  assert (isnan (m))
721s ***** test
721s  X = [1, 2; 3, 4; 5, 6];
721s  Y = [1; 2; 3];
721s  mdl = fitcknn (X, Y);
721s  X1 = [15, 16];
721s  Y1 = [1];
721s  m = margin (mdl, X1, Y1);
721s  assert (m, -1)
721s ***** error<ClassificationKNN.margin: too few input arguments.> ...
721s  margin (ClassificationKNN (ones (4,2), ones (4,1)))
721s ***** error<ClassificationKNN.margin: too few input arguments.> ...
721s  margin (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2))
721s ***** error<ClassificationKNN.margin: X is empty.> ...
721s  margin (ClassificationKNN (ones (40,2), randi ([1, 2], 40, 1)), [], zeros (2))
721s ***** error<ClassificationKNN.margin: X must have the same number of predictors as the trained model.> ...
721s  margin (ClassificationKNN (ones (40,2), randi ([1, 2], 40, 1)), 1, zeros (2))
721s ***** error<ClassificationKNN.margin: Y must have the same number of rows as X.> ...
721s  margin (ClassificationKNN (ones (4,2), ones (4,1)), ones (4,2), ones (3,1))
721s ***** shared X, Y, mdl
721s  X = [1, 2; 4, 5; 7, 8; 3, 2];
721s  Y = [2; 1; 3; 2];
721s  mdl = fitcknn (X, Y);
721s ***** test
721s  Vars = 1;
721s  Labels = 2;
721s  [pd, x, y] = partialDependence (mdl, Vars, Labels);
721s  pdm = [0.7500, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
721s  0.5000, 0.5000];
721s  assert (pd, pdm)
721s ***** test
721s  Vars = 1;
721s  Labels = 2;
721s  [pd, x, y] = partialDependence (mdl, Vars, Labels, ...
721s  'NumObservationsToSample', 5);
721s  pdm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
721s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
721s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
721s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
721s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
721s  assert (abs (pdm - pd) < 1)
722s ***** test
722s  Vars = 1;
722s  Labels = 2;
722s  [pd, x, y] = partialDependence (mdl, Vars, Labels, 'UseParallel', true);
722s  pdm = [0.7500, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000];
722s  assert (pd, pdm)
722s ***** test
722s  Vars = [1, 2];
722s  Labels = 1;
722s  queryPoints = {linspace(0, 1, 3)', linspace(0, 1, 3)'};
722s  [pd, x, y] = partialDependence (mdl, Vars, Labels, 'QueryPoints', ...
722s                             queryPoints, 'UseParallel', true);
722s  pdm = [0, 0, 0; 0, 0, 0; 0, 0, 0];
722s  assert (pd, pdm)
722s ***** test
722s  Vars = 1;
722s  Labels = [1; 2];
722s  [pd, x, y] = partialDependence (mdl, Vars, Labels);
722s  pdm = [0.2500, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.2500, 0.2500, 0.2500, ...
722s  0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, ...
722s  0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, ...
722s  0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, ...
722s  0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, ...
722s  0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, 0.2500, ...
722s  0.2500, 0.2500; 0.7500, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, 0.5000, ...
722s  0.5000, 0.5000, 0.5000];
722s  assert (pd, pdm)
723s ***** test
723s  Vars = [1, 2];
723s  Labels = [1; 2];
723s  queryPoints = {linspace(0, 1, 3)', linspace(0, 1, 3)'};
723s  [pd, x, y] = partialDependence (mdl, Vars, Labels, 'QueryPoints', queryPoints);
723s  pdm(:,:,1) = [0, 0, 0; 1, 1, 1];
723s  pdm(:,:,2) = [0, 0, 0; 1, 1, 1];
723s  pdm(:,:,3) = [0, 0, 0; 1, 1, 1];
723s  assert (pd, pdm)
723s ***** test
723s  X1 = [1; 2; 4; 5; 7; 8; 3; 2];
723s  X2 = ['2'; '3'; '1'; '3'; '1'; '3'; '2'; '2'];
723s  X = [X1, double(X2)];
723s  Y = [1; 2; 3; 3; 2; 1; 2; 1];
723s  mdl = fitcknn (X, Y, 'ClassNames', {'1', '2', '3'});
723s  Vars = 1;
723s  Labels = 1;
723s  [pd, x, y] = partialDependence (mdl, Vars, Labels);
723s  pdm = [1.0000, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, ...
723s  0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, ...
723s  0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
723s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
723s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3750, ...
723s  0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, ...
723s  0.3750, 0.3750, 0.3750, 0.3750, 0.7500, 0.7500, 0.7500, 0.7500, 0.7500, ...
723s  0.7500, 0.7500, 0.7500];
723s  assert (pd, pdm)
723s ***** test
723s  X1 = [1; 2; 4; 5; 7; 8; 3; 2];
723s  X2 = ['2'; '3'; '1'; '3'; '1'; '3'; '2'; '2'];
723s  X = [X1, double(X2)];
723s  Y = [1; 2; 3; 3; 2; 1; 2; 1];
723s  predictorNames = {'Feature1', 'Feature2'};
723s  mdl = fitcknn (X, Y, 'PredictorNames', predictorNames);
723s  Vars = 'Feature1';
723s  Labels = 1;
723s  [pd, x, y] = partialDependence (mdl, Vars, Labels);
723s  pdm = [1.0000, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, ...
723s  0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0.6250, ...
723s  0.6250, 0.6250, 0.6250, 0.6250, 0.6250, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
723s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
723s  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.3750, ...
723s  0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, 0.3750, ...
723s  0.3750, 0.3750, 0.3750, 0.3750, 0.7500, 0.7500, 0.7500, 0.7500, 0.7500, ...
723s  0.7500, 0.7500, 0.7500];
723s  assert (pd, pdm)
724s ***** test
724s  X1 = [1; 2; 4; 5; 7; 8; 3; 2];
724s  X2 = ['2'; '3'; '1'; '3'; '1'; '3'; '2'; '2'];
724s  X = [X1, double(X2)];
724s  Y = [1; 2; 3; 3; 2; 1; 2; 1];
724s  predictorNames = {'Feature1', 'Feature2'};
724s  mdl = fitcknn (X, Y, 'PredictorNames', predictorNames);
724s  new_X1 = [10; 5; 6; 8; 9; 20; 35; 6];
724s  new_X2 = ['2'; '2'; '1'; '2'; '1'; '3'; '3'; '2'];
724s  new_X = [new_X1, double(new_X2)];
724s  Vars = 'Feature1';
724s  Labels = 1;
724s  [pd, x, y] = partialDependence (mdl, Vars, Labels, new_X);
724s  pdm = [0, 0, 0, 0, 0, 0.2500, 0.2500, 0.2500, 0.2500, 0.7500, 0.7500, ...
724s  0.7500, 0.7500, 0.7500, 0.7500, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ...
724s  1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, ...
724s  1.0000, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
724s  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
724s  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];
724s  assert (pd, pdm)
724s ***** error<ClassificationKNN.partialDependence: too few input arguments.> ...
724s  partialDependence (ClassificationKNN (ones (4,2), ones (4,1)))
724s ***** error<ClassificationKNN.partialDependence: too few input arguments.> ...
724s  partialDependence (ClassificationKNN (ones (4,2), ones (4,1)), 1)
724s ***** error<ClassificationKNN.partialDependence: name-value arguments must be in pairs.> ...
724s  partialDependence (ClassificationKNN (ones (4,2), ones (4,1)), 1, ...
724s           ones (4,1), 'NumObservationsToSample')
724s ***** error<ClassificationKNN.partialDependence: name-value arguments must be in pairs.> ...
724s  partialDependence (ClassificationKNN (ones (4,2), ones (4,1)), 1, ...
724s           ones (4,1), 2)
724s ***** shared x, y, obj
724s  load fisheriris
724s  x = meas;
724s  y = species;
724s  covMatrix = cov (x);
724s  obj = fitcknn (x, y, 'NumNeighbors', 5, 'Distance', ...
724s       'mahalanobis', 'Cov', covMatrix);
724s ***** test
724s  CVMdl = crossval (obj);
724s  assert (class (CVMdl), "ClassificationPartitionedModel")
724s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
724s  assert (CVMdl.KFold == 10)
724s  assert (CVMdl.ModelParameters.NumNeighbors == 5)
724s  assert (strcmp (CVMdl.ModelParameters.Distance, "mahalanobis"))
724s  assert (class (CVMdl.Trained{1}), "ClassificationKNN")
724s  assert (!CVMdl.ModelParameters.Standardize)
725s ***** test
725s  CVMdl = crossval (obj, "KFold", 5);
725s  assert (class (CVMdl), "ClassificationPartitionedModel")
725s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
725s  assert (CVMdl.KFold == 5)
725s  assert (CVMdl.ModelParameters.NumNeighbors == 5)
725s  assert (strcmp (CVMdl.ModelParameters.Distance, "mahalanobis"))
725s  assert (class (CVMdl.Trained{1}), "ClassificationKNN")
725s  assert (CVMdl.ModelParameters.Standardize == obj.Standardize)
725s ***** test
725s  obj = fitcknn (x, y, "NumNeighbors", 5, "Distance", "cityblock");
725s  CVMdl = crossval (obj, "HoldOut", 0.2);
725s  assert (class (CVMdl), "ClassificationPartitionedModel")
725s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
725s  assert (CVMdl.ModelParameters.NumNeighbors == 5)
725s  assert (strcmp (CVMdl.ModelParameters.Distance, "cityblock"))
725s  assert (class (CVMdl.Trained{1}), "ClassificationKNN")
725s  assert (CVMdl.ModelParameters.Standardize == obj.Standardize)
725s ***** test
725s  obj = fitcknn (x, y, "NumNeighbors", 10, "Distance", "cityblock");
725s  CVMdl = crossval (obj, "LeaveOut", 'on');
725s  assert (class (CVMdl), "ClassificationPartitionedModel")
725s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
725s  assert (CVMdl.ModelParameters.NumNeighbors == 10)
725s  assert (strcmp (CVMdl.ModelParameters.Distance, "cityblock"))
725s  assert (class (CVMdl.Trained{1}), "ClassificationKNN")
725s  assert (CVMdl.ModelParameters.Standardize == obj.Standardize)
725s ***** test
725s  obj = fitcknn (x, y, "NumNeighbors", 10, "Distance", "cityblock");
725s  partition = cvpartition (y, 'KFold', 3);
725s  CVMdl = crossval (obj, 'cvPartition', partition);
725s  assert (class (CVMdl), "ClassificationPartitionedModel")
725s  assert (CVMdl.KFold == 3)
725s  assert (CVMdl.ModelParameters.NumNeighbors == 10)
725s  assert (strcmp (CVMdl.ModelParameters.Distance, "cityblock"))
725s  assert (class (CVMdl.Trained{1}), "ClassificationKNN")
725s  assert (CVMdl.ModelParameters.Standardize == obj.Standardize)
725s ***** error<ClassificationKNN.crossval: Name-Value arguments must be in pairs.> ...
725s  crossval (ClassificationKNN (ones (4,2), ones (4,1)), "kfold")
725s ***** error<ClassificationKNN.crossval: specify only one of the optional Name-Value paired arguments.>...
725s  crossval (ClassificationKNN (ones (4,2), ones (4,1)), "kfold", 12, "holdout", 0.2)
725s ***** error<ClassificationKNN.crossval: 'KFold' must be an integer value greater than 1.> ...
725s  crossval (ClassificationKNN (ones (4,2), ones (4,1)), "kfold", 'a')
725s ***** error<ClassificationKNN.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
725s  crossval (ClassificationKNN (ones (4,2), ones (4,1)), "holdout", 2)
725s ***** error<ClassificationKNN.crossval: 'Leaveout' must be either 'on' or 'off'.> ...
725s  crossval (ClassificationKNN (ones (4,2), ones (4,1)), "leaveout", 1)
725s ***** error<ClassificationKNN.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
725s  crossval (ClassificationKNN (ones (4,2), ones (4,1)), "cvpartition", 1)
725s 162 tests, 162 passed, 0 known failure, 0 skipped
725s [inst/Classification/ClassificationGAM.m]
725s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ClassificationGAM.m
725s ***** demo
725s  ## Train a GAM classifier for binary classification
725s  ## using specific data and plot the decision boundaries.
725s 
725s  ## Define specific data
725s  X = [1, 2; 2, 3; 3, 3; 4, 5; 5, 5; ...
725s      6, 7; 7, 8; 8, 8; 9, 9; 10, 10];
725s  Y = [0; 0; 0; 0; 0; ...
725s      1; 1; 1; 1; 1];
725s 
725s  ## Train the GAM model
725s  obj = fitcgam (X, Y, "Interactions", "all")
725s 
725s  ## Create a grid of values for prediction
725s  x1 = [min(X(:,1)):0.1:max(X(:,1))];
725s  x2 = [min(X(:,2)):0.1:max(X(:,2))];
725s  [x1G, x2G] = meshgrid (x1, x2);
725s  XGrid = [x1G(:), x2G(:)];
725s  [labels, score] = predict (obj, XGrid);
725s ***** test
725s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
725s  y = [0; 0; 1; 1];
725s  PredictorNames = {'Feature1', 'Feature2', 'Feature3'};
725s  a = ClassificationGAM (x, y, "PredictorNames", PredictorNames);
725s  assert (class (a), "ClassificationGAM");
725s  assert ({a.X, a.Y, a.NumObservations}, {x, y, 4})
725s  assert ({a.NumPredictors, a.ResponseName}, {3, "Y"})
725s  assert (a.ClassNames, {'0'; '1'})
725s  assert (a.PredictorNames, PredictorNames)
725s  assert (a.BaseModel.Intercept, 0)
727s ***** test
727s  load fisheriris
727s  inds = strcmp (species,'versicolor') | strcmp (species,'virginica');
727s  X = meas(inds, :);
727s  Y = species(inds, :)';
727s  Y = strcmp (Y, 'virginica')';
727s  a = ClassificationGAM (X, Y, 'Formula', 'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3');
727s  assert (class (a), "ClassificationGAM");
727s  assert ({a.X, a.Y, a.NumObservations}, {X, Y, 100})
727s  assert ({a.NumPredictors, a.ResponseName}, {4, "Y"})
727s  assert (a.ClassNames, {'0'; '1'})
727s  assert (a.Formula, 'Y ~ x1 + x2 + x3 + x4 + x1:x2 + x2:x3')
727s  assert (a.PredictorNames, {'x1', 'x2', 'x3', 'x4'})
727s  assert (a.ModelwInt.Intercept, 0)
732s ***** test
732s  X = [2, 3, 5; 4, 6, 8; 1, 2, 3; 7, 8, 9; 5, 4, 3];
732s  Y = [0; 1; 0; 1; 1];
732s  a = ClassificationGAM (X, Y, 'Knots', [4, 4, 4], 'Order', [3, 3, 3]);
732s  assert (class (a), "ClassificationGAM");
732s  assert ({a.X, a.Y, a.NumObservations}, {X, Y, 5})
732s  assert ({a.NumPredictors, a.ResponseName}, {3, "Y"})
732s  assert (a.ClassNames, {'0'; '1'})
732s  assert (a.PredictorNames, {'x1', 'x2', 'x3'})
732s  assert (a.Knots, [4, 4, 4])
732s  assert (a.Order, [3, 3, 3])
732s  assert (a.DoF, [7, 7, 7])
732s  assert (a.BaseModel.Intercept, 0.4055, 1e-1)
733s ***** error<ClassificationGAM: too few input arguments.> ClassificationGAM ()
733s ***** error<ClassificationGAM: too few input arguments.> ...
733s  ClassificationGAM (ones(4, 1))
733s ***** error<ClassificationGAM: number of rows in X and Y must be equal.> ...
733s  ClassificationGAM (ones (4,2), ones (1,4))
733s ***** error<ClassificationGAM: 'PredictorNames' must be supplied as a cellstring array.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "PredictorNames", ["A"])
733s ***** error<ClassificationGAM: 'PredictorNames' must be supplied as a cellstring array.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "PredictorNames", "A")
733s ***** error<ClassificationGAM: 'PredictorNames' must equal the number of columns in X.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "PredictorNames", {"A", "B", "C"})
733s ***** error<ClassificationGAM: 'ResponseName' must be a character vector.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "ResponseName", {"Y"})
733s ***** error<ClassificationGAM: 'ResponseName' must be a character vector.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "ResponseName", 1)
733s ***** error<ClassificationGAM: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
733s  ClassificationGAM (ones(10,2), ones (10,1), "ClassNames", @(x)x)
733s ***** error<ClassificationGAM: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
733s  ClassificationGAM (ones(10,2), ones (10,1), "ClassNames", ['a'])
733s ***** error<ClassificationGAM: not all 'ClassNames' are present in Y.> ...
733s  ClassificationGAM (ones(10,2), ones (10,1), "ClassNames", [1, 2])
733s ***** error<ClassificationGAM: not all 'ClassNames' are present in Y.> ...
733s  ClassificationGAM (ones(5,2), {'a';'b';'a';'a';'b'}, "ClassNames", {'a','c'})
733s ***** error<ClassificationGAM: not all 'ClassNames' are present in Y.> ...
733s  ClassificationGAM (ones(10,2), logical (ones (10,1)), "ClassNames", [true, false])
733s ***** error<ClassificationGAM: 'Cost' must be a numeric square matrix.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "Cost", [1, 2])
733s ***** error<ClassificationGAM: 'Cost' must be a numeric square matrix.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "Cost", "string")
733s ***** error<ClassificationGAM: 'Cost' must be a numeric square matrix.> ...
733s  ClassificationGAM (ones (5,2), ones (5,1), "Cost", {eye(2)})
733s ***** test
733s  x = [1, 2; 3, 4; 5, 6; 7, 8; 9, 10];
733s  y = [1; 0; 1; 0; 1];
733s  a = ClassificationGAM (x, y, "interactions", "all");
733s  l = {'0'; '0'; '0'; '0'; '0'};
733s  s = [0.3760, 0.6240; 0.4259, 0.5741; 0.3760, 0.6240; ...
733s       0.4259, 0.5741; 0.3760, 0.6240];
733s  [labels, scores] = predict (a, x);
733s  assert (class (a), "ClassificationGAM");
733s  assert ({a.X, a.Y, a.NumObservations}, {x, y, 5})
733s  assert ({a.NumPredictors, a.ResponseName}, {2, "Y"})
733s  assert (a.ClassNames, {'1'; '0'})
733s  assert (a.PredictorNames, {'x1', 'x2'})
733s  assert (a.ModelwInt.Intercept, 0.4055, 1e-1)
733s  assert (labels, l)
733s  assert (scores, s, 1e-1)
735s ***** test
735s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
735s  y = [0; 0; 1; 1];
735s  interactions = [false, true, false; true, false, true; false, true, false];
735s  a = fitcgam (x, y, "learningrate", 0.2, "interactions", interactions);
735s  [label, score] = predict (a, x, "includeinteractions", true);
735s  l = {'0'; '0'; '1'; '1'};
735s  s = [0.5106, 0.4894; 0.5135, 0.4865; 0.4864, 0.5136; 0.4847, 0.5153];
735s  assert (class (a), "ClassificationGAM");
735s  assert ({a.X, a.Y, a.NumObservations}, {x, y, 4})
735s  assert ({a.NumPredictors, a.ResponseName}, {3, "Y"})
735s  assert (a.ClassNames, {'0'; '1'})
735s  assert (a.PredictorNames, {'x1', 'x2', 'x3'})
735s  assert (a.ModelwInt.Intercept, 0)
735s  assert (label, l)
735s  assert (score, s, 1e-1)
740s ***** error<ClassificationGAM.predict: too few input arguments.> ...
740s  predict (ClassificationGAM (ones (4,2), ones (4,1)))
740s ***** error<ClassificationGAM.predict: XC is empty.> ...
740s  predict (ClassificationGAM (ones (4,2), ones (4,1)), [])
741s ***** error<ClassificationGAM.predict: XC must have the same number of predictors as the trained model.> ...
741s  predict (ClassificationGAM (ones (4,2), ones (4,1)), 1)
742s ***** shared x, y, obj
742s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
742s  y = [0; 0; 1; 1];
742s  obj = fitcgam (x, y);
744s ***** test
744s  CVMdl = crossval (obj);
744s  assert (class (CVMdl), "ClassificationPartitionedModel")
744s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
744s  assert (CVMdl.KFold == 10)
744s  assert (class (CVMdl.Trained{1}), "CompactClassificationGAM")
744s  assert (CVMdl.CrossValidatedModel, "ClassificationGAM")
758s ***** test
758s  CVMdl = crossval (obj, "KFold", 5);
758s  assert (class (CVMdl), "ClassificationPartitionedModel")
758s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
758s  assert (CVMdl.KFold == 5)
758s  assert (class (CVMdl.Trained{1}), "CompactClassificationGAM")
758s  assert (CVMdl.CrossValidatedModel, "ClassificationGAM")
765s ***** test
765s  CVMdl = crossval (obj, "HoldOut", 0.2);
765s  assert (class (CVMdl), "ClassificationPartitionedModel")
765s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
765s  assert (class (CVMdl.Trained{1}), "CompactClassificationGAM")
765s  assert (CVMdl.CrossValidatedModel, "ClassificationGAM")
766s ***** test
766s  partition = cvpartition (y, 'KFold', 3);
766s  CVMdl = crossval (obj, 'cvPartition', partition);
766s  assert (class (CVMdl), "ClassificationPartitionedModel")
766s  assert (CVMdl.KFold == 3)
766s  assert (class (CVMdl.Trained{1}), "CompactClassificationGAM")
766s  assert (CVMdl.CrossValidatedModel, "ClassificationGAM")
771s ***** error<ClassificationGAM.crossval: Name-Value arguments must be in pairs.> ...
771s  crossval (obj, "kfold")
771s ***** error<ClassificationGAM.crossval: specify only one of the optional Name-Value paired arguments.>...
771s  crossval (obj, "kfold", 12, "holdout", 0.2)
771s ***** error<ClassificationGAM.crossval: 'KFold' must be an integer value greater than 1.> ...
771s  crossval (obj, "kfold", 'a')
771s ***** error<ClassificationGAM.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
771s  crossval (obj, "holdout", 2)
771s ***** error<ClassificationGAM.crossval: 'Leaveout' must be either 'on' or 'off'.> ...
771s  crossval (obj, "leaveout", 1)
771s ***** error<ClassificationGAM.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
771s  crossval (obj, "cvpartition", 1)
771s 34 tests, 34 passed, 0 known failure, 0 skipped
771s [inst/Classification/ClassificationPartitionedModel.m]
771s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ClassificationPartitionedModel.m
771s ***** demo
771s 
771s  load fisheriris
771s  x = meas;
771s  y = species;
771s 
771s  ## Create a KNN classifier model
771s  obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1);
771s 
771s  ## Create a partition for 5-fold cross-validation
771s  partition = cvpartition (y, "KFold", 5);
771s 
771s  ## Create the ClassificationPartitionedModel object
771s  cvModel = crossval (obj, 'cvPartition', partition)
771s ***** demo
771s 
771s  load fisheriris
771s  x = meas;
771s  y = species;
771s 
771s  ## Create a KNN classifier model
771s  obj = fitcknn (x, y, "NumNeighbors", 5, "Standardize", 1);
771s 
771s  ## Create the ClassificationPartitionedModel object
771s  cvModel = crossval (obj);
771s 
771s  ## Predict the class labels for the observations not used for training
771s  [label, score, cost] = kfoldPredict (cvModel);
771s  fprintf ("Cross-validated accuracy = %1.2f%% (%d/%d)\n", ...
771s           sum (strcmp (label, y)) / numel (y) *100, ...
771s           sum (strcmp (label, y)), numel (y))
771s ***** test
771s  load fisheriris
771s  a = fitcdiscr (meas, species, "gamma", 0.3);
771s  cvModel = crossval (a, "KFold", 5);
771s  assert (class (cvModel), "ClassificationPartitionedModel");
771s  assert (cvModel.NumObservations, 150);
771s  assert (numel (cvModel.Trained), 5);
771s  assert (class (cvModel.Trained{1}), "CompactClassificationDiscriminant");
771s  assert (cvModel.CrossValidatedModel, "ClassificationDiscriminant");
771s  assert (cvModel.KFold, 5);
771s ***** test
771s  load fisheriris
771s  a = fitcdiscr (meas, species, "gamma", 0.5, "fillcoeffs", "off");
771s  cvModel = crossval (a, "HoldOut", 0.3);
771s  assert (class (cvModel), "ClassificationPartitionedModel");
771s  assert ({cvModel.X, cvModel.Y}, {meas, species});
771s  assert (cvModel.NumObservations, 150);
771s  assert (numel (cvModel.Trained), 1);
771s  assert (class (cvModel.Trained{1}), "CompactClassificationDiscriminant");
771s  assert (cvModel.CrossValidatedModel, "ClassificationDiscriminant");
771s ***** test
771s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
771s  y = ["a"; "a"; "b"; "b"];
771s  a = fitcgam (x, y, "Interactions", "all");
771s  cvModel = crossval (a, "KFold", 5);
771s  assert (class (cvModel), "ClassificationPartitionedModel");
771s  assert (cvModel.NumObservations, 4);
771s  assert (numel (cvModel.Trained), 5);
771s  assert (class (cvModel.Trained{1}), "CompactClassificationGAM");
771s  assert (cvModel.CrossValidatedModel, "ClassificationGAM");
771s  assert (cvModel.KFold, 5);
799s ***** test
799s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
799s  y = ["a"; "a"; "b"; "b"];
799s  a = fitcgam (x, y);
799s  cvModel = crossval (a, "LeaveOut", "on");
799s  assert (class (cvModel), "ClassificationPartitionedModel");
799s  assert ({cvModel.X, cvModel.Y}, {x, y});
799s  assert (cvModel.NumObservations, 4);
799s  assert (numel (cvModel.Trained), 4);
799s  assert (class (cvModel.Trained{1}), "CompactClassificationGAM");
799s  assert (cvModel.CrossValidatedModel, "ClassificationGAM");
806s ***** test
806s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
806s  y = ["a"; "a"; "b"; "b"];
806s  a = fitcknn (x, y);
806s  partition = cvpartition (y, "KFold", 5);
806s  cvModel = ClassificationPartitionedModel (a, partition);
806s  assert (class (cvModel), "ClassificationPartitionedModel");
806s  assert (class (cvModel.Trained{1}), "ClassificationKNN");
806s  assert (cvModel.NumObservations, 4);
806s  assert (cvModel.ModelParameters.NumNeighbors, 1);
806s  assert (cvModel.ModelParameters.NSMethod, "kdtree");
806s  assert (cvModel.ModelParameters.Distance, "euclidean");
806s  assert (! cvModel.ModelParameters.Standardize);
806s ***** test
806s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
806s  y = ["a"; "a"; "b"; "b"];
806s  a = fitcknn (x, y, "NSMethod", "exhaustive");
806s  partition = cvpartition (y, "HoldOut", 0.2);
806s  cvModel = ClassificationPartitionedModel (a, partition);
806s  assert (class (cvModel), "ClassificationPartitionedModel");
806s  assert (class (cvModel.Trained{1}), "ClassificationKNN");
806s  assert ({cvModel.X, cvModel.Y}, {x, y});
806s  assert (cvModel.NumObservations, 4);
806s  assert (cvModel.ModelParameters.NumNeighbors, 1);
806s  assert (cvModel.ModelParameters.NSMethod, "exhaustive");
806s  assert (cvModel.ModelParameters.Distance, "euclidean");
806s  assert (! cvModel.ModelParameters.Standardize);
806s ***** test
806s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
806s  y = ["a"; "a"; "b"; "b"];
806s  k = 3;
806s  a = fitcknn (x, y, "NumNeighbors" ,k);
806s  partition = cvpartition (y, "LeaveOut");
806s  cvModel = ClassificationPartitionedModel (a, partition);
806s  assert (class (cvModel), "ClassificationPartitionedModel");
806s  assert (class (cvModel.Trained{1}), "ClassificationKNN");
806s  assert ({cvModel.X, cvModel.Y}, {x, y});
806s  assert (cvModel.NumObservations, 4);
806s  assert (cvModel.ModelParameters.NumNeighbors, k);
806s  assert (cvModel.ModelParameters.NSMethod, "kdtree");
806s  assert (cvModel.ModelParameters.Distance, "euclidean");
806s  assert (! cvModel.ModelParameters.Standardize);
806s ***** test
806s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
806s  y = {"a"; "a"; "b"; "b"};
806s  a = fitcnet (x, y, "IterationLimit", 50);
806s  cvModel = crossval (a, "KFold", 5);
806s  assert (class (cvModel), "ClassificationPartitionedModel");
806s  assert (cvModel.NumObservations, 4);
806s  assert (numel (cvModel.Trained), 5);
806s  assert (class (cvModel.Trained{1}), "CompactClassificationNeuralNetwork");
806s  assert (cvModel.CrossValidatedModel, "ClassificationNeuralNetwork");
806s  assert (cvModel.KFold, 5);
806s ***** test
806s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1];
806s  y = {"a"; "a"; "b"; "b"};
806s  a = fitcnet (x, y, "LayerSizes", [5, 3]);
806s  cvModel = crossval (a, "LeaveOut", "on");
806s  assert (class (cvModel), "ClassificationPartitionedModel");
806s  assert ({cvModel.X, cvModel.Y}, {x, y});
806s  assert (cvModel.NumObservations, 4);
806s  assert (numel (cvModel.Trained), 4);
806s  assert (class (cvModel.Trained{1}), "CompactClassificationNeuralNetwork");
806s  assert (cvModel.CrossValidatedModel, "ClassificationNeuralNetwork");
806s ***** test
806s  load fisheriris
806s  inds = ! strcmp (species, 'setosa');
806s  x = meas(inds, 3:4);
806s  y = grp2idx (species(inds));
806s  SVMModel = fitcsvm (x,y);
806s  CVMdl = crossval (SVMModel, "KFold", 5);
806s  assert (class (CVMdl), "ClassificationPartitionedModel")
806s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
806s  assert (CVMdl.KFold == 5)
806s  assert (class (CVMdl.Trained{1}), "CompactClassificationSVM")
806s  assert (CVMdl.CrossValidatedModel, "ClassificationSVM");
806s ***** test
806s  load fisheriris
806s  inds = ! strcmp (species, 'setosa');
806s  x = meas(inds, 3:4);
806s  y = grp2idx (species(inds));
806s  obj = fitcsvm (x, y);
806s  CVMdl = crossval (obj, "HoldOut", 0.2);
806s  assert (class (CVMdl), "ClassificationPartitionedModel")
806s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
806s  assert (class (CVMdl.Trained{1}), "CompactClassificationSVM")
806s  assert (CVMdl.CrossValidatedModel, "ClassificationSVM");
806s ***** test
806s  load fisheriris
806s  inds = ! strcmp (species, 'setosa');
806s  x = meas(inds, 3:4);
806s  y = grp2idx (species(inds));
806s  obj = fitcsvm (x, y);
806s  CVMdl = crossval (obj, "LeaveOut", 'on');
806s  assert (class (CVMdl), "ClassificationPartitionedModel")
806s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
806s  assert (class (CVMdl.Trained{1}), "CompactClassificationSVM")
806s  assert (CVMdl.CrossValidatedModel, "ClassificationSVM");
807s ***** error<ClassificationPartitionedModel: too few input arguments.> ...
