0s autopkgtest [16:24:18]: starting date and time: 2024-03-23 16:24:18+0000 0s autopkgtest [16:24:18]: git checkout: 4a1cd702 l/adt_testbed: don't blame the testbed for unsolvable build deps 0s autopkgtest [16:24:18]: host juju-7f2275-prod-proposed-migration-environment-2; command line: /home/ubuntu/autopkgtest/runner/autopkgtest --output-dir /tmp/autopkgtest-work.227rh6ae/out --timeout-copy=6000 --setup-commands /home/ubuntu/autopkgtest-cloud/worker-config-production/setup-canonical.sh --setup-commands /home/ubuntu/autopkgtest/setup-commands/setup-testbed --apt-pocket=proposed --apt-upgrade libmath-prime-util-perl --timeout-short=300 --timeout-copy=20000 --timeout-build=20000 --env=ADT_TEST_TRIGGERS=perl/5.38.2-3.2 -- ssh -s /home/ubuntu/autopkgtest/ssh-setup/nova -- --flavor autopkgtest --security-groups autopkgtest-juju-7f2275-prod-proposed-migration-environment-2@bos01-s390x-16.secgroup --name adt-noble-s390x-libmath-prime-util-perl-20240323-162417-juju-7f2275-prod-proposed-migration-environment-2 --image adt/ubuntu-noble-s390x-server --keyname testbed-juju-7f2275-prod-proposed-migration-environment-2 --net-id=net_prod-proposed-migration -e TERM=linux -e ''"'"'http_proxy=http://squid.internal:3128'"'"'' -e ''"'"'https_proxy=http://squid.internal:3128'"'"'' -e ''"'"'no_proxy=127.0.0.1,127.0.1.1,login.ubuntu.com,localhost,localdomain,novalocal,internal,archive.ubuntu.com,ports.ubuntu.com,security.ubuntu.com,ddebs.ubuntu.com,changelogs.ubuntu.com,launchpadlibrarian.net,launchpadcontent.net,launchpad.net,10.24.0.0/24,keystone.ps5.canonical.com,objectstorage.prodstack5.canonical.com'"'"'' --mirror=http://us.ports.ubuntu.com/ubuntu-ports/ 125s autopkgtest [16:26:23]: testbed dpkg architecture: s390x 125s autopkgtest [16:26:23]: testbed apt version: 2.7.12 125s autopkgtest [16:26:23]: @@@@@@@@@@@@@@@@@@@@ test bed setup 126s Get:1 http://ftpmaster.internal/ubuntu noble-proposed InRelease [117 kB] 126s Get:2 http://ftpmaster.internal/ubuntu noble-proposed/universe Sources [3969 kB] 127s Get:3 http://ftpmaster.internal/ubuntu noble-proposed/restricted Sources [6540 B] 127s Get:4 http://ftpmaster.internal/ubuntu noble-proposed/multiverse Sources [56.9 kB] 127s Get:5 http://ftpmaster.internal/ubuntu noble-proposed/main Sources [493 kB] 127s Get:6 http://ftpmaster.internal/ubuntu noble-proposed/main s390x Packages [652 kB] 127s Get:7 http://ftpmaster.internal/ubuntu noble-proposed/main s390x c-n-f Metadata [3032 B] 127s Get:8 http://ftpmaster.internal/ubuntu noble-proposed/restricted s390x Packages [1372 B] 127s Get:9 http://ftpmaster.internal/ubuntu noble-proposed/restricted s390x c-n-f Metadata [116 B] 127s Get:10 http://ftpmaster.internal/ubuntu noble-proposed/universe s390x Packages [4143 kB] 127s Get:11 http://ftpmaster.internal/ubuntu noble-proposed/universe s390x c-n-f Metadata [7292 B] 127s Get:12 http://ftpmaster.internal/ubuntu noble-proposed/multiverse s390x Packages [46.8 kB] 127s Get:13 http://ftpmaster.internal/ubuntu noble-proposed/multiverse s390x c-n-f Metadata [116 B] 130s Fetched 9495 kB in 3s (3109 kB/s) 131s Reading package lists... 133s Reading package lists... 133s Building dependency tree... 133s Reading state information... 134s Calculating upgrade... 134s The following packages will be upgraded: 134s cloud-init debianutils fonts-ubuntu-console libbsd0 libc-bin libc6 locales 134s python3-markupsafe 134s 8 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 134s Need to get 8499 kB of archives. 134s After this operation, 9216 B disk space will be freed. 134s Get:1 http://ftpmaster.internal/ubuntu noble/main s390x debianutils s390x 5.17 [90.1 kB] 134s Get:2 http://ftpmaster.internal/ubuntu noble/main s390x libc6 s390x 2.39-0ubuntu6 [2847 kB] 135s Get:3 http://ftpmaster.internal/ubuntu noble/main s390x libc-bin s390x 2.39-0ubuntu6 [654 kB] 135s Get:4 http://ftpmaster.internal/ubuntu noble/main s390x libbsd0 s390x 0.12.1-1 [46.7 kB] 135s Get:5 http://ftpmaster.internal/ubuntu noble/main s390x locales all 2.39-0ubuntu6 [4232 kB] 135s Get:6 http://ftpmaster.internal/ubuntu noble/main s390x fonts-ubuntu-console all 0.869+git20240321-0ubuntu1 [18.7 kB] 135s Get:7 http://ftpmaster.internal/ubuntu noble/main s390x python3-markupsafe s390x 2.1.5-1build1 [12.8 kB] 135s Get:8 http://ftpmaster.internal/ubuntu noble/main s390x cloud-init all 24.1.2-0ubuntu1 [597 kB] 136s Preconfiguring packages ... 136s Fetched 8499 kB in 1s (9049 kB/s) 136s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 136s Preparing to unpack .../debianutils_5.17_s390x.deb ... 136s Unpacking debianutils (5.17) over (5.16) ... 136s Setting up debianutils (5.17) ... 136s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 136s Preparing to unpack .../libc6_2.39-0ubuntu6_s390x.deb ... 136s Unpacking libc6:s390x (2.39-0ubuntu6) over (2.39-0ubuntu2) ... 137s Setting up libc6:s390x (2.39-0ubuntu6) ... 137s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 137s Preparing to unpack .../libc-bin_2.39-0ubuntu6_s390x.deb ... 137s Unpacking libc-bin (2.39-0ubuntu6) over (2.39-0ubuntu2) ... 137s Setting up libc-bin (2.39-0ubuntu6) ... 138s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 138s Preparing to unpack .../libbsd0_0.12.1-1_s390x.deb ... 138s Unpacking libbsd0:s390x (0.12.1-1) over (0.11.8-1) ... 138s Preparing to unpack .../locales_2.39-0ubuntu6_all.deb ... 138s Unpacking locales (2.39-0ubuntu6) over (2.39-0ubuntu2) ... 138s Preparing to unpack .../fonts-ubuntu-console_0.869+git20240321-0ubuntu1_all.deb ... 138s Unpacking fonts-ubuntu-console (0.869+git20240321-0ubuntu1) over (0.869-0ubuntu1) ... 138s Preparing to unpack .../python3-markupsafe_2.1.5-1build1_s390x.deb ... 138s Unpacking python3-markupsafe (2.1.5-1build1) over (2.1.5-1) ... 138s Preparing to unpack .../cloud-init_24.1.2-0ubuntu1_all.deb ... 138s Unpacking cloud-init (24.1.2-0ubuntu1) over (24.1.1-0ubuntu1) ... 138s Setting up fonts-ubuntu-console (0.869+git20240321-0ubuntu1) ... 138s Setting up cloud-init (24.1.2-0ubuntu1) ... 140s Setting up locales (2.39-0ubuntu6) ... 141s Generating locales (this might take a while)... 143s en_US.UTF-8... done 143s Generation complete. 143s Setting up python3-markupsafe (2.1.5-1build1) ... 143s Setting up libbsd0:s390x (0.12.1-1) ... 143s Processing triggers for rsyslog (8.2312.0-3ubuntu3) ... 143s Processing triggers for man-db (2.12.0-3) ... 145s Processing triggers for libc-bin (2.39-0ubuntu6) ... 145s Reading package lists... 145s Building dependency tree... 145s Reading state information... 146s 0 upgraded, 0 newly installed, 0 to remove and 234 not upgraded. 146s Unknown architecture, assuming PC-style ttyS0 146s sh: Attempting to set up Debian/Ubuntu apt sources automatically 146s sh: Distribution appears to be Ubuntu 147s Reading package lists... 147s Building dependency tree... 147s Reading state information... 148s eatmydata is already the newest version (131-1). 148s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 148s Reading package lists... 148s Building dependency tree... 148s Reading state information... 148s dbus is already the newest version (1.14.10-4ubuntu1). 148s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 148s Reading package lists... 148s Building dependency tree... 148s Reading state information... 149s rng-tools-debian is already the newest version (2.4). 149s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 149s Reading package lists... 149s Building dependency tree... 149s Reading state information... 149s The following packages will be REMOVED: 149s cloud-init* python3-configobj* python3-debconf* 149s 0 upgraded, 0 newly installed, 3 to remove and 0 not upgraded. 149s After this operation, 3256 kB disk space will be freed. 149s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51777 files and directories currently installed.) 149s Removing cloud-init (24.1.2-0ubuntu1) ... 150s Removing python3-configobj (5.0.8-3) ... 150s Removing python3-debconf (1.5.86) ... 150s Processing triggers for man-db (2.12.0-3) ... 151s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51388 files and directories currently installed.) 151s Purging configuration files for cloud-init (24.1.2-0ubuntu1) ... 151s dpkg: warning: while removing cloud-init, directory '/etc/cloud/cloud.cfg.d' not empty so not removed 151s Processing triggers for rsyslog (8.2312.0-3ubuntu3) ... 151s invoke-rc.d: policy-rc.d denied execution of try-restart. 152s Reading package lists... 152s Building dependency tree... 152s Reading state information... 152s linux-generic is already the newest version (6.8.0-11.11+1). 152s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 153s Hit:1 http://ftpmaster.internal/ubuntu noble InRelease 153s Hit:2 http://ftpmaster.internal/ubuntu noble-updates InRelease 153s Hit:3 http://ftpmaster.internal/ubuntu noble-security InRelease 156s Reading package lists... 156s Reading package lists... 156s Building dependency tree... 156s Reading state information... 157s Calculating upgrade... 157s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 157s Reading package lists... 157s Building dependency tree... 157s Reading state information... 158s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 158s autopkgtest [16:26:56]: rebooting testbed after setup commands that affected boot 179s autopkgtest [16:27:17]: testbed running kernel: Linux 6.8.0-11-generic #11-Ubuntu SMP Tue Feb 13 23:45:46 UTC 2024 183s autopkgtest [16:27:21]: @@@@@@@@@@@@@@@@@@@@ apt-source libmath-prime-util-perl 185s Get:1 http://ftpmaster.internal/ubuntu noble/universe libmath-prime-util-perl 0.73-2build3 (dsc) [2373 B] 185s Get:2 http://ftpmaster.internal/ubuntu noble/universe libmath-prime-util-perl 0.73-2build3 (tar) [617 kB] 185s Get:3 http://ftpmaster.internal/ubuntu noble/universe libmath-prime-util-perl 0.73-2build3 (diff) [6936 B] 186s gpgv: Signature made Wed Jan 10 13:22:03 2024 UTC 186s gpgv: using RSA key 568BF22A66337CBFC9A6B9B72C83DBC8E9BD0E37 186s gpgv: Can't check signature: No public key 186s dpkg-source: warning: cannot verify inline signature for ./libmath-prime-util-perl_0.73-2build3.dsc: no acceptable signature found 186s autopkgtest [16:27:24]: testing package libmath-prime-util-perl version 0.73-2build3 186s autopkgtest [16:27:24]: build not needed 187s autopkgtest [16:27:25]: test autodep8-perl-build-deps: preparing testbed 194s Reading package lists... 194s Building dependency tree... 194s Reading state information... 194s Starting pkgProblemResolver with broken count: 0 194s Starting 2 pkgProblemResolver with broken count: 0 194s Done 195s The following additional packages will be installed: 195s autoconf autodep8 automake autopoint autotools-dev build-essential cpp 195s cpp-13 cpp-13-s390x-linux-gnu cpp-s390x-linux-gnu dctrl-tools debhelper 195s debugedit dh-autoreconf dh-strip-nondeterminism dwz g++ g++-13 195s g++-13-s390x-linux-gnu g++-s390x-linux-gnu gcc gcc-13 gcc-13-base 195s gcc-13-s390x-linux-gnu gcc-s390x-linux-gnu gettext help2man intltool-debian 195s libarchive-zip-perl libasan8 libatomic1 libc-dev-bin libc6-dev libcc1-0 195s libcrypt-dev libdebhelper-perl libdevel-checklib-perl libdw1 195s libfile-stripnondeterminism-perl libgcc-13-dev libgomp1 libisl23 libitm1 195s libmath-prime-util-gmp-perl libmath-prime-util-perl libmpc3 libperl-dev 195s libstdc++-13-dev libsub-override-perl libsub-uplevel-perl libtest-warn-perl 195s libtool libubsan1 linux-libc-dev m4 pkg-perl-autopkgtest po-debconf 195s rpcsvc-proto 195s Suggested packages: 195s autoconf-archive gnu-standards autoconf-doc cpp-doc gcc-13-locales 195s cpp-13-doc debtags dh-make g++-multilib g++-13-multilib gcc-13-doc 195s gcc-multilib manpages-dev flex bison gdb gcc-doc gcc-13-multilib 195s gdb-s390x-linux-gnu gettext-doc libasprintf-dev libgettextpo-dev glibc-doc 195s libstdc++-13-doc libtool-doc gfortran | fortran95-compiler gcj-jdk m4-doc 195s libmail-box-perl 195s Recommended packages: 195s manpages manpages-dev libc-devtools libarchive-cpio-perl 195s libmath-bigint-gmp-perl libltdl-dev libmail-sendmail-perl 195s The following NEW packages will be installed: 195s autoconf autodep8 automake autopkgtest-satdep autopoint autotools-dev 195s build-essential cpp cpp-13 cpp-13-s390x-linux-gnu cpp-s390x-linux-gnu 195s dctrl-tools debhelper debugedit dh-autoreconf dh-strip-nondeterminism dwz 195s g++ g++-13 g++-13-s390x-linux-gnu g++-s390x-linux-gnu gcc gcc-13 gcc-13-base 195s gcc-13-s390x-linux-gnu gcc-s390x-linux-gnu gettext help2man intltool-debian 195s libarchive-zip-perl libasan8 libatomic1 libc-dev-bin libc6-dev libcc1-0 195s libcrypt-dev libdebhelper-perl libdevel-checklib-perl libdw1 195s libfile-stripnondeterminism-perl libgcc-13-dev libgomp1 libisl23 libitm1 195s libmath-prime-util-gmp-perl libmath-prime-util-perl libmpc3 libperl-dev 195s libstdc++-13-dev libsub-override-perl libsub-uplevel-perl libtest-warn-perl 195s libtool libubsan1 linux-libc-dev m4 pkg-perl-autopkgtest po-debconf 195s rpcsvc-proto 195s 0 upgraded, 59 newly installed, 0 to remove and 0 not upgraded. 195s Need to get 59.8 MB/59.8 MB of archives. 195s After this operation, 200 MB of additional disk space will be used. 195s Get:1 /tmp/autopkgtest.ykCxZM/1-autopkgtest-satdep.deb autopkgtest-satdep s390x 0 [804 B] 195s Get:2 http://ftpmaster.internal/ubuntu noble/main s390x gcc-13-base s390x 13.2.0-17ubuntu2 [47.4 kB] 195s Get:3 http://ftpmaster.internal/ubuntu noble/main s390x m4 s390x 1.4.19-4 [255 kB] 195s Get:4 http://ftpmaster.internal/ubuntu noble/main s390x autoconf all 2.71-3 [339 kB] 195s Get:5 http://ftpmaster.internal/ubuntu noble/main s390x dctrl-tools s390x 2.24-3build2 [65.4 kB] 195s Get:6 http://ftpmaster.internal/ubuntu noble/main s390x autodep8 all 0.28 [13.2 kB] 195s Get:7 http://ftpmaster.internal/ubuntu noble/main s390x autotools-dev all 20220109.1 [44.9 kB] 195s Get:8 http://ftpmaster.internal/ubuntu noble/main s390x automake all 1:1.16.5-1.3ubuntu1 [558 kB] 195s Get:9 http://ftpmaster.internal/ubuntu noble/main s390x autopoint all 0.21-14ubuntu1 [422 kB] 196s Get:10 http://ftpmaster.internal/ubuntu noble/main s390x libc-dev-bin s390x 2.39-0ubuntu6 [20.2 kB] 196s Get:11 http://ftpmaster.internal/ubuntu noble/main s390x linux-libc-dev s390x 6.8.0-11.11 [1590 kB] 196s Get:12 http://ftpmaster.internal/ubuntu noble/main s390x libcrypt-dev s390x 1:4.4.36-4 [135 kB] 196s Get:13 http://ftpmaster.internal/ubuntu noble/main s390x rpcsvc-proto s390x 1.4.2-0ubuntu6 [64.7 kB] 196s Get:14 http://ftpmaster.internal/ubuntu noble/main s390x libc6-dev s390x 2.39-0ubuntu6 [1629 kB] 196s Get:15 http://ftpmaster.internal/ubuntu noble/main s390x libisl23 s390x 0.26-3 [722 kB] 196s Get:16 http://ftpmaster.internal/ubuntu noble/main s390x libmpc3 s390x 1.3.1-1 [54.9 kB] 196s Get:17 http://ftpmaster.internal/ubuntu noble/main s390x cpp-13-s390x-linux-gnu s390x 13.2.0-17ubuntu2 [9929 kB] 196s Get:18 http://ftpmaster.internal/ubuntu noble/main s390x cpp-13 s390x 13.2.0-17ubuntu2 [1026 B] 196s Get:19 http://ftpmaster.internal/ubuntu noble/main s390x cpp-s390x-linux-gnu s390x 4:13.2.0-7ubuntu1 [5308 B] 196s Get:20 http://ftpmaster.internal/ubuntu noble/main s390x cpp s390x 4:13.2.0-7ubuntu1 [22.4 kB] 196s Get:21 http://ftpmaster.internal/ubuntu noble/main s390x libcc1-0 s390x 14-20240303-1ubuntu1 [49.9 kB] 196s Get:22 http://ftpmaster.internal/ubuntu noble/main s390x libgomp1 s390x 14-20240303-1ubuntu1 [151 kB] 196s Get:23 http://ftpmaster.internal/ubuntu noble/main s390x libitm1 s390x 14-20240303-1ubuntu1 [31.1 kB] 196s Get:24 http://ftpmaster.internal/ubuntu noble/main s390x libatomic1 s390x 14-20240303-1ubuntu1 [9392 B] 196s Get:25 http://ftpmaster.internal/ubuntu noble/main s390x libasan8 s390x 14-20240303-1ubuntu1 [2998 kB] 196s Get:26 http://ftpmaster.internal/ubuntu noble/main s390x libubsan1 s390x 14-20240303-1ubuntu1 [1186 kB] 196s Get:27 http://ftpmaster.internal/ubuntu noble/main s390x libgcc-13-dev s390x 13.2.0-17ubuntu2 [1003 kB] 196s Get:28 http://ftpmaster.internal/ubuntu noble/main s390x gcc-13-s390x-linux-gnu s390x 13.2.0-17ubuntu2 [19.1 MB] 197s Get:29 http://ftpmaster.internal/ubuntu noble/main s390x gcc-13 s390x 13.2.0-17ubuntu2 [467 kB] 197s Get:30 http://ftpmaster.internal/ubuntu noble/main s390x gcc-s390x-linux-gnu s390x 4:13.2.0-7ubuntu1 [1208 B] 197s Get:31 http://ftpmaster.internal/ubuntu noble/main s390x gcc s390x 4:13.2.0-7ubuntu1 [5014 B] 197s Get:32 http://ftpmaster.internal/ubuntu noble/main s390x libstdc++-13-dev s390x 13.2.0-17ubuntu2 [2430 kB] 197s Get:33 http://ftpmaster.internal/ubuntu noble/main s390x g++-13-s390x-linux-gnu s390x 13.2.0-17ubuntu2 [11.3 MB] 198s Get:34 http://ftpmaster.internal/ubuntu noble/main s390x g++-13 s390x 13.2.0-17ubuntu2 [14.4 kB] 198s Get:35 http://ftpmaster.internal/ubuntu noble/main s390x g++-s390x-linux-gnu s390x 4:13.2.0-7ubuntu1 [956 B] 198s Get:36 http://ftpmaster.internal/ubuntu noble/main s390x g++ s390x 4:13.2.0-7ubuntu1 [1096 B] 198s Get:37 http://ftpmaster.internal/ubuntu noble/main s390x build-essential s390x 12.10ubuntu1 [4930 B] 198s Get:38 http://ftpmaster.internal/ubuntu noble/main s390x libdebhelper-perl all 13.14.1ubuntu1 [89.5 kB] 198s Get:39 http://ftpmaster.internal/ubuntu noble/main s390x libtool all 2.4.7-7 [166 kB] 198s Get:40 http://ftpmaster.internal/ubuntu noble/main s390x dh-autoreconf all 20 [16.1 kB] 198s Get:41 http://ftpmaster.internal/ubuntu noble/main s390x libarchive-zip-perl all 1.68-1 [90.2 kB] 198s Get:42 http://ftpmaster.internal/ubuntu noble/main s390x libsub-override-perl all 0.10-1 [10.0 kB] 198s Get:43 http://ftpmaster.internal/ubuntu noble/main s390x libfile-stripnondeterminism-perl all 1.13.1-1 [18.1 kB] 198s Get:44 http://ftpmaster.internal/ubuntu noble/main s390x dh-strip-nondeterminism all 1.13.1-1 [5362 B] 198s Get:45 http://ftpmaster.internal/ubuntu noble/main s390x libdw1 s390x 0.190-1 [282 kB] 198s Get:46 http://ftpmaster.internal/ubuntu noble/main s390x debugedit s390x 1:5.0-5 [47.5 kB] 198s Get:47 http://ftpmaster.internal/ubuntu noble/main s390x dwz s390x 0.15-1 [108 kB] 198s Get:48 http://ftpmaster.internal/ubuntu noble/main s390x gettext s390x 0.21-14ubuntu1 [917 kB] 198s Get:49 http://ftpmaster.internal/ubuntu noble/main s390x intltool-debian all 0.35.0+20060710.6 [23.2 kB] 198s Get:50 http://ftpmaster.internal/ubuntu noble/main s390x po-debconf all 1.0.21+nmu1 [233 kB] 198s Get:51 http://ftpmaster.internal/ubuntu noble/main s390x debhelper all 13.14.1ubuntu1 [869 kB] 198s Get:52 http://ftpmaster.internal/ubuntu noble/universe s390x help2man s390x 1.49.3 [201 kB] 198s Get:53 http://ftpmaster.internal/ubuntu noble/universe s390x libdevel-checklib-perl all 1.16-1 [16.7 kB] 198s Get:54 http://ftpmaster.internal/ubuntu noble/universe s390x libmath-prime-util-gmp-perl s390x 0.52-2build1 [275 kB] 198s Get:55 http://ftpmaster.internal/ubuntu noble/universe s390x libmath-prime-util-perl s390x 0.73-2build3 [470 kB] 198s Get:56 http://ftpmaster.internal/ubuntu noble/main s390x libperl-dev s390x 5.38.2-3 [1301 kB] 198s Get:57 http://ftpmaster.internal/ubuntu noble/universe s390x libsub-uplevel-perl all 0.2800-3 [11.6 kB] 198s Get:58 http://ftpmaster.internal/ubuntu noble/universe s390x libtest-warn-perl all 0.37-2 [12.6 kB] 198s Get:59 http://ftpmaster.internal/ubuntu noble/universe s390x pkg-perl-autopkgtest all 0.77 [18.0 kB] 199s Fetched 59.8 MB in 3s (17.8 MB/s) 199s Selecting previously unselected package gcc-13-base:s390x. 199s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51331 files and directories currently installed.) 