807s  ClassificationPartitionedModel ()
807s ***** error<ClassificationPartitionedModel: too few input arguments.> ...
807s  ClassificationPartitionedModel (ClassificationKNN (ones (4,2), ones (4,1)))
807s ***** error<ClassificationPartitionedModel: unsupported model type.> ...
807s  ClassificationPartitionedModel (RegressionGAM (ones (40,2), ...
807s  randi ([1, 2], 40, 1)), cvpartition (randi ([1, 2], 40, 1), 'Holdout', 0.3))
807s ***** error<ClassificationPartitionedModel: invalid 'cvpartition' object.> ...
807s  ClassificationPartitionedModel (ClassificationKNN (ones (4,2), ...
807s  ones (4,1)), 'Holdout')
807s ***** test
807s  load fisheriris
807s  a = fitcdiscr (meas, species, "gamma", 0.5, "fillcoeffs", "off");
807s  cvModel = crossval (a, "Kfold", 4);
807s  [label, score, cost] = kfoldPredict (cvModel);
807s  assert (class(cvModel), "ClassificationPartitionedModel");
807s  assert ({cvModel.X, cvModel.Y}, {meas, species});
807s  assert (cvModel.NumObservations, 150);
807s ***** # assert (label, {"b"; "b"; "a"; "a"});
807s ***** # assert (score, [4.5380e-01, 5.4620e-01; 2.4404e-01, 7.5596e-01; ...
807s ***** #         9.9392e-01, 6.0844e-03; 9.9820e-01, 1.8000e-03], 1e-4);
807s ***** # assert (cost, [5.4620e-01, 4.5380e-01; 7.5596e-01, 2.4404e-01; ...
807s ***** #         6.0844e-03, 9.9392e-01; 1.8000e-03, 9.9820e-01], 1e-4);
807s ***** test
807s  x = ones(4, 11);
807s  y = {"a"; "a"; "b"; "b"};
807s  k = 3;
807s  a = fitcknn (x, y, "NumNeighbors", k);
807s  partition = cvpartition (y, "LeaveOut");
807s  cvModel = ClassificationPartitionedModel (a, partition);
807s  [label, score, cost] = kfoldPredict (cvModel);
807s  assert (class(cvModel), "ClassificationPartitionedModel");
807s  assert ({cvModel.X, cvModel.Y}, {x, y});
807s  assert (cvModel.NumObservations, 4);
807s  assert (cvModel.ModelParameters.NumNeighbors, k);
807s  assert (cvModel.ModelParameters.NSMethod, "exhaustive");
807s  assert (cvModel.ModelParameters.Distance, "euclidean");
807s  assert (! cvModel.ModelParameters.Standardize);
807s  assert (label, {"b"; "b"; "a"; "a"});
807s  assert (score, [0.3333, 0.6667; 0.3333, 0.6667; 0.6667, 0.3333; ...
807s           0.6667, 0.3333], 1e-4);
807s  assert (cost, [0.6667, 0.3333; 0.6667, 0.3333; 0.3333, 0.6667; ...
807s           0.3333, 0.6667], 1e-4);
807s ***** error<ClassificationPartitionedModel.kfoldPredict: 'Cost' output is not supported for ClassificationSVM cross validated models.> ...
807s  [label, score, cost] = kfoldPredict (crossval (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1))))
808s ***** error<ClassificationPartitionedModel.kfoldPredict: 'Cost' output is not supported for ClassificationNeuralNetwork cross validated models.> ...
808s  [label, score, cost] = kfoldPredict (crossval (ClassificationNeuralNetwork (ones (40,2), randi ([1, 2], 40, 1))))
810s 20 tests, 20 passed, 0 known failure, 0 skipped
810s [inst/Classification/ClassificationSVM.m]
810s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/Classification/ClassificationSVM.m
810s ***** demo
810s  ## Create a Support Vector Machine classifier and determine margin for test
810s  ## data.
810s  load fisheriris
810s  rng(1);  ## For reproducibility
810s 
810s  ## Select indices of the non-setosa species
810s  inds = !strcmp(species, 'setosa');
810s 
810s   ## Select features and labels for non-setosa species
810s  X = meas(inds, 3:4);
810s  Y = grp2idx(species(inds));
810s 
810s  ##  Convert labels to +1 and -1
810s  unique_classes = unique(Y);
810s  Y(Y == unique_classes(1)) = -1;
810s  Y(Y == unique_classes(2)) = 1;
810s 
810s  ## Partition data for training and testing
810s  cv = cvpartition(Y, 'HoldOut', 0.15);
810s  X_train = X(training(cv), :);
810s  Y_train = Y(training(cv));
810s  X_test = X(test(cv), :);
810s  Y_test = Y(test(cv));
810s 
810s  ## Train the SVM model
810s  CVSVMModel = fitcsvm(X_train, Y_train);
810s 
810s  ## Calculate margins
810s  m = margin(CVSVMModel, X_test, Y_test);
810s  disp(m);
810s ***** demo
810s  ## Create a Support Vector Machine classifier and determine loss for test
810s  ## data.
810s  load fisheriris
810s  rng(1);  ## For reproducibility
810s 
810s   ## Select indices of the non-setosa species
810s  inds = !strcmp(species, 'setosa');
810s 
810s   ## Select features and labels for non-setosa species
810s  X = meas(inds, 3:4);
810s  Y = grp2idx(species(inds));
810s 
810s  ##  Convert labels to +1 and -1
810s  unique_classes = unique(Y);
810s  Y(Y == unique_classes(1)) = -1;
810s  Y(Y == unique_classes(2)) = 1;
810s 
810s  ## Randomly partition the data into training and testing sets
810s  cv = cvpartition(Y, 'HoldOut', 0.3); # 30% data for testing, 60% for training
810s 
810s  X_train = X(training(cv), :);
810s  Y_train = Y(training(cv));
810s 
810s  X_test = X(test(cv), :);
810s  Y_test = Y(test(cv));
810s 
810s  ## Train the SVM model
810s  SVMModel = fitcsvm(X_train, Y_train);
810s 
810s  ## Calculate loss
810s 
810s  L = loss(SVMModel,X_test,Y_test,'LossFun','binodeviance')
810s  L = loss(SVMModel,X_test,Y_test,'LossFun','classiferror')
810s  L = loss(SVMModel,X_test,Y_test,'LossFun','exponential')
810s  L = loss(SVMModel,X_test,Y_test,'LossFun','hinge')
810s  L = loss(SVMModel,X_test,Y_test,'LossFun','logit')
810s  L = loss(SVMModel,X_test,Y_test,'LossFun','quadratic')
810s ***** test
810s  x = [1, 2, 3; 4, 5, 6; 7, 8, 9; 3, 2, 1; 4, 5, 6; 7, 8, 9; ...
810s  3, 2, 1; 4, 5, 6; 7, 8, 9; 3, 2, 1; 4, 5, 6; 7, 8, 9; 3, 2, 1];
810s  y = [1; 2; 3; 4; 2; 3; 4; 2; 3; 4; 2; 3; 4];
810s  a = ClassificationSVM (x, y, "ClassNames", [1, 2]);
810s  assert (class (a), "ClassificationSVM");
810s  assert (a.RowsUsed, [1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]');
810s  assert ({a.X, a.Y}, {x, y})
810s  assert (a.NumObservations, 5)
810s  assert ({a.ResponseName, a.PredictorNames}, {"Y", {"x1", "x2", "x3"}})
810s  assert ({a.ClassNames, a.ModelParameters.SVMtype}, {[1; 2], "c_svc"})
810s ***** test
810s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
810s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
810s  a = ClassificationSVM (x, y);
810s  assert (class (a), "ClassificationSVM");
810s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "linear"})
810s  assert (a.ModelParameters.BoxConstraint, 1)
810s  assert (a.ClassNames, [1; -1])
810s  assert (a.ModelParameters.KernelOffset, 0)
810s ***** test
810s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
810s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
810s  a = ClassificationSVM (x, y, "KernelFunction", "rbf", "BoxConstraint", 2, ...
810s  "KernelOffset", 2);
810s  assert (class (a), "ClassificationSVM");
810s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "rbf"})
810s  assert (a.ModelParameters.BoxConstraint, 2)
810s  assert (a.ModelParameters.KernelOffset, 2)
810s ***** test
810s  x = [1, 2; 2, 3; 3, 4; 4, 5; 2, 3; 3, 4; 2, 3; 3, 4; 2, 3; 3, 4];
810s  y = [1; 1; -1; -1; 1; -1; -1; -1; -1; -1];
810s  a = ClassificationSVM (x, y, "KernelFunction", "polynomial", ...
810s  "PolynomialOrder", 3);
810s  assert (class (a), "ClassificationSVM");
810s  assert ({a.X, a.Y, a.ModelParameters.KernelFunction}, {x, y, "polynomial"})
810s  assert (a.ModelParameters.PolynomialOrder, 3)
810s ***** error<ClassificationSVM: too few input arguments.> ClassificationSVM ()
810s ***** error<ClassificationSVM: too few input arguments.> ...
810s  ClassificationSVM (ones(10,2))
810s ***** error<ClassificationSVM: number of rows in X and Y must be equal.> ...
810s  ClassificationSVM (ones(10,2), ones (5,1))
810s ***** error<ClassificationSVM: 'Standardize' must be either true or false.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "Standardize", 'a')
810s ***** error<ClassificationSVM: 'PredictorNames' must be supplied as a cellstring array.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "PredictorNames", ['x1';'x2'])
810s ***** error<ClassificationSVM: 'PredictorNames' must have the same number of columns as X.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "PredictorNames", {'x1','x2','x3'})
810s ***** error<ClassificationSVM: 'ResponseName' must be a character vector.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "ResponseName", {'Y'})
810s ***** error<ClassificationSVM: 'ResponseName' must be a character vector.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "ResponseName", 21)
810s ***** error<ClassificationSVM: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "ClassNames", @(x)x)
810s ***** error<ClassificationSVM: 'ClassNames' must be a cellstring, logical or numeric vector.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "ClassNames", ['a'])
810s ***** error<ClassificationSVM: not all 'ClassNames' are present in Y.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "ClassNames", [1, 2])
810s ***** error<ClassificationSVM: not all 'ClassNames' are present in Y.> ...
810s  ClassificationSVM (ones(5,2), {'a';'b';'a';'a';'b'}, "ClassNames", {'a','c'})
810s ***** error<ClassificationSVM: not all 'ClassNames' are present in Y.> ...
810s  ClassificationSVM (ones(10,2), logical (ones (10,1)), "ClassNames", [true, false])
810s ***** error<ClassificationSVM: 'Prior' must be either a numeric vector or a character vector.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Prior", {"asd"})
810s ***** error<ClassificationSVM: 'Prior' must be either a numeric vector or a character vector.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Prior", ones (2))
810s ***** error<ClassificationSVM: 'Cost' must be a numeric square matrix.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Cost", [1:4])
810s ***** error<ClassificationSVM: 'Cost' must be a numeric square matrix.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Cost", {0,1;1,0})
810s ***** error<ClassificationSVM: 'Cost' must be a numeric square matrix.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Cost", 'a')
810s ***** error<ClassificationSVM: 'SVMtype' must be 'c_svc', 'nu_svc', or 'one_class_svm'.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "svmtype", 123)
810s ***** error<ClassificationSVM: 'SVMtype' must be 'c_svc', 'nu_svc', or 'one_class_svm'.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "svmtype", 'some_type')
810s ***** error<ClassificationSVM: 'OutlierFraction' must be a positive scalar in the range 0 =< OutlierFraction < 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "OutlierFraction", -1)
810s ***** error<ClassificationSVM: 'KernelFunction' must be a character vector.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "KernelFunction", 123)
810s ***** error<ClassificationSVM: unsupported Kernel function.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "KernelFunction", "fcn")
810s ***** error<ClassificationSVM: 'PolynomialOrder' must be a positive integer.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "PolynomialOrder", -1)
810s ***** error<ClassificationSVM: 'PolynomialOrder' must be a positive integer.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "PolynomialOrder", 0.5)
810s ***** error<ClassificationSVM: 'PolynomialOrder' must be a positive integer.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "PolynomialOrder", [1,2])
810s ***** error<ClassificationSVM: 'KernelScale' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "KernelScale", -1)
810s ***** error<ClassificationSVM: 'KernelScale' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "KernelScale", 0)
810s ***** error<ClassificationSVM: 'KernelScale' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "KernelScale", [1, 2])
810s ***** error<ClassificationSVM: 'KernelScale' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "KernelScale", "invalid")
810s ***** error<ClassificationSVM: 'KernelOffset' must be a non-negative scalar.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "KernelOffset", -1)
810s ***** error<ClassificationSVM: 'KernelOffset' must be a non-negative scalar.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "KernelOffset", [1,2])
810s ***** error<ClassificationSVM: 'BoxConstraint' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "BoxConstraint", -1)
810s ***** error<ClassificationSVM: 'BoxConstraint' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "BoxConstraint", 0)
810s ***** error<ClassificationSVM: 'BoxConstraint' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "BoxConstraint", [1, 2])
810s ***** error<ClassificationSVM: 'BoxConstraint' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones (10,1), "BoxConstraint", "invalid")
810s ***** error<ClassificationSVM: 'Nu' must be a positive scalar in the range 0 < Nu <= 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "nu", -0.5)
810s ***** error<ClassificationSVM: 'Nu' must be a positive scalar in the range 0 < Nu <= 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "nu", 0)
810s ***** error<ClassificationSVM: 'Nu' must be a positive scalar in the range 0 < Nu <= 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "nu", 1.5)
810s ***** error<ClassificationSVM: 'CacheSize' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "CacheSize", -1)
810s ***** error<ClassificationSVM: 'CacheSize' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "CacheSize", [1,2])
810s ***** error<ClassificationSVM: 'Tolerance' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Tolerance", -0.1)
810s ***** error<ClassificationSVM: 'Tolerance' must be a positive scalar.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "Tolerance", [0.1,0.2])
810s ***** error<ClassificationSVM: 'Shrinking' must be either 0 or 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "shrinking", 2)
810s ***** error<ClassificationSVM: 'Shrinking' must be either 0 or 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "shrinking", -1)
810s ***** error<ClassificationSVM: 'Shrinking' must be either 0 or 1.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "shrinking", [1 0])
810s ***** error<ClassificationSVM: invalid parameter name in optional pair arguments.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "invalid_name", 'c_svc')
810s ***** error<ClassificationSVM: cannot train a binary problem with only one class available.> ...
810s  ClassificationSVM (ones(10,2), ones(10,1), "SVMtype", 'c_svc')
810s ***** error<ClassificationSVM: can only be used for one-class or two-class learning.> ...
810s  ClassificationSVM (ones(10,2), [1;1;1;1;2;2;2;2;3;3])
810s ***** error<ClassificationSVM: invalid values in X.> ...
810s  ClassificationSVM ([ones(9,2);2,Inf], ones(10,1))
810s ***** error<ClassificationSVM: the elements in 'Prior' do not correspond to selected classes in Y.> ...
810s  ClassificationSVM (ones (5,2), ones (5,1), "Prior", [0,1])
810s ***** error<ClassificationSVM: the elements in 'Prior' do not correspond to selected classes in Y.> ...
810s  ClassificationSVM (ones (5,2), [1;1;2;2;3], "ClassNames", [1,2], "Prior", [0,0.4,0.6])
810s ***** error<ClassificationSVM: the number of rows and columns in 'Cost' must correspond to the selected classes in Y.> ...
810s  ClassificationSVM (ones (5,2), [1;1;2;2;3], "ClassNames", [1,2], "Cost", ones (3))
810s ***** shared x, y, x_train, x_test, y_train, y_test, objST
810s  load fisheriris
810s  inds = ! strcmp (species, 'setosa');
810s  x = meas(inds, 3:4);
810s  y = grp2idx (species(inds));
810s ***** test
810s  xc = [min(x); mean(x); max(x)];
810s  obj = fitcsvm (x, y, 'KernelFunction', 'rbf', 'Tolerance', 1e-7);
810s  assert (isempty (obj.Alpha), true)
810s  assert (sum (obj.IsSupportVector), numel (obj.Beta))
810s  [label, score] = predict (obj, xc);
810s  assert (label, [1; 2; 2]);
810s  assert (score(:,1), [0.99285; -0.080296; -0.93694], 2e-5);
810s  assert (score(:,1), -score(:,2), eps)
810s  obj = fitPosterior (obj);
810s  [label, probs] = predict (obj, xc);
810s  assert (probs(:,2), [0.97555; 0.428164; 0.030385], 2e-5);
810s  assert (probs(:,1) + probs(:,2), [1; 1; 1], 0.05)
811s ***** test
811s  obj = fitcsvm (x, y);
811s  assert (isempty (obj.Beta), true)
811s  assert (sum (obj.IsSupportVector), numel (obj.Alpha))
811s  assert (numel (obj.Alpha), 24)
811s  assert (obj.Bias, -14.415, 1e-3)
811s  xc = [min(x); mean(x); max(x)];
811s  label = predict (obj, xc);
811s  assert (label, [1; 2; 2]);
811s ***** error<ClassificationSVM.predict: too few input arguments.> ...
811s  predict (ClassificationSVM (ones (40,2), ones (40,1)))
811s ***** error<ClassificationSVM.predict: XC is empty.> ...
811s  predict (ClassificationSVM (ones (40,2), ones (40,1)), [])
811s ***** error<ClassificationSVM.predict: XC must have the same number of predictors as the trained model.> ...
811s  predict (ClassificationSVM (ones (40,2), ones (40,1)), 1)
811s ***** test
811s  objST = fitcsvm (x, y);
811s  objST.ScoreTransform = "a";
811s ***** error<ClassificationSVM.predict: 'ScoreTransform' must be a 'function_handle' object.> ...
811s  [labels, scores] = predict (objST, x);
811s ***** error<ClassificationSVM.resubPredict: 'ScoreTransform' must be a 'function_handle' object.> ...
811s  [labels, scores] = resubPredict (objST);
811s ***** test
811s  rand ("seed", 1);
811s  CVSVMModel = fitcsvm (x, y, 'KernelFunction', 'rbf', 'HoldOut', 0.15, ...
811s                        'Tolerance', 1e-7);
811s  obj = CVSVMModel.Trained{1};
811s  testInds = test (CVSVMModel.Partition);
811s  expected_margin = [2.0000;  0.8579;  1.6690;  3.4141;  3.4552; ...
811s                     2.6605;  3.5251; -4.0000; -6.3411; -6.4511; ...
811s                    -3.0532; -7.5054; -1.6700; -5.6227; -7.3640];
811s  computed_margin = margin (obj, x(testInds,:), y(testInds,:));
811s  assert (computed_margin, expected_margin, 1e-4);
811s ***** error<ClassificationSVM.margin: too few input arguments.> ...
811s  margin (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)))
811s ***** error<ClassificationSVM.margin: too few input arguments.> ...
811s  margin (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2))
811s ***** error<ClassificationSVM.margin: X is empty.> ...
811s  margin (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), [], zeros (2))
811s ***** error<ClassificationSVM.margin: X must have the same number of predictors as the trained model.> ...
811s  margin (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), 1, zeros (2))
811s ***** error<ClassificationSVM.margin: Y is empty.> ...
811s  margin (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), [])
811s ***** error<ClassificationSVM.margin: Y must have the same number of rows as X.> ...
811s  margin (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), 1)
811s ***** test
811s  rand ("seed", 1);
811s  CVSVMModel = fitcsvm (x, y, 'KernelFunction', 'rbf', 'HoldOut', 0.15);
811s  obj = CVSVMModel.Trained{1};
811s  testInds = test (CVSVMModel.Partition);
811s  L1 = loss (obj, x(testInds,:), y(testInds,:), 'LossFun', 'binodeviance');
811s  L2 = loss (obj, x(testInds,:), y(testInds,:), 'LossFun', 'classiferror');
811s  L3 = loss (obj, x(testInds,:), y(testInds,:), 'LossFun', 'exponential');
811s  L4 = loss (obj, x(testInds,:), y(testInds,:), 'LossFun', 'hinge');
811s  L5 = loss (obj, x(testInds,:), y(testInds,:), 'LossFun', 'logit');
811s  L6 = loss (obj, x(testInds,:), y(testInds,:), 'LossFun', 'quadratic');
811s  assert (L1, 2.8711, 1e-4);
811s  assert (L2, 0.5333, 1e-4);
811s  assert (L3, 10.9685, 1e-4);
811s  assert (L4, 1.9827, 1e-4);
811s  assert (L5, 1.5849, 1e-4);
811s  assert (L6, 7.6739, 1e-4);
811s ***** error<ClassificationSVM.loss: too few input arguments.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)))
811s ***** error<ClassificationSVM.loss: too few input arguments.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2))
811s ***** error<ClassificationSVM.loss: Name-Value arguments must be in pairs.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones(2,1), "LossFun")
811s ***** error<ClassificationSVM.loss: X is empty.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), [], zeros (2))
811s ***** error<ClassificationSVM.loss: X must have the same number of predictors as the trained model.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), 1, zeros (2))
811s ***** error<ClassificationSVM.loss: Y is empty.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), [])
811s ***** error<ClassificationSVM.loss: Y must have the same number of rows as X.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), 1)
811s ***** error<ClassificationSVM.loss: 'LossFun' must be a character vector.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "LossFun", 1)
811s ***** error<ClassificationSVM.loss: unsupported Loss function.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "LossFun", "some")
811s ***** error<ClassificationSVM.loss: 'Weights' must be a numeric vector.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "Weights", ['a','b'])
811s ***** error<ClassificationSVM.loss: 'Weights' must be a numeric vector.> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "Weights", 'a')
811s ***** error<ClassificationSVM.loss: size of 'Weights' must be equal to the number> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "Weights", [1,2,3])
811s ***** error<ClassificationSVM.loss: size of 'Weights' must be equal to the number> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "Weights", 3)
811s ***** error<ClassificationSVM.loss: invalid parameter name in optional pair arg> ...
811s  loss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), zeros (2), ...
811s  ones (2,1), "some", "some")
811s ***** error<ClassificationSVM.resubLoss: Name-Value arguments must be in pairs.> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "LossFun")
811s ***** error<ClassificationSVM.resubLoss: 'LossFun' must be a character vector.> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "LossFun", 1)
811s ***** error<ClassificationSVM.resubLoss: unsupported Loss function.> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "LossFun", "some")
811s ***** error<ClassificationSVM.resubLoss: 'Weights' must be a numeric vector.> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "Weights", ['a','b'])
811s ***** error<ClassificationSVM.resubLoss: 'Weights' must be a numeric vector.> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "Weights", 'a')
811s ***** error<ClassificationSVM.resubLoss: size of 'Weights' must be equal to the n> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "Weights", [1,2,3])
811s ***** error<ClassificationSVM.resubLoss: size of 'Weights' must be equal to the n> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "Weights", 3)
811s ***** error<ClassificationSVM.resubLoss: invalid parameter name in optional pai> ...
811s  resubLoss (ClassificationSVM (ones (40,2), randi ([1, 2], 40, 1)), "some", "some")
811s ***** test
811s  SVMModel = fitcsvm (x, y);
811s  CVMdl = crossval (SVMModel, "KFold", 5);
811s  assert (class (CVMdl), "ClassificationPartitionedModel")
811s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
811s  assert (CVMdl.KFold == 5)
811s  assert (class (CVMdl.Trained{1}), "CompactClassificationSVM")
811s  assert (CVMdl.CrossValidatedModel, "ClassificationSVM")
811s ***** test
811s  obj = fitcsvm (x, y);
811s  CVMdl = crossval (obj, "HoldOut", 0.2);
811s  assert (class (CVMdl), "ClassificationPartitionedModel")
811s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
811s  assert (class (CVMdl.Trained{1}), "CompactClassificationSVM")
811s  assert (CVMdl.CrossValidatedModel, "ClassificationSVM")
811s ***** test
811s  obj = fitcsvm (x, y);
811s  CVMdl = crossval (obj, "LeaveOut", 'on');
811s  assert (class (CVMdl), "ClassificationPartitionedModel")
811s  assert ({CVMdl.X, CVMdl.Y}, {x, y})
811s  assert (class (CVMdl.Trained{1}), "CompactClassificationSVM")
811s  assert (CVMdl.CrossValidatedModel, "ClassificationSVM")
812s ***** error<ClassificationSVM.crossval: Name-Value arguments must be in pairs.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "KFold")
812s ***** error<ClassificationSVM.crossval: specify only one of the optional Name-Value paired arguments.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), ...
812s  "KFold", 5, "leaveout", 'on')
812s ***** error<ClassificationSVM.crossval: 'KFold' must be an integer value greater than 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "KFold", 'a')
812s ***** error<ClassificationSVM.crossval: 'KFold' must be an integer value greater than 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "KFold", 1)
812s ***** error<ClassificationSVM.crossval: 'KFold' must be an integer value greater than 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "KFold", -1)
812s ***** error<ClassificationSVM.crossval: 'KFold' must be an integer value greater than 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "KFold", 11.5)
812s ***** error<ClassificationSVM.crossval: 'KFold' must be an integer value greater than 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "KFold", [1,2])
812s ***** error<ClassificationSVM.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "Holdout", 'a')
812s ***** error<ClassificationSVM.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "Holdout", 11.5)
812s ***** error<ClassificationSVM.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "Holdout", -1)
812s ***** error<ClassificationSVM.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "Holdout", 0)
812s ***** error<ClassificationSVM.crossval: 'Holdout' must be a numeric value between 0 and 1.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "Holdout", 1)
812s ***** error<ClassificationSVM.crossval: 'Leaveout' must be either 'on' or 'off'.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "Leaveout", 1)
812s ***** error<ClassificationSVM.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "CVPartition", 1)
812s ***** error<ClassificationSVM.crossval: 'CVPartition' must be a 'cvpartition' object.> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "CVPartition", 'a')
812s ***** error<ClassificationSVM.crossval: invalid parameter name in optional paired arguments> ...
812s  crossval (ClassificationSVM (ones (40,2),randi([1, 2], 40, 1)), "some", "some")
812s 114 tests, 114 passed, 0 known failure, 0 skipped
812s [inst/cluster.m]
812s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cluster.m
812s ***** error cluster ()
812s ***** error <Z must be .* generated by the linkage .*> cluster ([1 1], "Cutoff", 1)
812s ***** error <unknown option .*> cluster ([1 2 1], "Bogus", 1)
812s ***** error <C must be a positive scalar .*> cluster ([1 2 1], "Cutoff", -1)
812s ***** error <unknown property .*> cluster ([1 2 1], "Cutoff", 1, "Bogus", 1)
812s ***** test
812s 6 tests, 6 passed, 0 known failure, 0 skipped
812s [inst/violin.m]
812s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/violin.m
812s ***** demo
812s  clf
812s  x = zeros (9e2, 10);
812s  for i=1:10
812s    x(:,i) = (0.1 * randn (3e2, 3) * (randn (3,1) + 1) + 2 * randn (1,3))(:);
812s  endfor
812s  h = violin (x, "color", "c");
812s  axis tight
812s  set (h.violin, "linewidth", 2);
812s  set (gca, "xgrid", "on");
812s  xlabel ("Variables")
812s  ylabel ("Values")
812s ***** demo
812s  clf
812s  data = {randn(100,1)*5+140, randn(130,1)*8+135};
812s  subplot (1,2,1)
812s  title ("Grade 3 heights - vertical");
812s  set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"});
812s  violin (data, "Nbins", 10);
812s  axis tight
812s 
812s  subplot(1,2,2)
812s  title ("Grade 3 heights - horizontal");
812s  set (gca, "ytick", 1:2, "yticklabel", {"girls"; "boys"});
812s  violin (data, "horizontal", "Nbins", 10);
812s  axis tight
812s ***** demo
812s  clf
812s  data = exprnd (0.1, 500,4);
812s  violin (data, "nbins", {5,10,50,100});
812s  axis ([0 5 0 max(data(:))])
812s ***** demo
812s  clf
812s  data = exprnd (0.1, 500,4);
812s  violin (data, "color", jet(4));
812s  axis ([0 5 0 max(data(:))])
812s ***** demo
812s  clf
812s  data = repmat(exprnd (0.1, 500,1), 1, 4);
812s  violin (data, "width", linspace (0.1,0.5,4));
812s  axis ([0 5 0 max(data(:))])
812s ***** demo
812s  clf
812s  data = repmat(exprnd (0.1, 500,1), 1, 4);
812s  violin (data, "nbins", [5,10,50,100], "smoothfactor", [4 4 8 10]);
812s  axis ([0 5 0 max(data(:))])
812s ***** test
812s  hf = figure ("visible", "off");
812s  unwind_protect
812s    data = exprnd (0.1, 500,4);
812s    violin (data, "color", jet(4));
812s    axis ([0 5 0 max(data(:))])
812s  unwind_protect_cleanup
812s    close (hf);
812s  end_unwind_protect
812s ***** test
812s  hf = figure ("visible", "off");
812s  unwind_protect
812s    data = {randn(100,1)*5+140, randn(130,1)*8+135};
812s    subplot (1,2,1)
812s    title ("Grade 3 heights - vertical");
812s    set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"});
812s    violin (data, "Nbins", 10);
812s    axis tight
812s  unwind_protect_cleanup
812s    close (hf);
812s  end_unwind_protect
813s ***** test
813s  hf = figure ("visible", "off");
813s  unwind_protect
813s    data = {randn(100,1)*5+140, randn(130,1)*8+135};
813s    subplot (1,2,1)
813s    title ("Grade 3 heights - vertical");
813s    set (gca, "xtick", 1:2, "xticklabel", {"girls"; "boys"});
813s    violin (data, "Nbins", 10);
813s    axis tight
813s    subplot(1,2,2)
813s    title ("Grade 3 heights - horizontal");
813s    set (gca, "ytick", 1:2, "yticklabel", {"girls"; "boys"});
813s    violin (data, "horizontal", "Nbins", 10);
813s    axis tight
813s  unwind_protect_cleanup
813s    close (hf);
813s  end_unwind_protect
813s ***** test
813s  hf = figure ("visible", "off");
813s  unwind_protect
813s    data = repmat(exprnd (0.1, 500,1), 1, 4);
813s    violin (data, "nbins", [5,10,50,100], "smoothfactor", [4 4 8 10]);
813s    axis ([0 5 0 max(data(:))])
813s  unwind_protect_cleanup
813s    close (hf);
813s  end_unwind_protect
813s ***** test
813s  hf = figure ("visible", "off");
813s  unwind_protect
813s    data = repmat(exprnd (0.1, 500,1), 1, 4);
813s    violin (data, "width", linspace (0.1,0.5,4));
813s    axis ([0 5 0 max(data(:))])
813s  unwind_protect_cleanup
813s    close (hf);
813s  end_unwind_protect
814s 5 tests, 5 passed, 0 known failure, 0 skipped
814s [inst/manova1.m]
814s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/manova1.m
814s ***** demo
814s  load carbig
814s  [d,p] = manova1([MPG, Acceleration, Weight, Displacement], Origin)
814s ***** test
814s  load carbig
814s  [d,p] = manova1([MPG, Acceleration, Weight, Displacement], Origin);
814s  assert (d, 3);
814s  assert (p, [0, 3.140583347827075e-07, 0.007510999577743149, ...
814s              0.1934100745898493]', [1e-12, 1e-12, 1e-12, 1e-12]');
814s ***** test
814s  load carbig
814s  [d,p] = manova1([MPG, Acceleration, Weight], Origin);
814s  assert (d, 2);
814s  assert (p, [0, 0.00516082975137544, 0.1206528056514453]', ...
814s             [1e-12, 1e-12, 1e-12]');
814s 2 tests, 2 passed, 0 known failure, 0 skipped
814s [inst/fitgmdist.m]
814s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitgmdist.m
814s ***** demo
814s  ## Generate a two-cluster problem
814s  C1 = randn (100, 2) + 2;
814s  C2 = randn (100, 2) - 2;
814s  data = [C1; C2];
814s 
814s  ## Perform clustering
814s  GMModel = fitgmdist (data, 2);
814s 
814s  ## Plot the result
814s  figure
814s  [heights, bins] = hist3([C1; C2]);
814s  [xx, yy] = meshgrid(bins{1}, bins{2});
814s  bbins = [xx(:), yy(:)];
814s  contour (reshape (GMModel.pdf (bbins), size (heights)));
814s ***** demo
814s  Angle_Theta = [ 30 + 10 * randn(1, 10),  60 + 10 * randn(1, 10) ]';
814s  nbOrientations = 2;
814s  initial_orientations = [38.0; 18.0];
814s  initial_weights = ones (1, nbOrientations) / nbOrientations;
814s  initial_Sigma = 10 * ones (1, 1, nbOrientations);
814s  start = struct ("mu", initial_orientations, "Sigma", initial_Sigma, ...
814s                  "ComponentProportion", initial_weights);
814s  GMModel_Theta = fitgmdist (Angle_Theta, nbOrientations, "Start", start , ...
814s                             "RegularizationValue", 0.0001)
814s ***** test
814s  load fisheriris
814s  classes = unique (species);
814s  [~, score] = pca (meas, "NumComponents", 2);
814s  options.MaxIter = 1000;
814s  options.TolFun = 1e-6;
814s  options.Display = "off";
814s  GMModel = fitgmdist (score, 2, "Options", options);
814s  assert (isa (GMModel, "gmdistribution"), true);
814s  assert (GMModel.mu, [1.3212, -0.0954; -2.6424, 0.1909], 1e-4);
814s 1 test, 1 passed, 0 known failure, 0 skipped
814s [inst/einstein.m]
814s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/einstein.m
814s ***** demo
814s  einstein (0.4, 0.6)
814s ***** demo
814s  einstein (0.2, 0.5)
814s ***** demo
814s  einstein (0.6, 0.1)
814s ***** test
814s  hf = figure ("visible", "off");
814s  unwind_protect
814s    tiles = einstein (0.4, 0.6);
814s    assert (isstruct (tiles), true);
814s  unwind_protect_cleanup
814s    close (hf);
814s  end_unwind_protect
814s ***** error<Invalid call to einstein.  Correct usage is> einstein
814s ***** error<Invalid call to einstein.  Correct usage is> einstein (0.5)
814s ***** error<einstein: A and B must be within the open interval> einstein (0, 0.9)
814s ***** error<einstein: A and B must be within the open interval> einstein (0.4, 1)
814s ***** error<einstein: A and B must be within the open interval> einstein (-0.4, 1)
814s 6 tests, 6 passed, 0 known failure, 0 skipped
814s [inst/harmmean.m]
814s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/harmmean.m
814s ***** test
814s  x = [0:10];
814s  y = [x;x+5;x+10];
814s  assert (harmmean (x), 0);
814s  m = [0 8.907635160795225 14.30854471766802];
814s  assert (harmmean (y, 2), m', 4e-14);
814s  assert (harmmean (y, "all"), 0);
814s  y(2,4) = NaN;
814s  m(2) = 9.009855936313949;
814s  assert (harmmean (y, 2), [0 NaN m(3)]', 4e-14);
814s  assert (harmmean (y', "omitnan"), m, 4e-14);
814s  z = y + 20;
814s  assert (harmmean (z, "all"), NaN);
814s  assert (harmmean (z, "all", "includenan"), NaN);
814s  assert (harmmean (z, "all", "omitnan"), 29.1108719858295, 4e-14);
814s  m = [24.59488458841874 NaN 34.71244385944397];
814s  assert (harmmean (z'), m, 4e-14);
814s  assert (harmmean (z', "includenan"), m, 4e-14);
814s  m(2) = 29.84104075528277;
814s  assert (harmmean (z', "omitnan"), m, 4e-14);
814s  assert (harmmean (z, 2, "omitnan"), m', 4e-14);
814s ***** test
814s  x = repmat ([1:20;6:25], [5 2 6 3]);
814s  assert (size (harmmean (x, [3 2])), [10 1 1 3]);
814s  assert (size (harmmean (x, [1 2])), [1 1 6 3]);
814s  assert (size (harmmean (x, [1 2 4])), [1 1 6]);
814s  assert (size (harmmean (x, [1 4 3])), [1 40]);
814s  assert (size (harmmean (x, [1 2 3 4])), [1 1]);
814s ***** test
814s  x = repmat ([1:20;6:25], [5 2 6 3]);
814s  m = repmat ([5.559045930488016;13.04950789021461], [5 1 1 3]);
814s  assert (harmmean (x, [3 2]), m, 4e-14);
814s  x(2,5,6,3) = NaN;
814s  m(2,3) = NaN;
814s  assert (harmmean (x, [3 2]), m, 4e-14);
814s  m(2,3) = 13.06617961315406;
814s  assert (harmmean (x, [3 2], "omitnan"), m, 4e-14);
814s ***** error <harmmean: X must contain real nonnegative values.> harmmean ("char")
814s ***** error <harmmean: X must contain real nonnegative values.> harmmean ([1 -1 3])
814s ***** error <harmmean: DIM must be a positive integer scalar or vector.> ...
814s  harmmean (repmat ([1:20;6:25], [5 2 6 3 5]), -1)
814s ***** error <harmmean: DIM must be a positive integer scalar or vector.> ...
814s  harmmean (repmat ([1:20;6:25], [5 2 6 3 5]), 0)
814s ***** error <harmmean: VECDIM must contain non-repeating positive integers.> ...
814s  harmmean (repmat ([1:20;6:25], [5 2 6 3 5]), [1 1])
814s 8 tests, 8 passed, 0 known failure, 0 skipped
814s [inst/chi2test.m]
814s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/chi2test.m
814s ***** error chi2test ();
815s ***** error chi2test ([1, 2, 3, 4, 5]);
815s ***** error chi2test ([1, 2; 2, 1+3i]);
815s ***** error chi2test ([NaN, 6; 34, 12]);
815s ***** error<chi2test: optional arguments are not supported for 2-way> ...
815s  p = chi2test (ones (3, 3), "mutual", []);
815s ***** error<chi2test: invalid model name for testing a 3-way table.> ...
815s  p = chi2test (ones (3, 3, 3), "testtype", 2);
815s ***** error<chi2test: optional arguments must be in pairs.> ...
815s  p = chi2test (ones (3, 3, 3), "mutual");
815s ***** error<chi2test: value must be numeric in optional argument> ...
815s  p = chi2test (ones (3, 3, 3), "joint", ["a"]);
815s ***** error<chi2test: value must be empty or scalar in optional argument> ...
815s  p = chi2test (ones (3, 3, 3), "joint", [2, 3]);
815s ***** error<chi2test: optional arguments are not supported for k> ...
815s  p = chi2test (ones (3, 3, 3, 4), "mutual", [])
815s ***** warning<chi2test: Expected values less than 5.> p = chi2test (ones (2));
815s ***** warning<chi2test: Expected values less than 5.> p = chi2test (ones (3, 2));
815s ***** warning<chi2test: Expected values less than 1.> p = chi2test (0.4 * ones (3));
815s ***** test
815s  x = [11, 3, 8; 2, 9, 14; 12, 13, 28];
815s  p = chi2test (x);
815s  assert (p, 0.017787, 1e-6);
815s ***** test
815s  x = [11, 3, 8; 2, 9, 14; 12, 13, 28];
815s  [p, chisq] = chi2test (x);
815s  assert (chisq, 11.9421, 1e-4);
815s ***** test
815s  x = [11, 3, 8; 2, 9, 14; 12, 13, 28];
815s  [p, chisq, df] = chi2test (x);
815s  assert (df, 4);
815s ***** test
815s ***** shared x
815s  x(:,:,1) = [59, 32; 9,16];
815s  x(:,:,2) = [55, 24;12,33];
815s  x(:,:,3) = [107,80;17,56];%!
815s ***** assert (chi2test (x), 2.282063427117009e-11, 1e-14);
815s ***** assert (chi2test (x, "mutual", []), 2.282063427117009e-11, 1e-14);
815s ***** assert (chi2test (x, "joint", 1), 1.164834895206468e-11, 1e-14);
815s ***** assert (chi2test (x, "joint", 2), 7.771350230001417e-11, 1e-14);
815s ***** assert (chi2test (x, "joint", 3), 0.07151361728026107, 1e-14);
815s ***** assert (chi2test (x, "marginal", 1), 0, 1e-14);
815s ***** assert (chi2test (x, "marginal", 2), 6.347555814301131e-11, 1e-14);
815s ***** assert (chi2test (x, "marginal", 3), 0, 1e-14);
815s ***** assert (chi2test (x, "conditional", 1), 0.2303114201312508, 1e-14);
815s ***** assert (chi2test (x, "conditional", 2), 0.0958810684407079, 1e-14);
815s ***** assert (chi2test (x, "conditional", 3), 2.648037344954446e-11, 1e-14);
815s ***** assert (chi2test (x, "homogeneous", []), 0.4485579470993741, 1e-14);
815s ***** test
815s  [pval, chisq, df, E] = chi2test (x);
815s  assert (chisq, 64.0982, 1e-4);
815s  assert (df, 7);
815s  assert (E(:,:,1), [42.903, 39.921; 17.185, 15.991], ones (2, 2) * 1e-3);
815s ***** test
815s  [pval, chisq, df, E] = chi2test (x, "joint", 2);
815s  assert (chisq, 56.0943, 1e-4);
815s  assert (df, 5);
815s  assert (E(:,:,2), [40.922, 23.310; 38.078, 21.690], ones (2, 2) * 1e-3);
815s ***** test
815s  [pval, chisq, df, E] = chi2test (x, "marginal", 3);
815s  assert (chisq, 146.6058, 1e-4);
815s  assert (df, 9);
815s  assert (E(:,1,1), [61.642; 57.358], ones (2, 1) * 1e-3);
815s ***** test
815s  [pval, chisq, df, E] = chi2test (x, "conditional", 3);
815s  assert (chisq, 52.2509, 1e-4);
815s  assert (df, 3);
815s  assert (E(:,:,1), [53.345, 37.655; 14.655, 10.345], ones (2, 2) * 1e-3);
815s ***** test
815s  [pval, chisq, df, E] = chi2test (x, "homogeneous", []);
815s  assert (chisq, 1.6034, 1e-4);
815s  assert (df, 2);
815s  assert (E(:,:,1), [60.827, 31.382; 7.173, 16.618], ones (2, 2) * 1e-3);
815s 34 tests, 34 passed, 0 known failure, 0 skipped
815s [inst/squareform.m]
815s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/squareform.m
815s ***** shared v, m
815s  v = 1:6;
815s  m = [0 1 2 3;1 0 4 5;2 4 0 6;3 5 6 0];
815s ***** assert (squareform (v), m)
815s ***** assert (squareform (squareform (v)), v)
815s ***** assert (squareform (m), v)
815s ***** assert (squareform (v'), m)
815s ***** assert (squareform (1), [0 1;1 0])
815s ***** assert (squareform (1, "tomatrix"), [0 1; 1 0])
815s ***** assert (squareform (0, "tovector"), zeros (1, 0))
815s ***** warning <not a symmetric matrix> squareform ([0 1 2; 3 0 4; 5 6 0]);
815s ***** test
815s  for c = {@single, @double, @uint8, @uint32, @uint64}
815s    f = c{1};
815s    assert (squareform (f (v)), f (m))
815s    assert (squareform (f (m)), f (v))
815s  endfor
815s 9 tests, 9 passed, 0 known failure, 0 skipped
815s [inst/confusionmat.m]
815s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/confusionmat.m
815s ***** test
815s  Yt = [8 5 6 8 5 3 1 6 4 2 5 3 1 4]';
815s  Yp = [8 5 6 8 5 2 3 4 4 5 5 7 2 6]';
815s  C  = [0 1 1 0 0 0 0 0; 0 0 0 0 1 0 0 0; 0 1 0 0 0 0 1 0; 0 0 0 1 0 1 0 0; ...
815s        0 0 0 0 3 0 0 0; 0 0 0 1 0 1 0 0; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 2];
815s  assert (confusionmat (Yt, Yp), C)
815s 1 test, 1 passed, 0 known failure, 0 skipped
815s [inst/shadow9/var.m]
815s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/shadow9/var.m
815s ***** assert (var (13), 0)
815s ***** assert (var (single (13)), single (0))
815s ***** assert (var ([1,2,3]), 1)
815s ***** assert (var ([1,2,3], 1), 2/3, eps)
815s ***** assert (var ([1,2,3], [], 1), [0,0,0])
815s ***** assert (var ([1,2,3], [], 3), [0,0,0])
815s ***** assert (var (5, 99), 0)
815s ***** assert (var (5, 99, 1), 0)
815s ***** assert (var (5, 99, 2), 0)
815s ***** assert (var ([5 3], [99 99], 2), 1)
815s ***** assert (var ([1:7], [1:7]), 3)
815s ***** assert (var ([eye(3)], [1:3]), [5/36, 2/9, 1/4], eps)
815s ***** assert (var (ones (2,2,2), [1:2], 3), [(zeros (2,2))])
815s ***** assert (var ([1 2; 3 4], 0, 'all'), var ([1:4]))
815s ***** assert (var (reshape ([1:8], 2, 2, 2), 0, [1 3]), [17/3 17/3], eps)
815s ***** assert (var ([1 2 3;1 2 3], [], [1 2]), 0.8, eps)
815s ***** test
815s  x = [-10:10];
815s  y = [x;x+5;x-5];
815s  assert (var (x), 38.5);
815s  assert (var (y, [], 2), [38.5; 38.5; 38.5]);
815s  assert (var (y, 0, 2), [38.5; 38.5; 38.5]);
815s  assert (var (y, 1, 2), ones (3,1) * 36.66666666666666, 1e-14);
815s  assert (var (y, "all"), 54.19354838709678, 1e-14);
815s  y(2,4) = NaN;
815s  assert (var (y, "all"), NaN);
815s  assert (var (y, "all", "includenan"), NaN);
815s  assert (var (y, "all", "omitnan"), 55.01533580116342, 1e-14);
815s  assert (var (y, 0, 2, "includenan"), [38.5; NaN; 38.5]);
815s  assert (var (y, [], 2), [38.5; NaN; 38.5]);
815s  assert (var (y, [], 2, "omitnan"), [38.5; 37.81842105263158; 38.5], 1e-14);
815s ***** assert (var ([1 NaN 3], [1 2 3], "omitnan"), 0.75, eps)
815s ***** assert (var ([1 2 3], [1 NaN 3], "omitnan"), 0.75, eps)
815s ***** assert (var (magic(3), [1 NaN 3], "omitnan"), [3 12 3], eps)
815s ***** assert (var ([1 NaN 3], [1 2 3], "omitnan", "all"), 0.75, eps)
815s ***** assert (var ([1 NaN 3], [1 2 3], "all", "omitnan"), 0.75, eps)
815s ***** assert (var ([1 2 3], [1 NaN 3], "omitnan", "all"), 0.75, eps)
815s ***** assert (var ([1 NaN 3], [1 2 3], 2, "omitnan"), 0.75, eps)
815s ***** assert (var ([1 2 3], [1 NaN 3], 2, "omitnan"), 0.75, eps)
815s ***** assert (var (magic(3), [1 NaN 3], 1, "omitnan"), [3 12 3], eps)
815s ***** assert (var (magic(3), [1 NaN 3], 2, "omitnan"), [0.75;3;0.75], eps)
815s ***** assert (var ([4 4; 4 6; 6 6], [1 3], 2, 'omitnan'), [0;0.75;0], eps)
815s ***** assert (var ([4 NaN; 4 6; 6 6], [1 2 3], 1, 'omitnan'), [1 0])
815s ***** assert (var ([4 NaN; 4 6; 6 6], [1 3], 2, 'omitnan'), [0;0.75;0], eps)
815s ***** assert (var (3*reshape(1:18, [3 3 2]), [1 2 3], 1, 'omitnan'), ones(1,3,2)*5)
815s ***** assert (var (reshape(1:18, [3 3 2]), [1 2 3], 2, 'omitnan'), 5*ones(3,1,2))
815s ***** assert (var (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 2], 'omitnan'), ...
815s          60 * ones(1,1,2))
815s ***** assert (var (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 4], 'omitnan'), ...
815s          6 * ones(1,3,2))
815s ***** assert (var (6*reshape(1:18, [3 3 2]), ones (3,3,2), [1:3], 'omitnan'), 969)
815s ***** test
815s  x = reshape(1:18, [3 3 2]);
815s  x([2, 14]) = NaN;
815s  w = ones (3,3,2);
815s  assert (var (16*x, w, [1:3], 'omitnan'), 6519);
815s ***** test
815s  x = reshape(1:18, [3 3 2]);
815s  w = ones (3,3,2);
815s  w([2, 14]) = NaN;
815s  assert (var (16*x, w, [1:3], 'omitnan'), 6519);
815s ***** assert (var ([1 2 3], "aLl"), 1);
815s ***** assert (var ([1 2 3], "OmitNan"), 1);
815s ***** assert (var ([1 2 3], "IncludeNan"), 1);
815s ***** test
815s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
815s  assert (size (var (x, 0, [3 2])), [10, 1, 1, 3]);
815s  assert (size (var (x, 1, [1 2])), [1, 1, 6, 3]);
815s  assert (size (var (x, [], [1 2 4])), [1, 1, 6]);
815s  assert (size (var (x, 0, [1 4 3])), [1, 40]);
815s  assert (size (var (x, [], [1 2 3 4])), [1, 1]);
815s ***** assert (var (3*magic(3)), [63 144 63])
815s ***** assert (var (3*magic(3), 'omitnan'), [63 144 63])
815s ***** assert (var (3*magic(3), 1), [42 96 42])
815s ***** assert (var (3*magic(3), 1, 'omitnan'), [42 96 42])
815s ***** assert (var (3*magic(3), ones(1,3), 1), [42 96 42])
815s ***** assert (var (3*magic(3), ones(1,3), 1, 'omitnan'), [42 96 42])
815s ***** assert (var (2*magic(3), [1 1 NaN], 1, 'omitnan'), [25 16 1])
815s ***** assert (var (3*magic(3), ones(3,3)), [42 96 42])
815s ***** assert (var (3*magic(3), ones(3,3), 'omitnan'), [42 96 42])
815s ***** assert (var (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 'omitnan'), [42 36 42])
815s ***** assert (var (3*magic(3), ones(3,3), 1), [42 96 42])
815s ***** assert (var (3*magic(3), ones(3,3), 1, 'omitnan'), [42 96 42])
815s ***** assert (var (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 1, 'omitnan'), [42 36 42])
815s ***** assert (var (3*magic(3), ones(3,3), [1 4]), [42 96 42])
815s ***** assert (var (3*magic(3), ones(3,3), [1 4], 'omitnan'), [42 96 42])
815s ***** assert (var (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1],[1 4],'omitnan'), [42 36 42])
815s ***** test
815s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
815s  v = repmat (33.38912133891213, [10, 1, 1, 3]);
815s  assert (var (x, 0, [3, 2]), v, 1e-14);
815s  v = repmat (33.250, [10, 1, 1, 3]);
815s  assert (var (x, 1, [3, 2]), v, 1e-14);
815s  x(2,5,6,3) = NaN;
815s  v(2,1,1,3) = NaN;
815s  assert (var (x, 1, [3, 2]), v, 4e-14);
815s  v = repmat (33.38912133891213, [10 1 1 3]);
815s  v(2,1,1,3) = NaN;
815s  assert (var (x, [], [3, 2]), v, 4e-14);
815s  v(2,1,1,3) = 33.40177912169048;
815s  assert (var (x, [], [3, 2], "omitnan"), v, 4e-14);
815s ***** assert (var (ones (2,2,2), [1:2], 3), [(zeros (2, 2))])
815s ***** assert (var (magic (3), [1:9], "all"), 6.666666666666667, 1e-14)
815s ***** assert (var (ones (2,2), [], 3), zeros (2,2))
815s ***** assert (var (ones (2,2,2), [], 99), zeros (2,2,2))
815s ***** assert (var (magic (3), [], 3), zeros (3,3))
815s ***** assert (var (magic (3), [], 1), [7, 16, 7])
815s ***** assert (var (magic (3), [], [1 3]), [7, 16, 7])
815s ***** assert (var (magic (3), [], [1 99]), [7, 16, 7])
815s ***** assert (var ([]), NaN)
815s ***** assert (class (var (single ([]))), "single")
815s ***** assert (var ([],[],1), NaN(1,0))
815s ***** assert (var ([],[],2), NaN(0,1))
815s ***** assert (var ([],[],3), [])
815s ***** assert (class (var (single ([]), [], 1)), "single")
815s ***** assert (var (ones (1,0)), NaN)
815s ***** assert (var (ones (1,0), [], 1), NaN(1,0))
815s ***** assert (var (ones (1,0), [], 2), NaN)
815s ***** assert (var (ones (1,0), [], 3), NaN(1,0))
815s ***** assert (class (var (ones (1, 0, "single"), [], 1)), "single")
815s ***** assert (var (ones (0,1)), NaN)
815s ***** assert (var (ones (0,1), [], 1), NaN)
815s ***** assert (var (ones (0,1), [], 2), NaN(0,1))
815s ***** assert (var (ones (0,1), [], 3), NaN(0,1))
815s ***** assert (var (ones (1,3,0,2)), NaN(1,1,0,2))
815s ***** assert (var (ones (1,3,0,2), [], 1), NaN(1,3,0,2))
815s ***** assert (var (ones (1,3,0,2), [], 2), NaN(1,1,0,2))
815s ***** assert (var (ones (1,3,0,2), [], 3), NaN(1,3,1,2))
815s ***** assert (var (ones (1,3,0,2), [], 4), NaN(1,3,0))
815s ***** test
815s  [~, m] = var ([]);
815s  assert (m, NaN);
815s ***** test <*62395>
815s  [~, m] = var (13);
815s  assert (m, 13);
815s  [~, m] = var (single(13));
815s  assert (m, single(13));
815s  [~, m] = var ([1, 2, 3; 3 2 1], []);
815s  assert (m, [2 2 2]);
815s  [~, m] = var ([1, 2, 3; 3 2 1], [], 1);
815s  assert (m, [2 2 2]);
815s  [~, m] = var ([1, 2, 3; 3 2 1], [], 2);
815s  assert (m, [2 2]');
815s  [~, m] = var ([1, 2, 3; 3 2 1], [], 3);
815s  assert (m, [1 2 3; 3 2 1]);
815s ***** test <*62395>
815s  [~, m] = var (5,99);
815s  assert (m, 5);
815s  [~, m] = var ([1:7], [1:7]);
815s  assert (m, 5);
815s  [~, m] = var ([eye(3)], [1:3]);
815s  assert (m, [1/6, 1/3, 0.5], eps);
815s  [~, m] = var (ones (2,2,2), [1:2], 3);
815s  assert (m, ones (2,2));
815s  [~, m] = var ([1 2; 3 4], 0, 'all');
815s  assert (m, 2.5, eps);
815s  [~, m] = var (reshape ([1:8], 2, 2, 2), 0, [1 3]);
815s  assert (m, [3.5, 5.5], eps);
815s ***** test
815s  [v, m] = var (4 * eye (2), [1, 3]);
815s  assert (v, [3, 3]);
815s  assert (m, [1, 3]);
815s ***** test <*62395>
815s  [~, m] = var ([]);
815s  assert (m, NaN);
815s ***** test <*62395>
815s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
815s  [~, m] = var (x, 0, [3 2]);
815s  assert (m, mean (x, [3 2]));
815s  [~, m] = var (x, 0, [1 2]);
815s  assert (m, mean (x, [1 2]));
815s  [~, m] = var (x, 0, [1 3 4]);
815s  assert (m, mean (x, [1 3 4]));
815s ***** test
815s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
815s  x(2,5,6,3) = NaN;
815s  [~, m] = var (x, 0, [3 2], "omitnan");
815s  assert (m, mean (x, [3 2], "omitnan"));
815s ***** test <*63203>
815s  [v, m] = var (Inf);
815s  assert (v, NaN);
815s  assert (m, Inf);
815s ***** test <*63203>
815s  [v, m] = var (NaN);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([1, Inf, 3]);
815s  assert (v, NaN);
815s  assert (m, Inf);
815s ***** test <*63203>
815s  [v, m] = var ([1, Inf, 3]');
815s  assert (v, NaN);
815s  assert (m, Inf);
815s ***** test <*63203>
815s  [v, m] = var ([1, NaN, 3]);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([1, NaN, 3]');
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([1, Inf, 3], [], 1);
815s  assert (v, [0, NaN, 0]);
815s  assert (m, [1, Inf, 3]);
815s ***** test <*63203>
815s  [v, m] = var ([1, Inf, 3], [], 2);
815s  assert (v, NaN);
815s  assert (m, Inf);
815s ***** test <*63203>
815s  [v, m] = var ([1, Inf, 3], [], 3);
815s  assert (v, [0, NaN, 0]);
815s  assert (m, [1, Inf, 3]);
815s ***** test <*63203>
815s  [v, m] = var ([1, NaN, 3], [], 1);
815s  assert (v, [0, NaN, 0]);
815s  assert (m, [1, NaN, 3]);
815s ***** test <*63203>
815s  [v, m] = var ([1, NaN, 3], [], 2);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([1, NaN, 3], [], 3);
815s  assert (v, [0, NaN, 0]);
815s  assert (m, [1, NaN, 3]);
815s ***** test <*63203>
815s  [v, m] = var ([1, 2, 3; 3, Inf, 5]);
815s  assert (v, [2, NaN, 2]);
815s  assert (m, [2, Inf, 4]);
815s ***** test <*63203>
815s  [v, m] = var ([1, Inf, 3; 3, Inf, 5]);
815s  assert (v, [2, NaN, 2]);
815s  assert (m, [2, Inf, 4]);
815s ***** test <*63203>
815s  [v, m] = var ([1, 2, 3; 3, NaN, 5]);
815s  assert (v, [2, NaN, 2]);
815s  assert (m, [2, NaN, 4]);
815s ***** test <*63203>
815s  [v, m] = var ([1, NaN, 3; 3, NaN, 5]);
815s  assert (v, [2, NaN, 2]);
815s  assert (m, [2, NaN, 4]);
815s ***** test <*63203>
815s  [v, m] = var ([Inf, 2, NaN]);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([Inf, 2, NaN]');
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([NaN, 2, Inf]);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([NaN, 2, Inf]');
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([Inf, 2, NaN], [], 1);
815s  assert (v, [NaN, 0, NaN]);
815s  assert (m, [Inf, 2, NaN]);
815s ***** test <*63203>
815s  [v, m] = var ([Inf, 2, NaN], [], 2);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([NaN, 2, Inf], [], 1);
815s  assert (v, [NaN, 0, NaN]);
815s  assert (m, [NaN, 2, Inf]);
815s ***** test <*63203>
815s  [v, m] = var ([NaN, 2, Inf], [], 2);
815s  assert (v, NaN);
815s  assert (m, NaN);
815s ***** test <*63203>
815s  [v, m] = var ([1, 3, NaN; 3, 5, Inf]);
815s  assert (v, [2, 2, NaN]);
815s  assert (m, [2, 4, NaN]);
815s ***** test <*63203>
815s  [v, m] = var ([1, 3, Inf; 3, 5, NaN]);
815s  assert (v, [2, 2, NaN]);
815s  assert (m, [2, 4, NaN]);
815s ***** test <*63291>
815s  [v, m] = var (2 * eye (2));
815s  assert (v, [2, 2]);
815s  assert (m, [1, 1]);
815s ***** test <*63291>
815s  [v, m] = var (4 * eye (2), [1, 3]);
815s  assert (v, [3, 3]);
815s  assert (m, [1, 3]);
815s ***** test <*63291>
815s  [v, m] = var (sparse (2 * eye (2)));
815s  assert (full (v), [2, 2]);
815s  assert (full (m), [1, 1]);
815s ***** test <*63291>
815s  [v, m] = var (sparse (4 * eye (2)), [1, 3]);
815s  assert (full (v), [3, 3]);
815s  assert (full (m), [1, 3]);
815s ***** test<*63291>
815s  [v, m] = var (sparse (eye (2)));
815s  assert (issparse (v));
815s  assert (issparse (m));
815s ***** test<*63291>
815s  [v, m] = var (sparse (eye (2)), [1, 3]);
815s  assert (issparse (v));
815s  assert (issparse (m));
815s ***** error <Invalid call> var ()
816s ***** error <Invalid call> var (1, 2, "omitnan", 3)
816s ***** error <Invalid call> var (1, 2, 3, 4)
816s ***** error <Invalid call> var (1, 2, 3, 4, 5)
816s ***** error <Invalid call> var (1, "foo")
816s ***** error <Invalid call> var (1, [], "foo")
816s ***** error <normalization scalar must be either 0 or 1> var ([1 2 3], 2)
816s ***** error <normalization scalar must be either 0 or 1> var ([1 2], 2, "all")
816s ***** error <normalization scalar must be either 0 or 1> var ([1 2],0.5, "all")
816s ***** error <weights must not contain any negative values> var (1, -1)
816s ***** error <weights must not contain any negative values> var (1, [1 -1])
816s ***** error <weights must not contain any negative values> ...