199s Preparing to unpack .../00-gcc-13-base_13.2.0-17ubuntu2_s390x.deb ... 199s Unpacking gcc-13-base:s390x (13.2.0-17ubuntu2) ... 199s Selecting previously unselected package m4. 199s Preparing to unpack .../01-m4_1.4.19-4_s390x.deb ... 199s Unpacking m4 (1.4.19-4) ... 199s Selecting previously unselected package autoconf. 199s Preparing to unpack .../02-autoconf_2.71-3_all.deb ... 199s Unpacking autoconf (2.71-3) ... 199s Selecting previously unselected package dctrl-tools. 199s Preparing to unpack .../03-dctrl-tools_2.24-3build2_s390x.deb ... 199s Unpacking dctrl-tools (2.24-3build2) ... 199s Selecting previously unselected package autodep8. 199s Preparing to unpack .../04-autodep8_0.28_all.deb ... 199s Unpacking autodep8 (0.28) ... 199s Selecting previously unselected package autotools-dev. 199s Preparing to unpack .../05-autotools-dev_20220109.1_all.deb ... 199s Unpacking autotools-dev (20220109.1) ... 199s Selecting previously unselected package automake. 199s Preparing to unpack .../06-automake_1%3a1.16.5-1.3ubuntu1_all.deb ... 199s Unpacking automake (1:1.16.5-1.3ubuntu1) ... 199s Selecting previously unselected package autopoint. 199s Preparing to unpack .../07-autopoint_0.21-14ubuntu1_all.deb ... 199s Unpacking autopoint (0.21-14ubuntu1) ... 199s Selecting previously unselected package libc-dev-bin. 199s Preparing to unpack .../08-libc-dev-bin_2.39-0ubuntu6_s390x.deb ... 199s Unpacking libc-dev-bin (2.39-0ubuntu6) ... 199s Selecting previously unselected package linux-libc-dev:s390x. 199s Preparing to unpack .../09-linux-libc-dev_6.8.0-11.11_s390x.deb ... 199s Unpacking linux-libc-dev:s390x (6.8.0-11.11) ... 199s Selecting previously unselected package libcrypt-dev:s390x. 199s Preparing to unpack .../10-libcrypt-dev_1%3a4.4.36-4_s390x.deb ... 199s Unpacking libcrypt-dev:s390x (1:4.4.36-4) ... 199s Selecting previously unselected package rpcsvc-proto. 199s Preparing to unpack .../11-rpcsvc-proto_1.4.2-0ubuntu6_s390x.deb ... 199s Unpacking rpcsvc-proto (1.4.2-0ubuntu6) ... 200s Selecting previously unselected package libc6-dev:s390x. 200s Preparing to unpack .../12-libc6-dev_2.39-0ubuntu6_s390x.deb ... 200s Unpacking libc6-dev:s390x (2.39-0ubuntu6) ... 200s Selecting previously unselected package libisl23:s390x. 200s Preparing to unpack .../13-libisl23_0.26-3_s390x.deb ... 200s Unpacking libisl23:s390x (0.26-3) ... 200s Selecting previously unselected package libmpc3:s390x. 200s Preparing to unpack .../14-libmpc3_1.3.1-1_s390x.deb ... 200s Unpacking libmpc3:s390x (1.3.1-1) ... 200s Selecting previously unselected package cpp-13-s390x-linux-gnu. 200s Preparing to unpack .../15-cpp-13-s390x-linux-gnu_13.2.0-17ubuntu2_s390x.deb ... 200s Unpacking cpp-13-s390x-linux-gnu (13.2.0-17ubuntu2) ... 200s Selecting previously unselected package cpp-13. 200s Preparing to unpack .../16-cpp-13_13.2.0-17ubuntu2_s390x.deb ... 200s Unpacking cpp-13 (13.2.0-17ubuntu2) ... 200s Selecting previously unselected package cpp-s390x-linux-gnu. 200s Preparing to unpack .../17-cpp-s390x-linux-gnu_4%3a13.2.0-7ubuntu1_s390x.deb ... 200s Unpacking cpp-s390x-linux-gnu (4:13.2.0-7ubuntu1) ... 200s Selecting previously unselected package cpp. 200s Preparing to unpack .../18-cpp_4%3a13.2.0-7ubuntu1_s390x.deb ... 200s Unpacking cpp (4:13.2.0-7ubuntu1) ... 200s Selecting previously unselected package libcc1-0:s390x. 200s Preparing to unpack .../19-libcc1-0_14-20240303-1ubuntu1_s390x.deb ... 200s Unpacking libcc1-0:s390x (14-20240303-1ubuntu1) ... 200s Selecting previously unselected package libgomp1:s390x. 200s Preparing to unpack .../20-libgomp1_14-20240303-1ubuntu1_s390x.deb ... 200s Unpacking libgomp1:s390x (14-20240303-1ubuntu1) ... 200s Selecting previously unselected package libitm1:s390x. 200s Preparing to unpack .../21-libitm1_14-20240303-1ubuntu1_s390x.deb ... 200s Unpacking libitm1:s390x (14-20240303-1ubuntu1) ... 200s Selecting previously unselected package libatomic1:s390x. 200s Preparing to unpack .../22-libatomic1_14-20240303-1ubuntu1_s390x.deb ... 200s Unpacking libatomic1:s390x (14-20240303-1ubuntu1) ... 200s Selecting previously unselected package libasan8:s390x. 200s Preparing to unpack .../23-libasan8_14-20240303-1ubuntu1_s390x.deb ... 200s Unpacking libasan8:s390x (14-20240303-1ubuntu1) ... 200s Selecting previously unselected package libubsan1:s390x. 200s Preparing to unpack .../24-libubsan1_14-20240303-1ubuntu1_s390x.deb ... 200s Unpacking libubsan1:s390x (14-20240303-1ubuntu1) ... 200s Selecting previously unselected package libgcc-13-dev:s390x. 200s Preparing to unpack .../25-libgcc-13-dev_13.2.0-17ubuntu2_s390x.deb ... 200s Unpacking libgcc-13-dev:s390x (13.2.0-17ubuntu2) ... 200s Selecting previously unselected package gcc-13-s390x-linux-gnu. 200s Preparing to unpack .../26-gcc-13-s390x-linux-gnu_13.2.0-17ubuntu2_s390x.deb ... 200s Unpacking gcc-13-s390x-linux-gnu (13.2.0-17ubuntu2) ... 201s Selecting previously unselected package gcc-13. 201s Preparing to unpack .../27-gcc-13_13.2.0-17ubuntu2_s390x.deb ... 201s Unpacking gcc-13 (13.2.0-17ubuntu2) ... 201s Selecting previously unselected package gcc-s390x-linux-gnu. 201s Preparing to unpack .../28-gcc-s390x-linux-gnu_4%3a13.2.0-7ubuntu1_s390x.deb ... 201s Unpacking gcc-s390x-linux-gnu (4:13.2.0-7ubuntu1) ... 201s Selecting previously unselected package gcc. 201s Preparing to unpack .../29-gcc_4%3a13.2.0-7ubuntu1_s390x.deb ... 201s Unpacking gcc (4:13.2.0-7ubuntu1) ... 201s Selecting previously unselected package libstdc++-13-dev:s390x. 201s Preparing to unpack .../30-libstdc++-13-dev_13.2.0-17ubuntu2_s390x.deb ... 201s Unpacking libstdc++-13-dev:s390x (13.2.0-17ubuntu2) ... 201s Selecting previously unselected package g++-13-s390x-linux-gnu. 201s Preparing to unpack .../31-g++-13-s390x-linux-gnu_13.2.0-17ubuntu2_s390x.deb ... 201s Unpacking g++-13-s390x-linux-gnu (13.2.0-17ubuntu2) ... 202s Selecting previously unselected package g++-13. 202s Preparing to unpack .../32-g++-13_13.2.0-17ubuntu2_s390x.deb ... 202s Unpacking g++-13 (13.2.0-17ubuntu2) ... 202s Selecting previously unselected package g++-s390x-linux-gnu. 202s Preparing to unpack .../33-g++-s390x-linux-gnu_4%3a13.2.0-7ubuntu1_s390x.deb ... 202s Unpacking g++-s390x-linux-gnu (4:13.2.0-7ubuntu1) ... 202s Selecting previously unselected package g++. 202s Preparing to unpack .../34-g++_4%3a13.2.0-7ubuntu1_s390x.deb ... 202s Unpacking g++ (4:13.2.0-7ubuntu1) ... 202s Selecting previously unselected package build-essential. 202s Preparing to unpack .../35-build-essential_12.10ubuntu1_s390x.deb ... 202s Unpacking build-essential (12.10ubuntu1) ... 202s Selecting previously unselected package libdebhelper-perl. 202s Preparing to unpack .../36-libdebhelper-perl_13.14.1ubuntu1_all.deb ... 202s Unpacking libdebhelper-perl (13.14.1ubuntu1) ... 202s Selecting previously unselected package libtool. 202s Preparing to unpack .../37-libtool_2.4.7-7_all.deb ... 202s Unpacking libtool (2.4.7-7) ... 202s Selecting previously unselected package dh-autoreconf. 202s Preparing to unpack .../38-dh-autoreconf_20_all.deb ... 202s Unpacking dh-autoreconf (20) ... 202s Selecting previously unselected package libarchive-zip-perl. 202s Preparing to unpack .../39-libarchive-zip-perl_1.68-1_all.deb ... 202s Unpacking libarchive-zip-perl (1.68-1) ... 202s Selecting previously unselected package libsub-override-perl. 202s Preparing to unpack .../40-libsub-override-perl_0.10-1_all.deb ... 202s Unpacking libsub-override-perl (0.10-1) ... 202s Selecting previously unselected package libfile-stripnondeterminism-perl. 202s Preparing to unpack .../41-libfile-stripnondeterminism-perl_1.13.1-1_all.deb ... 202s Unpacking libfile-stripnondeterminism-perl (1.13.1-1) ... 202s Selecting previously unselected package dh-strip-nondeterminism. 202s Preparing to unpack .../42-dh-strip-nondeterminism_1.13.1-1_all.deb ... 202s Unpacking dh-strip-nondeterminism (1.13.1-1) ... 202s Selecting previously unselected package libdw1:s390x. 202s Preparing to unpack .../43-libdw1_0.190-1_s390x.deb ... 202s Unpacking libdw1:s390x (0.190-1) ... 202s Selecting previously unselected package debugedit. 202s Preparing to unpack .../44-debugedit_1%3a5.0-5_s390x.deb ... 202s Unpacking debugedit (1:5.0-5) ... 202s Selecting previously unselected package dwz. 202s Preparing to unpack .../45-dwz_0.15-1_s390x.deb ... 202s Unpacking dwz (0.15-1) ... 202s Selecting previously unselected package gettext. 202s Preparing to unpack .../46-gettext_0.21-14ubuntu1_s390x.deb ... 202s Unpacking gettext (0.21-14ubuntu1) ... 203s Selecting previously unselected package intltool-debian. 203s Preparing to unpack .../47-intltool-debian_0.35.0+20060710.6_all.deb ... 203s Unpacking intltool-debian (0.35.0+20060710.6) ... 203s Selecting previously unselected package po-debconf. 203s Preparing to unpack .../48-po-debconf_1.0.21+nmu1_all.deb ... 203s Unpacking po-debconf (1.0.21+nmu1) ... 203s Selecting previously unselected package debhelper. 203s Preparing to unpack .../49-debhelper_13.14.1ubuntu1_all.deb ... 203s Unpacking debhelper (13.14.1ubuntu1) ... 203s Selecting previously unselected package help2man. 203s Preparing to unpack .../50-help2man_1.49.3_s390x.deb ... 203s Unpacking help2man (1.49.3) ... 203s Selecting previously unselected package libdevel-checklib-perl. 203s Preparing to unpack .../51-libdevel-checklib-perl_1.16-1_all.deb ... 203s Unpacking libdevel-checklib-perl (1.16-1) ... 203s Selecting previously unselected package libmath-prime-util-gmp-perl. 203s Preparing to unpack .../52-libmath-prime-util-gmp-perl_0.52-2build1_s390x.deb ... 203s Unpacking libmath-prime-util-gmp-perl (0.52-2build1) ... 203s Selecting previously unselected package libmath-prime-util-perl. 203s Preparing to unpack .../53-libmath-prime-util-perl_0.73-2build3_s390x.deb ... 203s Unpacking libmath-prime-util-perl (0.73-2build3) ... 203s Selecting previously unselected package libperl-dev:s390x. 203s Preparing to unpack .../54-libperl-dev_5.38.2-3_s390x.deb ... 203s Unpacking libperl-dev:s390x (5.38.2-3) ... 203s Selecting previously unselected package libsub-uplevel-perl. 203s Preparing to unpack .../55-libsub-uplevel-perl_0.2800-3_all.deb ... 203s Unpacking libsub-uplevel-perl (0.2800-3) ... 203s Selecting previously unselected package libtest-warn-perl. 203s Preparing to unpack .../56-libtest-warn-perl_0.37-2_all.deb ... 203s Unpacking libtest-warn-perl (0.37-2) ... 203s Selecting previously unselected package pkg-perl-autopkgtest. 203s Preparing to unpack .../57-pkg-perl-autopkgtest_0.77_all.deb ... 203s Unpacking pkg-perl-autopkgtest (0.77) ... 203s Selecting previously unselected package autopkgtest-satdep. 203s Preparing to unpack .../58-1-autopkgtest-satdep.deb ... 203s Unpacking autopkgtest-satdep (0) ... 203s Setting up libdw1:s390x (0.190-1) ... 203s Setting up libmath-prime-util-gmp-perl (0.52-2build1) ... 203s Setting up libarchive-zip-perl (1.68-1) ... 203s Setting up libdebhelper-perl (13.14.1ubuntu1) ... 203s Setting up linux-libc-dev:s390x (6.8.0-11.11) ... 203s Setting up m4 (1.4.19-4) ... 203s Setting up libgomp1:s390x (14-20240303-1ubuntu1) ... 203s Setting up help2man (1.49.3) ... 203s Setting up autotools-dev (20220109.1) ... 203s Setting up rpcsvc-proto (1.4.2-0ubuntu6) ... 203s Setting up gcc-13-base:s390x (13.2.0-17ubuntu2) ... 203s Setting up libmath-prime-util-perl (0.73-2build3) ... 203s Setting up libmpc3:s390x (1.3.1-1) ... 203s Setting up libatomic1:s390x (14-20240303-1ubuntu1) ... 203s Setting up autopoint (0.21-14ubuntu1) ... 203s Setting up autoconf (2.71-3) ... 203s Setting up libubsan1:s390x (14-20240303-1ubuntu1) ... 203s Setting up dwz (0.15-1) ... 203s Setting up libcrypt-dev:s390x (1:4.4.36-4) ... 203s Setting up libasan8:s390x (14-20240303-1ubuntu1) ... 203s Setting up debugedit (1:5.0-5) ... 203s Setting up libsub-uplevel-perl (0.2800-3) ... 203s Setting up libsub-override-perl (0.10-1) ... 203s Setting up libisl23:s390x (0.26-3) ... 203s Setting up libc-dev-bin (2.39-0ubuntu6) ... 203s Setting up libcc1-0:s390x (14-20240303-1ubuntu1) ... 203s Setting up dctrl-tools (2.24-3build2) ... 203s Setting up libitm1:s390x (14-20240303-1ubuntu1) ... 203s Setting up autodep8 (0.28) ... 203s Setting up automake (1:1.16.5-1.3ubuntu1) ... 203s update-alternatives: using /usr/bin/automake-1.16 to provide /usr/bin/automake (automake) in auto mode 203s Setting up libfile-stripnondeterminism-perl (1.13.1-1) ... 203s Setting up gettext (0.21-14ubuntu1) ... 203s Setting up libtest-warn-perl (0.37-2) ... 203s Setting up intltool-debian (0.35.0+20060710.6) ... 203s Setting up cpp-13-s390x-linux-gnu (13.2.0-17ubuntu2) ... 203s Setting up pkg-perl-autopkgtest (0.77) ... 203s Setting up dh-strip-nondeterminism (1.13.1-1) ... 203s Setting up libgcc-13-dev:s390x (13.2.0-17ubuntu2) ... 203s Setting up libc6-dev:s390x (2.39-0ubuntu6) ... 203s Setting up libstdc++-13-dev:s390x (13.2.0-17ubuntu2) ... 203s Setting up cpp-13 (13.2.0-17ubuntu2) ... 203s Setting up cpp-s390x-linux-gnu (4:13.2.0-7ubuntu1) ... 203s Setting up po-debconf (1.0.21+nmu1) ... 203s Setting up libperl-dev:s390x (5.38.2-3) ... 203s Setting up gcc-13-s390x-linux-gnu (13.2.0-17ubuntu2) ... 203s Setting up gcc-s390x-linux-gnu (4:13.2.0-7ubuntu1) ... 203s Setting up g++-13-s390x-linux-gnu (13.2.0-17ubuntu2) ... 203s Setting up gcc-13 (13.2.0-17ubuntu2) ... 203s Setting up cpp (4:13.2.0-7ubuntu1) ... 203s Setting up g++-13 (13.2.0-17ubuntu2) ... 203s Setting up libtool (2.4.7-7) ... 203s Setting up g++-s390x-linux-gnu (4:13.2.0-7ubuntu1) ... 203s Setting up gcc (4:13.2.0-7ubuntu1) ... 203s Setting up dh-autoreconf (20) ... 203s Setting up g++ (4:13.2.0-7ubuntu1) ... 203s update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode 203s Setting up build-essential (12.10ubuntu1) ... 203s Setting up libdevel-checklib-perl (1.16-1) ... 203s Setting up debhelper (13.14.1ubuntu1) ... 203s Setting up autopkgtest-satdep (0) ... 203s Processing triggers for man-db (2.12.0-3) ... 205s Processing triggers for install-info (7.1-3) ... 205s Processing triggers for libc-bin (2.39-0ubuntu6) ... 208s (Reading database ... 55451 files and directories currently installed.) 208s Removing autopkgtest-satdep (0) ... 209s autopkgtest [16:27:47]: test autodep8-perl-build-deps: /usr/share/pkg-perl-autopkgtest/runner build-deps 209s autopkgtest [16:27:47]: test autodep8-perl-build-deps: [----------------------- 209s t/01-load.t .............. 209s 1..1 209s ok 1 - require Math::Prime::Util; 209s ok 209s t/011-load-ntheory.t ..... 209s 1..1 209s ok 1 - require ntheory; 209s ok 209s t/02-can.t ............... 209s 1..1 209s ok 1 - Math::Prime::Util->can(...) 209s ok 210s t/022-can-ntheory.t ...... 210s 1..1 210s ok 1 - ntheory can do is_prime 210s ok 210s t/03-init.t .............. 210s 1..15 210s ok 1 - Math::Prime::Util->can('prime_get_config') 210s # Using XS with MPU::GMP version 0.52. 210s ok 2 - Internal space grew after large precalc 210s ok 3 - Internal space went back to original size after memfree 210s ok 4 - An object of class 'Math::Prime::Util::MemFree' isa 'Math::Prime::Util::MemFree' 210s ok 5 - Internal space grew after large precalc 210s ok 6 - Memory released after MemFree object goes out of scope 210s ok 7 - Internal space grew after large precalc 210s ok 8 - Memory not freed yet because a MemFree object still live. 210s ok 9 - Memory released after last MemFree object goes out of scope 210s ok 10 - Internal space grew after large precalc 210s ok 11 - Memory freed after successful eval 210s ok 12 - Internal space grew after large precalc 210s ok 13 - Memory normally not freed after eval die 210s ok 14 - Internal space grew after large precalc 210s ok 15 - Memory is freed after eval die using object scoper 210s ok 210s t/04-inputvalidation.t ... 210s 1..28 210s ok 1 - next_prime(undef) 210s ok 2 - next_prime('') 210s ok 3 - next_prime(-4) 210s ok 4 - next_prime(-) 210s ok 5 - next_prime(+) 210s ok 6 - next_prime(++4) 210s ok 7 - next_prime(+-4) 210s ok 8 - next_prime(-0004) 210s ok 9 - next_prime(a) 210s ok 10 - next_prime(5.6) 210s ok 11 - next_prime(4e) 210s ok 12 - next_prime(1.1e12) 210s ok 13 - next_prime(1e8) 210s ok 14 - next_prime(NaN) 210s ok 15 - next_prime(-4) 210s ok 16 - next_prime(15.6) 210s ok 17 - next_prime(NaN) 210s ok 18 - Correct: next_prime(4) 210s ok 19 - Correct: next_prime(9) 210s ok 20 - Correct: next_prime(+4) 210s ok 21 - Correct: next_prime(100000000) 210s ok 22 - Correct: next_prime(5) 210s ok 23 - Correct: next_prime(0004) 210s ok 24 - Correct: next_prime(10000000000000000000000012) 210s ok 25 - Correct: next_prime(+0004) 210s ok 26 - next_prime( infinity ) 210s ok 27 - next_prime( nan ) [nan = 'NaN'] 210s ok 28 - next_prime('111...111x') 210s ok 210s t/10-isprime.t ........... 