816s  var ([1 2 3], [1 -1 0])
816s ***** error <X must be a numeric vector or matrix> var ({1:5})
816s ***** error <X must be a numeric vector or matrix> var ("char")
816s ***** error <X must be a numeric vector or matrix> var (['A'; 'B'])
816s ***** error <DIM must be a positive integer> var (1, [], ones (2,2))
816s ***** error <DIM must be a positive integer> var (1, 0, 1.5)
816s ***** error <DIM must be a positive integer> var (1, [], 0)
816s ***** error <DIM must be a positive integer> var (1, [], 1.5)
816s ***** error <DIM must be a positive integer> var ([1 2 3], [], [-1 1])
816s ***** error <VECDIM must contain non-repeating positive integers> ...
816s  var (repmat ([1:20;6:25], [5 2 6 3]), 0, [1 2 2 2])
816s ***** error <weight matrix or array does not match X in size> ...
816s  var ([1 2], eye (2))
816s ***** error <weight matrix or array does not match X in size> ...
816s  var ([1 2 3 4], [1 2; 3 4])
816s ***** error <weight matrix or array does not match X in size> ...
816s  var ([1 2 3 4], [1 2; 3 4], 1)
816s ***** error <weight matrix or array does not match X in size> ...
816s  var ([1 2 3 4], [1 2; 3 4], [2 3])
816s ***** error <weight matrix or array does not match X in size> ...
816s  var (ones (2, 2), [1 2], [1 2])
816s ***** error <weight matrix or array does not match X in size> ...
816s  var ([1 2 3 4; 5 6 7 8], [1 2 1 2 1; 1 2 1 2 1], 1)
816s ***** error <weight matrix or array does not match X in size> ...
816s  var (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), [2 3])
816s ***** error <weight vector length does not match> var ([1 2 3; 2 3 4], [1 3 4])
816s ***** error <weight vector length does not match> var ([1 2], [1 2 3])
816s ***** error <weight vector length does not match> var (1, [1 2])
816s ***** error <weight vector length does not match> var ([1 2 3; 2 3 4], [1 3 4], 1)
817s ***** error <weight vector length does not match> var ([1 2 3; 2 3 4], [1 3], 2)
817s ***** error <weight vector length does not match> var ([1 2], [1 2], 1)
817s ***** error <'all' flag cannot be used with DIM or VECDIM options> ...
817s  var (1, [], 1, "all")
817s ***** error <weight vector element count does not match X> ...
817s  var ([1 2 3; 2 3 4], [1 3], "all")
817s ***** error <weight matrix or array does not match X in size> ...
817s  var (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), "all")
817s 162 tests, 162 passed, 0 known failure, 0 skipped
817s [inst/shadow9/std.m]
817s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/shadow9/std.m
817s ***** assert (std (13), 0)
817s ***** assert (std (single (13)), single (0))
817s ***** assert (std ([1,2,3]), 1)
817s ***** assert (std ([1,2,3], 1), sqrt (2/3), eps)
817s ***** assert (std ([1,2,3], [], 1), [0,0,0])
817s ***** assert (std ([1,2,3], [], 3), [0,0,0])
817s ***** assert (std (5, 99), 0)
817s ***** assert (std (5, 99, 1), 0)
817s ***** assert (std (5, 99, 2), 0)
817s ***** assert (std ([5 3], [99 99], 2), 1)
817s ***** assert (std ([1:7], [1:7]), sqrt (3))
817s ***** assert (std ([eye(3)], [1:3]), sqrt ([5/36, 2/9, 1/4]), eps)
817s ***** assert (std (ones (2,2,2), [1:2], 3), [(zeros (2,2))])
817s ***** assert (std ([1 2; 3 4], 0, 'all'), std ([1:4]))
817s ***** assert (std (reshape ([1:8], 2, 2, 2), 0, [1 3]), sqrt ([17/3 17/3]), eps)
817s ***** assert (std ([1 2 3;1 2 3], [], [1 2]), sqrt (0.8), eps)
817s ***** test
817s  x = [-10:10];
817s  y = [x;x+5;x-5];
817s  assert (std (x), sqrt (38.5), 1e-14);
817s  assert (std (y, [], 2), sqrt ([38.5; 38.5; 38.5]), 1e-14);
817s  assert (std (y, 0, 2), sqrt ([38.5; 38.5; 38.5]), 1e-14);
817s  assert (std (y, 1, 2), ones (3,1) * sqrt (36.66666666666666), 1e-14);
817s  assert (std (y, "all"), sqrt (54.19354838709678), 1e-14);
817s  y(2,4) = NaN;
817s  assert (std (y, "all"), NaN);
817s  assert (std (y, "all", "includenan"), NaN);
817s  assert (std (y, "all", "omitnan"), sqrt (55.01533580116342), 1e-14);
817s  assert (std (y, 0, 2, "includenan"), sqrt ([38.5; NaN; 38.5]), 1e-14);
817s  assert (std (y, [], 2), sqrt ([38.5; NaN; 38.5]), 1e-14);
817s  assert (std (y, [], 2, "omitnan"), ...
817s          sqrt ([38.5; 37.81842105263158; 38.5]), 1e-14);
817s ***** assert (std ([4 NaN 6], [1 2 1], "omitnan"), 1, eps)
817s ***** assert (std ([4 5 6], [1 NaN 1], "omitnan"), 1, eps)
817s ***** assert (std (magic(3), [1 NaN 3], "omitnan"), sqrt(3)*[1 2 1], eps)
817s ***** assert (std ([4 NaN 6], [1 2 1], "omitnan", "all"), 1, eps)
817s ***** assert (std ([4 NaN 6], [1 2 1], "all", "omitnan"), 1, eps)
817s ***** assert (std ([4 5 6], [1 NaN 1], "omitnan", "all"), 1, eps)
817s ***** assert (std ([4 NaN 6], [1 2 1], 2, "omitnan"), 1, eps)
817s ***** assert (std ([4 5 6], [1 NaN 1], 2, "omitnan"), 1, eps)
817s ***** assert (std (magic(3), [1 NaN 3], 1, "omitnan"), sqrt(3)*[1 2 1], eps)
817s ***** assert (std (magic(3), [1 NaN 3], 2, "omitnan"), sqrt(3)*[0.5;1;0.5], eps)
817s ***** assert (std (4*[4 5; 6 7; 8 9], [1 3], 2, 'omitnan'), sqrt(3)*[1;1;1], eps)
817s ***** assert (std ([4 NaN; 6 7; 8 9], [1 1 3], 1, 'omitnan'), [1.6 sqrt(3)/2], eps)
817s ***** assert (std (4*[4 NaN; 6 7; 8 9], [1 3], 2, 'omitnan'), sqrt(3)*[0;1;1], eps)
817s ***** assert (std (3*reshape(1:18, [3 3 2]), [1 2 3], 1, 'omitnan'), ...
817s           sqrt(5)*ones(1,3,2), eps)
817s ***** assert (std (reshape(1:18, [3 3 2]), [1 2 3], 2, 'omitnan'), ...
817s           sqrt(5)*ones(3,1,2), eps)
817s ***** assert (std (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 2], 'omitnan'), ...
817s           sqrt(60)*ones(1,1,2),eps)
817s ***** assert (std (3*reshape(1:18, [3 3 2]), ones (3,3,2), [1 4], 'omitnan'), ...
817s           sqrt(6)*ones(1,3,2),eps)
817s ***** assert (std (6*reshape(1:18, [3 3 2]), ones (3,3,2), [1:3], 'omitnan'), ...
817s           sqrt(969),eps)
817s ***** test
817s  x = reshape(1:18, [3 3 2]);
817s  x([2, 14]) = NaN;
817s  w = ones (3,3,2);
817s  assert (std (16*x, w, [1:3], 'omitnan'), sqrt(6519), eps);
817s ***** test
817s  x = reshape(1:18, [3 3 2]);
817s  w = ones (3,3,2);
817s  w([2, 14]) = NaN;
817s  assert (std (16*x, w, [1:3], 'omitnan'), sqrt(6519), eps);
817s ***** assert (std ([1 2 3], "aLl"), 1);
817s ***** assert (std ([1 2 3], "OmitNan"), 1);
817s ***** assert (std ([1 2 3], "IncludeNan"), 1);
817s ***** test
817s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
817s  assert (size (std (x, 0, [3 2])), [10, 1, 1, 3]);
817s  assert (size (std (x, 1, [1 2])), [1, 1, 6, 3]);
817s  assert (size (std (x, [], [1 2 4])), [1, 1, 6]);
817s  assert (size (std (x, 0, [1 4 3])), [1, 40]);
817s  assert (size (std (x, [], [1 2 3 4])), [1, 1]);
817s ***** assert (std (3*magic(3)), sqrt([63 144 63]), eps)
817s ***** assert (std (3*magic(3), 'omitnan'), sqrt([63 144 63]), eps)
817s ***** assert (std (3*magic(3), 1), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), 1, 'omitnan'), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), ones(1,3), 1), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), ones(1,3), 1, 'omitnan'), sqrt([42 96 42]), eps)
817s ***** assert (std (2*magic(3), [1 1 NaN], 1, 'omitnan'), [5 4 1], eps)
817s ***** assert (std (3*magic(3), ones(3,3)), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), ones(3,3), 'omitnan'), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 'omitnan'), ...
817s          sqrt([42 36 42]), eps)
817s ***** assert (std (3*magic(3), ones(3,3), 1), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), ones(3,3), 1, 'omitnan'), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1], 1, 'omitnan'), ...
817s          sqrt([42 36 42]), eps)
817s ***** assert (std (3*magic(3), ones(3,3), [1 4]), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), ones(3,3), [1 4], 'omitnan'), sqrt([42 96 42]), eps)
817s ***** assert (std (3*magic(3), [1 1 1; 1 1 1; 1 NaN 1],[1 4],'omitnan'), ...
817s          sqrt([42 36 42]), eps)
817s ***** test
817s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
817s  v = repmat (sqrt (33.38912133891213), [10, 1, 1, 3]);
817s  assert (std (x, 0, [3, 2]), v, 1e-14);
817s  v = repmat (sqrt (33.250), [10, 1, 1, 3]);
817s  assert (std (x, 1, [3, 2]), v, 1e-14);
817s  x(2,5,6,3) = NaN;
817s  v(2,1,1,3) = NaN;
817s  assert (std (x, 1, [3, 2]), v, 1e-14);
817s  v = repmat (sqrt (33.38912133891213), [10 1 1 3]);
817s  v(2,1,1,3) = NaN;
817s  assert (std (x, [], [3, 2]), v, 1e-14);
817s  v(2,1,1,3) = sqrt (33.40177912169048);
817s  assert (std (x, [], [3, 2], "omitnan"), v, 1e-14);
817s ***** assert (std (ones (2,2,2), [1:2], 3), [(zeros (2, 2))])
817s ***** assert (std (magic (3), [1:9], "all"), 2.581988897471611, 1e-14)
817s ***** assert (std (ones (2,2), [], 3), zeros (2,2))
817s ***** assert (std (ones (2,2,2), [], 99), zeros (2,2,2))
817s ***** assert (std (magic (3), [], 3), zeros (3,3))
817s ***** assert (std (magic (3), [], 1), sqrt ([7, 16, 7]))
817s ***** assert (std (magic (3), [], [1 3]), sqrt ([7, 16, 7]))
817s ***** assert (std (magic (3), [], [1 99]), sqrt ([7, 16, 7]))
817s ***** assert (std ([]), NaN)
817s ***** assert (class (var (single ([]))), "single")
817s ***** assert (std ([],[],1), NaN(1,0))
817s ***** assert (std ([],[],2), NaN(0,1))
817s ***** assert (std ([],[],3), [])
817s ***** assert (class (var (single ([]), [], 1)), "single")
817s ***** assert (std (ones (1,0)), NaN)
817s ***** assert (std (ones (1,0), [], 1), NaN(1,0))
817s ***** assert (std (ones (1,0), [], 2), NaN)
817s ***** assert (std (ones (1,0), [], 3), NaN(1,0))
817s ***** assert (class (var (ones (1, 0, "single"), [], 1)), "single")
817s ***** assert (std (ones (0,1)), NaN)
817s ***** assert (std (ones (0,1), [], 1), NaN)
817s ***** assert (std (ones (0,1), [], 2), NaN(0,1))
817s ***** assert (std (ones (0,1), [], 3), NaN(0,1))
817s ***** assert (std (ones (1,3,0,2)), NaN(1,1,0,2))
817s ***** assert (std (ones (1,3,0,2), [], 1), NaN(1,3,0,2))
817s ***** assert (std (ones (1,3,0,2), [], 2), NaN(1,1,0,2))
817s ***** assert (std (ones (1,3,0,2), [], 3), NaN(1,3,1,2))
817s ***** assert (std (ones (1,3,0,2), [], 4), NaN(1,3,0))
817s ***** test
817s  [~, m] = std ([]);
817s  assert (m, NaN);
817s ***** test <*62395>
817s  [~, m] = std (13);
817s  assert (m, 13);
817s  [~, m] = std (single(13));
817s  assert (m, single(13));
817s  [~, m] = std ([1, 2, 3; 3 2 1], []);
817s  assert (m, [2 2 2]);
817s  [~, m] = std ([1, 2, 3; 3 2 1], [], 1);
817s  assert (m, [2 2 2]);
817s  [~, m] = std ([1, 2, 3; 3 2 1], [], 2);
817s  assert (m, [2 2]');
817s  [~, m] = std ([1, 2, 3; 3 2 1], [], 3);
817s  assert (m, [1 2 3; 3 2 1]);
817s ***** test <*62395>
817s  [~, m] = std (5,99);
817s  assert (m, 5);
817s  [~, m] = std ([1:7], [1:7]);
817s  assert (m, 5);
817s  [~, m] = std ([eye(3)], [1:3]);
817s  assert (m, [1/6, 1/3, 0.5], eps);
817s  [~, m] = std (ones (2,2,2), [1:2], 3);
817s  assert (m, ones (2,2));
817s  [~, m] = std ([1 2; 3 4], 0, 'all');
817s  assert (m, 2.5, eps);
817s  [~, m] = std (reshape ([1:8], 2, 2, 2), 0, [1 3]);
817s  assert (m, [3.5, 5.5], eps);
817s ***** test
817s  [v, m] = std (4 * eye (2), [1, 3]);
817s  assert (v, sqrt ([3, 3]), 1e-14);
817s  assert (m, [1, 3]);
817s ***** test <*62395>
817s  [~, m] = std ([]);
817s  assert (m, NaN);
817s ***** test
817s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
817s  [~, m] = std (x, 0, [3 2]);
817s  assert (m, mean (x, [3 2]));
817s  [~, m] = std (x, 0, [1 2]);
817s  assert (m, mean (x, [1 2]));
817s  [~, m] = std (x, 0, [1 3 4]);
817s  assert (m, mean (x, [1 3 4]));
817s ***** test
817s  x = repmat ([1:20;6:25], [5, 2, 6, 3]);
817s  x(2,5,6,3) = NaN;
817s  [~, m] = std (x, 0, [3 2], "omitnan");
817s  assert (m, mean (x, [3 2], "omitnan"));
817s ***** test <*63203>
817s  [v, m] = std (Inf);
817s  assert (v, NaN);
817s  assert (m, Inf);
817s ***** test <*63203>
817s  [v, m] = std (NaN);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([1, Inf, 3]);
817s  assert (v, NaN);
817s  assert (m, Inf);
817s ***** test <*63203>
817s  [v, m] = std ([1, Inf, 3]');
817s  assert (v, NaN);
817s  assert (m, Inf);
817s ***** test <*63203>
817s  [v, m] = std ([1, NaN, 3]);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([1, NaN, 3]');
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([1, Inf, 3], [], 1);
817s  assert (v, [0, NaN, 0]);
817s  assert (m, [1, Inf, 3]);
817s ***** test <*63203>
817s  [v, m] = std ([1, Inf, 3], [], 2);
817s  assert (v, NaN);
817s  assert (m, Inf);
817s ***** test <*63203>
817s  [v, m] = std ([1, Inf, 3], [], 3);
817s  assert (v, [0, NaN, 0]);
817s  assert (m, [1, Inf, 3]);
817s ***** test <*63203>
817s  [v, m] = std ([1, NaN, 3], [], 1);
817s  assert (v, [0, NaN, 0]);
817s  assert (m, [1, NaN, 3]);
817s ***** test <*63203>
817s  [v, m] = std ([1, NaN, 3], [], 2);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([1, NaN, 3], [], 3);
817s  assert (v, [0, NaN, 0]);
817s  assert (m, [1, NaN, 3]);
817s ***** test <*63203>
817s  [v, m] = std ([1, 2, 3; 3, Inf, 5]);
817s  assert (v, sqrt ([2, NaN, 2]));
817s  assert (m, [2, Inf, 4]);
817s ***** test <*63203>
817s  [v, m] = std ([1, Inf, 3; 3, Inf, 5]);
817s  assert (v, sqrt ([2, NaN, 2]));
817s  assert (m, [2, Inf, 4]);
817s ***** test <*63203>
817s  [v, m] = std ([1, 2, 3; 3, NaN, 5]);
817s  assert (v, sqrt ([2, NaN, 2]));
817s  assert (m, [2, NaN, 4]);
817s ***** test <*63203>
817s  [v, m] = std ([1, NaN, 3; 3, NaN, 5]);
817s  assert (v, sqrt ([2, NaN, 2]));
817s  assert (m, [2, NaN, 4]);
817s ***** test <*63203>
817s  [v, m] = std ([Inf, 2, NaN]);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([Inf, 2, NaN]');
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([NaN, 2, Inf]);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([NaN, 2, Inf]');
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([Inf, 2, NaN], [], 1);
817s  assert (v, [NaN, 0, NaN]);
817s  assert (m, [Inf, 2, NaN]);
817s ***** test <*63203>
817s  [v, m] = std ([Inf, 2, NaN], [], 2);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([NaN, 2, Inf], [], 1);
817s  assert (v, [NaN, 0, NaN]);
817s  assert (m, [NaN, 2, Inf]);
817s ***** test <*63203>
817s  [v, m] = std ([NaN, 2, Inf], [], 2);
817s  assert (v, NaN);
817s  assert (m, NaN);
817s ***** test <*63203>
817s  [v, m] = std ([1, 3, NaN; 3, 5, Inf]);
817s  assert (v, sqrt ([2, 2, NaN]));
817s  assert (m, [2, 4, NaN]);
817s ***** test <*63203>
817s  [v, m] = std ([1, 3, Inf; 3, 5, NaN]);
817s  assert (v, sqrt ([2, 2, NaN]));
817s  assert (m, [2, 4, NaN]);
817s ***** test <*63291>
817s  [v, m] = std (2 * eye (2));
817s  assert (v, sqrt ([2, 2]));
817s  assert (m, [1, 1]);
817s ***** test <*63291>
817s  [v, m] = std (4 * eye (2), [1, 3]);
817s  assert (v, sqrt ([3, 3]));
817s  assert (m, [1, 3]);
817s ***** test <*63291>
817s  [v, m] = std (sparse (2 * eye (2)));
817s  assert (full (v), sqrt ([2, 2]));
817s  assert (full (m), [1, 1]);
817s ***** test <*63291>
817s  [v, m] = std (sparse (4 * eye (2)), [1, 3]);
817s  assert (full (v), sqrt ([3, 3]));
817s  assert (full (m), [1, 3]);
817s ***** test <*63291>
817s  [v, m] = std (sparse (eye (2)));
817s  assert (issparse (v));
817s  assert (issparse (m));
817s ***** test <*63291>
817s  [v, m] = std (sparse (eye (2)), [1, 3]);
817s  assert (issparse (v));
817s  assert (issparse (m));
817s ***** error <Invalid call> std ()
817s ***** error <Invalid call> std (1, 2, "omitnan", 3)
817s ***** error <Invalid call> std (1, 2, 3, 4)
818s ***** error <Invalid call> std (1, 2, 3, 4, 5)
818s ***** error <Invalid call> std (1, "foo")
818s ***** error <Invalid call> std (1, [], "foo")
818s ***** error <normalization scalar must be either 0 or 1> std ([1 2 3], 2)
818s ***** error <normalization scalar must be either 0 or 1> std ([1 2], 2, "all")
818s ***** error <normalization scalar must be either 0 or 1> std ([1 2],0.5, "all")
818s ***** error <weights must not contain any negative values> std (1, -1)
818s ***** error <weights must not contain any negative values> std (1, [1 -1])
818s ***** error <weights must not contain any negative values> ...
818s  std ([1 2 3], [1 -1 0])
818s ***** error <X must be a numeric vector or matrix> std ({1:5})
818s ***** error <X must be a numeric vector or matrix> std ("char")
818s ***** error <X must be a numeric vector or matrix> std (['A'; 'B'])
818s ***** error <DIM must be a positive integer> std (1, [], ones (2,2))
818s ***** error <DIM must be a positive integer> std (1, 0, 1.5)
818s ***** error <DIM must be a positive integer> std (1, [], 0)
818s ***** error <DIM must be a positive integer> std (1, [], 1.5)
818s ***** error <DIM must be a positive integer> std ([1 2 3], [], [-1 1])
818s ***** error <VECDIM must contain non-repeating positive integers> ...
818s  std (repmat ([1:20;6:25], [5 2 6 3]), 0, [1 2 2 2])
818s ***** error <weight matrix or array does not match X in size> ...
818s  std ([1 2], eye (2))
818s ***** error <weight matrix or array does not match X in size> ...
818s  std ([1 2 3 4], [1 2; 3 4])
818s ***** error <weight matrix or array does not match X in size> ...
818s  std ([1 2 3 4], [1 2; 3 4], 1)
818s ***** error <weight matrix or array does not match X in size> ...
818s  std ([1 2 3 4], [1 2; 3 4], [2 3])
818s ***** error <weight matrix or array does not match X in size> ...
818s  std (ones (2, 2), [1 2], [1 2])
818s ***** error <weight matrix or array does not match X in size> ...
818s  std ([1 2 3 4; 5 6 7 8], [1 2 1 2 1; 1 2 1 2 1], 1)
818s ***** error <weight matrix or array does not match X in size> ...
818s  std (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), [2 3])
818s ***** error <weight vector length does not match> std ([1 2 3; 2 3 4], [1 3 4])
818s ***** error <weight vector length does not match> std ([1 2], [1 2 3])
818s ***** error <weight vector length does not match> std (1, [1 2])
818s ***** error <weight vector length does not match> std ([1 2 3; 2 3 4], [1 3 4], 1)
818s ***** error <weight vector length does not match> std ([1 2 3; 2 3 4], [1 3], 2)
818s ***** error <weight vector length does not match> std ([1 2], [1 2], 1)
818s ***** error <'all' flag cannot be used with DIM or VECDIM options> ...
818s  std (1, [], 1, "all")
818s ***** error <weight vector element count does not match X> ...
818s  std ([1 2 3; 2 3 4], [1 3], "all")
818s ***** error <weight matrix or array does not match X in size> ...
818s  std (repmat ([1:20;6:25], [5 2 6 3]), repmat ([1:20;6:25], [5 2 3]), "all")
818s 162 tests, 162 passed, 0 known failure, 0 skipped
818s [inst/shadow9/mean.m]
818s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/shadow9/mean.m
818s ***** test
818s  x = -10:10;
818s  y = x';
818s  z = [y, y+10];
818s  assert (mean (x), 0);
818s  assert (mean (y), 0);
818s  assert (mean (z), [0, 10]);
818s ***** assert (mean (magic (3), 1), [5, 5, 5])
818s ***** assert (mean (magic (3), 2), [5; 5; 5])
818s ***** assert (mean (logical ([1 0 1 1])), 0.75)
818s ***** assert (mean (single ([1 0 1 1])), single (0.75))
818s ***** assert (mean ([1 2], 3), [1 2])
818s ***** test
818s  in = [1 2 3];
818s  out = 2;
818s  assert (mean (in, "default"), mean (in));
818s  assert (mean (in, "default"), out);
818s  assert (mean (in, "double"), out);
818s  assert (mean (in, "native"), out);
818s ***** test
818s  in = single ([1 2 3]);
818s  out = 2;
818s  assert (mean (in, "default"), mean (in));
818s  assert (mean (in, "default"), single (out));
818s  assert (mean (in, "double"), out);
818s  assert (mean (in, "native"), single (out));
818s ***** test
818s  in = logical ([1 0 1]);
818s  out = 2/3;
818s  assert (mean (in, "default"), mean (in), eps);
818s  assert (mean (in, "default"), out, eps);
818s  assert (mean (in, "double"), out, eps);
818s  assert (mean (in, "native"), out, eps);
818s ***** test
818s  in = char ("ab");
818s  out = 97.5;
818s  assert (mean (in, "default"), mean (in), eps);
818s  assert (mean (in, "default"), out, eps);
818s  assert (mean (in, "double"), out, eps);
818s ***** test
818s  in = uint8 ([1 2 3]);
818s  out = 2;
818s  assert (mean (in, "default"), mean (in));
818s  assert (mean (in, "default"), out);
818s  assert (mean (in, "double"), out);
818s  assert (mean (in, "native"), uint8 (out));
818s ***** test
818s  in = uint8 ([0 1 2 3]);
818s  out = 1.5;
818s  out_u8 = 2;
818s  assert (mean (in, "default"), mean (in), eps);
818s  assert (mean (in, "default"), out, eps);
818s  assert (mean (in, "double"), out, eps);
818s  assert (mean (in, "native"), uint8 (out_u8));
818s  assert (class (mean (in, "native")), "uint8");
818s ***** test # internal sum exceeding intmax
818s  in = uint8 ([3 141 141 255]);
818s  out = 135;
818s  assert (mean (in, "default"), mean (in));
818s  assert (mean (in, "default"), out);
818s  assert (mean (in, "double"), out);
818s  assert (mean (in, "native"), uint8 (out));
818s  assert (class (mean (in, "native")), "uint8");
818s ***** test # fractional answer with internal sum exceeding intmax
818s  in = uint8 ([1 141 141 255]);
818s  out = 134.5;
818s  out_u8 = 135;
818s  assert (mean (in, "default"), mean (in));
818s  assert (mean (in, "default"), out);
818s  assert (mean (in, "double"), out);
818s  assert (mean (in, "native"), uint8 (out_u8));
818s  assert (class (mean (in, "native")), "uint8");
818s ***** test <54567> # large int64 sum exceeding intmax and double precision limit
818s  in_same = uint64 ([intmax("uint64") intmax("uint64")-2]);
818s  out_same = intmax ("uint64")-1;
818s  in_opp = int64 ([intmin("int64"), intmax("int64")-1]);
818s  out_opp = -1;
818s  in_neg = int64 ([intmin("int64") intmin("int64")+2]);
818s  out_neg = intmin ("int64")+1;
818s 
818s  ## both positive
818s  assert (mean (in_same, "default"), mean (in_same));
818s  assert (mean (in_same, "default"), double (out_same));
818s  assert (mean (in_same, "double"), double (out_same));
818s  assert (mean (in_same, "native"), uint64 (out_same));
818s  assert (class (mean (in_same, "native")), "uint64");
818s 
818s  ## opposite signs
818s  assert (mean (in_opp, "default"), mean (in_opp));
818s  assert (mean (in_opp, "default"), double (out_opp));
818s  assert (mean (in_opp, "double"), double (out_opp));
818s  assert (mean (in_opp, "native"), int64 (out_opp));
818s  assert (class (mean (in_opp, "native")), "int64");
818s 
818s  ## both negative
818s  assert (mean (in_neg, "default"), mean (in_neg));
818s  assert (mean (in_neg, "default"), double(out_neg));
818s  assert (mean (in_neg, "double"), double(out_neg));
818s  assert (mean (in_neg, "native"), int64(out_neg));
818s  assert (class (mean (in_neg, "native")), "int64");
818s ***** test <54567>
818s  in = [(intmin('int64')+5), (intmax('int64'))-5];
818s  assert (mean (in, "native"), int64(-1));
818s  assert (class (mean (in, "native")), "int64");
818s  assert (mean (double(in)), double(0) );
818s  assert (mean (in), double(-0.5) );
818s  assert (mean (in, "default"), double(-0.5) );
818s  assert (mean (in, "double"), double(-0.5) );
818s  assert (mean (in, "all", "native"), int64(-1));
818s  assert (mean (in, 2, "native"), int64(-1));
818s  assert (mean (in, [1 2], "native"), int64(-1));
818s  assert (mean (in, [2 3], "native"), int64(-1));
818s  assert (mean ([intmin("int64"), in, intmax("int64")]), double(-0.5))
818s  assert (mean ([in; int64([1 3])], 2, "native"), int64([-1; 2]));
818s ***** test
818s  x = [-10:10];
818s  y = [x;x+5;x-5];
818s  assert (mean (x), 0);
818s  assert (mean (y, 2), [0, 5, -5]');
818s  assert (mean (y, "all"), 0);
818s  y(2,4) = NaN;
818s  assert (mean (y', "omitnan"), [0 5.35 -5]);
818s  z = y + 20;
818s  assert (mean (z, "all"), NaN);
818s  assert (mean (z, "all", "includenan"), NaN);
818s  assert (mean (z, "all", "omitnan"), 20.03225806451613, 4e-14);
818s  m = [20 NaN 15];
818s  assert (mean (z'), m);
818s  assert (mean (z', "includenan"), m);
818s  m = [20 25.35 15];
818s  assert (mean (z', "omitnan"), m);
818s  assert (mean (z, 2, "omitnan"), m');
818s  assert (mean (z, 2, "native", "omitnan"), m');
818s  assert (mean (z, 2, "omitnan", "native"), m');
818s ***** test
818s  assert (mean (true, "all"), 1);
818s  assert (mean (false), 0);
818s  assert (mean ([true false true]), 2/3, 4e-14);
818s  assert (mean ([true false true], 1), [1 0 1]);
818s  assert (mean ([true false NaN], 1), [1 0 NaN]);
818s  assert (mean ([true false NaN], 2), NaN);
818s  assert (mean ([true false NaN], 2, "omitnan"), 0.5);
818s  assert (mean ([true false NaN], 2, "omitnan", "native"), 0.5);
818s ***** assert (mean ("abc"), double (98))
818s ***** assert (mean ("ab"), double (97.5), eps)
818s ***** assert (mean ("abc", "double"), double (98))
818s ***** assert (mean ("abc", "default"), double (98))
818s ***** test
818s  x = magic (4);
818s  x([2, 9:12]) = NaN;
818s  assert (mean (x), [NaN 8.5, NaN, 8.5], eps);
818s  assert (mean (x,1), [NaN 8.5, NaN, 8.5], eps);
818s  assert (mean (x,2), NaN(4,1), eps);
818s  assert (mean (x,3), x, eps);
818s  assert (mean (x, 'omitnan'), [29/3, 8.5, NaN, 8.5], eps);
818s  assert (mean (x, 1, 'omitnan'), [29/3, 8.5, NaN, 8.5], eps);
818s  assert (mean (x, 2, 'omitnan'), [31/3; 9.5; 28/3; 19/3], eps);
818s  assert (mean (x, 3, 'omitnan'), x, eps);
818s ***** assert (mean ([]), NaN(1,1))
818s ***** assert (mean (single([])), NaN(1,1,"single"))
818s ***** assert (mean ([], 1), NaN(1,0))
818s ***** assert (mean ([], 2), NaN(0,1))
818s ***** assert (mean ([], 3), NaN(0,0))
818s ***** assert (mean (ones(1,0)), NaN(1,1))
818s ***** assert (mean (ones(1,0), 1), NaN(1,0))
818s ***** assert (mean (ones(1,0), 2), NaN(1,1))
818s ***** assert (mean (ones(1,0), 3), NaN(1,0))
818s ***** assert (mean (ones(0,1)), NaN(1,1))
818s ***** assert (mean (ones(0,1), 1), NaN(1,1))
818s ***** assert (mean (ones(0,1), 2), NaN(0,1))
818s ***** assert (mean (ones(0,1), 3), NaN(0,1))
818s ***** assert (mean (ones(0,1,0)), NaN(1,1,0))
818s ***** assert (mean (ones(0,1,0), 1), NaN(1,1,0))
818s ***** assert (mean (ones(0,1,0), 2), NaN(0,1,0))
818s ***** assert (mean (ones(0,1,0), 3), NaN(0,1,1))
818s ***** assert (mean (ones(0,0,1,0)), NaN(1,0,1,0))
819s ***** assert (mean (ones(0,0,1,0), 1), NaN(1,0,1,0))
819s ***** assert (mean (ones(0,0,1,0), 2), NaN(0,1,1,0))
819s ***** assert (mean (ones(0,0,1,0), 3), NaN(0,0,1,0))
819s ***** test
819s  x = repmat ([1:20;6:25], [5 2 6 3]);
819s  assert (size (mean (x, [3 2])), [10 1 1 3]);
819s  assert (size (mean (x, [1 2])), [1 1 6 3]);
819s  assert (size (mean (x, [1 2 4])), [1 1 6]);
819s  assert (size (mean (x, [1 4 3])), [1 40]);
819s  assert (size (mean (x, [1 2 3 4])), [1 1]);
819s ***** assert (mean (ones (2,2), 3), ones (2,2))
819s ***** assert (mean (ones (2,2,2), 99), ones (2,2,2))
819s ***** assert (mean (magic (3), 3), magic (3))
819s ***** assert (mean (magic (3), [1 3]), [5, 5, 5])
819s ***** assert (mean (magic (3), [1 99]), [5, 5, 5])
819s ***** test
819s  x = repmat ([1:20;6:25], [5 2 6 3]);
819s  m = repmat ([10.5;15.5], [5 1 1 3]);
819s  assert (mean (x, [3 2]), m, 4e-14);
819s  x(2,5,6,3) = NaN;
819s  m(2,1,1,3) = NaN;
819s  assert (mean (x, [3 2]), m, 4e-14);
819s  m(2,1,1,3) = 15.52301255230125;
819s  assert (mean (x, [3 2], "omitnan"), m, 4e-14);
819s ***** assert (mean ([1 2 3], "aLL"), 2)
819s ***** assert (mean ([1 2 3], "OmitNan"), 2)
819s ***** assert (mean ([1 2 3], "DOUBle"), 2)
819s ***** assert <*63848> (mean (ones (80e6, 1, "single")), 1, eps)
819s ***** assert <*63848> (mean (ones (80e6, 1, "single"), "all"), 1, eps)
819s ***** assert <*63848> (mean (ones (80e6, 1, "single"), 1), 1, eps)
819s ***** assert <*63848> (mean (ones (80e6, 1, "single"), [1 2]), 1, eps)
819s ***** assert <*63848> (mean (ones (80e6, 1, "single"), [1 3]), 1, eps)
820s ***** assert <63848> (mean ([flintmax("double"), ones(1, 2^8-1, "double")]), ...
820s                                35184372088833-1/(2^8), eps(35184372088833))
820s !!!!! known bug: https://octave.org/testfailure/?63848
820s ASSERT errors for:  assert (mean ([flintmax("double"), ones(1, 2 ^ 8 - 1, "double")]),35184372088833 - 1 / (2 ^ 8),eps (35184372088833))
820s 
820s   Location  |  Observed  |  Expected  |  Reason
820s      ()      35184372088832 35184372088833   Abs err 1 exceeds tol 0.0078125 by 1
820s ***** error <Invalid call to mean.  Correct usage is> mean ()
820s ***** error <Invalid call to mean.  Correct usage is> mean (1, 2, 3)
820s ***** error <Invalid call to mean.  Correct usage is> mean (1, 2, 3, 4)
821s ***** error <Invalid call to mean.  Correct usage is> mean (1, "all", 3)
821s ***** error <Invalid call to mean.  Correct usage is> mean (1, "b")
821s ***** error <Invalid call to mean.  Correct usage is> mean (1, 1, "foo")
821s ***** error <OUTTYPE 'native' cannot be used with char> mean ("abc", "native")
821s ***** error <X must be either a numeric, boolean, or character> mean ({1:5})
821s ***** error <DIM must be a positive integer> mean (1, ones (2,2))
821s ***** error <DIM must be a positive integer> mean (1, 1.5)
821s ***** error <DIM must be a positive integer> mean (1, 0)
821s ***** error <DIM must be a positive integer> mean (1, [])
821s ***** error <DIM must be a positive integer> mean (1, -1)
821s ***** error <DIM must be a positive integer> mean (1, -1.5)
821s ***** error <DIM must be a positive integer> mean (1, NaN)
821s ***** error <DIM must be a positive integer> mean (1, Inf)
821s ***** error <DIM must be a positive integer> mean (repmat ([1:20;6:25], [5 2]), -1)
821s ***** error <DIM must be a positive integer> mean (repmat ([1:5;5:9], [5 2]), [1 -1])
821s ***** error <DIM must be a positive integer> mean (1, ones(1,0))
821s ***** error <VECDIM must contain non-repeating> mean (1, [2 2])
821s 80 tests, 79 passed, 0 known failure, 1 skipped
821s [inst/shadow9/median.m]
821s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/shadow9/median.m
821s ***** assert (median (1), 1)
821s ***** assert (median ([1,2,3]), 2)
821s ***** assert (median ([1,2,3]'), 2)
821s ***** assert (median (cat(3,3,1,2)), 2)
821s ***** assert (median ([3,1,2]), 2)
821s ***** assert (median ([2,4,6,8]), 5)
821s ***** assert (median ([8,2,6,4]), 5)
821s ***** assert (median (single ([1,2,3])), single (2))
821s ***** assert (median ([1,2], 3), [1,2])
821s ***** test
821s  x = [1, 2, 3, 4, 5, 6];
821s  x2 = x';
821s  y = [1, 2, 3, 4, 5, 6, 7];
821s  y2 = y';
821s 
821s  assert (median (x) == median (x2) && median (x) == 3.5);
821s  assert (median (y) == median (y2) && median (y) == 4);
821s  assert (median ([x2, 2 * x2]), [3.5, 7]);
821s  assert (median ([y2, 3 * y2]), [4, 12]);
821s ***** test
821s  in = [1 2 3];
821s  out = 2;
821s  assert (median (in, "default"), median (in));
821s  assert (median (in, "default"), out);
821s ***** test
821s  in = single ([1 2 3]);
821s  out = 2;
821s  assert (median (in, "default"), single (median (in)));
821s  assert (median (in, "default"), single (out));
821s  assert (median (in, "double"), double (out));
821s  assert (median (in, "native"), single (out));
821s ***** test
821s  in = uint8 ([1 2 3]);
821s  out = 2;
821s  assert (median (in, "default"), double (median (in)));
821s  assert (median (in, "default"), double (out));
821s  assert (median (in, "double"), out);
821s  assert (median (in, "native"), uint8 (out));
821s ***** test
821s  in = logical ([1 0 1]);
821s  out = 1;
821s  assert (median (in, "default"), double (median (in)));
821s  assert (median (in, "default"), double (out));
821s  assert (median (in, "double"), double (out));
821s  assert (median (in, "native"), double (out));
821s ***** test
821s  x = repmat ([2 2.1 2.2 2 NaN; 3 1 2 NaN 5; 1 1.1 1.4 5 3], [1, 1, 4]);
821s  y = repmat ([2 1.1 2 NaN NaN], [1, 1, 4]);
821s  assert (median (x), y);
821s  assert (median (x, 1), y);
821s  y = repmat ([2 1.1 2 3.5 4], [1, 1, 4]);
821s  assert (median (x, "omitnan"), y);
821s  assert (median (x, 1, "omitnan"), y);
821s  y = repmat ([2.05; 2.5; 1.4], [1, 1, 4]);
821s  assert (median (x, 2, "omitnan"), y);
821s  y = repmat ([NaN; NaN; 1.4], [1, 1, 4]);
821s  assert (median (x, 2), y);
821s  assert (median (x, "all"), NaN);
821s  assert (median (x, "all", "omitnan"), 2);
821s ***** assert (median (cat (3, 3, 1, NaN, 2), "omitnan"), 2)
821s ***** assert (median (cat (3, 3, 1, NaN, 2), 3, "omitnan"), 2)
821s ***** test
821s  assert (median (true, "all"), logical (1));
821s  assert (median (false), logical (0));
821s  assert (median ([true false true]), true);
821s  assert (median ([true false true], 2), true);
821s  assert (median ([true false true], 1), logical ([1 0 1]));
821s  assert (median ([true false NaN], 1), [1 0 NaN]);
821s  assert (median ([true false NaN], 2), NaN);
821s  assert (median ([true false NaN], 2, "omitnan"), 0.5);
821s  assert (median ([true false NaN], 2, "omitnan", "native"), double(0.5));
821s ***** test
821s  x = repmat ([1:20;6:25], [5 2 6 3]);
821s  assert (size (median (x, [3 2])), [10 1 1 3]);
821s  assert (size (median (x, [1 2])), [1 1 6 3]);
821s  assert (size (median (x, [1 2 4])), [1 1 6]);
821s  assert (size (median (x, [1 4 3])), [1 40]);
821s  assert (size (median (x, [1 2 3 4])), [1 1]);
821s ***** assert (median (ones (2,2), 3), ones (2,2))
821s ***** assert (median (ones (2,2,2), 99), ones (2,2,2))
821s ***** assert (median (magic (3), 3), magic (3))
821s ***** assert (median (magic (3), [1 3]), [4, 5, 6])
821s ***** assert (median (magic (3), [1 99]), [4, 5, 6])
821s ***** test
821s  x = repmat ([2 2.1 2.2 2 NaN; 3 1 2 NaN 5; 1 1.1 1.4 5 3], [1, 1, 4]);
821s  assert (median (x, [3 2]), [NaN NaN 1.4]');
821s  assert (median (x, [3 2], "omitnan"), [2.05 2.5 1.4]');
821s  assert (median (x, [1 3]), [2 1.1 2 NaN NaN]);
821s  assert (median (x, [1 3], "omitnan"), [2 1.1 2 3.5 4]);
821s ***** assert (median (NaN), NaN)
821s ***** assert (median (NaN, "omitnan"), NaN)
821s ***** assert (median (NaN (2)), [NaN NaN])
821s ***** assert (median (NaN (2), "omitnan"), [NaN NaN])
821s ***** assert (median ([1 NaN 3]), NaN)
821s ***** assert (median ([1 NaN 3], 1), [1 NaN 3])
821s ***** assert (median ([1 NaN 3], 2), NaN)
821s ***** assert (median ([1 NaN 3]'), NaN)
821s ***** assert (median ([1 NaN 3]', 1), NaN)
821s ***** assert (median ([1 NaN 3]', 2), [1; NaN; 3])
821s ***** assert (median ([1 NaN 3], "omitnan"), 2)
821s ***** assert (median ([1 NaN 3]', "omitnan"), 2)
821s ***** assert (median ([1 NaN 3], 1, "omitnan"), [1 NaN 3])
821s ***** assert (median ([1 NaN 3], 2, "omitnan"), 2)
821s ***** assert (median ([1 NaN 3]', 1, "omitnan"), 2)
821s ***** assert (median ([1 NaN 3]', 2, "omitnan"), [1; NaN; 3])
821s ***** assert (median ([1 2 NaN 3]), NaN)
821s ***** assert (median ([1 2 NaN 3], "omitnan"), 2)
821s ***** assert (median ([1,2,NaN;4,5,6;NaN,8,9]), [NaN, 5, NaN])
821s ***** assert <*64011> (median ([1,2,NaN;4,5,6;NaN,8,9], "omitnan"), [2.5, 5, 7.5], eps)
821s ***** assert (median ([1 2 ; NaN 4]), [NaN 3])
821s ***** assert (median ([1 2 ; NaN 4], "omitnan"), [1 3])
821s ***** assert (median ([1 2 ; NaN 4], 1, "omitnan"), [1 3])
821s ***** assert (median ([1 2 ; NaN 4], 2, "omitnan"), [1.5; 4], eps)
821s ***** assert (median ([1 2 ; NaN 4], 3, "omitnan"), [1 2 ; NaN 4])
821s ***** assert (median ([NaN 2 ; NaN 4]), [NaN 3])
821s ***** assert (median ([NaN 2 ; NaN 4], "omitnan"), [NaN 3])
821s ***** assert (median (ones (1, 0, 3)), NaN (1, 1, 3))
821s ***** assert <*65405> (median ([NaN NaN], 1, "omitnan"), [NaN NaN])
821s ***** assert <*65405> (median ([NaN NaN], 2, "omitnan"), NaN)
821s ***** assert <*65405> (median ([NaN NaN]', 1, "omitnan"), NaN)
821s ***** assert <*65405> (median ([NaN NaN]', 2, "omitnan"), [NaN; NaN])
821s ***** assert <*65405> (median ([NaN NaN], "omitnan"), NaN)
821s ***** assert <*65405> (median ([NaN NaN]', "omitnan"), NaN)
821s ***** assert <*65405> (median (NaN(1,9), 1, "omitnan"), NaN(1,9))
821s ***** assert <*65405> (median (NaN(1,9), 2, "omitnan"), NaN)
821s ***** assert <*65405> (median (NaN(1,9), 3, "omitnan"), NaN(1,9))
821s ***** assert <*65405> (median (NaN(9,1), 1, "omitnan"), NaN)
821s ***** assert <*65405> (median (NaN(9,1), 2, "omitnan"), NaN(9,1))
821s ***** assert <*65405> (median (NaN(9,1), 3, "omitnan"), NaN(9,1))
821s ***** assert <*65405> (median (NaN(9,2), 1, "omitnan"), NaN(1,2))
821s ***** assert <*65405> (median (NaN(9,2), 2, "omitnan"), NaN(9,1))
821s ***** assert <*65405> (median (NaN(9,2), "omitnan"), NaN(1,2))
821s ***** assert (median (NaN("single")), NaN("single"))
821s ***** assert (median (NaN("single"), "omitnan"), NaN("single"))
821s ***** assert (median (NaN("single"), "double"), NaN("double"))
821s ***** assert (median (single([1 2 ; NaN 4])), single([NaN 3]))
821s ***** assert (median (single([1 2 ; NaN 4]), "double"), double([NaN 3]))
821s ***** assert (median (single([1 2 ; NaN 4]), "omitnan"), single([1 3]))
821s ***** assert (median (single([1 2 ; NaN 4]), "omitnan", "double"), double([1 3]))
821s ***** assert (median (single([NaN 2 ; NaN 4]), "double"), double([NaN 3]))
821s ***** assert (median (single([NaN 2 ; NaN 4]), "omitnan"), single([NaN 3]))
821s ***** assert (median (single([NaN 2 ; NaN 4]), "omitnan", "double"), double([NaN 3]))
821s ***** test <*64011>
821s  x = [magic(3), magic(3)];
821s  x([3, 7, 11, 12, 16, 17]) = NaN;
821s  ynan = [NaN, 5, NaN, NaN, 5, NaN];
821s  yomitnan = [5.5, 5, 4.5, 8, 5, 2];
821s  assert (median (x), ynan);
821s  assert (median (x, "omitnan"), yomitnan, eps);
821s  assert (median (cat (3, x, x)), cat (3, ynan, ynan));
821s  assert (median (cat (3, x, x), "omitnan"), cat (3, yomitnan, yomitnan), eps);
821s ***** assert (median (Inf), Inf)
821s ***** assert (median (-Inf), -Inf)
821s ***** assert (median ([-Inf Inf]), NaN)
821s ***** assert (median ([3 Inf]), Inf)
821s ***** assert (median ([3 4 Inf]), 4)
821s ***** assert (median ([Inf 3 4]), 4)
821s ***** assert (median ([Inf 3 Inf]), Inf)
821s ***** assert (median ([1, 2, Inf]), 2)
821s ***** assert (median ([1, 2, Inf, Inf]), Inf)
821s ***** assert (median ([1, -Inf, Inf, Inf]), Inf)
821s ***** assert (median ([-Inf, -Inf, Inf, Inf]), NaN)
821s ***** assert (median([-Inf, Inf, Inf, Inf]), Inf)
821s ***** assert (median([-Inf, -Inf, -Inf, Inf]), -Inf)
821s ***** assert (median([-Inf, -Inf, -Inf, 2]), -Inf)
821s ***** assert (median([-Inf, -Inf, 1, 2]), -Inf)
821s ***** assert (median ([]), NaN)
821s ***** assert (median (ones(1,0)), NaN)
821s ***** assert (median (ones(0,1)), NaN)
821s ***** assert (median ([], 1), NaN(1,0))
821s ***** assert (median ([], 2), NaN(0,1))
821s ***** assert (median ([], 3), NaN(0,0))
821s ***** assert (median (ones(1,0), 1), NaN(1,0))
821s ***** assert (median (ones(1,0), 2), NaN(1,1))
821s ***** assert (median (ones(1,0), 3), NaN(1,0))
821s ***** assert (median (ones(0,1), 1), NaN(1,1))
821s ***** assert (median (ones(0,1), 2), NaN(0,1))
821s ***** assert (median (ones(0,1), 3), NaN(0,1))
821s ***** assert (median (ones(0,1,0,1), 1), NaN(1,1,0))
821s ***** assert (median (ones(0,1,0,1), 2), NaN(0,1,0))
821s ***** assert (median (ones(0,1,0,1), 3), NaN(0,1,1))
821s ***** assert (median (ones(0,1,0,1), 4), NaN(0,1,0))
822s ***** assert (median([1 3 3i 2 1i]), 2)
822s ***** assert (median([1 2 4i; 3 2i 4]), [2, 1+1i, 2+2i])
822s ***** shared a, b, x, y
822s  old_state = rand ("state");
822s  restore_state = onCleanup (@() rand ("state", old_state));
822s  rand ("state", 2);
822s  a = rand (2,3,4,5);
822s  b = rand (3,4,6,5);
822s  x = sort (a, 4);
822s  y = sort (b, 3);
822s ***** assert <*35679> (median (a, 4), x(:, :, :, 3))
822s ***** assert <*35679> (median (b, 3), (y(:, :, 3, :) + y(:, :, 4, :))/2)
822s ***** shared   ## Clear shared to prevent variable echo for any later test failures
822s ***** test
822s  x = ones(15,1,4);
822s  x([13,15],1,:) = NaN;
822s  assert (median (x, 1, "omitnan"), ones (1,1,4))
822s ***** assert (median ([true, false]), true)
822s ***** assert (median (logical ([])), false)
822s ***** assert (median (uint8 ([1, 3])), uint8 (2))
822s ***** assert (median (uint8 ([])), uint8 (NaN))
822s ***** assert (median (uint8 ([NaN 10])), uint8 (5))
822s ***** assert (median (int8 ([1, 3, 4])), int8 (3))
822s ***** assert (median (int8 ([])), int8 (NaN))
822s ***** assert (median (single ([1, 3, 4])), single (3))
822s ***** assert (median (single ([1, 3, NaN])), single (NaN))
822s ***** assert <54567> (median (uint8 ([253, 255])), uint8 (254))
822s ***** assert <54567> (median (uint8 ([253, 254])), uint8 (254))
822s ***** assert <54567> (median (int8 ([127, 126, 125, 124; 1 3 5 9])), ...
822s                   int8 ([64 65 65 67]))
822s ***** assert <54567> (median (int8 ([127, 126, 125, 124; 1 3 5 9]), 2), ...
822s                   int8 ([126; 4]))
822s ***** assert <54567> (median (int64 ([intmax("int64"), intmax("int64")-2])), ...
822s                   intmax ("int64") - 1)
822s ***** assert <54567> (median ( ...
822s                  int64 ([intmax("int64"), intmax("int64")-2; 1 2]), 2), ...
822s                  int64([intmax("int64") - 1; 2]))
822s ***** assert <54567> (median (uint64 ([intmax("uint64"), intmax("uint64")-2])), ...
822s                   intmax ("uint64") - 1)
822s ***** assert <54567> (median ( ...
822s                  uint64 ([intmax("uint64"), intmax("uint64")-2; 1 2]), 2), ...
822s                  uint64([intmax("uint64") - 1; 2]))
822s ***** assert <54567> (median (...
822s  [intmin('int8') intmin('int8')+5 intmax('int8')-5 intmax('int8')]), ...
822s  int8(-1))
822s ***** assert <54567> (median ([int8([1 2 3 4]); ...
822s  intmin('int8') intmin('int8')+5 intmax('int8')-5 intmax('int8')], 2), ...
822s  int8([3;-1]))
822s ***** assert <54567> (median (...
822s  [intmin('int64') intmin('int64')+5 intmax('int64')-5 intmax('int64')]), ...
822s  int64(-1))
822s ***** assert <54567> (median ([int64([1 2 3 4]); ...
822s  intmin('int64') intmin('int64')+5 intmax('int64')-5 intmax('int64')], 2), ...
822s  int64([3;-1]))
822s ***** assert <54567> (median ([intmax("uint64"), intmax("uint64")-2]), ...
822s   intmax("uint64")-1)
822s ***** assert <54567> (median ([intmax("uint64"), intmax("uint64")-2], "default"), ...
822s   double(intmax("uint64")-1))
822s ***** assert <54567> (median ([intmax("uint64"), intmax("uint64")-2], "double"), ...
822s   double(intmax("uint64")-1))
822s ***** assert <54567> (median ([intmax("uint64"), intmax("uint64")-2], "native"), ...
822s   intmax("uint64")-1)
822s ***** assert (median ([1 2 3], "aLL"), 2)
822s ***** assert (median ([1 2 3], "OmitNan"), 2)
822s ***** assert (median ([1 2 3], "DOUBle"), 2)
822s ***** error <Invalid call> median ()
822s ***** error <Invalid call> median (1, 2, 3)
822s ***** error <Invalid call> median (1, 2, 3, 4)
822s ***** error <Invalid call> median (1, "all", 3)
822s ***** error <Invalid call> median (1, "b")
822s ***** error <Invalid call> median (1, 1, "foo")
823s ***** error <'all' cannot be used with> median (1, 3, "all")
823s ***** error <'all' cannot be used with> median (1, [2 3], "all")
823s ***** error <X must be either numeric or logical> median ({1:5})
823s ***** error <X must be either numeric or logical> median ("char")
823s ***** error <only one OUTTYPE can be specified> median(1, "double", "native")
823s ***** error <DIM must be a positive integer> median (1, ones (2,2))
823s ***** error <DIM must be a positive integer> median (1, 1.5)
823s ***** error <DIM must be a positive integer> median (1, 0)
823s ***** error <DIM must be a positive integer> median ([1 2 3], [-1 1])
823s ***** error <VECDIM must contain non-repeating> median(1, [1 2 2])
823s 159 tests, 159 passed, 0 known failure, 0 skipped
823s [inst/adtest.m]
823s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/adtest.m
823s ***** error<Invalid call to adtest.  Correct usage is:> adtest ();
823s ***** error<adtest: X must be a vector of real numbers.> adtest (ones (20,2));
823s ***** error<adtest: X must be a vector of real numbers.> adtest ([1+i,0-3i]);
823s ***** error<adtest: invalid distribution family in char string.> ...
823s  adtest (ones (20,1), "Distribution", "normal");
823s ***** error<adtest: invalid distribution family in cell array.> ...
823s  adtest (rand (20,1), "Distribution", {"normal", 5, 3});
823s ***** error<adtest: invalid distribution parameters in cell array.> ...
823s  adtest (rand (20,1), "Distribution", {"norm", 5});
823s ***** error<adtest: invalid distribution parameters in cell array.> ...
823s  adtest (rand (20,1), "Distribution", {"exp", 5, 4});
823s ***** error<adtest: invalid distribution parameters in cell array.> ...
823s  adtest (rand (20,1), "Distribution", {"ev", 5});
823s ***** error<adtest: invalid distribution parameters in cell array.> ...
823s  adtest (rand (20,1), "Distribution", {"logn", 5, 3, 2});
823s ***** error<adtest: invalid distribution parameters in cell array.> ...
823s  adtest (rand (20,1), "Distribution", {"Weibull", 5});
823s ***** error<adtest: invalid distribution option.> ...
823s  adtest (rand (20,1), "Distribution", 35);
823s ***** error<adtest: invalid Name argument.> ...
823s  adtest (rand (20,1), "Name", "norm");
823s ***** error<adtest: invalid Name argument.> ...
823s  adtest (rand (20,1), "Name", {"norm", 75, 10});
823s ***** error<adtest: asymptotic option is not valid for the composite> ...