210s 1..127 210s ok 1 - is_prime(undef) 210s ok 2 - 2 is prime 210s ok 3 - 1 is not prime 210s ok 4 - 0 is not prime 210s ok 5 - -1 is not prime 210s ok 6 - -2 is not prime 210s ok 7 - is_prime powers of 2 210s ok 8 - is_prime 0..3572 210s ok 9 - 4033 is composite 210s ok 10 - 4369 is composite 210s ok 11 - 4371 is composite 210s ok 12 - 4681 is composite 210s ok 13 - 5461 is composite 210s ok 14 - 5611 is composite 210s ok 15 - 6601 is composite 210s ok 16 - 7813 is composite 210s ok 17 - 7957 is composite 210s ok 18 - 8321 is composite 210s ok 19 - 8401 is composite 210s ok 20 - 8911 is composite 210s ok 21 - 10585 is composite 210s ok 22 - 12403 is composite 210s ok 23 - 13021 is composite 210s ok 24 - 14981 is composite 210s ok 25 - 15751 is composite 210s ok 26 - 15841 is composite 210s ok 27 - 16531 is composite 210s ok 28 - 18721 is composite 210s ok 29 - 19345 is composite 210s ok 30 - 23521 is composite 210s ok 31 - 24211 is composite 210s ok 32 - 25351 is composite 210s ok 33 - 29341 is composite 210s ok 34 - 29539 is composite 210s ok 35 - 31621 is composite 210s ok 36 - 38081 is composite 210s ok 37 - 40501 is composite 210s ok 38 - 41041 is composite 210s ok 39 - 44287 is composite 210s ok 40 - 44801 is composite 210s ok 41 - 46657 is composite 210s ok 42 - 47197 is composite 210s ok 43 - 52633 is composite 210s ok 44 - 53971 is composite 210s ok 45 - 55969 is composite 210s ok 46 - 62745 is composite 210s ok 47 - 63139 is composite 210s ok 48 - 63973 is composite 210s ok 49 - 74593 is composite 210s ok 50 - 75361 is composite 210s ok 51 - 79003 is composite 210s ok 52 - 79381 is composite 210s ok 53 - 82513 is composite 210s ok 54 - 87913 is composite 210s ok 55 - 88357 is composite 210s ok 56 - 88573 is composite 210s ok 57 - 97567 is composite 210s ok 58 - 101101 is composite 210s ok 59 - 340561 is composite 210s ok 60 - 488881 is composite 210s ok 61 - 852841 is composite 210s ok 62 - 1373653 is composite 210s ok 63 - 1857241 is composite 210s ok 64 - 6733693 is composite 210s ok 65 - 9439201 is composite 210s ok 66 - 17236801 is composite 210s ok 67 - 23382529 is composite 210s ok 68 - 25326001 is composite 210s ok 69 - 34657141 is composite 210s ok 70 - 56052361 is composite 210s ok 71 - 146843929 is composite 210s ok 72 - 216821881 is composite 210s ok 73 - 3215031751 is composite 210s ok 74 - 2152302898747 is composite 210s ok 75 - 3474749660383 is composite 210s ok 76 - 341550071728321 is composite 210s ok 77 - 341550071728321 is composite 210s ok 78 - 3825123056546413051 is composite 210s ok 79 - 9551 is definitely prime 210s ok 80 - 15683 is definitely prime 210s ok 81 - 19609 is definitely prime 210s ok 82 - 31397 is definitely prime 210s ok 83 - 155921 is definitely prime 210s ok 84 - 9587 is definitely prime 210s ok 85 - 15727 is definitely prime 210s ok 86 - 19661 is definitely prime 210s ok 87 - 31469 is definitely prime 210s ok 88 - 156007 is definitely prime 210s ok 89 - 360749 is definitely prime 210s ok 90 - 370373 is definitely prime 210s ok 91 - 492227 is definitely prime 210s ok 92 - 1349651 is definitely prime 210s ok 93 - 1357333 is definitely prime 210s ok 94 - 2010881 is definitely prime 210s ok 95 - 4652507 is definitely prime 210s ok 96 - 17051887 is definitely prime 210s ok 97 - 20831533 is definitely prime 210s ok 98 - 47326913 is definitely prime 210s ok 99 - 122164969 is definitely prime 210s ok 100 - 189695893 is definitely prime 210s ok 101 - 191913031 is definitely prime 210s ok 102 - 387096383 is definitely prime 210s ok 103 - 436273291 is definitely prime 210s ok 104 - 1294268779 is definitely prime 210s ok 105 - 1453168433 is definitely prime 210s ok 106 - 2300942869 is definitely prime 210s ok 107 - 3842611109 is definitely prime 210s ok 108 - 4302407713 is definitely prime 210s ok 109 - 10726905041 is definitely prime 210s ok 110 - 20678048681 is definitely prime 210s ok 111 - 22367085353 is definitely prime 210s ok 112 - 25056082543 is definitely prime 210s ok 113 - 42652618807 is definitely prime 210s ok 114 - 127976334671 is definitely prime 210s ok 115 - 182226896239 is definitely prime 210s ok 116 - 241160624143 is definitely prime 210s ok 117 - 297501075799 is definitely prime 210s ok 118 - 303371455241 is definitely prime 210s ok 119 - 304599508537 is definitely prime 210s ok 120 - 416608695821 is definitely prime 210s ok 121 - 461690510011 is definitely prime 210s ok 122 - 614487453523 is definitely prime 210s ok 123 - 738832927927 is definitely prime 210s ok 124 - 1346294310749 is definitely prime 210s ok 125 - 1408695493609 is definitely prime 210s ok 126 - 1968188556461 is definitely prime 210s ok 127 - 2614941710599 is definitely prime 210s ok 210s t/11-clusters.t .......... 210s 1..41 210s ok 1 - A001359 0 200 210s ok 2 - A022004 317321 319727 210s ok 3 - A022005 557857 560293 210s ok 4 - Inadmissible pattern (0,2,4) finds (3,5,7) 210s ok 5 - Inadmissible pattern (0,2,8,14,26) finds (3,5,11,17,29) and (5,7,13,19,31) 210s ok 6 - Pattern [2] 1224 in range 0 .. 100000 210s ok 7 - Pattern [2 6] 259 in range 0 .. 100000 210s ok 8 - Pattern [4 6] 248 in range 0 .. 100000 210s ok 9 - Pattern [2 6 8] 38 in range 0 .. 100000 210s ok 10 - Pattern [2 6 8 12] 10 in range 0 .. 100000 210s ok 11 - Pattern [4 6 10 12] 11 in range 0 .. 100000 210s ok 12 - Pattern [4 6 10 12 16] 5 in range 0 .. 100000 210s ok 13 - Pattern [2 8 12 14 18 20] 2 in range 0 .. 100000 210s ok 14 - Pattern [2 6 8 12 18 20] 1 in range 0 .. 100000 210s ok 15 - Pattern [2] 35 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 16 - Pattern [2 6] 1 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 17 - Pattern [4 6] 1 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 18 - Pattern [2 6 8] 0 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 19 - Pattern [2 6 8 12] 0 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 20 - Pattern [4 6 10 12] 0 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 21 - Pattern [4 6 10 12 16] 0 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 22 - Pattern [2 8 12 14 18 20] 0 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 23 - Pattern [2 6 8 12 18 20] 0 in range 1000000000000000000000 .. 1000000000000000065658 210s ok 24 - Window around A022006 high cluster finds the cluster 210s ok 25 - Window around A022007 high cluster finds the cluster 210s ok 26 - Window around A022008 high cluster finds the cluster 210s ok 27 - Window around A022009 high cluster finds the cluster 210s ok 28 - Window around A022010 high cluster finds the cluster 210s ok 29 - Window around A022010 high cluster finds the cluster 210s ok 30 - Window around A022012 high cluster finds the cluster 210s ok 31 - Window around A022013 high cluster finds the cluster 210s ok 32 - Window around A022545 high cluster finds the cluster 210s ok 33 - Window around A022546 high cluster finds the cluster 210s ok 34 - Window around A022547 high cluster finds the cluster 210s ok 35 - Window around A022548 high cluster finds the cluster 210s ok 36 - Window around A027569 high cluster finds the cluster 210s ok 37 - Window around A027570 high cluster finds the cluster 210s ok 38 - Window around A213601 high cluster finds the cluster 210s ok 39 - Window around A213645 high cluster finds the cluster 210s ok 40 - Window around A213646 high cluster finds the cluster 210s ok 41 - Window around A213647 high cluster finds the cluster 210s ok 211s t/11-primes.t ............ 211s 1..124 211s ok 1 - primes(undef) 211s ok 2 - primes(a) 211s ok 3 - primes(-4) 211s ok 4 - primes(2,undef) 211s ok 5 - primes(2,x) 211s ok 6 - primes(2,-4) 211s ok 7 - primes(undef,7) 211s ok 8 - primes(x,7) 211s ok 9 - primes(-10,7) 211s ok 10 - primes(undef,undef) 211s ok 11 - primes(x,x) 211s ok 12 - primes(-10,-4) 211s ok 13 - primes(inf) 211s ok 14 - primes(2,inf) 211s ok 15 - primes(inf,inf) 211s ok 16 - primes(1) should return [] 211s ok 17 - primes(7) should return [2 3 5 7] 211s ok 18 - primes(18) should return [2 3 5 7 11 13 17] 211s ok 19 - primes(5) should return [2 3 5] 211s ok 20 - primes(11) should return [2 3 5 7 11] 211s ok 21 - primes(6) should return [2 3 5] 211s ok 22 - primes(20) should return [2 3 5 7 11 13 17 19] 211s ok 23 - primes(2) should return [2] 211s ok 24 - primes(4) should return [2 3] 211s ok 25 - primes(0) should return [] 211s ok 26 - primes(19) should return [2 3 5 7 11 13 17 19] 211s ok 27 - primes(3) should return [2 3] 211s ok 28 - Primes between 0 and 3572 211s ok 29 - primes(2,3) should return [2 3] 211s ok 30 - primes(2,5) should return [2 3 5] 211s ok 31 - primes(3842610773,3842611109) should return [3842610773 3842611109] 211s ok 32 - primes(2010734,2010880) should return [] 211s ok 33 - primes(20,2) should return [] 211s ok 34 - primes(3,9) should return [3 5 7] 211s ok 35 - primes(4,8) should return [5 7] 211s ok 36 - primes(3,6) should return [3 5] 211s ok 37 - primes(2,20) should return [2 3 5 7 11 13 17 19] 211s ok 38 - primes(3,3) should return [3] 211s ok 39 - primes(2,2) should return [2] 211s ok 40 - primes(3090,3162) should return [3109 3119 3121 3137] 211s ok 41 - primes(3842610774,3842611108) should return [] 211s ok 42 - primes(2010733,2010881) should return [2010733 2010881] 211s ok 43 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] 211s ok 44 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] 211s ok 45 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] 211s ok 46 - primes(70,30) should return [] 211s ok 47 - primes(3,7) should return [3 5 7] 211s ok 48 - Primes between 1_693_182_318_746_371 and 1_693_182_318_747_671 211s ok 49 - count primes within a range 211s ok 50 - primes(0, 3572) 211s ok 51 - primes(2, 20) 211s ok 52 - primes(30, 70) 211s ok 53 - primes(30, 70) 211s ok 54 - primes(20, 2) 211s ok 55 - primes(1, 1) 211s ok 56 - primes(2, 2) 211s ok 57 - primes(3, 3) 211s ok 58 - primes Primegap 21 inclusive 211s ok 59 - primes Primegap 21 exclusive 211s ok 60 - primes(3088, 3164) 211s ok 61 - primes(3089, 3163) 211s ok 62 - primes(3090, 3162) 211s ok 63 - erat(0, 3572) 211s ok 64 - erat(2, 20) 211s ok 65 - erat(30, 70) 211s ok 66 - erat(30, 70) 211s ok 67 - erat(20, 2) 211s ok 68 - erat(1, 1) 211s ok 69 - erat(2, 2) 211s ok 70 - erat(3, 3) 211s ok 71 - erat Primegap 21 inclusive 211s ok 72 - erat Primegap 21 exclusive 211s ok 73 - erat(3088, 3164) 211s ok 74 - erat(3089, 3163) 211s ok 75 - erat(3090, 3162) 211s ok 76 - trial(0, 3572) 211s ok 77 - trial(2, 20) 211s ok 78 - trial(30, 70) 211s ok 79 - trial(30, 70) 211s ok 80 - trial(20, 2) 211s ok 81 - trial(1, 1) 211s ok 82 - trial(2, 2) 211s ok 83 - trial(3, 3) 211s ok 84 - trial Primegap 21 inclusive 211s ok 85 - trial Primegap 21 exclusive 211s ok 86 - trial(3088, 3164) 211s ok 87 - trial(3089, 3163) 211s ok 88 - trial(3090, 3162) 211s ok 89 - segment(0, 3572) 211s ok 90 - segment(2, 20) 211s ok 91 - segment(30, 70) 211s ok 92 - segment(30, 70) 211s ok 93 - segment(20, 2) 211s ok 94 - segment(1, 1) 211s ok 95 - segment(2, 2) 211s ok 96 - segment(3, 3) 211s ok 97 - segment Primegap 21 inclusive 211s ok 98 - segment Primegap 21 exclusive 211s ok 99 - segment(3088, 3164) 211s ok 100 - segment(3089, 3163) 211s ok 101 - segment(3090, 3162) 211s ok 102 - sieve(0, 3572) 211s ok 103 - sieve(2, 20) 211s ok 104 - sieve(30, 70) 211s ok 105 - sieve(30, 70) 211s ok 106 - sieve(20, 2) 211s ok 107 - sieve(1, 1) 211s ok 108 - sieve(2, 2) 211s ok 109 - sieve(3, 3) 211s ok 110 - sieve Primegap 21 inclusive 211s ok 111 - sieve Primegap 21 exclusive 211s ok 112 - sieve(3088, 3164) 211s ok 113 - sieve(3089, 3163) 211s ok 114 - sieve(3090, 3162) 211s ok 115 - sieve_range 0 width 1000 depth 40 returns primes 211s ok 116 - sieve_range 1 width 4 depth 2 returns 1,2 211s ok 117 - sieve_range 1 width 5 depth 2 returns 1,2,4 211s ok 118 - sieve_range 1 width 6 depth 3 returns 1,2,4 211s ok 119 - sieve_range(109485,100,3) 211s ok 120 - sieve_range(109485,100,5) 211s ok 121 - sieve_range(109485,100,7) 211s ok 122 - sieve_range(109485,100,11) 211s ok 123 - sieve_range(109485,100,13) 211s ok 124 - sieve_range(109485,100,17) 211s ok 211s t/11-ramanujanprimes.t ... 211s 1..25 211s ok 1 - ramanujan_primes(983) 211s ok 2 - ramanujan_primes(11,20) should return [11 17] 211s ok 3 - ramanujan_primes(10000,10100) should return [10061 10067 10079 10091 10093] 211s ok 4 - ramanujan_primes(11,19) should return [11 17] 211s ok 5 - ramanujan_primes(182,226) should return [] 211s ok 6 - ramanujan_primes(11,16) should return [11] 211s ok 7 - ramanujan_primes(2,11) should return [2 11] 211s ok 8 - ramanujan_primes(3,11) should return [11] 211s ok 9 - ramanujan_primes(0,11) should return [2 11] 211s ok 10 - ramanujan_primes(11,18) should return [11 17] 211s ok 11 - ramanujan_primes(11,17) should return [11 17] 211s ok 12 - ramanujan_primes(1,11) should return [2 11] 211s ok 13 - ramanujan_primes(599,599) should return [599] 211s ok 14 - ramanujan_primes(10,11) should return [11] 211s ok 15 - ramanujan_primes(11,29) should return [11 17 29] 211s ok 16 - nth_ramanujan_prime(1 .. 72) 211s ok 17 - The 123,456th Ramanujan prime is 3657037 211s ok 18 - is_ramanujan_prime( 0 .. 72) 211s ok 19 - 997th Ramanujan prime is 19379 211s ok 20 - Rn[23744] is 617759 211s ok 21 - small ramanujan prime limits 211s ok 22 - ramanujan prime limits for 59643 211s ok 23 - ramanujan prime limits for 5964377 211s ok 24 - ramanujan prime approx for 59643 211s ok 25 - ramanujan prime approx for 5964377 211s ok 211s t/11-semiprimes.t ........ 211s 1..33 211s ok 1 - semi_primes(95) 211s ok 2 - nth_semiprime for small values 211s ok 3 - semi_primes(2,11) should return [4 6 9 10] 211s ok 4 - semi_primes(10,13) should return [10] 211s ok 5 - semi_primes(1,11) should return [4 6 9 10] 211s ok 6 - semi_primes(25,34) should return [25 26 33 34] 211s ok 7 - semi_primes(5,16) should return [6 9 10 14 15] 211s ok 8 - semi_primes(184279943,184280038) should return [184279943 184279969 184280038] 211s ok 9 - semi_primes(26,33) should return [26 33] 211s ok 10 - semi_primes(10,10) should return [10] 211s ok 11 - semi_primes(10,11) should return [10] 211s ok 12 - semi_primes(4,11) should return [4 6 9 10] 211s ok 13 - semi_primes(184279944,184280037) should return [184279969] 211s ok 14 - semi_primes(10,12) should return [10] 211s ok 15 - semi_primes(11,13) should return [] 211s ok 16 - semi_primes(8589990147,8589990167) should return [8589990149 8589990157 8589990166] 211s ok 17 - semi_primes(0,11) should return [4 6 9 10] 211s ok 18 - semi_primes(3,11) should return [4 6 9 10] 211s ok 19 - semi_primes(10,14) should return [10 14] 211s ok 20 - semiprime_count(1234) = 363 211s ok 21 - semiprime_count(12345) = 3217 211s ok 22 - semiprime_count(123456) = 28589 211s ok 23 - nth_semiprime(1234) = 4497 211s ok 24 - nth_semiprime(12345) = 51019 211s ok 25 - nth_semiprime(123456) = 573355 211s ok 26 - semiprime_count_approx(100000000000) ~ 13959990342 211s ok 27 - semiprime_count_approx(100000000000000) ~ 11715902308080 211s ok 28 - semiprime_count_approx(10000000000000000000) ~ 932300026230174178 211s ok 29 - semiprime_count_approx(100000000) ~ 17427258 211s ok 30 - nth_semiprime_approx(288230376151711744) ~ 3027432768282284351 211s ok 31 - nth_semiprime_approx(2147483648) ~ 14540737711 211s ok 32 - nth_semiprime_approx(100000000000000000) ~ 1030179406403917981 211s ok 33 - nth_semiprime_approx(4398046511104) ~ 36676111297003 211s ok 211s t/11-sumprimes.t ......... 211s 1..5 211s ok 1 - sum_primes for 0 to 1000 211s ok 2 - sum primes from 189695660 to 189695892 211s ok 3 - sum primes from 12345 to 54321 211s ok 4 - sum primes from 10000000 to 10001000 211s ok 5 - sum primes from 0 to 300000 211s ok 211s t/11-twinprimes.t ........ 211s 1..17 211s ok 1 - twin_primes(1607) 211s ok 2 - nth_twin_prime for small values 211s ok 3 - twin_primes(2,11) should return [3 5 11] 211s ok 4 - twin_primes(5,13) should return [5 11] 211s ok 5 - twin_primes(5,11) should return [5 11] 211s ok 6 - twin_primes(4,11) should return [5 11] 211s ok 7 - twin_primes(3,11) should return [3 5 11] 211s ok 8 - twin_primes(5,12) should return [5 11] 211s ok 9 - twin_primes(5,16) should return [5 11] 211s ok 10 - twin_primes(4294957296,4294957796) should return [4294957307 4294957397 4294957697] 211s ok 11 - twin_primes(213897,213997) should return [213947] 211s ok 12 - twin_primes(134217228,134217728) should return [134217401 134217437] 211s ok 13 - twin_primes(5,10) should return [5] 211s ok 14 - twin_primes(29,31) should return [29] 211s ok 15 - twin_primes(1,11) should return [3 5 11] 211s ok 16 - twin_primes(6,10) should return [] 211s ok 17 - twin_primes(0,11) should return [3 5 11] 211s ok 211s t/12-nextprime.t ......... 211s 1..314 211s ok 1 - next_prime 0 .. 3572 211s ok 2 - prev_prime 0 .. 