823s  adtest (rand (20,1), "Distribution", "norm", "Asymptotic", true);
823s ***** error<adtest: asymptotic option is not valid for the composite> ...
823s  adtest (rand (20,1), "MCTol", 0.001, "Asymptotic", true);
823s ***** error<adtest: asymptotic option is not valid for the Monte Carlo> ...
823s  adtest (rand (20,1), "Distribution", {"norm", 5, 3}, "MCTol", 0.001, ...
823s          "Asymptotic", true);
823s ***** error<adtest: out of range invalid alpha - lower limit: 0.0005 upper> ...
823s  [h, pval, ADstat, CV] = adtest (ones (20,1), "Distribution", {"norm",5,3},...
823s                                  "Alpha", 0.000000001);
823s ***** error<adtest: out of range invalid alpha - lower limit: 0.0005 upper> ...
823s  [h, pval, ADstat, CV] = adtest (ones (20,1), "Distribution", {"norm",5,3},...
823s                                  "Alpha", 0.999999999);
823s ***** error<adtest: not enough data for composite testing.> ...
823s  adtest (10);
823s ***** warning<adtest: out of range min p-value:> ...
823s  randn ("seed", 34);
823s  adtest (ones (20,1), "Alpha", 0.000001);
823s ***** warning<adtest: alpha not within the lookup table.> ...
823s  randn ("seed", 34);
823s  adtest (normrnd(0,1,100,1), "Alpha", 0.99999);
823s ***** warning<adtest: alpha not within the lookup table.> ...
823s  randn ("seed", 34);
823s  adtest (normrnd(0,1,100,1), "Alpha", 0.00001);
823s ***** test
823s  load examgrades
823s  x = grades(:,1);
823s  [h, pval, adstat, cv] = adtest (x);
823s  assert (h, false);
823s  assert (pval, 0.1854, 1e-4);
823s  assert (adstat, 0.5194, 1e-4);
823s  assert (cv, 0.7470, 1e-4);
823s ***** test
823s  load examgrades
823s  x = grades(:,1);
823s  [h, pval, adstat, cv] = adtest (x, "Distribution", "ev");
823s  assert (h, false);
823s  assert (pval, 0.071363, 1e-6);
823s ***** test
823s  load examgrades
823s  x = grades(:,1);
823s  [h, pval, adstat, cv] = adtest (x, "Distribution", {"norm", 75, 10});
823s  assert (h, false);
823s  assert (pval, 0.4687, 1e-4);
823s 25 tests, 25 passed, 0 known failure, 0 skipped
823s [inst/cdfcalc.m]
823s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/cdfcalc.m
823s ***** test
823s  x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4];
823s  [yCDF, xCDF, n, emsg, eid] = cdfcalc (x);
823s  assert (yCDF, [0, 0.3, 0.5, 0.8, 0.9, 1]');
823s  assert (xCDF, [2, 3, 4, 5, 6]');
823s  assert (n, 10);
823s ***** shared x
823s  x = [2, 4, 3, 2, 4, 3, 2, 5, 6, 4];
823s ***** error yCDF = cdfcalc (x);
823s ***** error [yCDF, xCDF] = cdfcalc ();
823s ***** error [yCDF, xCDF] = cdfcalc (x, x);
823s ***** warning [yCDF, xCDF] = cdfcalc (ones(10,2));
823s 5 tests, 5 passed, 0 known failure, 0 skipped
823s [inst/sampsizepwr.m]
823s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/sampsizepwr.m
823s ***** demo
823s  ## Compute the mean closest to 100 that can be determined to be
823s  ## significantly different from 100 using a t-test with a sample size
823s  ## of 60 and a power of 0.8.
823s  mu1 = sampsizepwr ("t", [100, 10], [], 0.8, 60);
823s  disp (mu1);
823s ***** demo
823s  ## Compute the sample sizes required to distinguish mu0 = 100 from
823s  ## mu1 = 110 by a two-sample t-test with a ratio of the larger and the
823s  ## smaller sample sizes of 1.5 and a power of 0.6.
823s  [N1,N2] = sampsizepwr ("t2", [100, 10], 110, 0.6, [], "ratio", 1.5)
823s ***** demo
823s  ## Compute the sample size N required to distinguish p=.26 from p=.2
823s  ## with a binomial test.  The result is approximate, so make a plot to
823s  ## see if any smaller N values also have the required power of 0.6.
823s  Napprox = sampsizepwr ("p", 0.2, 0.26, 0.6);
823s  nn = 1:250;
823s  pwr = sampsizepwr ("p", 0.2, 0.26, [], nn);
823s  Nexact = min (nn(pwr >= 0.6));
823s  plot(nn,pwr,'b-', [Napprox Nexact],pwr([Napprox Nexact]),'ro');
823s  grid on
823s ***** demo
823s  ## The company must test 52 bottles to detect the difference between a mean
823s  ## volume of 100 mL and 102 mL with a power of 0.80.  Generate a power curve
823s  ## to visualize how the sample size affects the power of the test.
823s 
823s  nout = sampsizepwr('t',[100 5],102,0.80);
823s  nn = 1:100;
823s  pwrout = sampsizepwr('t',[100 5],102,[],nn);
823s 
823s  figure;
823s  plot (nn, pwrout, "b-", nout, 0.8, "ro")
823s  title ("Power versus Sample Size")
823s  xlabel ("Sample Size")
823s  ylabel ("Power")
823s ***** error<sampsizepwr: test type must be a non-empty string.> ...
823s  out = sampsizepwr ([], [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: test type must be a non-empty string.> ...
823s  out = sampsizepwr (3, [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: test type must be a non-empty string.> ...
823s  out = sampsizepwr ({"t", "t2"}, [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: invalid test type.> ...
823s  out = sampsizepwr ("reg", [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: parameters must be numeric.> ...
823s  out = sampsizepwr ("t", ["a", "e"], [], 0.8, 60);
823s ***** error<sampsizepwr: invalid size of parameters for this test type.> ...
823s  out = sampsizepwr ("z", 100, [], 0.8, 60);
823s ***** error<sampsizepwr: invalid size of parameters for this test type.> ...
823s  out = sampsizepwr ("t", 100, [], 0.8, 60);
823s ***** error<sampsizepwr: invalid size of parameters for this test type.> ...
823s  out = sampsizepwr ("t2", 60, [], 0.8, 60);
823s ***** error<sampsizepwr: invalid size of parameters for this test type.> ...
823s  out = sampsizepwr ("var", [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: invalid size of parameters for this test type.> ...
823s  out = sampsizepwr ("p", [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: invalid size of parameters for this test type.> ...
823s  out = sampsizepwr ("r", [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: wrong number of output arguments for this test type.> ...
823s  [out, N1] = sampsizepwr ("z", [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: wrong number of output arguments for this test type.> ...
823s  [out, N1] = sampsizepwr ("t", [100, 10], [], 0.8, 60);
823s ***** error<sampsizepwr: wrong number of output arguments for this test type.> ...
823s  [out, N1] = sampsizepwr ("var", 2, [], 0.8, 60);
823s ***** error<sampsizepwr: wrong number of output arguments for this test type.> ...
823s  [out, N1] = sampsizepwr ("p", 0.1, [], 0.8, 60);
823s ***** error<sampsizepwr: wrong number of output arguments for this test type.> ...
823s  [out, N1] = sampsizepwr ("r", 0.5, [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  out = sampsizepwr ("z", [100, 0], [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  out = sampsizepwr ("z", [100, -5], [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  out = sampsizepwr ("t", [100, 0], [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  out = sampsizepwr ("t", [100, -5], [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  [out, N1] = sampsizepwr ("t2", [100, 0], [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  [out, N1] = sampsizepwr ("t2", [100, -5], [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  out = sampsizepwr ("var", 0, [], 0.8, 60);
823s ***** error<sampsizepwr: negative or zero variance.> ...
823s  out = sampsizepwr ("var", -5, [], 0.8, 60);
823s ***** error<sampsizepwr: out of range probability.> ...
823s  out = sampsizepwr ("p", 0, [], 0.8, 60);
823s ***** error<sampsizepwr: out of range probability.> ...
823s  out = sampsizepwr ("p", 1.2, [], 0.8, 60);
823s ***** error<sampsizepwr: out of range regression coefficient.> ...
823s  out = sampsizepwr ("r", -1.5, [], 0.8, 60);
823s ***** error<sampsizepwr: out of range regression coefficient.> ...
823s  out = sampsizepwr ("r", -1, [], 0.8, 60);
823s ***** error<sampsizepwr: out of range regression coefficient.> ...
823s  out = sampsizepwr ("r", 1.2, [], 0.8, 60);
823s ***** error<sampsizepwr: regression coefficient must not be 0.> ...
823s  out = sampsizepwr ("r", 0, [], 0.8, 60);
823s ***** error<sampsizepwr: invalid value for 'alpha' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", -0.2);
823s ***** error<sampsizepwr: invalid value for 'alpha' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", 0);
823s ***** error<sampsizepwr: invalid value for 'alpha' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", 1.5);
823s ***** error<sampsizepwr: invalid value for 'alpha' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "alpha", "zero");
823s ***** error<sampsizepwr: 'tail' parameter must be a non-empty string.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "tail", 1.5);
823s ***** error<sampsizepwr: 'tail' parameter must be a non-empty string.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "tail", {"both", "left"});
823s ***** error<sampsizepwr: invalid value for 'tail' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "tail", "other");
823s ***** error<sampsizepwr: invalid value for 'ratio' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "ratio", "some");
823s ***** error<sampsizepwr: invalid value for 'ratio' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "ratio", 0.5);
823s ***** error<sampsizepwr: invalid value for 'ratio' parameter.> ...
823s  out = sampsizepwr ("r", 0.2, [], 0.8, 60, "ratio", [2, 1.3, 0.3]);
823s ***** error<sampsizepwr: only one of either p1, power, or n must be missing.> ...
823s  out = sampsizepwr ("z", [100, 5], [], [], 60);
823s ***** error<sampsizepwr: only one of either p1, power, or n must be missing.> ...
823s  out = sampsizepwr ("z", [100, 5], 110, [], []);
823s ***** error<sampsizepwr: only one of either p1, power, or n must be missing.> ...
823s  out = sampsizepwr ("z", [100, 5], [], 0.8, []);
823s ***** error<sampsizepwr: only one of either p1, power, or n must be missing.> ...
823s  out = sampsizepwr ("z", [100, 5], 110, 0.8, 60);
823s ***** error<sampsizepwr: alternative hypothesis parameter must be numeric.> ...
823s  out = sampsizepwr ("z", [100, 5], "mu", [], 60);
823s ***** error<sampsizepwr: alternative hypothesis parameter out of range.> ...
823s  out = sampsizepwr ("var", 5, -1, [], 60);
823s ***** error<sampsizepwr: alternative hypothesis parameter out of range.> ...
823s  out = sampsizepwr ("p", 0.8, 1.2, [], 60, "tail", "right");
823s ***** error<sampsizepwr: alternative hypothesis parameter out of range.> ...
823s  out = sampsizepwr ("r", 0.8, 1.2, [], 60);
823s ***** error<sampsizepwr: alternative hypothesis parameter out of range.> ...
823s  out = sampsizepwr ("r", 0.8, -1.2, [], 60);
823s ***** error<sampsizepwr: invalid value for POWER.> ...
823s  out = sampsizepwr ("z", [100, 5], 110, 1.2);
823s ***** error<sampsizepwr: invalid value for POWER.> ...
823s  out = sampsizepwr ("z", [100, 5], 110, 0);
823s ***** error<sampsizepwr: Cannot compute N or P1 unless POWER> ...
823s  out = sampsizepwr ("z", [100, 5], 110, 0.05, [], "alpha", 0.1);
823s ***** error<sampsizepwr: input arguments size mismatch.> ...
823s  out = sampsizepwr ("z", [100, 5], [], [0.8, 0.7], [60, 80, 100]);
823s ***** error<sampsizepwr: Same value for null and alternative hypothesis.> ...
823s  out = sampsizepwr ("t", [100, 5], 100, 0.8, []);
823s ***** error<sampsizepwr: Invalid P1 for testing left tail.> ...
823s  out = sampsizepwr ("t", [100, 5], 110, 0.8, [], "tail", "left");
823s ***** error<sampsizepwr: Invalid P1 for testing right tail.> ...
823s  out = sampsizepwr ("t", [100, 5], 90, 0.8, [], "tail", "right");
823s ***** warning<sampsizepwr: approximate N.> ...
823s  Napprox = sampsizepwr ("p", 0.2, 0.26, 0.6);
823s ***** warning<sampsizepwr: approximate N.> ...
823s  Napprox = sampsizepwr ("p", 0.30, 0.36, 0.8);
823s ***** test
823s  mu1 = sampsizepwr ("t", [100, 10], [], 0.8, 60);
823s  assert (mu1, 103.67704316, 1e-8);
824s ***** test
824s  [N1,N2] = sampsizepwr ("t2", [100, 10], 110, 0.6, [], "ratio", 1.5);
824s  assert (N1, 9);
824s  assert (N2, 14);
824s ***** test
824s  nn = 1:250;
824s  pwr = sampsizepwr ("p", 0.2, 0.26, [], nn);
824s  pwr_out = [0, 0.0676, 0.0176, 0.0566, 0.0181, 0.0431, 0.0802, 0.0322];
824s  assert (pwr([1:8]), pwr_out, 1e-4 * ones (1,8));
824s  pwr_out = [0.59275, 0.6073, 0.62166, 0.6358, 0.6497, 0.6087, 0.6229, 0.6369];
824s  assert (pwr([243:end]), pwr_out, 1e-4 * ones (1,8));
824s ***** test
824s  nout = sampsizepwr ("t", [100, 5], 102, 0.80);
824s  assert (nout, 52);
824s ***** test
824s  power = sampsizepwr ("t", [20, 5], 25, [], 5, "Tail", "right");
824s  assert (power, 0.5797373588621888, 1e-14);
824s ***** test
824s  nout = sampsizepwr ("t", [20, 5], 25, 0.99, [], "Tail", "right");
824s  assert (nout, 18);
824s ***** test
824s  p1out = sampsizepwr ("t", [20, 5], [], 0.95, 10, "Tail", "right");
824s  assert (p1out, 25.65317979360237, 1e-14);
825s ***** test
825s  pwr = sampsizepwr ("t2", [1.4, 0.2], 1.7, [], 5, "Ratio", 2);
825s  assert (pwr, 0.716504004686586, 1e-14);
825s ***** test
825s  n = sampsizepwr ("t2", [1.4, 0.2], 1.7, 0.9, []);
825s  assert (n, 11);
825s ***** test
825s  [n1, n2] = sampsizepwr ("t2", [1.4, 0.2], 1.7, 0.9, [], "Ratio", 2);
825s  assert ([n1, n2], [8, 16]);
826s 68 tests, 68 passed, 0 known failure, 0 skipped
826s [inst/procrustes.m]
826s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/procrustes.m
826s ***** demo
826s  ## Create some random points in two dimensions
826s  n = 10;
826s  randn ("seed", 1);
826s  X = normrnd (0, 1, [n, 2]);
826s 
826s  ## Those same points, rotated, scaled, translated, plus some noise
826s  S = [0.5, -sqrt(3)/2; sqrt(3)/2, 0.5]; # rotate 60 degrees
826s  Y = normrnd (0.5*X*S + 2, 0.05, n, 2);
826s 
826s  ## Conform Y to X, plot original X and Y, and transformed Y
826s  [d, Z] = procrustes (X, Y);
826s  plot (X(:,1), X(:,2), "rx", Y(:,1), Y(:,2), "b.", Z(:,1), Z(:,2), "bx");
826s ***** demo
826s  ## Find Procrustes distance and plot superimposed shape
826s 
826s  X = [40 88; 51 88; 35 78; 36 75; 39 72; 44 71; 48 71; 52 74; 55 77];
826s  Y = [36 43; 48 42; 31 26; 33 28; 37 30; 40 31; 45 30; 48 28; 51 24];
826s  plot (X(:,1),X(:,2),"x");
826s  hold on
826s  plot (Y(:,1),Y(:,2),"o");
826s  xlim ([0 100]);
826s  ylim ([0 100]);
826s  legend ("Target shape (X)", "Source shape (Y)");
826s  [d, Z] = procrustes (X, Y)
826s  plot (Z(:,1), Z(:,2), "s");
826s  legend ("Target shape (X)", "Source shape (Y)", "Transformed shape (Z)");
826s  hold off
826s ***** demo
826s  ## Apply Procrustes transformation to larger set of points
826s 
826s  ## Create matrices with landmark points for two triangles
826s  X = [5, 0; 5, 5; 8, 5];   # target
826s  Y = [0, 0; 1, 0; 1, 1];   # source
826s 
826s  ## Create a matrix with more points on the source triangle
826s  Y_mp = [linspace(Y(1,1),Y(2,1),10)', linspace(Y(1,2),Y(2,2),10)'; ...
826s          linspace(Y(2,1),Y(3,1),10)', linspace(Y(2,2),Y(3,2),10)'; ...
826s          linspace(Y(3,1),Y(1,1),10)', linspace(Y(3,2),Y(1,2),10)'];
826s 
826s  ## Plot both shapes, including the larger set of points for the source shape
826s  plot ([X(:,1); X(1,1)], [X(:,2); X(1,2)], "bx-");
826s  hold on
826s  plot ([Y(:,1); Y(1,1)], [Y(:,2); Y(1,2)], "ro-", "MarkerFaceColor", "r");
826s  plot (Y_mp(:,1), Y_mp(:,2), "ro");
826s  xlim ([-1 10]);
826s  ylim ([-1 6]);
826s  legend ("Target shape (X)", "Source shape (Y)", ...
826s          "More points on Y", "Location", "northwest");
826s  hold off
826s 
826s  ## Obtain the Procrustes transformation
826s  [d, Z, transform] = procrustes (X, Y)
826s 
826s  ## Use the Procrustes transformation to superimpose the more points (Y_mp)
826s  ## on the source shape onto the target shape, and then visualize the results.
826s  Z_mp = transform.b * Y_mp * transform.T + transform.c(1,:);
826s  figure
826s  plot ([X(:,1); X(1,1)], [X(:,2); X(1,2)], "bx-");
826s  hold on
826s  plot ([Y(:,1); Y(1,1)], [Y(:,2); Y(1,2)], "ro-", "MarkerFaceColor", "r");
826s  plot (Y_mp(:,1), Y_mp(:,2), "ro");
826s  xlim ([-1 10]);
826s  ylim ([-1 6]);
826s  plot ([Z(:,1); Z(1,1)],[Z(:,2); Z(1,2)],"ks-","MarkerFaceColor","k");
826s  plot (Z_mp(:,1),Z_mp(:,2),"ks");
826s  legend ("Target shape (X)", "Source shape (Y)", ...
826s          "More points on Y", "Transformed source shape (Z)", ...
826s          "Transformed additional points", "Location", "northwest");
826s  hold off
826s ***** demo
826s  ## Compare shapes without reflection
826s 
826s  T = [33, 93; 33, 87; 33, 80; 31, 72; 32, 65; 32, 58; 30, 72; ...
826s       28, 72; 25, 69; 22, 64; 23, 59; 26, 57; 30, 57];
826s  S = [48, 83; 48, 77; 48, 70; 48, 65; 49, 59; 49, 56; 50, 66; ...
826s       52, 66; 56, 65; 58, 61; 57, 57; 54, 56; 51, 55];
826s  plot (T(:,1), T(:,2), "x-");
826s  hold on
826s  plot (S(:,1), S(:,2), "o-");
826s  legend ("Target shape (d)", "Source shape (b)");
826s  hold off
826s  d_false = procrustes (T, S, "reflection", false);
826s  printf ("Procrustes distance without reflection: %f\n", d_false);
826s  d_true = procrustes (T, S, "reflection", true);
826s  printf ("Procrustes distance with reflection: %f\n", d_true);
826s  d_best = procrustes (T, S, "reflection", "best");
826s  printf ("Procrustes distance with best fit: %f\n", d_true);
826s ***** error procrustes ();
826s ***** error procrustes (1, 2, 3, 4, 5, 6);
826s ***** error<procrustes: X and Y must be 2-dimensional matrices.> ...
826s  procrustes (ones (2, 2, 2), ones (2, 2, 2));
826s ***** error<procrustes: values in X and Y must be real.> ...
826s  procrustes ([1, 2; -3, 4; 2, 3], [1, 2; -3, 4; 2, 3+i]);
826s ***** error<procrustes: values in X and Y must be real.> ...
826s  procrustes ([1, 2; -3, 4; 2, 3], [1, 2; -3, 4; 2, NaN]);
826s ***** error<procrustes: values in X and Y must be real.> ...
826s  procrustes ([1, 2; -3, 4; 2, 3], [1, 2; -3, 4; 2, Inf]);
826s ***** error<procrustes: X and Y must have equal number of rows.> ...
826s  procrustes (ones (10 ,3), ones (11, 3));
826s ***** error<procrustes: X must have at least as many columns as Y.> ...
826s  procrustes (ones (10 ,3), ones (10, 4));
826s ***** error<procrustes: optional arguments must be in Name-Value pairs.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), "reflection");
826s ***** error<procrustes: optional arguments must be in Name-Value pairs.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), true);
826s ***** error<procrustes: invalid value for scaling.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), "scaling", 0);
826s ***** error<procrustes: invalid value for scaling.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), "scaling", [true true]);
826s ***** error<procrustes: invalid value for reflection.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), "reflection", 1);
826s ***** error<procrustes: invalid value for reflection.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), "reflection", "some");
826s ***** error<procrustes: invalid name for optional arguments.> ...
826s  procrustes (ones (10 ,3), ones (10, 3), "param1", "some");
826s 15 tests, 15 passed, 0 known failure, 0 skipped
826s [inst/vartestn.m]
826s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/vartestn.m
826s ***** demo
826s  ## Test the null hypothesis that the variances are equal across the five
826s  ## columns of data in the students’ exam grades matrix, grades.
826s 
826s  load examgrades
826s  vartestn (grades)
826s ***** demo
826s  ## Test the null hypothesis that the variances in miles per gallon (MPG) are
826s  ## equal across different model years.
826s 
826s  load carsmall
826s  vartestn (MPG, Model_Year)
826s ***** demo
826s  ## Use Levene’s test to test the null hypothesis that the variances in miles
826s  ## per gallon (MPG) are equal across different model years.
826s 
826s  load carsmall
826s  p = vartestn (MPG, Model_Year, "TestType", "LeveneAbsolute")
826s ***** demo
826s  ## Test the null hypothesis that the variances are equal across the five
826s  ## columns of data in the students’ exam grades matrix, grades, using the
826s  ## Brown-Forsythe test.  Suppress the display of the summary table of
826s  ## statistics and the box plot.
826s 
826s  load examgrades
826s  [p, stats] = vartestn (grades, "TestType", "BrownForsythe", "Display", "off")
826s ***** error<vartestn: too few input arguments.> vartestn ();
826s ***** error<vartestn: X must be a vector or a matrix.> vartestn (1);
826s ***** error<vartestn: if X is a vector then a group vector is required.> ...
826s  vartestn ([1, 2, 3, 4, 5, 6, 7]);
826s ***** error<vartestn: if X is a vector then a group vector is required.> ...
826s  vartestn ([1, 2, 3, 4, 5, 6, 7], []);
826s ***** error<vartestn: if X is a vector then a group vector is required.> ...
826s  vartestn ([1, 2, 3, 4, 5, 6, 7], "TestType", "LeveneAbsolute");
826s ***** error<vartestn: if X is a vector then a group vector is required.> ...
826s  vartestn ([1, 2, 3, 4, 5, 6, 7], [], "TestType", "LeveneAbsolute");
826s ***** error<vartestn: invalid value for display.> ...
826s  vartestn ([1, 2, 3, 4, 5, 6, 7], [1, 1, 1, 2, 2, 2, 2], "Display", "some");
826s ***** error<vartestn: invalid value for display.> ...
826s  vartestn (ones (50,3), "Display", "some");
826s ***** error<vartestn: invalid value for testtype.> ...
826s  vartestn (ones (50,3), "Display", "off", "testtype", "some");
826s ***** error<vartestn: optional arguments must be in name/value pairs.> ...
826s  vartestn (ones (50,3), [], "som");
826s ***** error<vartestn: invalid name for optional arguments.> ...
826s  vartestn (ones (50,3), [], "some", "some");
826s ***** error<vartestn: columns in X and GROUP length do not match.> ...
826s  vartestn (ones (50,3), [1, 2], "Display", "off");
826s ***** test
826s  load examgrades
826s  [p, stat] = vartestn (grades, "Display", "off");
826s  assert (p, 7.908647337018238e-08, 1e-14);
826s  assert (stat.chisqstat, 38.7332, 1e-4);
826s  assert (stat.df, 4);
826s ***** test
826s  load examgrades
826s  [p, stat] = vartestn (grades, "Display", "off", "TestType", "LeveneAbsolute");
826s  assert (p, 9.523239714592791e-07, 1e-14);
826s  assert (stat.fstat, 8.5953, 1e-4);
826s  assert (stat.df, [4, 595]);
826s ***** test
826s  load examgrades
826s  [p, stat] = vartestn (grades, "Display", "off", "TestType", "LeveneQuadratic");
826s  assert (p, 7.219514351897161e-07, 1e-14);
826s  assert (stat.fstat, 8.7503, 1e-4);
826s  assert (stat.df, [4, 595]);
826s ***** test
826s  load examgrades
826s  [p, stat] = vartestn (grades, "Display", "off", "TestType", "BrownForsythe");
826s  assert (p, 1.312093241723211e-06, 1e-14);
826s  assert (stat.fstat, 8.4160, 1e-4);
826s  assert (stat.df, [4, 595]);
826s ***** test
826s  load examgrades
826s  [p, stat] = vartestn (grades, "Display", "off", "TestType", "OBrien");
826s  assert (p, 8.235660885480556e-07, 1e-14);
826s  assert (stat.fstat, 8.6766, 1e-4);
826s  assert (stat.df, [4, 595]);
826s 17 tests, 17 passed, 0 known failure, 0 skipped
826s [inst/regress_gp.m]
826s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/regress_gp.m
826s ***** demo
826s  ## Linear fitting of 1D Data
826s  rand ("seed", 125);
826s  X = 2 * rand (5, 1) - 1;
826s  randn ("seed", 25);
826s  Y = 2 * X - 1 + 0.3 * randn (5, 1);
826s 
826s  ## Points for interpolation/extrapolation
826s  Xfit = linspace (-2, 2, 10)';
826s 
826s  ## Fit regression model
826s  [Yfit, Yint, m] = regress_gp (X, Y, Xfit);
826s 
826s  ## Plot fitted data
826s  plot (X, Y, "xk", Xfit, Yfit, "r-", Xfit, Yint, "b-");
826s  title ("Gaussian process regression with linear kernel");
826s ***** demo
826s  ## Linear fitting of 2D Data
826s  rand ("seed", 135);
826s  X = 2 * rand (4, 2) - 1;
826s  randn ("seed", 35);
826s  Y = 2 * X(:,1) - 3 * X(:,2) - 1 + 1 * randn (4, 1);
826s 
826s  ## Mesh for interpolation/extrapolation
826s  [x1, x2] = meshgrid (linspace (-1, 1, 10));
826s  Xfit = [x1(:), x2(:)];
826s 
826s  ## Fit regression model
826s  [Ypred, Yint, Ysd] = regress_gp (X, Y, Xfit);
826s  Ypred = reshape (Ypred, 10, 10);
826s  YintU = reshape (Yint(:,1), 10, 10);
826s  YintL = reshape (Yint(:,2), 10, 10);
826s 
826s  ## Plot fitted data
826s  plot3 (X(:,1), X(:,2), Y, ".k", "markersize", 16);
826s  hold on;
826s  h = mesh (x1, x2, Ypred, zeros (10, 10));
826s  set (h, "facecolor", "none", "edgecolor", "yellow");
826s  h = mesh (x1, x2, YintU, ones (10, 10));
826s  set (h, "facecolor", "none", "edgecolor", "cyan");
826s  h = mesh (x1, x2, YintL, ones (10, 10));
826s  set (h, "facecolor", "none", "edgecolor", "cyan");
826s  hold off
826s  axis tight
826s  view (75, 25)
826s  title ("Gaussian process regression with linear kernel");
826s ***** demo
826s  ## Projection over basis function with linear kernel
826s  pp = [2, 2, 0.3, 1];
826s  n = 10;
826s  rand ("seed", 145);
826s  X = 2 * rand (n, 1) - 1;
826s  randn ("seed", 45);
826s  Y = polyval (pp, X) + 0.3 * randn (n, 1);
826s 
826s  ## Powers
826s  px = [sqrt(abs(X)), X, X.^2, X.^3];
826s 
826s  ## Points for interpolation/extrapolation
826s  Xfit = linspace (-1, 1, 100)';
826s  pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];
826s 
826s  ## Define a prior covariance assuming that the sqrt component is not present
826s  Sp = 100 * eye (size (px, 2) + 1);
826s  Sp(2,2) = 1; # We don't believe the sqrt(abs(X)) is present
826s 
826s  ## Fit regression model
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, Sp);
826s 
826s  ## Plot fitted data
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("Linear kernel over basis function with prior covariance");
826s ***** demo
826s  ## Projection over basis function with linear kernel
826s  pp = [2, 2, 0.3, 1];
826s  n = 10;
826s  rand ("seed", 145);
826s  X = 2 * rand (n, 1) - 1;
826s  randn ("seed", 45);
826s  Y = polyval (pp, X) + 0.3 * randn (n, 1);
826s 
826s  ## Powers
826s  px = [sqrt(abs(X)), X, X.^2, X.^3];
826s 
826s  ## Points for interpolation/extrapolation
826s  Xfit = linspace (-1, 1, 100)';
826s  pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];
826s 
826s  ## Fit regression model without any assumption on prior covariance
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi);
826s 
826s  ## Plot fitted data
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("Linear kernel over basis function without prior covariance");
826s ***** demo
826s  ## Projection over basis function with rbf kernel
826s  pp = [2, 2, 0.3, 1];
826s  n = 10;
826s  rand ("seed", 145);
826s  X = 2 * rand (n, 1) - 1;
826s  randn ("seed", 45);
826s  Y = polyval (pp, X) + 0.3 * randn (n, 1);
826s 
826s  ## Powers
826s  px = [sqrt(abs(X)), X, X.^2, X.^3];
826s 
826s  ## Points for interpolation/extrapolation
826s  Xfit = linspace (-1, 1, 100)';
826s  pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];
826s 
826s  ## Fit regression model with RBF kernel (standard parameters)
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf");
826s 
826s  ## Plot fitted data
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("RBF kernel over basis function with standard parameters");
826s  text (-0.5, 4, "theta = 5\n g = 0.01");
826s ***** demo
826s  ## Projection over basis function with rbf kernel
826s  pp = [2, 2, 0.3, 1];
826s  n = 10;
826s  rand ("seed", 145);
826s  X = 2 * rand (n, 1) - 1;
826s  randn ("seed", 45);
826s  Y = polyval (pp, X) + 0.3 * randn (n, 1);
826s 
826s  ## Powers
826s  px = [sqrt(abs(X)), X, X.^2, X.^3];
826s 
826s  ## Points for interpolation/extrapolation
826s  Xfit = linspace (-1, 1, 100)';
826s  pxi = [sqrt(abs(Xfit)), Xfit, Xfit.^2, Xfit.^3];
826s 
826s  ## Fit regression model with RBF kernel with different parameters
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 10, 0.01);
826s 
826s  ## Plot fitted data
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("GP regression with RBF kernel and non default parameters");
826s  text (-0.5, 4, "theta = 10\n g = 0.01");
826s 
826s  ## Fit regression model with RBF kernel with different parameters
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.01);
826s 
826s  ## Plot fitted data
826s  figure
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("GP regression with RBF kernel and non default parameters");
826s  text (-0.5, 4, "theta = 50\n g = 0.01");
826s 
826s  ## Fit regression model with RBF kernel with different parameters
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.001);
826s 
826s  ## Plot fitted data
826s  figure
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("GP regression with RBF kernel and non default parameters");
826s  text (-0.5, 4, "theta = 50\n g = 0.001");
826s 
826s  ## Fit regression model with RBF kernel with different parameters
826s  [Yfit, Yint, Ysd] = regress_gp (px, Y, pxi, "rbf", 50, 0.05);
826s 
826s  ## Plot fitted data
826s  figure
826s  plot (X, Y, "xk;Data;", Xfit, Yfit, "r-;Estimation;", ...