3572 211s ok 3 - next prime of 19609 is 19609+52 211s ok 4 - prev prime of 19609+52 is 19609 211s ok 5 - next prime of 2010733 is 2010733+148 211s ok 6 - prev prime of 2010733+148 is 2010733 211s ok 7 - next prime of 360653 is 360653+96 211s ok 8 - prev prime of 360653+96 is 360653 211s ok 9 - next prime of 19608 is 19609 211s ok 10 - next prime of 19610 is 19661 211s ok 11 - next prime of 19660 is 19661 211s ok 12 - prev prime of 19662 is 19661 211s ok 13 - prev prime of 19660 is 19609 211s ok 14 - prev prime of 19610 is 19609 211s ok 15 - next prime of 10019 is 10037 211s ok 16 - Previous prime of 2 returns undef 211s ok 17 - Next prime of ~0-4 returns bigint next prime 211s ok 18 - next_prime(2010733) == 2010881 211s ok 19 - next_prime(2010734) == 2010881 211s ok 20 - next_prime(2010735) == 2010881 211s ok 21 - next_prime(2010736) == 2010881 211s ok 22 - next_prime(2010737) == 2010881 211s ok 23 - next_prime(2010738) == 2010881 211s ok 24 - next_prime(2010739) == 2010881 211s ok 25 - next_prime(2010740) == 2010881 211s ok 26 - next_prime(2010741) == 2010881 211s ok 27 - next_prime(2010742) == 2010881 211s ok 28 - next_prime(2010743) == 2010881 211s ok 29 - next_prime(2010744) == 2010881 211s ok 30 - next_prime(2010745) == 2010881 211s ok 31 - next_prime(2010746) == 2010881 211s ok 32 - next_prime(2010747) == 2010881 211s ok 33 - next_prime(2010748) == 2010881 211s ok 34 - next_prime(2010749) == 2010881 211s ok 35 - next_prime(2010750) == 2010881 211s ok 36 - next_prime(2010751) == 2010881 211s ok 37 - next_prime(2010752) == 2010881 211s ok 38 - next_prime(2010753) == 2010881 211s ok 39 - next_prime(2010754) == 2010881 211s ok 40 - next_prime(2010755) == 2010881 211s ok 41 - next_prime(2010756) == 2010881 211s ok 42 - next_prime(2010757) == 2010881 211s ok 43 - next_prime(2010758) == 2010881 211s ok 44 - next_prime(2010759) == 2010881 211s ok 45 - next_prime(2010760) == 2010881 211s ok 46 - next_prime(2010761) == 2010881 211s ok 47 - next_prime(2010762) == 2010881 211s ok 48 - next_prime(2010763) == 2010881 211s ok 49 - next_prime(2010764) == 2010881 211s ok 50 - next_prime(2010765) == 2010881 211s ok 51 - next_prime(2010766) == 2010881 211s ok 52 - next_prime(2010767) == 2010881 211s ok 53 - next_prime(2010768) == 2010881 211s ok 54 - next_prime(2010769) == 2010881 211s ok 55 - next_prime(2010770) == 2010881 211s ok 56 - next_prime(2010771) == 2010881 211s ok 57 - next_prime(2010772) == 2010881 211s ok 58 - next_prime(2010773) == 2010881 211s ok 59 - next_prime(2010774) == 2010881 211s ok 60 - next_prime(2010775) == 2010881 211s ok 61 - next_prime(2010776) == 2010881 211s ok 62 - next_prime(2010777) == 2010881 211s ok 63 - next_prime(2010778) == 2010881 211s ok 64 - next_prime(2010779) == 2010881 211s ok 65 - next_prime(2010780) == 2010881 211s ok 66 - next_prime(2010781) == 2010881 211s ok 67 - next_prime(2010782) == 2010881 211s ok 68 - next_prime(2010783) == 2010881 211s ok 69 - next_prime(2010784) == 2010881 211s ok 70 - next_prime(2010785) == 2010881 211s ok 71 - next_prime(2010786) == 2010881 211s ok 72 - next_prime(2010787) == 2010881 211s ok 73 - next_prime(2010788) == 2010881 211s ok 74 - next_prime(2010789) == 2010881 211s ok 75 - next_prime(2010790) == 2010881 211s ok 76 - next_prime(2010791) == 2010881 211s ok 77 - next_prime(2010792) == 2010881 211s ok 78 - next_prime(2010793) == 2010881 211s ok 79 - next_prime(2010794) == 2010881 211s ok 80 - next_prime(2010795) == 2010881 211s ok 81 - next_prime(2010796) == 2010881 211s ok 82 - next_prime(2010797) == 2010881 211s ok 83 - next_prime(2010798) == 2010881 211s ok 84 - next_prime(2010799) == 2010881 211s ok 85 - next_prime(2010800) == 2010881 211s ok 86 - next_prime(2010801) == 2010881 211s ok 87 - next_prime(2010802) == 2010881 211s ok 88 - next_prime(2010803) == 2010881 211s ok 89 - next_prime(2010804) == 2010881 211s ok 90 - next_prime(2010805) == 2010881 211s ok 91 - next_prime(2010806) == 2010881 211s ok 92 - next_prime(2010807) == 2010881 211s ok 93 - next_prime(2010808) == 2010881 211s ok 94 - next_prime(2010809) == 2010881 211s ok 95 - next_prime(2010810) == 2010881 211s ok 96 - next_prime(2010811) == 2010881 211s ok 97 - next_prime(2010812) == 2010881 211s ok 98 - next_prime(2010813) == 2010881 211s ok 99 - next_prime(2010814) == 2010881 211s ok 100 - next_prime(2010815) == 2010881 211s ok 101 - next_prime(2010816) == 2010881 211s ok 102 - next_prime(2010817) == 2010881 211s ok 103 - next_prime(2010818) == 2010881 211s ok 104 - next_prime(2010819) == 2010881 211s ok 105 - next_prime(2010820) == 2010881 211s ok 106 - next_prime(2010821) == 2010881 211s ok 107 - next_prime(2010822) == 2010881 211s ok 108 - next_prime(2010823) == 2010881 211s ok 109 - next_prime(2010824) == 2010881 211s ok 110 - next_prime(2010825) == 2010881 211s ok 111 - next_prime(2010826) == 2010881 211s ok 112 - next_prime(2010827) == 2010881 211s ok 113 - next_prime(2010828) == 2010881 211s ok 114 - next_prime(2010829) == 2010881 211s ok 115 - next_prime(2010830) == 2010881 211s ok 116 - next_prime(2010831) == 2010881 211s ok 117 - next_prime(2010832) == 2010881 211s ok 118 - next_prime(2010833) == 2010881 211s ok 119 - next_prime(2010834) == 2010881 211s ok 120 - next_prime(2010835) == 2010881 211s ok 121 - next_prime(2010836) == 2010881 211s ok 122 - next_prime(2010837) == 2010881 211s ok 123 - next_prime(2010838) == 2010881 211s ok 124 - next_prime(2010839) == 2010881 211s ok 125 - next_prime(2010840) == 2010881 211s ok 126 - next_prime(2010841) == 2010881 211s ok 127 - next_prime(2010842) == 2010881 211s ok 128 - next_prime(2010843) == 2010881 211s ok 129 - next_prime(2010844) == 2010881 211s ok 130 - next_prime(2010845) == 2010881 211s ok 131 - next_prime(2010846) == 2010881 211s ok 132 - next_prime(2010847) == 2010881 211s ok 133 - next_prime(2010848) == 2010881 211s ok 134 - next_prime(2010849) == 2010881 211s ok 135 - next_prime(2010850) == 2010881 211s ok 136 - next_prime(2010851) == 2010881 211s ok 137 - next_prime(2010852) == 2010881 211s ok 138 - next_prime(2010853) == 2010881 211s ok 139 - next_prime(2010854) == 2010881 211s ok 140 - next_prime(2010855) == 2010881 211s ok 141 - next_prime(2010856) == 2010881 211s ok 142 - next_prime(2010857) == 2010881 211s ok 143 - next_prime(2010858) == 2010881 211s ok 144 - next_prime(2010859) == 2010881 211s ok 145 - next_prime(2010860) == 2010881 211s ok 146 - next_prime(2010861) == 2010881 211s ok 147 - next_prime(2010862) == 2010881 211s ok 148 - next_prime(2010863) == 2010881 211s ok 149 - next_prime(2010864) == 2010881 211s ok 150 - next_prime(2010865) == 2010881 211s ok 151 - next_prime(2010866) == 2010881 211s ok 152 - next_prime(2010867) == 2010881 211s ok 153 - next_prime(2010868) == 2010881 211s ok 154 - next_prime(2010869) == 2010881 211s ok 155 - next_prime(2010870) == 2010881 211s ok 156 - next_prime(2010871) == 2010881 211s ok 157 - next_prime(2010872) == 2010881 211s ok 158 - next_prime(2010873) == 2010881 211s ok 159 - next_prime(2010874) == 2010881 211s ok 160 - next_prime(2010875) == 2010881 211s ok 161 - next_prime(2010876) == 2010881 211s ok 162 - next_prime(2010877) == 2010881 211s ok 163 - next_prime(2010878) == 2010881 211s ok 164 - next_prime(2010879) == 2010881 211s ok 165 - next_prime(2010880) == 2010881 211s ok 166 - prev_prime(2010734) == 2010733 211s ok 167 - prev_prime(2010735) == 2010733 211s ok 168 - prev_prime(2010736) == 2010733 211s ok 169 - prev_prime(2010737) == 2010733 211s ok 170 - prev_prime(2010738) == 2010733 211s ok 171 - prev_prime(2010739) == 2010733 211s ok 172 - prev_prime(2010740) == 2010733 211s ok 173 - prev_prime(2010741) == 2010733 211s ok 174 - prev_prime(2010742) == 2010733 211s ok 175 - prev_prime(2010743) == 2010733 211s ok 176 - prev_prime(2010744) == 2010733 211s ok 177 - prev_prime(2010745) == 2010733 211s ok 178 - prev_prime(2010746) == 2010733 211s ok 179 - prev_prime(2010747) == 2010733 211s ok 180 - prev_prime(2010748) == 2010733 211s ok 181 - prev_prime(2010749) == 2010733 211s ok 182 - prev_prime(2010750) == 2010733 211s ok 183 - prev_prime(2010751) == 2010733 211s ok 184 - prev_prime(2010752) == 2010733 211s ok 185 - prev_prime(2010753) == 2010733 211s ok 186 - prev_prime(2010754) == 2010733 211s ok 187 - prev_prime(2010755) == 2010733 211s ok 188 - prev_prime(2010756) == 2010733 211s ok 189 - prev_prime(2010757) == 2010733 211s ok 190 - prev_prime(2010758) == 2010733 211s ok 191 - prev_prime(2010759) == 2010733 211s ok 192 - prev_prime(2010760) == 2010733 211s ok 193 - prev_prime(2010761) == 2010733 211s ok 194 - prev_prime(2010762) == 2010733 211s ok 195 - prev_prime(2010763) == 2010733 211s ok 196 - prev_prime(2010764) == 2010733 211s ok 197 - prev_prime(2010765) == 2010733 211s ok 198 - prev_prime(2010766) == 2010733 211s ok 199 - prev_prime(2010767) == 2010733 211s ok 200 - prev_prime(2010768) == 2010733 211s ok 201 - prev_prime(2010769) == 2010733 211s ok 202 - prev_prime(2010770) == 2010733 211s ok 203 - prev_prime(2010771) == 2010733 211s ok 204 - prev_prime(2010772) == 2010733 211s ok 205 - prev_prime(2010773) == 2010733 211s ok 206 - prev_prime(2010774) == 2010733 211s ok 207 - prev_prime(2010775) == 2010733 211s ok 208 - prev_prime(2010776) == 2010733 211s ok 209 - prev_prime(2010777) == 2010733 211s ok 210 - prev_prime(2010778) == 2010733 211s ok 211 - prev_prime(2010779) == 2010733 211s ok 212 - prev_prime(2010780) == 2010733 211s ok 213 - prev_prime(2010781) == 2010733 211s ok 214 - prev_prime(2010782) == 2010733 211s ok 215 - prev_prime(2010783) == 2010733 211s ok 216 - prev_prime(2010784) == 2010733 211s ok 217 - prev_prime(2010785) == 2010733 211s ok 218 - prev_prime(2010786) == 2010733 211s ok 219 - prev_prime(2010787) == 2010733 211s ok 220 - prev_prime(2010788) == 2010733 211s ok 221 - prev_prime(2010789) == 2010733 211s ok 222 - prev_prime(2010790) == 2010733 211s ok 223 - prev_prime(2010791) == 2010733 211s ok 224 - prev_prime(2010792) == 2010733 211s ok 225 - prev_prime(2010793) == 2010733 211s ok 226 - prev_prime(2010794) == 2010733 211s ok 227 - prev_prime(2010795) == 2010733 211s ok 228 - prev_prime(2010796) == 2010733 211s ok 229 - prev_prime(2010797) == 2010733 211s ok 230 - prev_prime(2010798) == 2010733 211s ok 231 - prev_prime(2010799) == 2010733 211s ok 232 - prev_prime(2010800) == 2010733 211s ok 233 - prev_prime(2010801) == 2010733 211s ok 234 - prev_prime(2010802) == 2010733 211s ok 235 - prev_prime(2010803) == 2010733 211s ok 236 - prev_prime(2010804) == 2010733 211s ok 237 - prev_prime(2010805) == 2010733 211s ok 238 - prev_prime(2010806) == 2010733 211s ok 239 - prev_prime(2010807) == 2010733 211s ok 240 - prev_prime(2010808) == 2010733 211s ok 241 - prev_prime(2010809) == 2010733 211s ok 242 - prev_prime(2010810) == 2010733 211s ok 243 - prev_prime(2010811) == 2010733 211s ok 244 - prev_prime(2010812) == 2010733 211s ok 245 - prev_prime(2010813) == 2010733 211s ok 246 - prev_prime(2010814) == 2010733 211s ok 247 - prev_prime(2010815) == 2010733 211s ok 248 - prev_prime(2010816) == 2010733 211s ok 249 - prev_prime(2010817) == 2010733 211s ok 250 - prev_prime(2010818) == 2010733 211s ok 251 - prev_prime(2010819) == 2010733 211s ok 252 - prev_prime(2010820) == 2010733 211s ok 253 - prev_prime(2010821) == 2010733 211s ok 254 - prev_prime(2010822) == 2010733 211s ok 255 - prev_prime(2010823) == 2010733 211s ok 256 - prev_prime(2010824) == 2010733 211s ok 257 - prev_prime(2010825) == 2010733 211s ok 258 - prev_prime(2010826) == 2010733 211s ok 259 - prev_prime(2010827) == 2010733 211s ok 260 - prev_prime(2010828) == 2010733 211s ok 261 - prev_prime(2010829) == 2010733 211s ok 262 - prev_prime(2010830) == 2010733 211s ok 263 - prev_prime(2010831) == 2010733 211s ok 264 - prev_prime(2010832) == 2010733 211s ok 265 - prev_prime(2010833) == 2010733 211s ok 266 - prev_prime(2010834) == 2010733 211s ok 267 - prev_prime(2010835) == 2010733 211s ok 268 - prev_prime(2010836) == 2010733 211s ok 269 - prev_prime(2010837) == 2010733 211s ok 270 - prev_prime(2010838) == 2010733 211s ok 271 - prev_prime(2010839) == 2010733 211s ok 272 - prev_prime(2010840) == 2010733 211s ok 273 - prev_prime(2010841) == 2010733 211s ok 274 - prev_prime(2010842) == 2010733 211s ok 275 - prev_prime(2010843) == 2010733 211s ok 276 - prev_prime(2010844) == 2010733 211s ok 277 - prev_prime(2010845) == 2010733 211s ok 278 - prev_prime(2010846) == 2010733 211s ok 279 - prev_prime(2010847) == 2010733 211s ok 280 - prev_prime(2010848) == 2010733 211s ok 281 - prev_prime(2010849) == 2010733 211s ok 282 - prev_prime(2010850) == 2010733 211s ok 283 - prev_prime(2010851) == 2010733 211s ok 284 - prev_prime(2010852) == 2010733 211s ok 285 - prev_prime(2010853) == 2010733 211s ok 286 - prev_prime(2010854) == 2010733 211s ok 287 - prev_prime(2010855) == 2010733 211s ok 288 - prev_prime(2010856) == 2010733 211s ok 289 - prev_prime(2010857) == 2010733 211s ok 290 - prev_prime(2010858) == 2010733 211s ok 291 - prev_prime(2010859) == 2010733 211s ok 292 - prev_prime(2010860) == 2010733 211s ok 293 - prev_prime(2010861) == 2010733 211s ok 294 - prev_prime(2010862) == 2010733 211s ok 295 - prev_prime(2010863) == 2010733 211s ok 296 - prev_prime(2010864) == 2010733 211s ok 297 - prev_prime(2010865) == 2010733 211s ok 298 - prev_prime(2010866) == 2010733 211s ok 299 - prev_prime(2010867) == 2010733 211s ok 300 - prev_prime(2010868) == 2010733 211s ok 301 - prev_prime(2010869) == 2010733 211s ok 302 - prev_prime(2010870) == 2010733 211s ok 303 - prev_prime(2010871) == 2010733 211s ok 304 - prev_prime(2010872) == 2010733 211s ok 305 - prev_prime(2010873) == 2010733 211s ok 306 - prev_prime(2010874) == 2010733 211s ok 307 - prev_prime(2010875) == 2010733 211s ok 308 - prev_prime(2010876) == 2010733 211s ok 309 - prev_prime(2010877) == 2010733 211s ok 310 - prev_prime(2010878) == 2010733 211s ok 311 - prev_prime(2010879) == 2010733 211s ok 312 - prev_prime(2010880) == 2010733 211s ok 313 - prev_prime(2010881) == 2010733 211s ok 314 - next_prime(1234567890) == 1234567891) 211s ok 212s t/13-primecount.t ........ 212s 1..186 212s ok 1 - prime_count in void context 212s ok 2 - Pi(16777215) <= upper estimate 212s ok 3 - Pi(16777215) >= lower estimate 212s ok 4 - prime_count_approx(16777215) within 100 212s ok 5 - Pi(100000000) <= upper estimate 212s ok 6 - Pi(100000000) >= lower estimate 212s ok 7 - prime_count_approx(100000000) within 100 212s ok 8 - Pi(30249) <= upper estimate 212s ok 9 - Pi(30249) >= lower estimate 212s ok 10 - prime_count_approx(30249) within 100 212s ok 11 - Pi(1000) <= upper estimate 212s ok 12 - Pi(1000) >= lower estimate 212s ok 13 - prime_count_approx(1000) within 100 212s ok 14 - Pi(65535) <= upper estimate 212s ok 15 - Pi(65535) >= lower estimate 212s ok 16 - prime_count_approx(65535) within 100 212s ok 17 - Pi(100000) <= upper estimate 212s ok 18 - Pi(100000) >= lower estimate 212s ok 19 - prime_count_approx(100000) within 100 212s ok 20 - Pi(10000000) <= upper estimate 212s ok 21 - Pi(10000000) >= lower estimate 212s ok 22 - prime_count_approx(10000000) within 100 212s ok 23 - Pi(1) <= upper estimate 212s ok 24 - Pi(1) >= lower estimate 212s ok 25 - prime_count_approx(1) within 100 212s ok 26 - Pi(10) <= upper estimate 212s ok 27 - Pi(10) >= lower estimate 212s ok 28 - prime_count_approx(10) within 100 212s ok 29 - Pi(30239) <= upper estimate 212s ok 30 - Pi(30239) >= lower estimate 212s ok 31 - prime_count_approx(30239) within 100 212s ok 32 - Pi(60067) <= upper estimate 212s ok 33 - Pi(60067) >= lower estimate 212s ok 34 - prime_count_approx(60067) within 100 212s ok 35 - Pi(4294967295) <= upper estimate 212s ok 36 - Pi(4294967295) >= lower estimate 212s ok 37 - prime_count_approx(4294967295) within 500 212s ok 38 - Pi(10000) <= upper estimate 212s ok 39 - Pi(10000) >= lower estimate 212s ok 40 - prime_count_approx(10000) within 100 212s ok 41 - Pi(1000000000) <= upper estimate 212s ok 42 - Pi(1000000000) >= lower estimate 212s ok 43 - prime_count_approx(1000000000) within 500 212s ok 44 - Pi(100) <= upper estimate 212s ok 45 - Pi(100) >= lower estimate 212s ok 46 - prime_count_approx(100) within 100 212s ok 47 - Pi(2147483647) <= upper estimate 212s ok 48 - Pi(2147483647) >= lower estimate 212s ok 49 - prime_count_approx(2147483647) within 500 212s ok 50 - Pi(1000000) <= upper estimate 212s ok 51 - Pi(1000000) >= lower estimate 212s ok 52 - prime_count_approx(1000000) within 100 212s ok 53 - Pi(1) = 0 212s ok 54 - Pi(1000000) = 78498 212s ok 55 - Pi(100000) = 9592 212s ok 56 - Pi(65535) = 6542 212s ok 57 - Pi(100) = 25 212s ok 58 - Pi(1000) = 168 212s ok 59 - Pi(10000) = 1229 212s ok 60 - Pi(30249) = 3270 212s ok 61 - Pi(60067) = 6062 212s ok 62 - Pi(30239) = 3269 212s ok 63 - Pi(10) = 4 212s ok 64 - Pi(1099511627775) <= upper estimate 212s ok 65 - Pi(1099511627775) >= lower estimate 212s ok 66 - prime_count_approx(1099511627775) within 0.0005% of Pi(1099511627775) 212s ok 67 - Pi(100000000000000000) <= upper estimate 212s ok 68 - Pi(100000000000000000) >= lower estimate 212s ok 69 - prime_count_approx(100000000000000000) within 0.0005% of Pi(100000000000000000) 212s ok 70 - Pi(100000000000000) <= upper estimate 212s ok 71 - Pi(100000000000000) >= lower estimate 212s ok 72 - prime_count_approx(100000000000000) within 0.0005% of Pi(100000000000000) 212s ok 73 - Pi(10000000000000000) <= upper estimate 212s ok 74 - Pi(10000000000000000) >= lower estimate 212s ok 75 - prime_count_approx(10000000000000000) within 0.0005% of Pi(10000000000000000) 212s ok 76 - Pi(281474976710655) <= upper estimate 212s ok 77 - Pi(281474976710655) >= lower estimate 212s ok 78 - prime_count_approx(281474976710655) within 0.0005% of Pi(281474976710655) 212s ok 79 - Pi(10000000000000) <= upper estimate 212s ok 80 - Pi(10000000000000) >= lower estimate 212s ok 81 - prime_count_approx(10000000000000) within 0.0005% of Pi(10000000000000) 212s ok 82 - Pi(68719476735) <= upper estimate 212s ok 83 - Pi(68719476735) >= lower estimate 212s ok 84 - prime_count_approx(68719476735) within 0.0005% of Pi(68719476735) 212s ok 85 - Pi(1000000000000000000) <= upper estimate 212s ok 86 - Pi(1000000000000000000) >= lower estimate 212s ok 87 - prime_count_approx(1000000000000000000) within 0.0005% of Pi(1000000000000000000) 212s ok 88 - Pi(1152921504606846975) <= upper estimate 212s ok 89 - Pi(1152921504606846975) >= lower estimate 212s ok 90 - prime_count_approx(1152921504606846975) within 0.0005% of Pi(1152921504606846975) 212s ok 91 - Pi(10000000000000000000) <= upper estimate 212s ok 92 - Pi(10000000000000000000) >= lower estimate 212s ok 93 - prime_count_approx(10000000000000000000) within 0.0005% of Pi(10000000000000000000) 212s ok 94 - Pi(1000000000000000) <= upper estimate 212s ok 95 - Pi(1000000000000000) >= lower estimate 212s ok 96 - prime_count_approx(1000000000000000) within 0.0005% of Pi(1000000000000000) 212s ok 97 - Pi(72057594037927935) <= upper estimate 212s ok 98 - Pi(72057594037927935) >= lower estimate 212s ok 99 - prime_count_approx(72057594037927935) within 0.0005% of Pi(72057594037927935) 212s ok 100 - Pi(4503599627370495) <= upper estimate 212s ok 101 - Pi(4503599627370495) >= lower estimate 212s ok 102 - prime_count_approx(4503599627370495) within 0.0005% of Pi(4503599627370495) 212s ok 103 - Pi(100000000000) <= upper estimate 212s ok 104 - Pi(100000000000) >= lower estimate 212s ok 105 - prime_count_approx(100000000000) within 0.0005% of Pi(100000000000) 212s ok 106 - Pi(17592186044415) <= upper estimate 212s ok 107 - Pi(17592186044415) >= lower estimate 212s ok 108 - prime_count_approx(17592186044415) within 0.0005% of Pi(17592186044415) 212s ok 109 - Pi(18446744073709551615) <= upper estimate 212s ok 110 - Pi(18446744073709551615) >= lower estimate 212s ok 111 - prime_count_approx(18446744073709551615) within 0.0005% of Pi(18446744073709551615) 212s ok 112 - Pi(1000000000000) <= upper estimate 212s ok 113 - Pi(1000000000000) >= lower estimate 212s ok 114 - prime_count_approx(1000000000000) within 0.0005% of Pi(1000000000000) 212s ok 115 - Pi(10000000000) <= upper estimate 212s ok 116 - Pi(10000000000) >= lower estimate 212s ok 117 - prime_count_approx(10000000000) within 0.0005% of Pi(10000000000) 212s ok 118 - prime_count(1e10 +2**16) = 2821 212s ok 119 - prime_count(191912783 +248) = 2 212s ok 120 - prime_count(191912784 +247) = 1 212s ok 121 - prime_count(127976334672 +467) = 1 212s ok 122 - prime_count(0 to 2) = 1 212s ok 123 - prime_count(4 to 16) = 4 212s ok 124 - prime_count(1e14 +2**16) = 1973 212s ok 125 - prime_count(1 to 3) = 2 212s ok 126 - prime_count(1118105 to 9961674) = 575195 212s ok 127 - prime_count(191912783 +247) = 1 212s ok 128 - prime_count(127976334671 +468) = 2 212s ok 129 - prime_count(868396 to 9478505) = 563275 212s ok 130 - prime_count(24689 to 7973249) = 535368 212s ok 131 - prime_count(4 to 17) = 5 212s ok 132 - prime_count(127976334671 +467) = 1 212s ok 133 - prime_count(17 to 13) = 0 212s ok 134 - prime_count(191912784 +246) = 0 212s ok 135 - prime_count(3 to 15000) = 1753 212s ok 136 - prime_count(0 to 1) = 0 212s ok 137 - prime_count(127976334672 +466) = 0 212s ok 138 - prime_count(7 to 54321) = 5522 212s ok 139 - prime_count(3 to 17) = 6 212s ok 140 - prime_count(130066574) = 7381740 212s ok 141 - XS LMO count 212s ok 142 - XS segment count 212s ok 143 - require Math::Prime::Util::PP; 212s ok 144 - PP Lehmer count 212s ok 145 - PP sieve count 212s ok 146 - twin prime count 13 to 31 212s ok 147 - twin prime count 10^8 to +34587 212s ok 148 - twin prime count 654321 212s ok 149 - twin prime count 1000000000123456 212s ok 150 - twin prime count 500000000000 212s ok 151 - twin_prime_count_approx(500000000000) is 0.001407% 212s ok 152 - twin prime count 5000000000000000 212s ok 153 - twin_prime_count_approx(5000000000000000) is 0.000025% 212s ok 154 - twin prime count 50000000000000 212s ok 155 - twin_prime_count_approx(50000000000000) is 0.000103% 212s ok 156 - twin prime count 500000 212s ok 157 - twin_prime_count_approx(500000) is 0.240964% 212s ok 158 - twin prime count 5000 212s ok 159 - twin_prime_count_approx(5000) is 0.000000% 212s ok 160 - twin prime count 5000000000 212s ok 161 - twin_prime_count_approx(5000000000) is 0.002004% 212s ok 162 - twin prime count 50000000 212s ok 163 - twin_prime_count_approx(50000000) is 0.002091% 212s ok 164 - semiprime count 13 to 31 212s ok 165 - semiprime count 654321 212s ok 166 - semiprime count 10^8 to +34587 212s ok 167 - semiprime count 10000123456 212s ok 168 - semiprime count 50000000 212s ok 169 - semiprime count 5000000 212s ok 170 - semiprime count 500000 212s ok 171 - semiprime count 8192 212s ok 172 - semiprime count 5000 212s ok 173 - semiprime count 50000 212s ok 174 - semiprime count 5000000000 212s ok 175 - semiprime count 500000000 212s ok 176 - semiprime count 2048 212s ok 177 - Ramanujan prime count 13 to 31 212s ok 178 - Ramanujan prime count 1357 212s ok 179 - Ramanujan prime count 10^8 to +34587 212s ok 180 - Ramanujan prime count 654321 212s ok 181 - Ramanujan prime count 5000000 212s ok 182 - Ramanujan prime count 135791 212s ok 183 - Ramanujan prime count 65536 212s ok 184 - Ramanujan prime count 50000 212s ok 185 - Ramanujan prime count 5000 212s ok 186 - Ramanujan prime count 500000 212s ok 212s t/14-nthprime.t .......... 212s 1..130 212s ok 1 - nth_prime(168) <= 1000 212s ok 2 - nth_prime(169) >= 1000 212s ok 3 - nth_prime(4) <= 10 212s ok 4 - nth_prime(5) >= 10 212s ok 5 - nth_prime(78498) <= 1000000 212s ok 6 - nth_prime(78499) >= 1000000 212s ok 7 - nth_prime(25) <= 100 212s ok 8 - nth_prime(26) >= 100 212s ok 9 - nth_prime(0) <= 1 212s ok 10 - nth_prime(1) >= 1 212s ok 11 - nth_prime(9592) <= 100000 212s ok 12 - nth_prime(9593) >= 100000 212s ok 13 - nth_prime(1229) <= 10000 212s ok 14 - nth_prime(1230) >= 10000 212s ok 15 - nth_prime for primes 0 .. 1000 212s ok 16 - nth_prime(100) <= upper estimate 212s ok 17 - nth_prime(100) >= lower estimate 212s ok 18 - nth_prime_approx(100) = 537 within 2% of 541 212s ok 19 - nth_prime(100000000) <= upper estimate 212s ok 20 - nth_prime(100000000) >= lower estimate 212s ok 21 - nth_prime_approx(100000000) = 2038076588 within 1% of 2038074743 212s ok 22 - nth_prime(10000) <= upper estimate 212s ok 23 - nth_prime(10000) >= lower estimate 212s ok 24 - nth_prime_approx(10000) = 104768 within 1% of 104729 212s ok 25 - nth_prime(100000) <= upper estimate 212s ok 26 - nth_prime(100000) >= lower estimate 212s ok 27 - nth_prime_approx(100000) = 1299734 within 1% of 1299709 212s ok 28 - nth_prime(6305540) <= upper estimate 212s ok 29 - nth_prime(6305540) >= lower estimate 212s ok 30 - nth_prime_approx(6305540) = 110047573 within 1% of 110040407 212s ok 31 - nth_prime(6305542) <= upper estimate 212s ok 32 - nth_prime(6305542) >= lower estimate 212s ok 33 - nth_prime_approx(6305542) = 110047610 within 1% of 110040499 212s ok 34 - nth_prime(6305537) <= upper estimate 212s ok 35 - nth_prime(6305537) >= lower estimate 212s ok 36 - nth_prime_approx(6305537) = 110047517 within 1% of 110040379 212s ok 37 - nth_prime(10) <= upper estimate 212s ok 38 - nth_prime(10) >= lower estimate 212s ok 39 - nth_prime_approx(10) = 29 within 2% of 29 212s ok 40 - nth_prime(1) <= upper estimate 212s ok 41 - nth_prime(1) >= lower estimate 212s ok 42 - nth_prime_approx(1) = 2 within 2% of 2 212s ok 43 - nth_prime(6305538) <= upper estimate 212s ok 44 - nth_prime(6305538) >= lower estimate 212s ok 45 - nth_prime_approx(6305538) = 110047536 within 1% of 110040383 212s ok 46 - nth_prime(10000000) <= upper estimate 212s ok 47 - nth_prime(10000000) >= lower estimate 212s ok 48 - nth_prime_approx(10000000) = 179431239 within 1% of 179424673 212s ok 49 - nth_prime(6305541) <= upper estimate 212s ok 50 - nth_prime(6305541) >= lower estimate 212s ok 51 - nth_prime_approx(6305541) = 110047591 within 1% of 110040467 212s ok 52 - nth_prime(6305539) <= upper estimate 212s ok 53 - nth_prime(6305539) >= lower estimate 212s ok 54 - nth_prime_approx(6305539) = 110047554 within 1% of 110040391 212s ok 55 - nth_prime(1000) <= upper estimate 212s ok 56 - nth_prime(1000) >= lower estimate 212s ok 57 - nth_prime_approx(1000) = 7923 within 1% of 7919 212s ok 58 - nth_prime(6305543) <= upper estimate 212s ok 59 - nth_prime(6305543) >= lower estimate 212s ok 60 - nth_prime_approx(6305543) = 110047628 within 1% of 110040503 212s ok 61 - nth_prime(1000000) <= upper estimate 212s ok 62 - nth_prime(1000000) >= lower estimate 212s ok 63 - nth_prime_approx(1000000) = 15484040 within 1% of 15485863 212s ok 64 - nth_prime(100) = 541 212s ok 65 - nth_prime(100000) = 1299709 212s ok 66 - nth_prime(10000) = 104729 212s ok 67 - nth_prime(6305540) = 110040407 212s ok 68 - nth_prime(6305542) = 110040499 212s ok 69 - nth_prime(6305537) = 110040379 212s ok 70 - nth_prime(10) = 29 212s ok 71 - nth_prime(6305538) = 110040383 212s ok 72 - nth_prime(1) = 2 212s ok 73 - nth_prime(10000000) = 179424673 212s ok 74 - nth_prime(6305541) = 110040467 212s ok 75 - nth_prime(6305539) = 110040391 212s ok 76 - nth_prime(6305543) = 110040503 212s ok 77 - nth_prime(1000) = 7919 212s ok 78 - nth_prime(1000000) = 15485863 212s ok 79 - nth_prime(10000000000000000) <= upper estimate 212s ok 80 - nth_prime(10000000000000000) >= lower estimate 212s ok 81 - nth_prime_approx(10000000000000000) = 394906913798225088 within 0.001% of 394906913903735329 212s ok 82 - nth_prime(100000000000) <= upper estimate 212s ok 83 - nth_prime(100000000000) >= lower estimate 212s ok 84 - nth_prime_approx(100000000000) = 2760727752353 within 0.001% of 2760727302517 212s ok 85 - nth_prime(1000000000000000) <= upper estimate 212s ok 86 - nth_prime(1000000000000000) >= lower estimate 212s ok 87 - nth_prime_approx(1000000000000000) = 37124508056355616 within 0.001% of 37124508045065437 212s ok 88 - nth_prime(100000000000000000) <= upper estimate 212s ok 89 - nth_prime(100000000000000000) >= lower estimate 212s ok 90 - nth_prime_approx(100000000000000000) = 4185296581676461056 within 0.001% of 4185296581467695669 212s ok 91 - nth_prime(1000000000000) <= upper estimate 212s ok 92 - nth_prime(1000000000000) >= lower estimate 212s ok 93 - nth_prime_approx(1000000000000) = 29996225393466 within 0.001% of 29996224275833 212s ok 94 - nth_prime(10000000000) <= upper estimate 212s ok 95 - nth_prime(10000000000) >= lower estimate 212s ok 96 - nth_prime_approx(10000000000) = 252097715777 within 0.001% of 252097800623 212s ok 97 - nth_prime(1000000000) <= upper estimate 212s ok 98 - nth_prime(1000000000) >= lower estimate 212s ok 99 - nth_prime_approx(1000000000) = 22801797576 within 0.001% of 22801763489 212s ok 100 - nth_prime(100000000000000) <= upper estimate 212s ok 101 - nth_prime(100000000000000) >= lower estimate 212s ok 102 - nth_prime_approx(100000000000000) = 3475385760290728 within 0.001% of 3475385758524527 212s ok 103 - nth_prime(10000000000000) <= upper estimate 212s ok 104 - nth_prime(10000000000000) >= lower estimate 212s ok 105 - nth_prime_approx(10000000000000) = 323780512411509 within 0.001% of 323780508946331 212s ok 106 - nth_prime_lower(maxindex) <= maxprime 212s ok 107 - nth_prime_upper(maxindex) >= maxprime 212s ok 108 - nth_prime_lower(maxindex+1) >= nth_prime_lower(maxindex) 212s ok 109 - nth_twin_prime(0) = undef 212s ok 110 - 239 = 17th twin prime 212s ok 111 - 101207 = 1234'th twin prime 212s ok 112 - nth_twin_prime_approx(5) is 0.000000% (got 29, expected ~29) 212s ok 113 - nth_twin_prime_approx(500) is 0.129586% (got 32453, expected ~32411) 212s ok 114 - nth_twin_prime_approx(50000) is 0.075983% (got 8258677, expected ~8264957) 212s ok 115 - nth_twin_prime_approx(500000) is 0.007471% (got 115447292, expected ~115438667) 212s ok 116 - nth_twin_prime_approx(500000000) is 0.000863% (got 239213224566, expected ~239211160649) 212s ok 117 - nth_twin_prime_approx(50000000) is 0.008989% (got 19359834010, expected ~19358093939) 212s ok 118 - nth_twin_prime_approx(5000) is 0.144031% (got 556716, expected ~557519) 212s ok 119 - nth_twin_prime_approx(5000000) is 0.042488% (got 1523328396, expected ~1523975909) 212s ok 120 - nth_twin_prime_approx(50) is 0.000000% (got 1487, expected ~1487) 212s ok 121 - nth_semiprime(0) = undef 212s ok 122 - nth_semiprime(1 .. 153) 212s ok 123 - nth_semiprime(1234) = 4497 212s ok 124 - nth_semiprime(12345678) = 69914722 212s ok 125 - nth_semiprime(12345) = 51019 212s ok 126 - nth_semiprime(123456) = 573355 212s ok 127 - nth_semiprime(1234567) = 6365389 212s ok 128 - inverse_li: Li^-1(0..50) 212s ok 129 - inverse_li(1e9) 212s ok 130 - inverse_li(11e11) 212s ok 212s t/15-probprime.t ......... 212s 1..127 212s ok 1 - is_prob_prime(undef) 212s ok 2 - 2 is prime 212s ok 3 - 1 is not prime 212s ok 4 - 0 is not prime 212s ok 5 - -1 is not prime 212s ok 6 - -2 is not prime 212s ok 7 - is_prob_prime powers of 2 212s ok 8 - is_prob_prime 0..3572 212s ok 9 - 4033 is composite 212s ok 10 - 4369 is composite 212s ok 11 - 4371 is composite 212s ok 12 - 4681 is composite 212s ok 13 - 5461 is composite 212s ok 14 - 5611 is composite 212s ok 15 - 6601 is composite 212s ok 16 - 7813 is composite 212s ok 17 - 7957 is composite 212s ok 18 - 8321 is composite 212s ok 19 - 8401 is composite 212s ok 20 - 8911 is composite 212s ok 21 - 10585 is composite 212s ok 22 - 12403 is composite 212s ok 23 - 13021 is composite 212s ok 24 - 14981 is composite 212s ok 25 - 15751 is composite 212s ok 26 - 15841 is composite 212s ok 27 - 16531 is composite 212s ok 28 - 18721 is composite 212s ok 29 - 19345 is composite 212s ok 30 - 23521 is composite 212s ok 31 - 24211 is composite 212s ok 32 - 25351 is composite 212s ok 33 - 29341 is composite 212s ok 34 - 29539 is composite 212s ok 35 - 31621 is composite 212s ok 36 - 38081 is composite 212s ok 37 - 40501 is composite 212s ok 38 - 41041 is composite 212s ok 39 - 44287 is composite 212s ok 40 - 44801 is composite 212s ok 41 - 46657 is composite 212s ok 42 - 47197 is composite 212s ok 43 - 52633 is composite 212s ok 44 - 53971 is composite 212s ok 45 - 55969 is composite 212s ok 46 - 62745 is composite 212s ok 47 - 63139 is composite 212s ok 48 - 63973 is composite 212s ok 49 - 74593 is composite 212s ok 50 - 75361 is composite 212s ok 51 - 79003 is composite 212s ok 52 - 79381 is composite 212s ok 53 - 82513 is composite 212s ok 54 - 87913 is composite 212s ok 55 - 88357 is composite 212s ok 56 - 88573 is composite 212s ok 57 - 97567 is composite 212s ok 58 - 101101 is composite 212s ok 59 - 340561 is composite 212s ok 60 - 488881 is composite 212s ok 61 - 852841 is composite 212s ok 62 - 1373653 is composite 212s ok 63 - 1857241 is composite 212s ok 64 - 6733693 is composite 212s ok 65 - 9439201 is composite 212s ok 66 - 17236801 is composite 212s ok 67 - 23382529 is composite 212s ok 68 - 25326001 is composite 212s ok 69 - 34657141 is composite 212s ok 70 - 56052361 is composite 212s ok 71 - 146843929 is composite 212s ok 72 - 216821881 is composite 212s ok 73 - 3215031751 is composite 212s ok 74 - 2152302898747 is composite 212s ok 75 - 3474749660383 is composite 212s ok 76 - 341550071728321 is composite 212s ok 77 - 341550071728321 is composite 212s ok 78 - 3825123056546413051 is composite 212s ok 79 - 9551 is definitely prime 212s ok 80 - 15683 is definitely prime 212s ok 81 - 19609 is definitely prime 212s ok 82 - 31397 is definitely prime 212s ok 83 - 155921 is definitely prime 212s ok 84 - 9587 is definitely prime 212s ok 85 - 15727 is definitely prime 212s ok 86 - 19661 is definitely prime 212s ok 87 - 31469 is definitely prime 212s ok 88 - 156007 is definitely prime 212s ok 89 - 360749 is definitely prime 212s ok 90 - 370373 is definitely prime 212s ok 91 - 492227 is definitely prime 212s ok 92 - 1349651 is definitely prime 212s ok 93 - 1357333 is definitely prime 212s ok 94 - 2010881 is definitely prime 212s ok 95 - 4652507 is definitely prime 212s ok 96 - 17051887 is definitely prime 212s ok 97 - 20831533 is definitely prime 212s ok 98 - 47326913 is definitely prime 212s ok 99 - 122164969 is definitely prime 212s ok 100 - 189695893 is definitely prime 212s ok 101 - 191913031 is definitely prime 212s ok 102 - 387096383 is definitely prime 212s ok 103 - 436273291 is definitely prime 212s ok 104 - 1294268779 is definitely prime 212s ok 105 - 1453168433 is definitely prime 212s ok 106 - 2300942869 is definitely prime 212s ok 107 - 3842611109 is definitely prime 212s ok 108 - 4302407713 is definitely prime 212s ok 109 - 10726905041 is definitely prime 212s ok 110 - 20678048681 is definitely prime 212s ok 111 - 22367085353 is definitely prime 212s ok 112 - 25056082543 is definitely prime 212s ok 113 - 42652618807 is definitely prime 212s ok 114 - 127976334671 is definitely prime 212s ok 115 - 182226896239 is definitely prime 212s ok 116 - 241160624143 is definitely prime 212s ok 117 - 297501075799 is definitely prime 212s ok 118 - 303371455241 is definitely prime 212s ok 119 - 304599508537 is definitely prime 212s ok 120 - 416608695821 is definitely prime 212s ok 121 - 461690510011 is definitely prime 212s ok 122 - 614487453523 is definitely prime 212s ok 123 - 738832927927 is definitely prime 212s ok 124 - 1346294310749 is definitely prime 212s ok 125 - 1408695493609 is definitely prime 212s ok 126 - 1968188556461 is definitely prime 212s ok 127 - 2614941710599 is definitely prime 212s ok 212s t/16-randomprime.t ....... 