826s                          Xfit, polyval (pp, Xfit), "g-;True;");
826s  axis tight
826s  axis manual
826s  hold on
826s  plot (Xfit, Yint(:,1), "m-;Upper bound;", Xfit, Yint(:,2), "b-;Lower bound;");
826s  hold off
826s  title ("GP regression with RBF kernel and non default parameters");
826s  text (-0.5, 4, "theta = 50\n g = 0.05");
826s ***** demo
826s  ## RBF fitting on noiseless 1D Data
826s  x = [0:2*pi/7:2*pi]';
826s  y = 5 * sin (x);
826s 
826s  ## Predictive grid of 500 equally spaced locations
826s  xi = [-0.5:(2*pi+1)/499:2*pi+0.5]';
826s 
826s  ## Fit regression model with RBF kernel
826s  [Yfit, Yint, Ysd] = regress_gp (x, y, xi, "rbf");
826s 
826s  ## Plot fitted data
826s  r = mvnrnd (Yfit, diag (Ysd)', 50);
826s  plot (xi, r', "c-");
826s  hold on
826s  plot (xi, Yfit, "r-;Estimation;", xi, Yint, "b-;Confidence interval;");
826s  plot (x, y, ".k;Predictor points;", "markersize", 20)
826s  plot (xi, 5 * sin (xi), "-y;True Function;");
826s  xlim ([-0.5,2*pi+0.5]);
826s  ylim ([-10,10]);
826s  hold off
826s  title ("GP regression with RBF kernel on noiseless 1D data");
826s  text (0, -7, "theta = 5\n g = 0.01");
826s ***** demo
826s  ## RBF fitting on noisy 1D Data
826s  x = [0:2*pi/7:2*pi]';
826s  x = [x; x];
826s  y = 5 * sin (x) + randn (size (x));
826s 
826s  ## Predictive grid of 500 equally spaced locations
826s  xi = [-0.5:(2*pi+1)/499:2*pi+0.5]';
826s 
826s  ## Fit regression model with RBF kernel
826s  [Yfit, Yint, Ysd] = regress_gp (x, y, xi, "rbf");
826s 
826s  ## Plot fitted data
826s  r = mvnrnd (Yfit, diag (Ysd)', 50);
826s  plot (xi, r', "c-");
826s  hold on
826s  plot (xi, Yfit, "r-;Estimation;", xi, Yint, "b-;Confidence interval;");
826s  plot (x, y, ".k;Predictor points;", "markersize", 20)
826s  plot (xi, 5 * sin (xi), "-y;True Function;");
826s  xlim ([-0.5,2*pi+0.5]);
826s  ylim ([-10,10]);
826s  hold off
826s  title ("GP regression with RBF kernel on noisy 1D data");
826s  text (0, -7, "theta = 5\n g = 0.01");
826s ***** error<Invalid call to regress_gp.> regress_gp (ones (20, 2))
826s ***** error<Invalid call to regress_gp.> regress_gp (ones (20, 2), ones (20, 1))
826s ***** error<regress_gp: X must be a 2-D matrix.> ...
826s  regress_gp (ones (20, 2, 3), ones (20, 1), ones (20, 2))
826s ***** error<regress_gp: Y must be a column vector.> ...
826s  regress_gp (ones (20, 2), ones (20, 2), ones (20, 2))
826s ***** error<regress_gp: rows in X must equal the length of Y.> ...
826s  regress_gp (ones (20, 2), ones (15, 1), ones (20, 2))
826s ***** error<regress_gp: X and XI must have the same number of columns.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (20, 3))
826s ***** error<regress_gp: invalid 4th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), {[3]})
826s ***** error<regress_gp: invalid 4th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "kernel")
826s ***** error<regress_gp: theta must be a scalar when using RBF kernel.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", ones (4))
826s ***** error<regress_gp: wrong size for prior covariance matrix Sp.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "linear", 1)
826s ***** error<regress_gp: invalid 5th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", "value")
826s ***** error<regress_gp: invalid 5th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", {5})
826s ***** error<regress_gp: invalid 5th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), ones (3), 5)
826s ***** error<regress_gp: wrong size for prior covariance matrix Sp.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "linear", 5)
826s ***** error<regress_gp: invalid 6th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, {5})
826s ***** error<regress_gp: invalid 6th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, ones (2))
826s ***** error<regress_gp: invalid 6th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), 5, 0.01, [1, 1])
826s ***** error<regress_gp: invalid 6th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), 5, 0.01, "f")
826s ***** error<regress_gp: invalid 6th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), 5, 0.01, "f")
826s ***** error<regress_gp: invalid 7th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, 0.01, "f")
826s ***** error<regress_gp: invalid 7th argument.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "rbf", 5, 0.01, [1, 1])
826s ***** error<regress_gp: wrong size for prior covariance matrix Sp.> ...
826s  regress_gp (ones (20, 2), ones (20, 1), ones (10, 2), "linear", 1)
826s 22 tests, 22 passed, 0 known failure, 0 skipped
826s [inst/fitcdiscr.m]
826s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitcdiscr.m
826s ***** demo
826s  ## Train a linear discriminant classifier for Gamma = 0.5
826s  ## and plot the decision boundaries.
826s 
826s  load fisheriris
826s  idx = ! strcmp (species, "setosa");
826s  X = meas(idx,3:4);
826s  Y = cast (strcmpi (species(idx), "virginica"), "double");
826s  obj = fitcdiscr (X, Y, "Gamma", 0.5)
826s  x1 = [min(X(:,1)):0.03:max(X(:,1))];
826s  x2 = [min(X(:,2)):0.02:max(X(:,2))];
826s  [x1G, x2G] = meshgrid (x1, x2);
826s  XGrid = [x1G(:), x2G(:)];
826s  pred = predict (obj, XGrid);
826s  gidx = logical (str2num (cell2mat (pred)));
826s 
826s  figure
826s  scatter (XGrid(gidx,1), XGrid(gidx,2), "markerfacecolor", "magenta");
826s  hold on
826s  scatter (XGrid(!gidx,1), XGrid(!gidx,2), "markerfacecolor", "red");
826s  plot (X(Y == 0, 1), X(Y == 0, 2), "ko", X(Y == 1, 1), X(Y == 1, 2), "kx");
826s  xlabel ("Petal length (cm)");
826s  ylabel ("Petal width (cm)");
826s  title ("Linear Discriminant Analysis Decision Boundary");
826s  legend ({"Versicolor Region", "Virginica Region", ...
826s          "Sampled Versicolor", "Sampled Virginica"}, ...
826s          "location", "northwest")
826s  axis tight
826s  hold off
826s ***** test
826s  load fisheriris
826s  Mdl = fitcdiscr (meas, species, "Gamma", 0.5);
826s  [label, score, cost] = predict (Mdl, [2, 2, 2, 2]);
826s  assert (label, {'versicolor'})
826s  assert (score, [0, 0.9999, 0.0001], 1e-4)
826s  assert (cost, [1, 0.0001, 0.9999], 1e-4)
826s  [label, score, cost] = predict (Mdl, [2.5, 2.5, 2.5, 2.5]);
826s  assert (label, {'versicolor'})
826s  assert (score, [0, 0.6368, 0.3632], 1e-4)
826s  assert (cost, [1, 0.3632, 0.6368], 1e-4)
826s  assert (class (Mdl), "ClassificationDiscriminant");
826s  assert ({Mdl.X, Mdl.Y, Mdl.NumObservations}, {meas, species, 150})
826s  assert ({Mdl.DiscrimType, Mdl.ResponseName}, {"linear", "Y"})
826s  assert ({Mdl.Gamma, Mdl.MinGamma}, {0.5, 0})
826s  assert (Mdl.ClassNames, unique (species))
826s  sigma = [0.265008, 0.046361, 0.083757, 0.019201; ...
826s           0.046361, 0.115388, 0.027622, 0.016355; ...
826s           0.083757, 0.027622, 0.185188, 0.021333; ...
826s           0.019201, 0.016355, 0.021333, 0.041882];
826s  assert (Mdl.Sigma, sigma, 1e-6)
826s  mu = [5.0060, 3.4280, 1.4620, 0.2460; ...
826s        5.9360, 2.7700, 4.2600, 1.3260; ...
826s        6.5880, 2.9740, 5.5520, 2.0260];
826s  assert (Mdl.Mu, mu, 1e-14)
826s  assert (Mdl.LogDetSigma, -8.6884, 1e-4)
827s ***** error<fitcdiscr: too few arguments.> fitcdiscr ()
827s ***** error<fitcdiscr: too few arguments.> fitcdiscr (ones (4,1))
827s ***** error<fitcdiscr: name-value arguments must be in pairs.>
827s  fitcdiscr (ones (4,2), ones (4, 1), "K")
827s ***** error<fitcdiscr: number of rows in X and Y must be equal.>
827s  fitcdiscr (ones (4,2), ones (3, 1))
827s ***** error<fitcdiscr: number of rows in X and Y must be equal.>
827s  fitcdiscr (ones (4,2), ones (3, 1), "K", 2)
827s 6 tests, 6 passed, 0 known failure, 0 skipped
827s [inst/hmmestimate.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/hmmestimate.m
827s ***** test
827s  sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, ...
827s              3, 3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3];
827s  states =   [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, ...
827s              1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1];
827s  [transprobest, outprobest] = hmmestimate (sequence, states);
827s  expectedtransprob = [0.88889, 0.11111; 0.28571, 0.71429];
827s  expectedoutprob = [0.16667, 0.33333, 0.50000; 1.00000, 0.00000, 0.00000];
827s  assert (transprobest, expectedtransprob, 0.001);
827s  assert (outprobest, expectedoutprob, 0.001);
827s ***** test
827s  sequence = {"A", "B", "A", "A", "A", "B", "B", "A", "B", "C", "C", "C", ...
827s              "C", "B", "C", "A", "A", "A", "A", "C", "C", "B", "C", "A", "C"};
827s  states = {"One", "One", "Two", "Two", "Two", "One", "One", "One", "One", ...
827s            "One", "One", "One", "One", "One", "One", "Two", "Two", "Two", ...
827s            "Two", "One", "One", "One", "One", "One", "One"};
827s  symbols = {"A", "B", "C"};
827s  statenames = {"One", "Two"};
827s  [transprobest, outprobest] = hmmestimate (sequence, states, "symbols", ...
827s                                            symbols, "statenames", statenames);
827s  expectedtransprob = [0.88889, 0.11111; 0.28571, 0.71429];
827s  expectedoutprob = [0.16667, 0.33333, 0.50000; 1.00000, 0.00000, 0.00000];
827s  assert (transprobest, expectedtransprob, 0.001);
827s  assert (outprobest, expectedoutprob, 0.001);
827s ***** test
827s  sequence = [1, 2, 1, 1, 1, 2, 2, 1, 2, 3, 3, 3, ...
827s              3, 2, 3, 1, 1, 1, 1, 3, 3, 2, 3, 1, 3];
827s  states =   [1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, ...
827s              1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1];
827s  pseudotransitions = [8, 2; 4, 6];
827s  pseudoemissions = [2, 4, 4; 7, 2, 1];
827s  [transprobest, outprobest] = hmmestimate (sequence, states, ...
827s   "pseudotransitions", pseudotransitions, "pseudoemissions", pseudoemissions);
827s  expectedtransprob = [0.85714, 0.14286; 0.35294, 0.64706];
827s  expectedoutprob = [0.178571, 0.357143, 0.464286; ...
827s                     0.823529, 0.117647, 0.058824];
827s  assert (transprobest, expectedtransprob, 0.001);
827s  assert (outprobest, expectedoutprob, 0.001);
827s 3 tests, 3 passed, 0 known failure, 0 skipped
827s [inst/bartlett_test.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/bartlett_test.m
827s ***** error<bartlett_test: invalid number of input arguments.> bartlett_test ()
827s ***** error<bartlett_test: invalid number of input arguments.> ...
827s  bartlett_test (1, 2, 3, 4);
827s ***** error<bartlett_test: wrong value for alpha.> bartlett_test (randn (50, 2), 0);
827s ***** error<bartlett_test: GROUP and X mismatch.> ...
827s  bartlett_test (randn (50, 2), [1, 2, 3]);
827s ***** error<bartlett_test: GROUP and X mismatch.> ...
827s  bartlett_test (randn (50, 1), ones (55, 1));
827s ***** error<bartlett_test: invalid second input argument.> ...
827s  bartlett_test (randn (50, 1), ones (50, 2));
827s ***** error<bartlett_test: wrong value for alpha.> ...
827s  bartlett_test (randn (50, 2), [], 1.2);
827s ***** error<bartlett_test: wrong value for alpha.> ...
827s  bartlett_test (randn (50, 2), [], "alpha");
827s ***** error<bartlett_test: wrong value for alpha.> ...
827s  bartlett_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], 1.2);
827s ***** error<bartlett_test: wrong value for alpha.> ...
827s  bartlett_test (randn (50, 1), [ones(25, 1); 2*ones(25, 1)], "err");
827s ***** warning<bartlett_test: GROUP> ...
827s  bartlett_test (randn (50, 1), [ones(24, 1); 2*ones(25, 1); 3]);
827s ***** test
827s  load examgrades
827s  [h, pval, chisq, df] = bartlett_test (grades);
827s  assert (h, 1);
827s  assert (pval, 7.908647337018238e-08, 1e-14);
827s  assert (chisq, 38.73324, 1e-5);
827s  assert (df, 4);
827s ***** test
827s  load examgrades
827s  [h, pval, chisq, df] = bartlett_test (grades(:,[2:4]));
827s  assert (h, 1);
827s  assert (pval, 0.01172, 1e-5);
827s  assert (chisq, 8.89274, 1e-5);
827s  assert (df, 2);
827s ***** test
827s  load examgrades
827s  [h, pval, chisq, df] = bartlett_test (grades(:,[1,4]));
827s  assert (h, 0);
827s  assert (pval, 0.88118, 1e-5);
827s  assert (chisq, 0.02234, 1e-5);
827s  assert (df, 1);
827s ***** test
827s  load examgrades
827s  grades = [grades; nan(10, 5)];
827s  [h, pval, chisq, df] = bartlett_test (grades(:,[1,4]));
827s  assert (h, 0);
827s  assert (pval, 0.88118, 1e-5);
827s  assert (chisq, 0.02234, 1e-5);
827s  assert (df, 1);
827s ***** test
827s  load examgrades
827s  [h, pval, chisq, df] = bartlett_test (grades(:,[2,5]), 0.01);
827s  assert (h, 0);
827s  assert (pval, 0.01791, 1e-5);
827s  assert (chisq, 5.60486, 1e-5);
827s  assert (df, 1);
827s 16 tests, 16 passed, 0 known failure, 0 skipped
827s [inst/kmeans.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/kmeans.m
827s ***** demo
827s  ## Generate a two-cluster problem
827s  randn ("seed", 31)  # for reproducibility
827s  C1 = randn (100, 2) + 1;
827s  randn ("seed", 32)  # for reproducibility
827s  C2 = randn (100, 2) - 1;
827s  data = [C1; C2];
827s 
827s  ## Perform clustering
827s  rand ("seed", 1)  # for reproducibility
827s  [idx, centers] = kmeans (data, 2);
827s 
827s  ## Plot the result
827s  figure;
827s  plot (data (idx==1, 1), data (idx==1, 2), "ro");
827s  hold on;
827s  plot (data (idx==2, 1), data (idx==2, 2), "bs");
827s  plot (centers (:, 1), centers (:, 2), "kv", "markersize", 10);
827s  hold off;
827s ***** demo
827s  ## Cluster data using k-means clustering, then plot the cluster regions
827s  ## Load Fisher's iris data set and use the petal lengths and widths as
827s  ## predictors
827s 
827s  load fisheriris
827s  X = meas(:,3:4);
827s 
827s  figure;
827s  plot (X(:,1), X(:,2), "k*", "MarkerSize", 5);
827s  title ("Fisher's Iris Data");
827s  xlabel ("Petal Lengths (cm)");
827s  ylabel ("Petal Widths (cm)");
827s 
827s  ## Cluster the data. Specify k = 3 clusters
827s  rand ("seed", 1)  # for reproducibility
827s  [idx, C] = kmeans (X, 3);
827s  x1 = min (X(:,1)):0.01:max (X(:,1));
827s  x2 = min (X(:,2)):0.01:max (X(:,2));
827s  [x1G, x2G] = meshgrid (x1, x2);
827s  XGrid = [x1G(:), x2G(:)];
827s 
827s  idx2Region = kmeans (XGrid, 3, "MaxIter", 1, "Start", C);
827s  figure;
827s  gscatter (XGrid(:,1), XGrid(:,2), idx2Region, ...
827s            [0, 0.75, 0.75; 0.75, 0, 0.75; 0.75, 0.75, 0], "..");
827s  hold on;
827s  plot (X(:,1), X(:,2), "k*", "MarkerSize", 5);
827s  title ("Fisher's Iris Data");
827s  xlabel ("Petal Lengths (cm)");
827s  ylabel ("Petal Widths (cm)");
827s  legend ("Region 1", "Region 2", "Region 3", "Data", "Location", "SouthEast");
827s  hold off
827s ***** demo
827s  ## Partition Data into Two Clusters
827s 
827s  randn ("seed", 1)  # for reproducibility
827s  r1 = randn (100, 2) * 0.75 + ones (100, 2);
827s  randn ("seed", 2)  # for reproducibility
827s  r2 = randn (100, 2) * 0.5 - ones (100, 2);
827s  X = [r1; r2];
827s 
827s  figure;
827s  plot (X(:,1), X(:,2), ".");
827s  title ("Randomly Generated Data");
827s  rand ("seed", 1)  # for reproducibility
827s  [idx, C] = kmeans (X, 2, "Distance", "cityblock", ...
827s                           "Replicates", 5, "Display", "final");
827s  figure;
827s  plot (X(idx==1,1), X(idx==1,2), "r.", "MarkerSize", 12);
827s  hold on
827s  plot(X(idx==2,1), X(idx==2,2), "b.", "MarkerSize", 12);
827s  plot (C(:,1), C(:,2), "kx", "MarkerSize", 15, "LineWidth", 3);
827s  legend ("Cluster 1", "Cluster 2", "Centroids", "Location", "NorthWest");
827s  title ("Cluster Assignments and Centroids");
827s  hold off
827s ***** demo
827s  ## Assign New Data to Existing Clusters
827s 
827s  ## Generate a training data set using three distributions
827s  randn ("seed", 5)  # for reproducibility
827s  r1 = randn (100, 2) * 0.75 + ones (100, 2);
827s  randn ("seed", 7)  # for reproducibility
827s  r2 = randn (100, 2) * 0.5 - ones (100, 2);
827s  randn ("seed", 9)  # for reproducibility
827s  r3 = randn (100, 2) * 0.75;
827s  X = [r1; r2; r3];
827s 
827s  ## Partition the training data into three clusters by using kmeans
827s 
827s  rand ("seed", 1)  # for reproducibility
827s  [idx, C] = kmeans (X, 3);
827s 
827s  ## Plot the clusters and the cluster centroids
827s 
827s  figure
827s  gscatter (X(:,1), X(:,2), idx, "bgm", "***");
827s  hold on
827s  plot (C(:,1), C(:,2), "kx");
827s  legend ("Cluster 1", "Cluster 2", "Cluster 3", "Cluster Centroid")
827s 
827s  ## Generate a test data set
827s  randn ("seed", 25)  # for reproducibility
827s  r1 = randn (100, 2) * 0.75 + ones (100, 2);
827s  randn ("seed", 27)  # for reproducibility
827s  r2 = randn (100, 2) * 0.5 - ones (100, 2);
827s  randn ("seed", 29)  # for reproducibility
827s  r3 = randn (100, 2) * 0.75;
827s  Xtest = [r1; r2; r3];
827s 
827s  ## Classify the test data set using the existing clusters
827s  ## Find the nearest centroid from each test data point by using pdist2
827s 
827s  D = pdist2 (C, Xtest, "euclidean");
827s  [group, ~] = find (D == min (D));
827s 
827s  ## Plot the test data and label the test data using idx_test with gscatter
827s 
827s  gscatter (Xtest(:,1), Xtest(:,2), group, "bgm", "ooo");
827s  legend ("Cluster 1", "Cluster 2", "Cluster 3", "Cluster Centroid", ...
827s          "Data classified to Cluster 1", "Data classified to Cluster 2", ...
827s          "Data classified to Cluster 3", "Location", "NorthWest");
827s  title ("Assign New Data to Existing Clusters");
827s ***** test
827s  samples = 4;
827s  dims = 3;
827s  k = 2;
827s  [cls, c, d, z] = kmeans (rand (samples,dims), k, "start", rand (k,dims, 5),
827s                           "emptyAction", "singleton");
827s  assert (size (cls), [samples, 1]);
827s  assert (size (c), [k, dims]);
827s  assert (size (d), [k, 1]);
827s  assert (size (z), [samples, k]);
827s ***** test
827s  samples = 4;
827s  dims = 3;
827s  k = 2;
827s  [cls, c, d, z] = kmeans (rand (samples,dims), [], "start", rand (k,dims, 5),
827s                           "emptyAction", "singleton");
827s  assert (size (cls), [samples, 1]);
827s  assert (size (c), [k, dims]);
827s  assert (size (d), [k, 1]);
827s  assert (size (z), [samples, k]);
827s ***** test
827s  [cls, c] = kmeans ([1 0; 2 0], 2, "start", [8,0;0,8], "emptyaction", "drop");
827s  assert (cls, [1; 1]);
827s  assert (c, [1.5, 0; NA, NA]);
827s ***** test
827s  kmeans (rand (4,3), 2, "start", rand (2,3, 5), "replicates", 5,
827s          "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (3,4), 2, "start", "sample", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (3,4), 2, "start", "plus", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (3,4), 2, "start", "cluster", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (3,4), 2, "start", "uniform", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (4,3), 2, "distance", "sqeuclidean", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (4,3), 2, "distance", "cityblock", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (4,3), 2, "distance", "cosine", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (4,3), 2, "distance", "correlation", "emptyAction", "singleton");
827s ***** test
827s  kmeans (rand (4,3), 2, "distance", "hamming", "emptyAction", "singleton");
827s ***** test
827s  kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "singleton");
827s ***** error kmeans (rand (3,2), 4);
827s ***** error kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "panic");
827s ***** error kmeans (rand (4,3), 2, "start", rand (2,3, 5), "replicates", 1);
827s ***** error kmeans (rand (4,3), 2, "start", rand (2,2));
827s ***** error kmeans (rand (4,3), 2, "distance", "manhattan");
827s ***** error kmeans (rand (3,4), 2, "start", "normal");
827s ***** error kmeans (rand (4,3), 2, "replicates", i);
827s ***** error kmeans (rand (4,3), 2, "replicates", -1);
827s ***** error kmeans (rand (4,3), 2, "replicates", []);
827s ***** error kmeans (rand (4,3), 2, "replicates", [1 2]);
827s ***** error kmeans (rand (4,3), 2, "replicates", "one");
827s ***** error kmeans (rand (4,3), 2, "MAXITER", i);
827s ***** error kmeans (rand (4,3), 2, "MaxIter", -1);
827s ***** error kmeans (rand (4,3), 2, "maxiter", []);
827s ***** error kmeans (rand (4,3), 2, "maxiter", [1 2]);
827s ***** error kmeans (rand (4,3), 2, "maxiter", "one");
827s ***** error <empty cluster created> kmeans ([1 0; 1.1 0], 2, "start", eye(2), "emptyaction", "error");
827s 31 tests, 31 passed, 0 known failure, 0 skipped
827s [inst/dcov.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/dcov.m
827s ***** demo
827s  base=@(x) (x- min(x))./(max(x)-min(x));
827s  N = 5e2;
827s  x = randn (N,1); x = base (x);
827s  z = randn (N,1); z = base (z);
827s  # Linear relations
827s  cy = [1 0.55 0.3 0 -0.3 -0.55 -1];
827s  ly = x .* cy;
827s  ly(:,[1:3 5:end]) = base (ly(:,[1:3 5:end]));
827s  # Correlated Gaussian
827s  cz = 1 - abs (cy);
827s  gy = base ( ly + cz.*z);
827s  # Shapes
827s  sx      = repmat (x,1,7);
827s  sy      = zeros (size (ly));
827s  v       = 2 * rand (size(x,1),2) - 1;
827s  sx(:,1) = v(:,1); sy(:,1) = cos(2*pi*sx(:,1)) + 0.5*v(:,2).*exp(-sx(:,1).^2/0.5);
827s  R       =@(d) [cosd(d) sind(d); -sind(d) cosd(d)];
827s  tmp     = R(35) * v.';
827s  sx(:,2) = tmp(1,:); sy(:,2) = tmp(2,:);
827s  tmp     = R(45) * v.';
827s  sx(:,3) = tmp(1,:); sy(:,3) = tmp(2,:);
827s  sx(:,4) = v(:,1); sy(:,4) = sx(:,4).^2 + 0.5*v(:,2);
827s  sx(:,5) = v(:,1); sy(:,5) = 3*sign(v(:,2)).*(sx(:,5)).^2  + v(:,2);
827s  sx(:,6) = cos (2*pi*v(:,1)) + 0.5*(x-0.5);
827s  sy(:,6) = sin (2*pi*v(:,1)) + 0.5*(z-0.5);
827s  sx(:,7) = x + sign(v(:,1)); sy(:,7) = z + sign(v(:,2));
827s  sy      = base (sy);
827s  sx      = base (sx);
827s  # scaled shape
827s  sc  = 1/3;
827s  ssy = (sy-0.5) * sc + 0.5;
827s  n = size (ly,2);
827s  ym = 1.2;
827s  xm = 0.5;
827s  fmt={'horizontalalignment','center'};
827s  ff = "% .2f";
827s  figure (1)
827s  for i=1:n
827s    subplot(4,n,i);
827s    plot (x, gy(:,i), '.b');
827s    axis tight
827s    axis off
827s    text (xm,ym,sprintf (ff, dcov (x,gy(:,i))),fmt{:})
827s 
827s    subplot(4,n,i+n);
827s    plot (x, ly(:,i), '.b');
827s    axis tight
827s    axis off
827s    text (xm,ym,sprintf (ff, dcov (x,ly(:,i))),fmt{:})
827s 
827s    subplot(4,n,i+2*n);
827s    plot (sx(:,i), sy(:,i), '.b');
827s    axis tight
827s    axis off
827s    text (xm,ym,sprintf (ff, dcov (sx(:,i),sy(:,i))),fmt{:})
827s    v = axis ();
827s 
827s    subplot(4,n,i+3*n);
827s    plot (sx(:,i), ssy(:,i), '.b');
827s    axis (v)
827s    axis off
827s    text (xm,ym,sprintf (ff, dcov (sx(:,i),ssy(:,i))),fmt{:})
827s  endfor
827s ***** error dcov (randn (30, 5), randn (25,5))
827s 1 test, 1 passed, 0 known failure, 0 skipped
827s [inst/ismissing.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/ismissing.m
827s ***** assert (ismissing ([1,NaN,3]), [false,true,false])
827s ***** assert (ismissing ('abcd f'), [false,false,false,false,true,false])
827s ***** assert (ismissing ({'xxx','','xyz'}), [false,true,false])
827s ***** assert (ismissing ({'x','','y'}), [false,true,false])
827s ***** assert (ismissing ({'x','','y';'z','a',''}), logical([0,1,0;0,0,1]))
827s ***** assert (ismissing ([1,2;NaN,2]), [false,false;true,false])
827s ***** assert (ismissing ([1,2;NaN,2], 2), [false,true;false,true])
827s ***** assert (ismissing ([1,2;NaN,2], [1 2]), [true,true;false,true])
827s ***** assert (ismissing ([1,2;NaN,2], NaN), [false,false;true,false])
827s ***** assert (ismissing (cat(3,magic(2),magic(2))), logical (zeros (2,2,2)))
827s ***** assert (ismissing (cat(3,magic(2),[1 2;3 NaN])), logical (cat(3,[0,0;0,0],[0,0;0,1])))
827s ***** assert (ismissing ([1 2; 3 4], [5 1; 2 0]), logical([1 1; 0 0]))
827s ***** assert (ismissing (cat(3,'f oo','ba r')), logical(cat(3,[0 1 0 0],[0 0 1 0])))
827s ***** assert (ismissing (cat(3,{'foo'},{''},{'bar'})), logical(cat(3,0,1,0)))
827s ***** assert (ismissing (double (NaN)), true)
827s ***** assert (ismissing (single (NaN)), true)
827s ***** assert (ismissing (' '), true)
827s ***** assert (ismissing ({''}), true)
827s ***** assert (ismissing ({' '}), false)
827s ***** assert (ismissing (double (eye(3)), single (1)), logical(eye(3)))
827s ***** assert (ismissing (double (eye(3)), true), logical(eye(3)))
827s ***** assert (ismissing (double (eye(3)), int32 (1)), logical(eye(3)))
827s ***** assert (ismissing (single (eye(3)), true), logical(eye(3)))
827s ***** assert (ismissing (single (eye(3)), double (1)), logical(eye(3)))
827s ***** assert (ismissing (single(eye(3)), int32 (1)), logical(eye(3)))
827s ***** assert (ismissing ({'123', '', 123}), [false false false])
827s ***** assert (ismissing (logical ([1 0 1])), [false false false])
827s ***** assert (ismissing (int32 ([1 2 3])), [false false false])
827s ***** assert (ismissing (uint32 ([1 2 3])), [false false false])
827s ***** assert (ismissing ({1, 2, 3}), [false false false])
827s ***** assert (ismissing ([struct struct struct]), [false false false])
827s ***** assert (ismissing (logical (eye(3)), true), logical(eye(3)))
827s ***** assert (ismissing (logical (eye(3)), double (1)), logical(eye(3)))
827s ***** assert (ismissing (logical (eye(3)), single (1)), logical(eye(3)))
827s ***** assert (ismissing (logical (eye(3)), int32 (1)), logical(eye(3)))
827s ***** assert (ismissing (int32 (eye(3)), int32 (1)), logical(eye(3)))
827s ***** assert (ismissing (int32 (eye(3)), true), logical(eye(3)))
827s ***** assert (ismissing (int32 (eye(3)), double (1)), logical(eye(3)))
827s ***** assert (ismissing (int32 (eye(3)), single (1)), logical(eye(3)))
827s ***** assert (ismissing ([]), logical([]))
827s ***** assert (ismissing (''), logical([]))
827s ***** assert (ismissing (ones (0,1)), logical(ones(0,1)))
827s ***** assert (ismissing (ones (1,0)), logical(ones(1,0)))
827s ***** assert (ismissing (ones (1,2,0)), logical(ones(1,2,0)))
827s ***** error ismissing ()
827s ***** error <'indicator' and 'A' must have the same> ismissing ([1 2; 3 4], "abc")
827s ***** error <'indicator' and 'A' must have the same> ismissing ({"", "", ""}, 1)
827s ***** error <'indicator' and 'A' must have the same> ismissing (1, struct)
827s ***** error <indicators not supported for data type> ismissing (struct, 1)
827s 49 tests, 49 passed, 0 known failure, 0 skipped
827s [inst/fitlm.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/fitlm.m
827s ***** demo
827s  y =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
827s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
827s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
827s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
827s         25.694 ]';
827s  X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
827s 
827s  [TAB,STATS] = fitlm (X,y,"linear","CategoricalVars",1,"display","on");
827s ***** demo
827s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
827s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
827s  brands = {'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'};
827s  popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ...