212s 1..183 212s ok 1 - random_prime(undef) 212s ok 2 - random_prime(-3) 212s ok 3 - random_prime(a) 212s ok 4 - random_prime(undef,undef) 212s ok 5 - random_prime(2,undef) 212s ok 6 - random_prime(2,a) 212s ok 7 - random_prime(undef,0) 212s ok 8 - random_prime(0,undef) 212s ok 9 - random_prime(2,undef) 212s ok 10 - random_prime(2,-4) 212s ok 11 - random_prime(2,+infinity) 212s ok 12 - random_prime(+infinity) 212s ok 13 - random_prime(-infinity) 212s ok 14 - random_ndigit_prime(0) 212s ok 15 - random_nbit_prime(0) 212s ok 16 - random_maurer_prime(0) 212s ok 17 - random_shawe_taylor_prime(0) 212s ok 18 - primes(3842610774,3842611108) should return undef 212s ok 19 - primes(3,2) should return undef 212s ok 20 - primes(0,1) should return undef 212s ok 21 - primes(2,1) should return undef 212s ok 22 - primes(0,0) should return undef 212s ok 23 - primes(1294268492,1294268778) should return undef 212s ok 24 - Prime in range 10-12 is indeed prime 212s ok 25 - random_prime(10,12) >= 11 212s ok 26 - random_prime(10,12) <= 11 212s ok 27 - Prime in range 16706142-16706144 is indeed prime 212s ok 28 - random_prime(16706142,16706144) >= 16706143 212s ok 29 - random_prime(16706142,16706144) <= 16706143 212s ok 30 - Prime in range 2-2 is indeed prime 212s ok 31 - random_prime(2,2) >= 2 212s ok 32 - random_prime(2,2) <= 2 212s ok 33 - Prime in range 3842610773-3842611109 is indeed prime 212s ok 34 - random_prime(3842610773,3842611109) >= 3842610773 212s ok 35 - random_prime(3842610773,3842611109) <= 3842611109 212s ok 36 - Prime in range 8-12 is indeed prime 212s ok 37 - random_prime(8,12) >= 11 212s ok 38 - random_prime(8,12) <= 11 212s ok 39 - Prime in range 3842610772-3842611110 is indeed prime 212s ok 40 - random_prime(3842610772,3842611110) >= 3842610773 212s ok 41 - random_prime(3842610772,3842611110) <= 3842611109 212s ok 42 - Prime in range 2-3 is indeed prime 212s ok 43 - random_prime(2,3) >= 2 212s ok 44 - random_prime(2,3) <= 3 212s ok 45 - Prime in range 3-5 is indeed prime 212s ok 46 - random_prime(3,5) >= 3 212s ok 47 - random_prime(3,5) <= 5 212s ok 48 - Prime in range 10-20 is indeed prime 212s ok 49 - random_prime(10,20) >= 11 212s ok 50 - random_prime(10,20) <= 19 212s ok 51 - Prime in range 0-2 is indeed prime 212s ok 52 - random_prime(0,2) >= 2 212s ok 53 - random_prime(0,2) <= 2 212s ok 54 - Prime in range 16706143-16706143 is indeed prime 212s ok 55 - random_prime(16706143,16706143) >= 16706143 212s ok 56 - random_prime(16706143,16706143) <= 16706143 212s ok 57 - All returned values for 27767-88493 were prime 212s ok 58 - All returned values for 27767-88493 were in the range 212s ok 59 - All returned values for 17051688-17051898 were prime 212s ok 60 - All returned values for 17051688-17051898 were in the range 212s ok 61 - All returned values for 27764-88493 were prime 212s ok 62 - All returned values for 27764-88493 were in the range 212s ok 63 - All returned values for 2-20 were prime 212s ok 64 - All returned values for 2-20 were in the range 212s ok 65 - All returned values for 27764-88498 were prime 212s ok 66 - All returned values for 27764-88498 were in the range 212s ok 67 - All returned values for 20-100 were prime 212s ok 68 - All returned values for 20-100 were in the range 212s ok 69 - All returned values for 3-7 were prime 212s ok 70 - All returned values for 3-7 were in the range 212s ok 71 - All returned values for 17051687-17051899 were prime 212s ok 72 - All returned values for 17051687-17051899 were in the range 212s ok 73 - All returned values for 27767-88498 were prime 212s ok 74 - All returned values for 27767-88498 were in the range 212s ok 75 - All returned values for 5678-9876 were prime 212s ok 76 - All returned values for 5678-9876 were in the range 212s ok 77 - All returned values for 2 were prime 212s ok 78 - All returned values for 2 were in the range 212s ok 79 - All returned values for 3 were prime 212s ok 80 - All returned values for 3 were in the range 212s ok 81 - All returned values for 4 were prime 212s ok 82 - All returned values for 4 were in the range 212s ok 83 - All returned values for 5 were prime 212s ok 84 - All returned values for 5 were in the range 212s ok 85 - All returned values for 6 were prime 212s ok 86 - All returned values for 6 were in the range 212s ok 87 - All returned values for 7 were prime 212s ok 88 - All returned values for 7 were in the range 212s ok 89 - All returned values for 8 were prime 212s ok 90 - All returned values for 8 were in the range 212s ok 91 - All returned values for 9 were prime 212s ok 92 - All returned values for 9 were in the range 212s ok 93 - All returned values for 100 were prime 212s ok 94 - All returned values for 100 were in the range 212s ok 95 - All returned values for 1000 were prime 212s ok 96 - All returned values for 1000 were in the range 212s ok 97 - All returned values for 1000000 were prime 212s ok 98 - All returned values for 1000000 were in the range 212s ok 99 - All returned values for 4294967295 were prime 212s ok 100 - All returned values for 4294967295 were in the range 212s ok 101 - 1-digit random prime '7' is in range and prime 212s ok 102 - 2-digit random prime '71' is in range and prime 212s ok 103 - 3-digit random prime '967' is in range and prime 212s ok 104 - 4-digit random prime '3181' is in range and prime 212s ok 105 - 5-digit random prime '69623' is in range and prime 212s ok 106 - 6-digit random prime '608863' is in range and prime 212s ok 107 - 7-digit random prime '4808459' is in range and prime 212s ok 108 - 8-digit random prime '81041089' is in range and prime 212s ok 109 - 9-digit random prime '308482379' is in range and prime 212s ok 110 - 10-digit random prime '7090112501' is in range and prime 212s ok 111 - 11-digit random prime '45607960361' is in range and prime 212s ok 112 - 12-digit random prime '714061256039' is in range and prime 212s ok 113 - 13-digit random prime '9538628738813' is in range and prime 212s ok 114 - 14-digit random prime '42618301878337' is in range and prime 212s ok 115 - 15-digit random prime '281314099991527' is in range and prime 212s ok 116 - 16-digit random prime '4202218259437547' is in range and prime 212s ok 117 - 17-digit random prime '48291992718486371' is in range and prime 212s ok 118 - 18-digit random prime '899228442679840453' is in range and prime 212s ok 119 - 19-digit random prime '2425024186096429741' is in range and prime 212s ok 120 - 20-digit random prime '75085156506357031211' is in range and prime 212s ok 121 - 2-bit random nbit prime '3' is in range and prime 212s ok 122 - 2-bit random Maurer prime '3' is in range and prime 212s ok 123 - 2-bit random Shawe-Taylor prime '3' is in range and prime 212s ok 124 - 2-bit random proven prime '2' is in range and prime 212s ok 125 - 3-bit random nbit prime '5' is in range and prime 212s ok 126 - 3-bit random Maurer prime '5' is in range and prime 212s ok 127 - 3-bit random Shawe-Taylor prime '5' is in range and prime 212s ok 128 - 3-bit random proven prime '5' is in range and prime 212s ok 129 - 4-bit random nbit prime '13' is in range and prime 212s ok 130 - 4-bit random Maurer prime '11' is in range and prime 212s ok 131 - 4-bit random Shawe-Taylor prime '11' is in range and prime 212s ok 132 - 4-bit random proven prime '13' is in range and prime 212s ok 133 - 5-bit random nbit prime '29' is in range and prime 212s ok 134 - 5-bit random Maurer prime '31' is in range and prime 212s ok 135 - 5-bit random Shawe-Taylor prime '29' is in range and prime 212s ok 136 - 5-bit random proven prime '29' is in range and prime 212s ok 137 - 6-bit random nbit prime '43' is in range and prime 212s ok 138 - 6-bit random Maurer prime '47' is in range and prime 212s ok 139 - 6-bit random Shawe-Taylor prime '47' is in range and prime 212s ok 140 - 6-bit random proven prime '61' is in range and prime 212s ok 141 - 10-bit random nbit prime '751' is in range and prime 212s ok 142 - 10-bit random Maurer prime '751' is in range and prime 212s ok 143 - 10-bit random Shawe-Taylor prime '743' is in range and prime 212s ok 144 - 10-bit random proven prime '983' is in range and prime 212s ok 145 - 15-bit random nbit prime '26347' is in range and prime 212s ok 146 - 15-bit random Maurer prime '26209' is in range and prime 212s ok 147 - 15-bit random Shawe-Taylor prime '24517' is in range and prime 212s ok 148 - 15-bit random proven prime '19163' is in range and prime 212s ok 149 - 16-bit random nbit prime '52571' is in range and prime 212s ok 150 - 16-bit random Maurer prime '63347' is in range and prime 212s ok 151 - 16-bit random Shawe-Taylor prime '40487' is in range and prime 212s ok 152 - 16-bit random proven prime '35083' is in range and prime 212s ok 153 - 17-bit random nbit prime '76651' is in range and prime 212s ok 154 - 17-bit random Maurer prime '71453' is in range and prime 212s ok 155 - 17-bit random Shawe-Taylor prime '113041' is in range and prime 212s ok 156 - 17-bit random proven prime '106877' is in range and prime 212s ok 157 - 28-bit random nbit prime '169495609' is in range and prime 212s ok 158 - 28-bit random Maurer prime '247946327' is in range and prime 212s ok 159 - 28-bit random Shawe-Taylor prime '243727663' is in range and prime 212s ok 160 - 28-bit random proven prime '232730219' is in range and prime 212s ok 161 - 32-bit random nbit prime '2350458449' is in range and prime 212s ok 162 - 32-bit random Maurer prime '2481043837' is in range and prime 212s ok 163 - 32-bit random Shawe-Taylor prime '2955491081' is in range and prime 212s ok 164 - 32-bit random proven prime '4121500147' is in range and prime 212s ok 165 - 34-bit random nbit prime '15152032403' is in range and prime 212s ok 166 - 34-bit random Maurer prime '14803831373' is in range and prime 212s ok 167 - 34-bit random Shawe-Taylor prime '13663567991' is in range and prime 212s ok 168 - 34-bit random proven prime '16000290937' is in range and prime 212s ok 169 - 75-bit random nbit prime '25695671375456685810839' is in range and prime 212s ok 170 - 75-bit random Maurer prime '34483844566219184971811' is in range and prime 212s ok 171 - 75-bit random Shawe-Taylor prime '23421670555423205333251' is in range and prime 212s ok 172 - 75-bit random proven prime '24564950474805329578261' is in range and prime 212s ok 173 - random 80-bit prime returns a BigInt 212s ok 174 - random 80-bit prime '605078059980551724459539' is in range 212s ok 175 - random 30-digit prime returns a BigInt 212s ok 176 - random 30-digit prime '577592961458534003146882965259' is in range 212s ok 177 - random_semiprime(3) 212s ok 178 - random_unrestricted_semiprime(2) 212s ok 179 - random_semiprime(4) = 9 212s ok 180 - random_unrestricted_semiprime(3) is 4 or 6 212s ok 181 - random_semiprime(26) is a 26-bit semiprime 212s ok 182 - random_semiprime(81) is 81 bits 212s ok 183 - random_unrestricted_semiprime(81) is 81 bits 212s ok 213s t/17-pseudoprime.t ....... 213s 1..108 213s ok 1 - MR with no base fails 213s ok 2 - MR base 0 fails 213s ok 3 - MR base 1 fails 213s ok 4 - MR with 0 shortcut composite 213s ok 5 - MR with 0 shortcut composite 213s ok 6 - MR with 2 shortcut prime 213s ok 7 - MR with 3 shortcut prime 213s ok 8 - Small strong pseudoprimes base 1005905886 (i.e. Miller-Rabin) 213s ok 9 - Small strong pseudoprimes base 11 (i.e. Miller-Rabin) 213s ok 10 - Small strong pseudoprimes base 13 (i.e. Miller-Rabin) 213s ok 11 - Small strong pseudoprimes base 1340600841 (i.e. Miller-Rabin) 213s ok 12 - Small strong pseudoprimes base 17 (i.e. Miller-Rabin) 213s ok 13 - Small strong pseudoprimes base 1795265022 (i.e. Miller-Rabin) 213s ok 14 - Small strong pseudoprimes base 19 (i.e. Miller-Rabin) 213s ok 15 - Small strong pseudoprimes base 2 (i.e. Miller-Rabin) 213s ok 16 - Small strong pseudoprimes base 203659041 (i.e. Miller-Rabin) 213s ok 17 - Small strong pseudoprimes base 23 (i.e. Miller-Rabin) 213s ok 18 - Small strong pseudoprimes base 28178 (i.e. Miller-Rabin) 213s ok 19 - Small strong pseudoprimes base 29 (i.e. Miller-Rabin) 213s ok 20 - Small strong pseudoprimes base 3 (i.e. Miller-Rabin) 213s ok 21 - Small strong pseudoprimes base 3046413974 (i.e. Miller-Rabin) 213s ok 22 - Small strong pseudoprimes base 31 (i.e. Miller-Rabin) 213s ok 23 - Small strong pseudoprimes base 325 (i.e. Miller-Rabin) 213s ok 24 - Small strong pseudoprimes base 3613982119 (i.e. Miller-Rabin) 213s ok 25 - Small strong pseudoprimes base 37 (i.e. Miller-Rabin) 213s ok 26 - Small strong pseudoprimes base 450775 (i.e. Miller-Rabin) 213s ok 27 - Small strong pseudoprimes base 5 (i.e. Miller-Rabin) 213s ok 28 - Small strong pseudoprimes base 553174392 (i.e. Miller-Rabin) 213s ok 29 - Small strong pseudoprimes base 61 (i.e. Miller-Rabin) 213s ok 30 - Small strong pseudoprimes base 642735 (i.e. Miller-Rabin) 213s ok 31 - Small strong pseudoprimes base 7 (i.e. Miller-Rabin) 213s ok 32 - Small strong pseudoprimes base 73 (i.e. Miller-Rabin) 213s ok 33 - Small strong pseudoprimes base 75088 (i.e. Miller-Rabin) 213s ok 34 - Small strong pseudoprimes base 9375 (i.e. Miller-Rabin) 213s ok 35 - Small strong pseudoprimes base 9780504 (i.e. Miller-Rabin) 213s ok 36 - Small almost extra strong Lucas pseudoprimes (inc 1) 213s ok 37 - Small almost extra strong Lucas pseudoprimes (inc 2) 213s ok 38 - Small Catalan pseudoprimes 213s ok 39 - Small Euler pseudoprimes base 2 213s ok 40 - Small Euler pseudoprimes base 29 213s ok 41 - Small Euler pseudoprimes base 3 213s ok 42 - Small extra strong Lucas pseudoprimes 213s ok 43 - Small Fibonacci pseudoprimes 213s ok 44 - Small Frobenius(3,-5) pseudoprimes 213s ok 45 - Small Frobenius(1,-1) pseudoprimes 213s ok 46 - Small Lucas pseudoprimes 213s ok 47 - Small Pell pseudoprimes 213s ok 48 - Small Unrestricted Perrin pseudoprimes 213s ok 49 - Small Euler-Plumb pseudoprimes 213s ok 50 - Small pseudoprimes base 2 (i.e. Fermat) 213s ok 51 - Small pseudoprimes base 3 (i.e. Fermat) 213s ok 52 - Small strong Lucas pseudoprimes 213s ok 53 - phi_1 passes MR with first 1 primes 213s ok 54 - phi_2 passes MR with first 2 primes 213s ok 55 - phi_3 passes MR with first 3 primes 213s ok 56 - phi_4 passes MR with first 4 primes 213s ok 57 - phi_5 passes MR with first 5 primes 213s ok 58 - phi_6 passes MR with first 6 primes 213s ok 59 - phi_7 passes MR with first 7 primes 213s ok 60 - phi_8 passes MR with first 8 primes 213s ok 61 - MR base 2 matches is_prime for 2-4032 (excl 2047,3277) 213s ok 62 - spsp( 3, 3) 213s ok 63 - spsp( 11, 11) 213s ok 64 - spsp( 89, 5785) 213s ok 65 - spsp(257, 6168) 213s ok 66 - spsp(367, 367) 213s ok 67 - spsp(367, 1101) 213s ok 68 - spsp(49001, 921211727) 213s ok 69 - spsp( 331, 921211727) 213s ok 70 - spsp(49117, 921211727) 213s ok 71 - 143168581 is a Fermat pseudoprime to bases 2,3,5,7,11 213s ok 72 - 3215031751 is a strong pseudoprime to bases 2,3,5,7 213s ok 73 - 2152302898747 is a strong pseudoprime to bases 2,3,5,7,11 213s ok 74 - 2 is a prime and a strong Lucas-Selfridge pseudoprime 213s ok 75 - 9 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 76 - 16 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 77 - 100 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 78 - 102 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 79 - 2047 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 80 - 2048 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 81 - 5781 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 82 - 9000 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 83 - 14381 is not a prime and not a strong Lucas-Selfridge pseudoprime 213s ok 84 - Lucas sequence 3613982121 1 -1 1806991061 213s ok 85 - Lucas sequence 3613982123 1 -1 3613982124 213s ok 86 - Lucas sequence 18971 10001 -1 4743 213s ok 87 - Lucas sequence 547968611 1 -1 547968612 213s ok 88 - Lucas sequence 323 3 1 324 213s ok 89 - Lucas sequence 49001 25 117 24501 213s ok 90 - Lucas sequence 323 4 1 324 213s ok 91 - Lucas sequence 323 1 1 324 213s ok 92 - Lucas sequence 323 3 1 81 213s ok 93 - Lucas sequence 547968611 1 -1 136992153 213s ok 94 - Lucas sequence 323 5 -1 81 213s ok 95 - Lucas sequence 3613982121 1 -1 3613982122 213s ok 96 - Lucas sequence 323 4 5 324 213s ok 97 - is_frobenius_underwood_pseudoprime matches is_prime 213s ok 98 - Frobenius Underwood with 52-bit prime 213s ok 99 - Frobenius Underwood with 44-bit Lucas pseudoprime 213s ok 100 - is_frobenius_khashin_pseudoprime matches is_prime 213s ok 101 - Frobenius Khashin with 52-bit prime 213s ok 102 - Frobenius Khashin with 44-bit Lucas pseudoprime 213s ok 103 - 40814059160177 is an unrestricted Perrin pseudoprime 213s ok 104 - 40814059160177 is not a minimal restricted Perrin pseudoprime 213s ok 105 - 36407440637569 is minimal restricted Perrin pseudoprime 213s ok 106 - 36407440637569 is not an Adams/Shanks Perrin pseudoprime 213s ok 107 - 364573433665 is an Adams/Shanks Perrin pseudoprime 213s ok 108 - 364573433665 is not a Grantham restricted Perrin pseudoprime 213s ok 213s t/18-functions.t ......... 213s 1..62 213s ok 1 - li(-1) is invalid 213s ok 2 - R(0) is invalid 213s ok 3 - R(-1) is invalid 213s ok 4 - Ei(0) is -infinity 213s ok 5 - Ei(-inf) is 0 213s ok 6 - Ei(inf) is infinity 213s ok 7 - li(0) is 0 213s ok 8 - li(1) is -infinity 213s ok 9 - li(inf) is infinity 213s ok 10 - Ei(2.2) 213s ok 11 - Ei(2) ~= 4.95423435600189 213s ok 12 - Ei(12) ~= 14959.5326663975 213s ok 13 - Ei(-0.5) ~= -0.55977359477616 213s ok 14 - Ei(40) ~= 6039718263611242 213s ok 15 - Ei(10) ~= 2492.22897624188 213s ok 16 - Ei(-1e-08) ~= -17.8434650890508 213s ok 17 - Ei(0.693147180559945) ~= 1.04516378011749 213s ok 18 - Ei(1) ~= 1.89511781635594 213s ok 19 - Ei(-1e-05) ~= -10.9357198000437 213s ok 20 - Ei(20) ~= 25615652.6640566 213s ok 21 - Ei(79) ~= 2.61362206325046e+32 213s ok 22 - Ei(-0.001) ~= -6.33153936413615 213s ok 23 - Ei(-10) ~= -4.15696892968532e-06 213s ok 24 - Ei(41) ~= 1.6006649143245e+16 213s ok 25 - Ei(5) ~= 40.1852753558032 213s ok 26 - Ei(-0.1) ~= -1.82292395841939 213s ok 27 - Ei(1.5) ~= 3.3012854491298 213s ok 28 - li(4294967295) ~= 203284081.954542 213s ok 29 - li(1.01) ~= -4.02295867392994 213s ok 30 - li(24) ~= 11.2003157952327 213s ok 31 - li(10) ~= 6.1655995047873 213s ok 32 - li(0) ~= 0 213s ok 33 - li(100000000) ~= 5762209.37544803 213s ok 34 - li(1000) ~= 177.609657990152 213s ok 35 - li(2) ~= 1.04516378011749 213s ok 36 - li(10000000000) ~= 455055614.586623 213s ok 37 - li(100000000000) ~= 4118066400.62161 213s ok 38 - li(100000) ~= 9629.8090010508 213s ok 39 - R(1000000) ~= 78527.3994291277 213s ok 40 - R(18446744073709551615) ~= 4.25656284014012e+17 213s ok 41 - R(10) ~= 4.56458314100509 213s ok 42 - R(1.01) ~= 1.00606971806229 213s ok 43 - R(10000000) ~= 664667.447564748 213s ok 44 - R(4294967295) ~= 203280697.513261 213s ok 45 - R(2) ~= 1.54100901618713 213s ok 46 - R(10000000000) ~= 455050683.306847 213s ok 47 - R(1000) ~= 168.359446281167 213s ok 48 - Zeta(2) ~= 0.644934066848226 213s ok 49 - Zeta(8.5) ~= 0.00285925088241563 213s ok 50 - Zeta(2.5) ~= 0.341487257250917 213s ok 51 - Zeta(7) ~= 0.00834927738192283 213s ok 52 - Zeta(20.6) ~= 6.29339157357821e-07 213s ok 53 - Zeta(4.5) ~= 0.0547075107614543 213s ok 54 - LambertW(100000000000) ~= 22.2271227349611 213s ok 55 - LambertW(10000) ~= 7.23184603809337 213s ok 56 - LambertW(1) ~= 0.567143290409784 213s ok 57 - LambertW(-0.367879441171442) ~= -0.99999995824889 213s ok 58 - LambertW(18446744073709551615) ~= 40.6562665724989 213s ok 59 - LambertW(0.367879441171442) ~= 0.278464542761074 213s ok 60 - LambertW(0) ~= 0 213s ok 61 - LambertW(10) ~= 1.7455280027407 213s ok 62 - LambertW(-0.1) ~= -0.111832559158963 213s ok 213s t/19-chebyshev.t ......... 213s 1..16 213s ok 1 - chebyshev_theta(5) 213s ok 2 - chebyshev_theta(0) 213s ok 3 - chebyshev_theta(4) 213s ok 4 - chebyshev_theta(2) 213s ok 5 - chebyshev_theta(3) 213s ok 6 - chebyshev_theta(123456) 213s ok 7 - chebyshev_theta(1) 213s ok 8 - chebyshev_theta(243) 213s ok 9 - chebyshev_psi(3) 213s ok 10 - chebyshev_psi(123456) 213s ok 11 - chebyshev_psi(243) 213s ok 12 - chebyshev_psi(1) 213s ok 13 - chebyshev_psi(4) 213s ok 14 - chebyshev_psi(2) 213s ok 15 - chebyshev_psi(0) 213s ok 16 - chebyshev_psi(5) 213s ok 213s t/19-chinese.t ........... 