827s            'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'};
827s 
827s  [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",...
827s                           "CategoricalVars",[1,2],"display","on");
827s ***** test
827s  y =  [ 8.706 10.362 11.552  6.941 10.983 10.092  6.421 14.943 15.931 ...
827s         22.968 18.590 16.567 15.944 21.637 14.492 17.965 18.851 22.891 ...
827s         22.028 16.884 17.252 18.325 25.435 19.141 21.238 22.196 18.038 ...
827s         22.628 31.163 26.053 24.419 32.145 28.966 30.207 29.142 33.212 ...
827s         25.694 ]';
827s  X = [1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5]';
827s  [TAB,STATS] = fitlm (X,y,"continuous",[],"display","off");
827s  [TAB,STATS] = fitlm (X,y,"CategoricalVars",1,"display","off");
827s  [TAB,STATS] = fitlm (X,y,"constant","categorical",1,"display","off");
827s  [TAB,STATS] = fitlm (X,y,"linear","categorical",1,"display","off");
827s  [TAB,STATS] = fitlm (X,y,[0,0;1,0],"categorical",1,"display","off");
827s  assert (TAB{2,2}, 10, 1e-04);
827s  assert (TAB{3,2}, 7.99999999999999, 1e-09);
827s  assert (TAB{4,2}, 8.99999999999999, 1e-09);
827s  assert (TAB{5,2}, 11.0001428571429, 1e-09);
827s  assert (TAB{6,2}, 19.0001111111111, 1e-09);
827s  assert (TAB{2,3}, 1.01775379540949, 1e-09);
827s  assert (TAB{3,3}, 1.64107868458008, 1e-09);
827s  assert (TAB{4,3}, 1.43932122062479, 1e-09);
827s  assert (TAB{5,3}, 1.48983900477565, 1e-09);
827s  assert (TAB{6,3}, 1.3987687997822, 1e-09);
827s  assert (TAB{2,6}, 9.82555903510687, 1e-09);
827s  assert (TAB{3,6}, 4.87484242844031, 1e-09);
827s  assert (TAB{4,6}, 6.25294748040552, 1e-09);
827s  assert (TAB{5,6}, 7.38344399756088, 1e-09);
827s  assert (TAB{6,6}, 13.5834536158296, 1e-09);
827s  assert (TAB{3,7}, 2.85812420217862e-05, 1e-12);
827s  assert (TAB{4,7}, 5.22936741204002e-07, 1e-06);
827s  assert (TAB{5,7}, 2.12794763209106e-08, 1e-07);
827s  assert (TAB{6,7}, 7.82091664406755e-15, 1e-08);
827s ***** test
827s  popcorn = [5.5, 4.5, 3.5; 5.5, 4.5, 4.0; 6.0, 4.0, 3.0; ...
827s             6.5, 5.0, 4.0; 7.0, 5.5, 5.0; 7.0, 5.0, 4.5];
827s  brands = bsxfun (@times, ones(6,1), [1,2,3]);
827s  popper = bsxfun (@times, [1;1;1;2;2;2], ones(1,3));
827s 
827s  [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",...
827s                           "categoricalvars",[1,2],"display","off");
827s  assert (TAB{2,2}, 5.66666666666667, 1e-09);
827s  assert (TAB{3,2}, -1.33333333333333, 1e-09);
827s  assert (TAB{4,2}, -2.16666666666667, 1e-09);
827s  assert (TAB{5,2}, 1.16666666666667, 1e-09);
827s  assert (TAB{6,2}, -0.333333333333334, 1e-09);
827s  assert (TAB{7,2}, -0.166666666666667, 1e-09);
827s  assert (TAB{2,3}, 0.215165741455965, 1e-09);
827s  assert (TAB{3,3}, 0.304290309725089, 1e-09);
827s  assert (TAB{4,3}, 0.304290309725089, 1e-09);
827s  assert (TAB{5,3}, 0.304290309725089, 1e-09);
827s  assert (TAB{6,3}, 0.43033148291193, 1e-09);
827s  assert (TAB{7,3}, 0.43033148291193, 1e-09);
827s  assert (TAB{2,6}, 26.3362867542108, 1e-09);
827s  assert (TAB{3,6}, -4.38178046004138, 1e-09);
827s  assert (TAB{4,6}, -7.12039324756724, 1e-09);
827s  assert (TAB{5,6}, 3.83405790253621, 1e-09);
827s  assert (TAB{6,6}, -0.774596669241495, 1e-09);
827s  assert (TAB{7,6}, -0.387298334620748, 1e-09);
827s  assert (TAB{2,7}, 5.49841502258254e-12, 1e-09);
827s  assert (TAB{3,7}, 0.000893505495903642, 1e-09);
827s  assert (TAB{4,7}, 1.21291454302428e-05, 1e-09);
827s  assert (TAB{5,7}, 0.00237798044119407, 1e-09);
827s  assert (TAB{6,7}, 0.453570536021938, 1e-09);
827s  assert (TAB{7,7}, 0.705316781644046, 1e-09);
827s  ## Test with string ids for categorical variables
827s  brands = {'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'; ...
827s            'Gourmet', 'National', 'Generic'};
827s  popper = {'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; 'oil', 'oil', 'oil'; ...
827s            'air', 'air', 'air'; 'air', 'air', 'air'; 'air', 'air', 'air'};
827s  [TAB, STATS] = fitlm ({brands(:),popper(:)},popcorn(:),"interactions",...
827s                           "categoricalvars",[1,2],"display","off");
827s ***** test
827s  load carsmall
827s  X = [Weight,Horsepower,Acceleration];
827s  [TAB, STATS] = fitlm (X, MPG,"constant","display","off");
827s  [TAB, STATS] = fitlm (X, MPG,"linear","display","off");
827s  assert (TAB{2,2}, 47.9767628118615, 1e-09);
827s  assert (TAB{3,2}, -0.00654155878851796, 1e-09);
827s  assert (TAB{4,2}, -0.0429433065881864, 1e-09);
827s  assert (TAB{5,2}, -0.0115826516894871, 1e-09);
827s  assert (TAB{2,3}, 3.87851641748551, 1e-09);
827s  assert (TAB{3,3}, 0.00112741016370336, 1e-09);
827s  assert (TAB{4,3}, 0.0243130608813806, 1e-09);
827s  assert (TAB{5,3}, 0.193325043113178, 1e-09);
827s  assert (TAB{2,6}, 12.369874881944, 1e-09);
827s  assert (TAB{3,6}, -5.80228828790225, 1e-09);
827s  assert (TAB{4,6}, -1.76626492228599, 1e-09);
827s  assert (TAB{5,6}, -0.0599128364487485, 1e-09);
827s  assert (TAB{2,7}, 4.89570341688996e-21, 1e-09);
827s  assert (TAB{3,7}, 9.87424814144e-08, 1e-09);
827s  assert (TAB{4,7}, 0.0807803098213114, 1e-09);
827s  assert (TAB{5,7}, 0.952359384151778, 1e-09);
827s 3 tests, 3 passed, 0 known failure, 0 skipped
827s [inst/binotest.m]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/inst/binotest.m
827s ***** demo
827s  % flip a coin 1000 times, showing 475 heads
827s  % Hypothesis: coin is fair, i.e. p=1/2
827s  [h,p_val,ci] = binotest(475,1000,0.5)
827s  % Result: h = 0 : null hypothesis not rejected, coin could be fair
827s  %         P value 0.12, i.e. hypothesis not rejected for alpha up to 12%
827s  %         0.444 <= p <= 0.506 with 95% confidence
827s ***** demo
827s  % flip a coin 100 times, showing 65 heads
827s  % Hypothesis: coin shows less than 50% heads, i.e. p<=1/2
827s  [h,p_val,ci] = binotest(65,100,0.5,'tail','left','alpha',0.01)
827s  % Result: h = 1 : null hypothesis is rejected, i.e. coin shows more heads than tails
827s  %         P value 0.0018, i.e. hypothesis not rejected for alpha up to 0.18%
827s  %         0 <= p <= 0.76 with 99% confidence
827s ***** test #example from https://en.wikipedia.org/wiki/Binomial_test
827s  [h,p_val,ci] = binotest (51,235,1/6);
827s  assert (p_val, 0.0437, 0.00005)
827s  [h,p_val,ci] = binotest (51,235,1/6,'tail','left');
827s  assert (p_val, 0.027, 0.0005)
827s 1 test, 1 passed, 0 known failure, 0 skipped
827s Checking C++ files ...
827s [src/libsvmread.cc]
827s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/libsvmread.cc
827s ***** error <libsvmread: filename must be a string.> [L, D] = libsvmread (24);
828s ***** error <libsvmread: wrong number of input or output arguments.> ...
828s  D = libsvmread ("filename");
828s ***** test
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s  assert (size (L), [270, 1]);
828s  assert (size (D), [270, 13]);
828s ***** test
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s  assert (issparse (L), false);
828s  assert (issparse (D), true);
828s 4 tests, 4 passed, 0 known failure, 0 skipped
828s [src/svmpredict.cc]
828s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/svmpredict.cc
828s ***** test
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s  model = svmtrain (L, D, '-c 1 -g 0.07');
828s  [predict_label, accuracy, dec_values] = svmpredict (L, D, model);
828s  assert (size (predict_label), size (dec_values));
828s  assert (accuracy, [86.666, 0.533, 0.533]', [1e-3, 1e-3, 1e-3]');
828s  assert (dec_values(1), 1.225836001973273, 1e-14);
828s  assert (dec_values(2), -0.3212992933043805, 1e-14);
828s  assert (predict_label(1), 1);
828s ***** shared L, D, model
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s  model = svmtrain (L, D, '-c 1 -g 0.07');
828s ***** error <svmpredict: wrong number of output arguments.> ...
828s  [p, a] = svmpredict (L, D, model);
828s ***** error <svmpredict: wrong number of input arguments.> p = svmpredict (L, D);
828s ***** error <svmpredict: label vector and instance matrix must be double.> ...
828s  p = svmpredict (single (L), D, model);
828s ***** error <svmpredict: model should be a struct array.> p = svmpredict (L, D, 123);
828s 5 tests, 5 passed, 0 known failure, 0 skipped
828s [src/editDistance.cc]
828s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/editDistance.cc
828s ***** error <editDistance: too many input arguments.> d = editDistance (1, 2, 3, 4);
828s ***** error <editDistance: too many output arguments.> ...
828s  [C, IA, IC, I] = editDistance ({"AS","SD","AD"}, 1);
828s ***** error <editDistance: too many output arguments.> ...
828s  [C, IA] = editDistance ({"AS","SD","AD"});
828s ***** error <editDistance: minDist must be a scalar value.> ...
828s  d = editDistance ({"AS","SD","AD"}, [1, 2]);
828s ***** error <editDistance: minDist must be a nonnegative integer.> ...
828s  d = editDistance ({"AS","SD","AD"}, -2);
828s ***** error <editDistance: minDist must be a nonnegative integer.> ...
828s  d = editDistance ({"AS","SD","AD"}, 1.25);
828s ***** error <editDistance: minDist must be a scalar value.> ...
828s  d = editDistance ({"AS","SD","AD"}, {"AS","SD","AD"}, [1, 2]);
828s ***** error <editDistance: minDist must be a nonnegative integer.> ...
828s  d = editDistance ({"AS","SD","AD"}, {"AS","SD","AD"}, -2);
828s ***** error <editDistance: minDist must be a nonnegative integer.> ...
828s  d = editDistance ({"AS","SD","AD"}, {"AS","SD","AD"}, 1.25);
828s ***** error <editDistance: minDist must be a scalar value.> ...
828s  d = editDistance ("string1", "string2", [1, 2]);
828s ***** error <editDistance: minDist must be a nonnegative integer.> ...
828s  d = editDistance ("string1", "string2", -2);
828s ***** error <editDistance: minDist must be a nonnegative integer.> ...
828s  d = editDistance ("string1", "string2", 1.25);
828s ***** error <editDistance: tokenizedDocument must contain cellstr arrays.> ...
828s  d = editDistance ({{"string1", "string2"}, 2});
828s ***** error <editDistance: tokenizedDocument must contain cellstr arrays.> ...
828s  d = editDistance ({{"string1", "string2"}, 2}, 2);
828s ***** error <editDistance: STR1 must be a cellstr.> ...
828s  d = editDistance ([1, 2, 3]);
828s ***** error <editDistance: STR1 must be a cellstr.> ...
828s  d = editDistance (["AS","SD","AD","AS"]);
828s ***** error <editDistance: STR1 must be a cellstr.> ...
828s  d = editDistance (["AS","SD","AD"], 2);
828s ***** error <editDistance: STR1 and STR2 must be either strings or cellstr.> ...
828s  d = editDistance (logical ([1,2,3]), {"AS","AS","AD"});
828s ***** error <editDistance: STR1 and STR2 must be either strings or cellstr.> ...
828s  d = editDistance ({"AS","SD","AD"}, logical ([1,2,3]));
828s ***** error <editDistance: STR1 and STR2 must be either strings or cellstr.> ...
828s  d = editDistance ([1,2,3], {"AS","AS","AD"});
828s ***** error <editDistance: first tokenizedDocument does not contain cellstr arrays.> ...
828s  d = editDistance ({1,2,3}, {"AS","SD","AD"});
828s ***** error <editDistance: second tokenizedDocument does not contain cellstr arrays.> ...
828s  d = editDistance ({"AS","SD","AD"}, {1,2,3});
828s ***** error <editDistance: cellstr input arguments size mismatch.> ...
828s  d = editDistance ({"AS","SD","AD"}, {"AS", "AS"});
828s ***** test
828s  d = editDistance ({"AS","SD","AD"});
828s  assert (d, [2; 1; 1]);
828s  assert (class (d), "double");
828s ***** test
828s  C = editDistance ({"AS","SD","AD"}, 1);
828s  assert (iscellstr (C), true);
828s  assert (C, {"AS";"SD"});
828s ***** test
828s  [C, IA] = editDistance ({"AS","SD","AD"}, 1);
828s  assert (class (IA), "double");
828s  assert (IA, [1;2]);
828s ***** test
828s  A = {"ASS"; "SDS"; "FDE"; "EDS"; "OPA"};
828s  [C, IA] = editDistance (A, 2, "OutputAllIndices", false);
828s  assert (class (IA), "double");
828s  assert (A(IA), C);
828s ***** test
828s  A = {"ASS"; "SDS"; "FDE"; "EDS"; "OPA"};
828s  [C, IA] = editDistance (A, 2, "OutputAllIndices", true);
828s  assert (class (IA), "cell");
828s  assert (C, {"ASS"; "FDE"; "OPA"});
828s  assert (A(IA{1}), {"ASS"; "SDS"; "EDS"});
828s  assert (A(IA{2}), {"FDE"; "EDS"});
828s  assert (A(IA{3}), {"OPA"});
828s ***** test
828s  A = {"ASS"; "SDS"; "FDE"; "EDS"; "OPA"};
828s  [C, IA, IC] = editDistance (A, 2);
828s  assert (class (IA), "double");
828s  assert (A(IA), C);
828s  assert (IC, [1; 1; 3; 1; 5]);
828s ***** test
828s  d = editDistance ({"AS","SD","AD"}, {"AS", "AD", "SE"});
828s  assert (d, [0; 1; 2]);
828s  assert (class (d), "double");
828s ***** test
828s  d = editDistance ({"AS","SD","AD"}, {"AS"});
828s  assert (d, [0; 2; 1]);
828s  assert (class (d), "double");
828s ***** test
828s  d = editDistance ({"AS"}, {"AS","SD","AD"});
828s  assert (d, [0; 2; 1]);
828s  assert (class (d), "double");
828s ***** test
828s  b = editDistance ("Octave", "octave");
828s  assert (b, 1);
828s  assert (class (b), "double");
828s 33 tests, 33 passed, 0 known failure, 0 skipped
828s [src/svmtrain.cc]
828s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/svmtrain.cc
828s ***** test
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s  model = svmtrain(L, D, '-c 1 -g 0.07');
828s  [predict_label, accuracy, dec_values] = svmpredict(L, D, model);
828s  assert (isstruct (model), true);
828s  assert (isfield (model, "Parameters"), true);
828s  assert (model.totalSV, 130);
828s  assert (model.nr_class, 2);
828s  assert (size (model.Label), [2, 1]);
828s ***** shared L, D
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s ***** error <svmtrain: wrong number of output arguments.> [L, D] = svmtrain (L, D);
828s ***** error <svmtrain: label vector and instance matrix must be double.> ...
828s  model = svmtrain (single (L), D);
828s ***** error <svmtrain: wrong number of input arguments.> ...
828s  model = svmtrain (L, D, "", "");
828s 4 tests, 4 passed, 0 known failure, 0 skipped
828s [src/fcnntrain.cc]
828s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/fcnntrain.cc
828s ***** shared X, Y, MODEL
828s  load fisheriris
828s  X = meas;
828s  Y = grp2idx (species);
828s ***** error <fcnntrain: too few input arguments.> ...
828s  model = fcnntrain (X, Y);
828s ***** error <fcnntrain: too many output arguments.> ...
828s  [Q, W] = fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: X must be a real numeric matrix.> ...
828s  fcnntrain (complex (X), Y, 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: X must be a real numeric matrix.> ...
828s  fcnntrain ({X}, Y, 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: X cannot be empty.> ...
828s  fcnntrain ([], Y, 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: Y must be a real numeric matrix.> ...
828s  fcnntrain (X, complex (Y), 10, 1, 0.01, [1, 1], 0.025, 50, false);
828s ***** error <fcnntrain: Y must be a real numeric matrix.> ...
828s  fcnntrain (X, {Y}, 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: Y cannot be empty.> ...
828s  fcnntrain (X, [], 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: X and Y must have the same number of rows.> ...
828s  fcnntrain (X, Y([1:50]), 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: labels in Y must be positive integers.> ...
828s  fcnntrain (X, Y - 1, 10, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'LayerSizes' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, [10; 5], [1, 1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'LayerSizes' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, "10", [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'LayerSizes' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, {10}, [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'LayerSizes' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, complex (10), [1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'Activations' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, 10, [1; 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'Activations' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, 10, {1, 1}, 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'Activations' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, 10, "1", 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'Activations' must be a row vector of integer values.> ...
828s  fcnntrain (X, Y, 10, complex ([1, 1]), 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'Activations' do not match LayerSizes.> ...
828s  fcnntrain (X, Y, 10, [1, 1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: cannot have a layer of zero size.> ...
828s  fcnntrain (X, Y, [10, 0, 5], [1, 1, 1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: invalid 'Activations' code.> ...
828s  fcnntrain (X, Y, 10, [-1, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: invalid 'Activations' code.> ...
828s  fcnntrain (X, Y, 10, [8, 1], 1, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'NumThreads' must be a positive integer scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 0, 0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'Alpha' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, -0.01, 0.025, 50, false);
828s ***** error <fcnntrain: 'LearningRate' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, -0.025, 50, false);
828s ***** error <fcnntrain: 'LearningRate' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0, 50, false);
828s ***** error <fcnntrain: 'LearningRate' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, [0.025, 0.001], 50, false);
828s ***** error <fcnntrain: 'LearningRate' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, {0.025}, 50, false);
828s ***** error <fcnntrain: 'Epochs' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, 0, false);
828s ***** error <fcnntrain: 'Epochs' must be a positive scalar value.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, [50, 25], false);
828s ***** error <fcnntrain: 'DisplayInfo' must be a boolean scalar.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, 50, 0);
828s ***** error <fcnntrain: 'DisplayInfo' must be a boolean scalar.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, 50, 1);
828s ***** error <fcnntrain: 'DisplayInfo' must be a boolean scalar.> ...
828s  fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, 50, [false, false]);
828s 33 tests, 33 passed, 0 known failure, 0 skipped
828s [src/libsvmwrite.cc]
828s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/libsvmwrite.cc
828s ***** shared L, D
828s  [L, D] = libsvmread (file_in_loadpath ("heart_scale.dat"));
828s ***** error <libsvmwrite: error opening file for write.> libsvmwrite ("", L, D);
828s ***** error <libsvmwrite: length of label vector does not match instances.> ...
828s  libsvmwrite (tempname (), [L;L], D);
828s ***** error <libsvmwrite: wrong number of output arguments.> ...
828s  OUT = libsvmwrite (tempname (), L, D);
828s ***** error <libsvmwrite: label vector and instance matrix must be double.> ...
828s  libsvmwrite (tempname (), single (L), D);
828s ***** error <libsvmwrite: filename must be a string.> libsvmwrite (13412, L, D);
828s ***** error <libsvmwrite: instance_matrix must be sparse.> ...
828s  libsvmwrite (tempname (), L, full (D));
828s ***** error <libsvmwrite: wrong number of input arguments.> ...
828s  libsvmwrite (tempname (), L, D, D);
828s 7 tests, 7 passed, 0 known failure, 0 skipped
828s [src/fcnnpredict.cc]
828s >>>>> /tmp/autopkgtest.YRSg9l/build.lsI/src/src/fcnnpredict.cc
828s ***** shared X, Y, MODEL
828s  load fisheriris
828s  X = meas;
828s  Y = grp2idx (species);
828s  MODEL = fcnntrain (X, Y, 10, [1, 1], 1, 0.01, 0.025, 100, false);
828s ***** test
828s  [Y_pred, Y_scores] = fcnnpredict (MODEL, X);
828s  assert (numel (Y_pred), numel (Y));
828s  assert (isequal (size (Y_pred), size (Y)), true);
828s  assert (columns (Y_scores), numel (unique (Y)));
828s  assert (rows (Y_scores), numel (Y));
828s ***** error <fcnnpredict: too few input arguments.> ...
828s  fcnnpredict (MODEL);
828s ***** error <fcnnpredict: too many output arguments.> ...
828s  [Q, W, E] = fcnnpredict (MODEL, X);
828s ***** error <fcnnpredict: first argument must be a scalar structure.> ...
828s  fcnnpredict (1, X);
828s ***** error <fcnnpredict: first argument must be a scalar structure.> ...
828s  fcnnpredict (struct ("L", {1, 2, 3}), X);
828s ***** error <fcnnpredict: model does not have a 'LayerWeights' field.> ...
828s  fcnnpredict (struct ("L", 1), X);
828s ***** error <fcnnpredict: 'LayerWeights' must be a cell row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", 1), X);
828s ***** error <fcnnpredict: 'LayerWeights' must be a cell row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {1}), X);
828s ***** error <fcnnpredict: 'LayerWeights' must be a cell row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {{1; 2; 3}}), X);
828s ***** error <fcnnpredict: model does not have an 'Activations' field.> ...
828s  fcnnpredict (struct ("LayerWeights", {[{ones(3)},{ones(3)}]}, "R", 2), X);
828s ***** error <fcnnpredict: 'Activations' must be a numeric row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {[{ones(3)},{ones(3)}]}, ...
828s                       "Activations", [2]), X);
828s ***** error <fcnnpredict: 'Activations' must be a numeric row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {[{ones(3)},{ones(3)}]}, ...
828s                       "Activations", [2; 2]), X);
828s ***** error <fcnnpredict: 'Activations' must be a numeric row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {[{ones(3)},{ones(3)}]}, ...
828s                       "Activations", {{2, 2}}), X);
828s ***** error <fcnnpredict: 'Activations' must be a numeric row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {[{ones(3)},{ones(3)}]}, ...
828s                       "Activations", {{"sigmoid", "softmax"}}), X);
828s ***** error <fcnnpredict: 'Activations' must be a numeric row vector.> ...
828s  fcnnpredict (struct ("LayerWeights", {[{ones(3)},{ones(3)}]}, ...
828s                       "Activations", "sigmoid"), X);
828s ***** error <fcnnpredict: XC must be a real numeric matrix.> ...
828s  fcnnpredict (MODEL, complex (X));
828s ***** error <fcnnpredict: XC must be a real numeric matrix.> ...
828s  fcnnpredict (MODEL, {1, 2, 3, 4});
828s ***** error <fcnnpredict: XC must be a real numeric matrix.> ...
828s  fcnnpredict (MODEL, "asd");
828s ***** error <fcnnpredict: XC cannot be empty.> ...
828s  fcnnpredict (MODEL, []);
828s ***** error <fcnnpredict: the features in XC do not match the trained model.> ...
828s  fcnnpredict (MODEL, X(:,[1:3]));
828s 20 tests, 20 passed, 0 known failure, 0 skipped
828s Done running the unit tests.
828s Summary: 11162 tests, 11159 passed, 1 known failures, 2 skipped
829s autopkgtest [14:05:01]: test command1: -----------------------]
830s autopkgtest [14:05:02]: test command1:  - - - - - - - - - - results - - - - - - - - - -
830s command1             PASS
830s autopkgtest [14:05:02]: @@@@@@@@@@@@@@@@@@@@ summary
830s command1             PASS
848s nova [W] Using flock in prodstack6-arm64
848s Creating nova instance adt-plucky-arm64-octave-statistics-20250315-135110-juju-7f2275-prod-proposed-migration-environment-15-3125edf7-fdda-4d31-b120-7ce2f1404de9 from image adt/ubuntu-plucky-arm64-server-20250315.img (UUID bd6e766c-b51f-4b53-86d6-23aa4d18f524)...
848s nova [W] Timed out waiting for b88647f6-a941-4d10-afdd-5d0b555e4dcd to get deleted.