213s 1..24 213s ok 1 - crt() = 0 213s ok 2 - crt([4 5]) = 4 213s ok 3 - crt([77 11]) = 0 213s ok 4 - crt([0 5],[0 6]) = 0 213s ok 5 - crt([14 5],[0 6]) = 24 213s ok 6 - crt([10 11],[4 22],[9 19]) = 213s ok 7 - crt([77 13],[79 17]) = 181 213s ok 8 - crt([2 3],[3 5],[2 7]) = 23 213s ok 9 - crt([10 11],[4 12],[12 13]) = 1000 213s ok 10 - crt([42 127],[24 128]) = 2328 213s ok 11 - crt([32 126],[23 129]) = 410 213s ok 12 - crt([2328 16256],[410 5418]) = 28450328 213s ok 13 - crt([1 10],[11 100]) = 11 213s ok 14 - crt([11 100],[22 100]) = 213s ok 15 - crt([1753051086 3243410059],[2609156951 2439462460]) = 6553408220202087311 213s ok 16 - crt([6325451203932218304 2750166238021308],[5611464489438299732 94116455416164094]) = 1433171050835863115088946517796 213s ok 17 - crt([1762568892212871168 8554171181844660224],[2462425671659520000 2016911328009584640]) = 188079320578009823963731127992320 213s ok 18 - crt([856686401696104448 11943471150311931904],[6316031051955372032 13290002569363587072]) = 943247297188055114646647659888640 213s ok 19 - crt([-3105579549 3743000622],[-1097075646 1219365911]) = 2754322117681955433 213s ok 20 - crt([-925543788386357567 243569243147991],[-1256802905822510829 28763455974459440]) = 837055903505897549759994093811 213s ok 21 - crt([-2155972909982577461 8509855219791386062],[-5396280069505638574 6935743629860450393]) = 12941173114744545542549046204020289525 213s ok 22 - crt([3 5],[2 0]) = 213s ok 23 - crt([3 0],[2 3]) = 213s ok 24 - crt([3 5],[3 0],[2 3]) = 213s ok 213s t/19-divisorsum.t ........ 213s 1..12 213s ok 1 - Sum of divisors to the 2th power: Sigma_2 213s ok 2 - Sigma_2 using integer instead of sub 213s ok 3 - Sum of divisors to the 0th power: Sigma_0 213s ok 4 - Sigma_0 using integer instead of sub 213s ok 5 - Sum of divisors to the 1th power: Sigma_1 213s ok 6 - Sigma_1 using integer instead of sub 213s ok 7 - Sum of divisors to the 3th power: Sigma_3 213s ok 8 - Sigma_3 using integer instead of sub 213s ok 9 - divisor_sum(n) 213s ok 10 - tau as divisor_sum(n, sub {1}) 213s ok 11 - tau as divisor_sum(n, 0) 213s ok 12 - Tau4 (A007426), nested divisor sums 213s ok 213s t/19-gcd.t ............... 213s 1..53 213s ok 1 - gcd() = 0 213s ok 2 - gcd(8) = 8 213s ok 3 - gcd(9,9) = 9 213s ok 4 - gcd(0,0) = 0 213s ok 5 - gcd(1,0,0) = 1 213s ok 6 - gcd(0,0,1) = 1 213s ok 7 - gcd(17,19) = 1 213s ok 8 - gcd(54,24) = 6 213s ok 9 - gcd(42,56) = 14 213s ok 10 - gcd(9,28) = 1 213s ok 11 - gcd(48,180) = 12 213s ok 12 - gcd(2705353758,2540073744,3512215098,2214052398) = 18 213s ok 13 - gcd(2301535282,3609610580,3261189640) = 106 213s ok 14 - gcd(694966514,510402262,195075284,609944479) = 181 213s ok 15 - gcd(294950648,651855678,263274296,493043500,581345426) = 58 213s ok 16 - gcd(-30,-90,90) = 30 213s ok 17 - gcd(-3,-9,-18) = 3 213s ok 18 - gcd(12848174105599691600,15386870946739346600,11876770906605497900) = 700 213s ok 19 - gcd(9785375481451202685,17905669244643674637,11069209430356622337) = 117 213s ok 20 - lcm() = 0 213s ok 21 - lcm(8) = 8 213s ok 22 - lcm(9,9) = 9 213s ok 23 - lcm(0,0) = 0 213s ok 24 - lcm(1,0,0) = 0 213s ok 25 - lcm(0,0,1) = 0 213s ok 26 - lcm(17,19) = 323 213s ok 27 - lcm(54,24) = 216 213s ok 28 - lcm(42,56) = 168 213s ok 29 - lcm(9,28) = 252 213s ok 30 - lcm(48,180) = 720 213s ok 31 - lcm(36,45) = 180 213s ok 32 - lcm(-36,45) = 180 213s ok 33 - lcm(-36,-45) = 180 213s ok 34 - lcm(30,15,5) = 30 213s ok 35 - lcm(2,3,4,5) = 60 213s ok 36 - lcm(30245,114552) = 3464625240 213s ok 37 - lcm(11926,78001,2211) = 2790719778 213s ok 38 - lcm(1426,26195,3289,8346) = 4254749070 213s ok 39 - lcm(26505798,9658520,967043,18285904) = 15399063829732542960 213s ok 40 - lcm(267220708,143775143,261076) = 15015659316963449908 213s ok 41 - gcdext(0,0) = [0 0 0] 213s ok 42 - gcdext(0,28) = [0 1 28] 213s ok 43 - gcdext(28,0) = [1 0 28] 213s ok 44 - gcdext(0,-28) = [0 -1 28] 213s ok 45 - gcdext(-28,0) = [-1 0 28] 213s ok 46 - gcdext(3706259912,1223661804) = [123862139 -375156991 4] 213s ok 47 - gcdext(3706259912,-1223661804) = [123862139 375156991 4] 213s ok 48 - gcdext(-3706259912,1223661804) = [-123862139 -375156991 4] 213s ok 49 - gcdext(-3706259912,-1223661804) = [-123862139 375156991 4] 213s ok 50 - gcdext(22,242) = [1 0 22] 213s ok 51 - gcdext(2731583792,3028241442) = [-187089956 168761937 2] 213s ok 52 - gcdext(42272720,12439910) = [-21984 74705 70] 213s ok 53 - gcdext(10139483024654235947,8030280778952246347) = [-2715309548282941287 3428502169395958570 1] 213s ok 214s t/19-kronecker.t ......... 214s 1..42 214s ok 1 - kronecker(109981, 737777) = 1 214s ok 2 - kronecker(737779, 121080) = -1 214s ok 3 - kronecker(-737779, 121080) = 1 214s ok 4 - kronecker(737779, -121080) = -1 214s ok 5 - kronecker(-737779, -121080) = -1 214s ok 6 - kronecker(12345, 331) = -1 214s ok 7 - kronecker(1001, 9907) = -1 214s ok 8 - kronecker(19, 45) = 1 214s ok 9 - kronecker(8, 21) = -1 214s ok 10 - kronecker(5, 21) = 1 214s ok 11 - kronecker(5, 1237) = -1 214s ok 12 - kronecker(10, 49) = 1 214s ok 13 - kronecker(123, 4567) = -1 214s ok 14 - kronecker(3, 18) = 0 214s ok 15 - kronecker(3, -18) = 0 214s ok 16 - kronecker(-2, 0) = 0 214s ok 17 - kronecker(-1, 0) = 1 214s ok 18 - kronecker(0, 0) = 0 214s ok 19 - kronecker(1, 0) = 1 214s ok 20 - kronecker(2, 0) = 0 214s ok 21 - kronecker(-2, 1) = 1 214s ok 22 - kronecker(-1, 1) = 1 214s ok 23 - kronecker(0, 1) = 1 214s ok 24 - kronecker(1, 1) = 1 214s ok 25 - kronecker(2, 1) = 1 214s ok 26 - kronecker(-2, -1) = -1 214s ok 27 - kronecker(-1, -1) = -1 214s ok 28 - kronecker(0, -1) = 1 214s ok 29 - kronecker(1, -1) = 1 214s ok 30 - kronecker(2, -1) = 1 214s ok 31 - kronecker(3686556869, 428192857) = 1 214s ok 32 - kronecker(-1453096827, 364435739) = -1 214s ok 33 - kronecker(3527710253, -306243569) = 1 214s ok 34 - kronecker(-1843526669, -332265377) = 1 214s ok 35 - kronecker(321781679, 4095783323) = -1 214s ok 36 - kronecker(454249403, -79475159) = -1 214s ok 37 - kronecker(17483840153492293897, 455592493) = 1 214s ok 38 - kronecker(-1402663995299718225, 391125073) = 1 214s ok 39 - kronecker(16715440823750591903, -534621209) = -1 214s ok 40 - kronecker(13106964391619451641, 16744199040925208803) = 1 214s ok 41 - kronecker(11172354269896048081, 10442187294190042188) = -1 214s ok 42 - kronecker(-5694706465843977004, 9365273357682496999) = -1 214s ok 214s t/19-legendrephi.t ....... 214s 1..17 214s ok 1 - legendre_phi(0,92372) = 0 214s ok 2 - legendre_phi(5,15) = 1 214s ok 3 - legendre_phi(89,4) = 21 214s ok 4 - legendre_phi(46,4) = 11 214s ok 5 - legendre_phi(47,4) = 12 214s ok 6 - legendre_phi(48,4) = 12 214s ok 7 - legendre_phi(52,4) = 12 214s ok 8 - legendre_phi(53,4) = 13 214s ok 9 - legendre_phi(10000,5) = 2077 214s ok 10 - legendre_phi(526,7) = 95 214s ok 11 - legendre_phi(588,6) = 111 214s ok 12 - legendre_phi(100000,5) = 20779 214s ok 13 - legendre_phi(5882,6) = 1128 214s ok 14 - legendre_phi(100000,7) = 18053 214s ok 15 - legendre_phi(10000,8) = 1711 214s ok 16 - legendre_phi(1000000,168) = 78331 214s ok 17 - legendre_phi(800000,213) = 63739 214s ok 214s t/19-liouville.t ......... 214s 1..60 214s ok 1 - liouville(24) = 1 214s ok 2 - liouville(51) = 1 214s ok 3 - liouville(94) = 1 214s ok 4 - liouville(183) = 1 214s ok 5 - liouville(294) = 1 214s ok 6 - liouville(629) = 1 214s ok 7 - liouville(1488) = 1 214s ok 8 - liouville(3684) = 1 214s ok 9 - liouville(8006) = 1 214s ok 10 - liouville(8510) = 1 214s ok 11 - liouville(32539) = 1 214s ok 12 - liouville(57240) = 1 214s ok 13 - liouville(103138) = 1 214s ok 14 - liouville(238565) = 1 214s ok 15 - liouville(444456) = 1 214s ok 16 - liouville(820134) = 1 214s ok 17 - liouville(1185666) = 1 214s ok 18 - liouville(3960407) = 1 214s ok 19 - liouville(4429677) = 1 214s ok 20 - liouville(13719505) = 1 214s ok 21 - liouville(29191963) = 1 214s ok 22 - liouville(57736144) = 1 214s ok 23 - liouville(134185856) = 1 214s ok 24 - liouville(262306569) = 1 214s ok 25 - liouville(324235872) = 1 214s ok 26 - liouville(563441153) = 1 214s ok 27 - liouville(1686170713) = 1 214s ok 28 - liouville(2489885844) = 1 214s ok 29 - liouville(1260238066729040) = 1 214s ok 30 - liouville(10095256575169232896) = 1 214s ok 31 - liouville(23) = -1 214s ok 32 - liouville(47) = -1 214s ok 33 - liouville(113) = -1 214s ok 34 - liouville(163) = -1 214s ok 35 - liouville(378) = -1 214s ok 36 - liouville(942) = -1 214s ok 37 - liouville(1669) = -1 214s ok 38 - liouville(2808) = -1 214s ok 39 - liouville(8029) = -1 214s ok 40 - liouville(9819) = -1 214s ok 41 - liouville(23863) = -1 214s ok 42 - liouville(39712) = -1 214s ok 43 - liouville(87352) = -1 214s ok 44 - liouville(210421) = -1 214s ok 45 - liouville(363671) = -1 214s ok 46 - liouville(562894) = -1 214s ok 47 - liouville(1839723) = -1 214s ok 48 - liouville(3504755) = -1 214s ok 49 - liouville(7456642) = -1 214s ok 50 - liouville(14807115) = -1 214s ok 51 - liouville(22469612) = -1 214s ok 52 - liouville(49080461) = -1 214s ok 53 - liouville(132842464) = -1 214s ok 54 - liouville(146060791) = -1 214s ok 55 - liouville(279256445) = -1 214s ok 56 - liouville(802149183) = -1 214s ok 57 - liouville(1243577750) = -1 214s ok 58 - liouville(3639860654) = -1 214s ok 59 - liouville(1807253903626380) = -1 214s ok 60 - liouville(12063177829788352512) = -1 214s ok 214s t/19-mangoldt.t .......... 214s 1..21 214s ok 1 - exp_mangoldt(0) == 1 214s ok 2 - exp_mangoldt(-13) == 1 214s ok 3 - exp_mangoldt(1) == 1 214s ok 4 - exp_mangoldt(25) == 5 214s ok 5 - exp_mangoldt(3) == 3 214s ok 6 - exp_mangoldt(130321) == 19 214s ok 7 - exp_mangoldt(11) == 11 214s ok 8 - exp_mangoldt(9) == 3 214s ok 9 - exp_mangoldt(5) == 5 214s ok 10 - exp_mangoldt(83521) == 17 214s ok 11 - exp_mangoldt(10) == 1 214s ok 12 - exp_mangoldt(823543) == 7 214s ok 13 - exp_mangoldt(6) == 1 214s ok 14 - exp_mangoldt(399981) == 1 214s ok 15 - exp_mangoldt(399983) == 399983 214s ok 16 - exp_mangoldt(399982) == 1 214s ok 17 - exp_mangoldt(4) == 2 214s ok 18 - exp_mangoldt(7) == 7 214s ok 19 - exp_mangoldt(8) == 2 214s ok 20 - exp_mangoldt(2) == 2 214s ok 21 - exp_mangoldt(27) == 3 214s ok 214s t/19-moebius.t ........... 214s 1..14 214s ok 1 - moebius(0) 214s ok 2 - moebius 1 .. 20 (single) 214s ok 3 - moebius 1 .. 20 (range) 214s ok 4 - moebius -1 .. -20 (single) 214s ok 5 - moebius -14 .. -9 (range) 214s ok 6 - moebius -7 .. 5 (range) 214s ok 7 - moebius(3*5*7*11*13) = -1 214s ok 8 - moebius(73\#/2) = 1 214s ok 9 - sum(moebius(k) for k=1..n) small n 214s ok 10 - sum(moebius(1,n)) small n 214s ok 11 - mertens(n) small n 214s ok 12 - mertens(10000000) 214s ok 13 - mertens(1000000) 214s ok 14 - mertens(100000) 214s ok 214s t/19-popcount.t .......... 214s 1..9 214s ok 1 - hammingweight(0) = 0 214s ok 2 - hammingweight(1) = 1 214s ok 3 - hammingweight(2) = 1 214s ok 4 - hammingweight(3) = 2 214s ok 5 - hammingweight(452398) = 12 214s ok 6 - hammingweight(-452398) = 12 214s ok 7 - hammingweight(4294967295) = 32 214s ok 8 - hammingweight(777777777777777714523989234823498234098249108234236) = 83 214s ok 9 - hammingweight(65520150907877741108803406077280119039314703968014509493068998974809747144933) = 118 214s ok 214s t/19-primroots.t ......... 214s 1..52 214s ok 1 - znprimroot(1520874431) == 17 214s ok 2 - znprimroot(4) == 3 214s ok 3 - znprimroot(9) == 2 214s ok 4 - znprimroot(1407827621) == 2 214s ok 5 - znprimroot(1685283601) == 164 214s ok 6 - znprimroot(1) == 0 214s ok 7 - znprimroot(100000001) == 214s ok 8 - znprimroot(2232881419280027) == 6 214s ok 9 - znprimroot(89637484042681) == 335 214s ok 10 - znprimroot(7) == 3 214s ok 11 - znprimroot(3) == 2 214s ok 12 - znprimroot(90441961) == 113 214s ok 13 - znprimroot(0) == 214s ok 14 - znprimroot(5109721) == 94 214s ok 15 - znprimroot(14123555781055773271) == 6 214s ok 16 - znprimroot(9223372036854775837) == 5 214s ok 17 - znprimroot(17551561) == 97 214s ok 18 - znprimroot(8) == 214s ok 19 - znprimroot(5) == 2 214s ok 20 - znprimroot(-11) == 2 214s ok 21 - znprimroot(10) == 3 214s ok 22 - znprimroot(6) == 5 214s ok 23 - znprimroot(1729) == 214s ok 24 - znprimroot(2) == 1 214s ok 25 - znprimroot("-100000898") == 31 214s ok 26 - 17 is a primitive root mod 1520874431 214s ok 27 - 3 is a primitive root mod 4 214s ok 28 - 2 is a primitive root mod 9 214s ok 29 - 2 is a primitive root mod 1407827621 214s ok 30 - 164 is a primitive root mod 1685283601 214s ok 31 - 0 is a primitive root mod 1 214s ok 32 - 2 is not a primitive root mod 100000001 214s ok 33 - 6 is a primitive root mod 2232881419280027 214s ok 34 - 335 is a primitive root mod 89637484042681 214s ok 35 - 3 is a primitive root mod 7 214s ok 36 - 2 is a primitive root mod 3 214s ok 37 - 113 is a primitive root mod 90441961 214s ok 38 - 2 is not a primitive root mod 0 214s ok 39 - 94 is a primitive root mod 5109721 214s ok 40 - 6 is a primitive root mod 14123555781055773271 214s ok 41 - 5 is a primitive root mod 9223372036854775837 214s ok 42 - 97 is a primitive root mod 17551561 214s ok 43 - 2 is not a primitive root mod 8 214s ok 44 - 2 is a primitive root mod 5 214s ok 45 - 2 is a primitive root mod -11 214s ok 46 - 3 is a primitive root mod 10 214s ok 47 - 5 is a primitive root mod 6 214s ok 48 - 2 is not a primitive root mod 1729 214s ok 49 - 1 is a primitive root mod 2 214s ok 50 - 19 is a primitive root mod 191 214s ok 51 - 13 is not a primitive root mod 191 214s ok 52 - 35 is not a primitive root mod 982 214s ok 214s t/19-ramanujan.t ......... 214s 1..38 214s ok 1 - Ramanujan Sum c_0(34) = 0 214s ok 2 - Ramanujan Sum c_34(0) 214s ok 3 - Ramanujan sum c_{1..30}(1..30) 214s ok 4 - H(6307) = 96 214s ok 5 - H(71) = 84 214s ok 6 - H(12) = 16 214s ok 7 - H(20563) = 156 214s ok 8 - H(-3) = 0 214s ok 9 - H(907) = 36 214s ok 10 - H(2) = 0 214s ok 11 - H(163) = 12 214s ok 12 - H(11) = 12 214s ok 13 - H(0) = -1 214s ok 14 - H(4) = 6 214s ok 15 - H(1555) = 48 214s ok 16 - H(30067) = 168 214s ok 17 - H(3) = 4 214s ok 18 - H(20) = 24 214s ok 19 - H(34483) = 180 214s ok 20 - H(47) = 60 214s ok 21 - H(427) = 24 214s ok 22 - H(23) = 36 214s ok 23 - H(7) = 12 214s ok 24 - H(31243) = 192 214s ok 25 - H(39) = 48 214s ok 26 - H(1) = 0 214s ok 27 - H(8) = 12 214s ok 28 - H(4031) = 1008 214s ok 29 - Ramanujan Tau(4) = -1472 214s ok 30 - Ramanujan Tau(0) = 0 214s ok 31 - Ramanujan Tau(16089) = 12655813883111729342208 214s ok 32 - Ramanujan Tau(1) = 1 214s ok 33 - Ramanujan Tau(2) = -24 214s ok 34 - Ramanujan Tau(5) = 4830 214s ok 35 - Ramanujan Tau(243) = 13400796651732 214s ok 36 - Ramanujan Tau(53) = -1596055698 214s ok 37 - Ramanujan Tau(106) = 38305336752 214s ok 38 - Ramanujan Tau(3) = 252 214s ok 215s t/19-rootint.t ........... 215s 1..15 215s ok 1 - sqrtint 0 .. 100 215s ok 2 - sqrtint(1234567^2) = 1234567 215s ok 3 - sqrtint(1234568^2-1) = 1234567 215s ok 4 - sqrtint(1234567^2-1) = 1234566 215s ok 5 - rootint(928342398,1) returns 928342398 215s ok 6 - rootint(88875,3) returns 44 215s ok 7 - integer third root of 266667176579895999 is 643659 215s ok 8 - rootint on perfect powers where log fails 215s ok 9 - integer 23rd root of a large 23rd power 215s ok 10 - integer 23rd root of almost a large 23rd power 215s ok 11 - logint base 2: 0 .. 200 215s ok 12 - logint base 3: 0 .. 200 215s ok 13 - logint base 5: 0 .. 200 215s ok 14 - logint(19284098234,16) = 8 215s ok 15 - power is 16^8 215s ok 215s t/19-totients.t .......... 215s 1..22 215s ok 1 - euler_phi 0 .. 69 215s ok 2 - euler_phi with range: 0, 69 215s ok 3 - sum of totients to 240 215s ok 4 - euler_phi(123457) == 123456 215s ok 5 - euler_phi(123456789) == 82260072 215s ok 6 - euler_phi(123456) == 41088 215s ok 7 - euler_phi(-123456) == 0 215s ok 8 - euler_phi(0,0) 215s ok 9 - euler_phi with end < start 215s ok 10 - euler_phi 0-1 215s ok 11 - euler_phi 1-2 215s ok 12 - euler_phi 1-3 215s ok 13 - euler_phi 2-3 215s ok 14 - euler_phi 10-20 215s ok 15 - euler_phi(1513,1537) 215s ok 16 - euler_phi -5 to 5 215s ok 17 - carmichael_lambda with range: 0, 69 215s ok 18 - Totient count 0-100 = 198 215s ok 19 - inverse_totient(1728) = 62 215s ok 20 - inverse_totient(9!) = 1138 215s ok 21 - inverse_totient(10000008) 215s ok 22 - inverse_totient(82260072) includes 123456789 215s ok 215s t/19-valuation.t ......... 215s 1..6 215s ok 1 - valuation(-4,2) = 2 215s ok 2 - valuation(0,0) = 0 215s ok 3 - valuation(1,0) = 0 215s ok 4 - valuation(96552,6) = 3 215s ok 5 - valuation(1879048192,2) = 28 215s ok 6 - valuation(65520150907877741108803406077280119039314703968014509493068998974809747144832,2) = 7 215s ok 215s t/19-znorder.t ........... 215s 1..22 215s ok 1 - znorder(1, 35) = 1 215s ok 2 - znorder(2, 35) = 12 215s ok 3 - znorder(4, 35) = 6 215s ok 4 - znorder(6, 35) = 2 215s ok 5 - znorder(7, 35) = 215s ok 6 - znorder(1, 1) = 1 215s ok 7 - znorder(0, 0) = 215s ok 8 - znorder(1, 0) = 215s ok 9 - znorder(25, 0) = 215s ok 10 - znorder(1, 1) = 1 215s ok 11 - znorder(19, 1) = 1 215s ok 12 - znorder(1, 19) = 1 215s ok 13 - znorder(2, 19) = 18 215s ok 14 - znorder(3, 20) = 4 215s ok 15 - znorder(57, 1000000003) = 189618 215s ok 16 - znorder(67, 999999749) = 30612237 215s ok 17 - znorder(22, 999991815) = 69844 215s ok 18 - znorder(10, 2147475467) = 31448382 215s ok 19 - znorder(141, 2147475467) = 1655178 215s ok 20 - znorder(7410, 2147475467) = 39409 215s ok 21 - znorder(31407, 2147475467) = 266 215s ok 22 - znorder(2, 2405286912458753) = 1073741824 215s ok 215s t/20-jordantotient.t ..... 215s 1..13 215s ok 1 - Jordan's Totient J_4 215s ok 2 - Jordan's Totient J_7 215s ok 3 - Jordan's Totient J_1 215s ok 4 - Jordan's Totient J_5 215s ok 5 - Jordan's Totient J_6 215s ok 6 - Jordan's Totient J_3 215s ok 7 - Jordan's Totient J_2 215s ok 8 - Dedekind psi(n) = J_2(n)/J_1(n) 215s ok 9 - Dedekind psi(n) = divisor_sum(n, moebius(d)^2 / d) 215s ok 10 - Jordan totient 5, using jordan_totient 215s ok 11 - Jordan totient 5, using divisor sum 215s ok 12 - J_4(12345) 215s ok 13 - n=12345, k=4 : n**k = divisor_sum(n, jordan_totient(k, d)) 215s ok 215s t/20-primorial.t ......... 215s 1..64 215s ok 1 - primorial(nth(0)) 215s ok 2 - pn_primorial(0) 215s ok 3 - primorial(nth(1)) 215s ok 4 - pn_primorial(1) 215s ok 5 - primorial(nth(2)) 215s ok 6 - pn_primorial(2) 215s ok 7 - primorial(nth(3)) 215s ok 8 - pn_primorial(3) 215s ok 9 - primorial(nth(4)) 215s ok 10 - pn_primorial(4) 215s ok 11 - primorial(nth(5)) 215s ok 12 - pn_primorial(5) 215s ok 13 - primorial(nth(6)) 215s ok 14 - pn_primorial(6) 215s ok 15 - primorial(nth(7)) 215s ok 16 - pn_primorial(7) 215s ok 17 - primorial(nth(8)) 215s ok 18 - pn_primorial(8) 215s ok 19 - primorial(nth(9)) 215s ok 20 - pn_primorial(9) 215s ok 21 - primorial(nth(10)) 215s ok 22 - pn_primorial(10) 215s ok 23 - primorial(nth(11)) 215s ok 24 - pn_primorial(11) 215s ok 25 - primorial(nth(12)) 215s ok 26 - pn_primorial(12) 215s ok 27 - primorial(nth(13)) 215s ok 28 - pn_primorial(13) 215s ok 29 - primorial(nth(14)) 215s ok 30 - pn_primorial(14) 215s ok 31 - primorial(nth(15)) 215s ok 32 - pn_primorial(15) 215s ok 33 - primorial(nth(16)) 215s ok 34 - pn_primorial(16) 215s ok 35 - primorial(nth(17)) 215s ok 36 - pn_primorial(17) 215s ok 37 - primorial(nth(18)) 215s ok 38 - pn_primorial(18) 215s ok 39 - primorial(nth(19)) 215s ok 40 - pn_primorial(19) 215s ok 41 - primorial(nth(20)) 215s ok 42 - pn_primorial(20) 215s ok 43 - primorial(nth(21)) 215s ok 44 - pn_primorial(21) 215s ok 45 - primorial(nth(22)) 215s ok 46 - pn_primorial(22) 215s ok 47 - primorial(nth(23)) 215s ok 48 - pn_primorial(23) 215s ok 49 - primorial(nth(24)) 215s ok 50 - pn_primorial(24) 215s ok 51 - primorial(nth(25)) 215s ok 52 - pn_primorial(25) 215s ok 53 - primorial(nth(26)) 215s ok 54 - pn_primorial(26) 215s ok 55 - primorial(nth(27)) 215s ok 56 - pn_primorial(27) 215s ok 57 - primorial(nth(28)) 215s ok 58 - pn_primorial(28) 215s ok 59 - primorial(nth(29)) 215s ok 60 - pn_primorial(29) 215s ok 61 - primorial(nth(30)) 215s ok 62 - pn_primorial(30) 215s ok 63 - primorial(100) 215s ok 64 - primorial(541) 215s ok 215s t/21-conseq-lcm.t ........ 215s 1..102 215s ok 1 - consecutive_integer_lcm(0) 215s ok 2 - consecutive_integer_lcm(1) 215s ok 3 - consecutive_integer_lcm(2) 215s ok 4 - consecutive_integer_lcm(3) 215s ok 5 - consecutive_integer_lcm(4) 215s ok 6 - consecutive_integer_lcm(5) 215s ok 7 - consecutive_integer_lcm(6) 215s ok 8 - consecutive_integer_lcm(7) 215s ok 9 - consecutive_integer_lcm(8) 215s ok 10 - consecutive_integer_lcm(9) 215s ok 11 - consecutive_integer_lcm(10) 215s ok 12 - consecutive_integer_lcm(11) 215s ok 13 - consecutive_integer_lcm(12) 215s ok 14 - consecutive_integer_lcm(13) 215s ok 15 - consecutive_integer_lcm(14) 215s ok 16 - consecutive_integer_lcm(15) 215s ok 17 - consecutive_integer_lcm(16) 215s ok 18 - consecutive_integer_lcm(17) 215s ok 19 - consecutive_integer_lcm(18) 215s ok 20 - consecutive_integer_lcm(19) 215s ok 21 - consecutive_integer_lcm(20) 215s ok 22 - consecutive_integer_lcm(21) 215s ok 23 - consecutive_integer_lcm(22) 215s ok 24 - consecutive_integer_lcm(23) 215s ok 25 - consecutive_integer_lcm(24) 215s ok 26 - consecutive_integer_lcm(25) 215s ok 27 - consecutive_integer_lcm(26) 215s ok 28 - consecutive_integer_lcm(27) 215s ok 29 - consecutive_integer_lcm(28) 215s ok 30 - consecutive_integer_lcm(29) 215s ok 31 - consecutive_integer_lcm(30) 215s ok 32 - consecutive_integer_lcm(31) 215s ok 33 - consecutive_integer_lcm(32) 215s ok 34 - consecutive_integer_lcm(33) 215s ok 35 - consecutive_integer_lcm(34) 215s ok 36 - consecutive_integer_lcm(35) 215s ok 37 - consecutive_integer_lcm(36) 215s ok 38 - consecutive_integer_lcm(37) 215s ok 39 - consecutive_integer_lcm(38) 215s ok 40 - consecutive_integer_lcm(39) 215s ok 41 - consecutive_integer_lcm(40) 215s ok 42 - consecutive_integer_lcm(41) 215s ok 43 - consecutive_integer_lcm(42) 215s ok 44 - consecutive_integer_lcm(43) 215s ok 45 - consecutive_integer_lcm(44) 215s ok 46 - consecutive_integer_lcm(45) 215s ok 47 - consecutive_integer_lcm(46) 215s ok 48 - consecutive_integer_lcm(47) 215s ok 49 - consecutive_integer_lcm(48) 215s ok 50 - consecutive_integer_lcm(49) 215s ok 51 - consecutive_integer_lcm(50) 215s ok 52 - consecutive_integer_lcm(51) 215s ok 53 - consecutive_integer_lcm(52) 215s ok 54 - consecutive_integer_lcm(53) 215s ok 55 - consecutive_integer_lcm(54) 215s ok 56 - consecutive_integer_lcm(55) 215s ok 57 - consecutive_integer_lcm(56) 215s ok 58 - consecutive_integer_lcm(57) 215s ok 59 - consecutive_integer_lcm(58) 215s ok 60 - consecutive_integer_lcm(59) 215s ok 61 - consecutive_integer_lcm(60) 215s ok 62 - consecutive_integer_lcm(61) 215s ok 63 - consecutive_integer_lcm(62) 215s ok 64 - consecutive_integer_lcm(63) 215s ok 65 - consecutive_integer_lcm(64) 215s ok 66 - consecutive_integer_lcm(65) 215s ok 67 - consecutive_integer_lcm(66) 215s ok 68 - consecutive_integer_lcm(67) 215s ok 69 - consecutive_integer_lcm(68) 215s ok 70 - consecutive_integer_lcm(69) 215s ok 71 - consecutive_integer_lcm(70) 215s ok 72 - consecutive_integer_lcm(71) 215s ok 73 - consecutive_integer_lcm(72) 215s ok 74 - consecutive_integer_lcm(73) 215s ok 75 - consecutive_integer_lcm(74) 215s ok 76 - consecutive_integer_lcm(75) 215s ok 77 - consecutive_integer_lcm(76) 215s ok 78 - consecutive_integer_lcm(77) 215s ok 79 - consecutive_integer_lcm(78) 215s ok 80 - consecutive_integer_lcm(79) 215s ok 81 - consecutive_integer_lcm(80) 215s ok 82 - consecutive_integer_lcm(81) 215s ok 83 - consecutive_integer_lcm(82) 215s ok 84 - consecutive_integer_lcm(83) 215s ok 85 - consecutive_integer_lcm(84) 215s ok 86 - consecutive_integer_lcm(85) 215s ok 87 - consecutive_integer_lcm(86) 215s ok 88 - consecutive_integer_lcm(87) 215s ok 89 - consecutive_integer_lcm(88) 215s ok 90 - consecutive_integer_lcm(89) 215s ok 91 - consecutive_integer_lcm(90) 215s ok 92 - consecutive_integer_lcm(91) 215s ok 93 - consecutive_integer_lcm(92) 215s ok 94 - consecutive_integer_lcm(93) 215s ok 95 - consecutive_integer_lcm(94) 215s ok 96 - consecutive_integer_lcm(95) 215s ok 97 - consecutive_integer_lcm(96) 215s ok 98 - consecutive_integer_lcm(97) 215s ok 99 - consecutive_integer_lcm(98) 215s ok 100 - consecutive_integer_lcm(99) 215s ok 101 - consecutive_integer_lcm(100) 215s ok 102 - consecutive_integer_lcm(2000) 215s ok 215s t/22-aks-prime.t ......... 215s 1..9 215s ok 1 - is_prime(undef) 215s ok 2 - 2 is prime 215s ok 3 - 1 is not prime 215s ok 4 - 0 is not prime 215s ok 5 - -1 is not prime 215s ok 6 - -2 is not prime 215s ok 7 - is_aks_prime(877) is true 215s ok 8 - is_aks_prime(69197) is true 215s ok 9 - is_aks_prime(69199) is false 215s ok 216s t/23-primality-proofs.t .. 216s 1..88 216s ok 1 - 871139809 is composite 216s ok 2 - 1490266103 is provably prime 216s ok 3 - 20907001 is prime 216s ok 4 - is_provable_prime_with_cert returns 2 216s ok 5 - certificate is non-null 216s ok 6 - verification of certificate for 20907001 done 216s ok 7 - prime_certificate is also non-null 216s ok 8 - certificate is identical to first 216s ok 9 - 809120722675364249 is prime 216s ok 10 - is_provable_prime_with_cert returns 2 216s ok 11 - certificate is non-null 216s ok 12 - verification of certificate for 809120722675364249 done 216s ok 13 - prime_certificate is also non-null 216s ok 14 - certificate is identical to first 216s ok 15 - 677826928624294778921 is prime 216s ok 16 - is_provable_prime_with_cert returns 2 216s ok 17 - certificate is non-null 216s ok 18 - verification of certificate for 677826928624294778921 done 216s ok 19 - prime_certificate is also non-null 216s ok 20 - certificate is identical to first 216s ok 21 - 980098182126316404630169387 is prime 216s ok 22 - is_provable_prime_with_cert returns 2 216s ok 23 - certificate is non-null 216s ok 24 - verification of certificate for 980098182126316404630169387 done 216s ok 25 - prime_certificate is also non-null 216s ok 26 - certificate is identical to first 216s ok 27 - simple Lucas/Pratt proof verified 216s ok 28 - ECPP primality proof of 1030291136596639351761062717 verified 216s ok 29 - warning for unknown method 216s ok 30 - ...and returns 0 216s ok 31 - warning for invalid Lucas/Pratt 216s ok 32 - ...and returns 0 216s ok 33 - warning for invalid Lucas/Pratt 216s ok 34 - ...and returns 0 216s ok 35 - warning for invalid Lucas/Pratt 216s ok 36 - ...and returns 0 216s ok 37 - warning for invalid n-1 (too many arguments) 216s ok 38 - ...and returns 0 216s ok 39 - warning for invalid n-1 (non-array f,a) 216s ok 40 - ...and returns 0 216s ok 41 - warning for invalid n-1 (non-array a) 216s ok 42 - ...and returns 0 216s ok 43 - warning for invalid n-1 (too few a values) 216s ok 44 - ...and returns 0 216s ok 45 - warning for invalid ECPP (no n-certs) 216s ok 46 - ...and returns 0 216s ok 47 - warning for invalid ECPP (non-array block) 216s ok 48 - ...and returns 0 216s ok 49 - warning for invalid ECPP (wrong size block) 216s ok 50 - ...and returns 0 216s ok 51 - warning for invalid ECPP (block n != q) 216s ok 52 - ...and returns 0 216s ok 53 - warning for invalid ECPP (block point wrong format) 216s ok 54 - ...and returns 0 216s ok 55 - warning for invalid ECPP (block point wrong format) 216s ok 56 - ...and returns 0 216s ok 57 - verify null is composite 216s ok 58 - verify [2] is prime 216s ok 59 - verify [9] is composite 216s ok 60 - verify [14] is composite 216s ok 61 - verify BPSW with n > 2^64 fails 216s ok 62 - verify BPSW with composite fails 216s ok 63 - Lucas/Pratt proper 216s ok 64 - Pratt with non-prime factors 216s ok 65 - Pratt with non-prime factors 216s ok 66 - Pratt with wrong factors 216s ok 67 - Pratt with not enough factors 216s ok 68 - Pratt with coprime a 216s ok 69 - Pratt with non-psp a 216s ok 70 - Pratt with a not valid for all f 216s ok 71 - n-1 proper 216s ok 72 - n-1 with wrong factors 216s ok 73 - n-1 without 2 as a factor 216s ok 74 - n-1 with a non-prime factor 216s ok 75 - n-1 with a non-prime array factor 216s ok 76 - n-1 without enough factors 216s ok 77 - n-1 with bad BLS75 r/s 216s ok 78 - n-1 with bad a value 216s ok 79 - ECPP proper 216s ok 80 - ECPP q is divisible by 2 216s ok 81 - ECPP a/b invalid 216s ok 82 - ECPP q is too small 216s ok 83 - ECPP multiplication wrong (infinity) 216s ok 84 - ECPP multiplication wrong (not infinity) 216s ok 85 - ECPP non-prime last q 216s ok 86 - Verify Pocklington 216s ok 87 - Verify BLS15 216s ok 88 - Verify ECPP3 216s ok 216s t/23-random-certs.t ...... 216s 1..6 216s ok 1 - Random Maurer prime returns a prime 216s ok 2 - with a valid certificate 216s ok 3 - Random Shawe-Taylor prime returns a prime 216s ok 4 - with a valid certificate 216s ok 5 - Random proven prime returns a prime 216s ok 6 - with a valid certificate 216s ok 216s t/24-partitions.t ........ 216s 1..79 216s ok 1 - partitions(0) 216s ok 2 - partitions(1) 216s ok 3 - partitions(2) 216s ok 4 - partitions(3) 216s ok 5 - partitions(4) 216s ok 6 - partitions(5) 216s ok 7 - partitions(6) 216s ok 8 - partitions(7) 216s ok 9 - partitions(8) 216s ok 10 - partitions(9) 216s ok 11 - partitions(10) 216s ok 12 - partitions(11) 216s ok 13 - partitions(12) 216s ok 14 - partitions(13) 216s ok 15 - partitions(14) 216s ok 16 - partitions(15) 216s ok 17 - partitions(16) 216s ok 18 - partitions(17) 216s ok 19 - partitions(18) 216s ok 20 - partitions(19) 216s ok 21 - partitions(20) 216s ok 22 - partitions(21) 216s ok 23 - partitions(22) 216s ok 24 - partitions(23) 216s ok 25 - partitions(24) 216s ok 26 - partitions(25) 216s ok 27 - partitions(26) 216s ok 28 - partitions(27) 216s ok 29 - partitions(28) 216s ok 30 - partitions(29) 216s ok 31 - partitions(30) 216s ok 32 - partitions(31) 216s ok 33 - partitions(32) 216s ok 34 - partitions(33) 216s ok 35 - partitions(34) 216s ok 36 - partitions(35) 216s ok 37 - partitions(36) 216s ok 38 - partitions(37) 216s ok 39 - partitions(38) 216s ok 40 - partitions(39) 216s ok 41 - partitions(40) 216s ok 42 - partitions(41) 216s ok 43 - partitions(42) 216s ok 44 - partitions(43) 216s ok 45 - partitions(44) 216s ok 46 - partitions(45) 216s ok 47 - partitions(46) 216s ok 48 - partitions(47) 216s ok 49 - partitions(48) 216s ok 50 - partitions(49) 216s ok 51 - partitions(50) 216s ok 52 - partitions(101) 216s ok 53 - partitions(256) 216s ok 54 - forpart 0 216s ok 55 - forpart 1 216s ok 56 - forpart 2 216s ok 57 - forpart 3 216s ok 58 - forpart 4 216s ok 59 - forpart 6 216s ok 60 - forpart 17 restricted n=[2,2] 216s ok 61 - forpart 27 restricted nmax 5 216s ok 62 - forpart 27 restricted nmin 20 216s ok 63 - forpart 19 restricted n=[10..13] 216s ok 64 - forpart 20 restricted amax 4 216s ok 65 - forpart 15 restricted amin 4 216s ok 66 - forpart 21 restricted a=[3..6] 216s ok 67 - forpart 22 restricted n=4 and a=[3..6] 216s ok 68 - forpart 20 restricted to odd primes 216s ok 69 - forpart 21 restricted amax 0 216s ok 70 - A007963(89) = number of odd-prime 3-tuples summing to 2*89+1 = 86 216s ok 71 - 23 partitioned into 4 with mininum 2 => 54 216s ok 72 - 23 partitioned into 4 with mininum 2 and prime => 5 216s ok 73 - 23 partitioned into 4 with mininum 2 and composite => 1 216s ok 74 - forcomp 0 216s ok 75 - forcomp 1 216s ok 76 - forcomp 2 216s ok 77 - forcomp 3 216s ok 78 - forcomp 5 restricted n=3 216s ok 79 - forcomp 12 restricted n=3,a=[3..5] 216s ok 216s t/25-lucas_sequences.t ... 216s 1..52 216s ok 1 - lucas_sequence U_n(1 -1) -- Fibonacci numbers 216s ok 2 - lucas_sequence V_n(1 -1) -- Lucas numbers 216s ok 3 - lucas_sequence U_n(2 -1) -- Pell numbers 216s ok 4 - lucas_sequence V_n(2 -1) -- Pell-Lucas numbers 216s ok 5 - lucas_sequence U_n(1 -2) -- Jacobsthal numbers 216s ok 6 - lucas_sequence V_n(1 -2) -- Jacobsthal-Lucas numbers 216s ok 7 - lucas_sequence U_n(2 2) -- sin(x)*exp(x) 216s ok 8 - lucas_sequence V_n(2 2) -- offset sin(x)*exp(x) 216s ok 9 - lucas_sequence U_n(2 5) -- A045873 216s ok 10 - lucas_sequence U_n(3 -5) -- 3*a(n-1)+5*a(n-2) [0,1] 216s ok 11 - lucas_sequence V_n(3 -5) -- 3*a(n-1)+5*a(n-2) [2,3] 216s ok 12 - lucas_sequence U_n(3 -4) -- 3*a(n-1)+4*a(n-2) [0,1] 216s ok 13 - lucas_sequence V_n(3 -4) -- 3*a(n-1)+4*a(n-2) [2,3] 216s ok 14 - lucas_sequence U_n(3 -1) -- A006190 216s ok 15 - lucas_sequence V_n(3 -1) -- A006497 216s ok 16 - lucas_sequence U_n(3 1) -- Fibonacci(2n) 216s ok 17 - lucas_sequence V_n(3 1) -- Lucas(2n) 216s ok 18 - lucas_sequence U_n(3 2) -- 2^n-1 Mersenne numbers (prime and composite) 216s ok 19 - lucas_sequence V_n(3 2) -- 2^n+1 216s ok 20 - lucas_sequence U_n(4 -1) -- Denominators of continued fraction convergents to sqrt(5) 216s ok 21 - lucas_sequence V_n(4 -1) -- Even Lucas numbers Lucas(3n) 216s ok 22 - lucas_sequence U_n(4 1) -- A001353 216s ok 23 - lucas_sequence V_n(4 1) -- A003500 216s ok 24 - lucas_sequence U_n(5 4) -- (4^n-1)/3 216s ok 25 - lucas_sequence U_n(4 4) -- n*2^(n-1) 216s ok 26 - lucasu(1 -1) -- Fibonacci numbers 216s ok 27 - lucasv(1 -1) -- Lucas numbers 216s ok 28 - lucasu(2 -1) -- Pell numbers 216s ok 29 - lucasv(2 -1) -- Pell-Lucas numbers 216s ok 30 - lucasu(1 -2) -- Jacobsthal numbers 216s ok 31 - lucasv(1 -2) -- Jacobsthal-Lucas numbers 216s ok 32 - lucasu(2 2) -- sin(x)*exp(x) 216s ok 33 - lucasv(2 2) -- offset sin(x)*exp(x) 216s ok 34 - lucasu(2 5) -- A045873 216s ok 35 - lucasu(3 -5) -- 3*a(n-1)+5*a(n-2) [0,1] 216s ok 36 - lucasv(3 -5) -- 3*a(n-1)+5*a(n-2) [2,3] 216s ok 37 - lucasu(3 -4) -- 3*a(n-1)+4*a(n-2) [0,1] 216s ok 38 - lucasv(3 -4) -- 3*a(n-1)+4*a(n-2) [2,3] 216s ok 39 - lucasu(3 -1) -- A006190 216s ok 40 - lucasv(3 -1) -- A006497 216s ok 41 - lucasu(3 1) -- Fibonacci(2n) 216s ok 42 - lucasv(3 1) -- Lucas(2n) 216s ok 43 - lucasu(3 2) -- 2^n-1 Mersenne numbers (prime and composite) 216s ok 44 - lucasv(3 2) -- 2^n+1 216s ok 45 - lucasu(4 -1) -- Denominators of continued fraction convergents to sqrt(5) 216s ok 46 - lucasv(4 -1) -- Even Lucas numbers Lucas(3n) 216s ok 47 - lucasu(4 1) -- A001353 216s ok 48 - lucasv(4 1) -- A003500 216s ok 49 - lucasu(5 4) -- (4^n-1)/3 216s ok 50 - lucasu(4 4) -- n*2^(n-1) 216s ok 51 - OEIS 81264: Odd Fibonacci pseudoprimes 216s ok 52 - First entry of OEIS A141137: Even Fibonacci pseudoprimes 216s ok 216s t/26-combinatorial.t ..... 216s 1..72 216s ok 1 - Factorials 0 to 100 216s ok 2 - factorialmod n! mod m for m 1 to 50, n 0 to m 216s ok 3 - binomial(0,0)) = 1 216s ok 4 - binomial(0,1)) = 0 216s ok 5 - binomial(1,0)) = 1 216s ok 6 - binomial(1,1)) = 1 216s ok 7 - binomial(1,2)) = 0 216s ok 8 - binomial(13,13)) = 1 216s ok 9 - binomial(13,14)) = 0 216s ok 10 - binomial(35,16)) = 4059928950 216s ok 11 - binomial(40,19)) = 131282408400 216s ok 12 - binomial(67,31)) = 11923179284862717872 216s ok 13 - binomial(228,12)) = 30689926618143230620 216s ok 14 - binomial(177,78)) = 3314450882216440395106465322941753788648564665022000 216s ok 15 - binomial(-10,5)) = -2002 216s ok 16 - binomial(-11,22)) = 64512240 216s ok 17 - binomial(-12,23)) = -286097760 216s ok 18 - binomial(-23,-26)) = -2300 216s ok 19 - binomial(-12,-23)) = -705432 216s ok 20 - binomial(12,-23)) = 0 216s ok 21 - binomial(12,-12)) = 0 216s ok 22 - binomial(-12,0)) = 1 216s ok 23 - binomial(0,-1)) = 0 216s ok 24 - binomial(10,n) for n in -15 .. 15 216s ok 25 - binomial(-10,n) for n in -15 .. 15 216s ok 26 - forcomb 0 216s ok 27 - forcomb 1 216s ok 28 - forcomb 0,0 216s ok 29 - forcomb 5,0 216s ok 30 - forcomb 5,6 216s ok 31 - forcomb 5,5 216s ok 32 - forcomb 3 (power set) 216s ok 33 - forcomb 3,2 216s ok 34 - forcomb 4,3 216s ok 35 - binomial(20,15) is 15504 216s ok 36 - forcomb 20,15 yields binomial(20,15) combinations 216s ok 37 - forperm 2 216s ok 38 - forperm 0 216s ok 39 - forperm 1 216s ok 40 - forperm 4 216s ok 41 - forperm 3 216s ok 42 - forperm 7 yields factorial(7) permutations 216s ok 43 - formultiperm [] 216s ok 44 - formultiperm 1,2,2 216s ok 45 - formultiperm a,a,b,b 216s ok 46 - formultiperm aabb 216s ok 47 - forderange 0 216s ok 48 - forderange 1 216s ok 49 - forderange 2 216s ok 50 - forderange 3 216s ok 51 - forderange 7 count 216s ok 52 - numtoperm(0,0) 216s ok 53 - numtoperm(1,0) 216s ok 54 - numtoperm(1,1) 216s ok 55 - numtoperm(5,15) 216s ok 56 - numtoperm(24,987654321) 216s ok 57 - permtonum([]) 216s ok 58 - permtonum([0]) 216s ok 59 - permtonum([6,3,4,2,5,0,1]) 216s ok 60 - permtonum( 20 ) 216s ok 61 - permtonum( 26 ) 216s ok 62 - permtonum(numtoperm) 216s ok 63 - randperm(0) 216s ok 64 - randperm(1) 216s ok 65 - randperm(100,4) 216s ok 66 - randperm shuffle has shuffled input 216s ok 67 - randperm shuffle contains original data 216s ok 68 - shuffle with no args 216s ok 69 - shuffle with one arg 216s ok 70 - argument count is the same for 100 elem shuffle 216s ok 71 - shuffle has shuffled input 216s ok 72 - shuffle contains original data 216s ok 217s t/26-digits.t ............ 217s 1..39 217s ok 1 - fromdigits binary with leading 0 217s ok 2 - fromdigits binary 217s ok 3 - fromdigits decimal 217s ok 4 - fromdigits base 3 217s ok 5 - fromdigits base 16 217s ok 6 - fromdigits base 16 with overflow 217s ok 7 - fromdigits base 5 with carry 217s ok 8 - fromdigits base 3 with carry 217s ok 9 - fromdigits base 2 with carry 217s ok 10 - fromdigits hex string 217s ok 11 - fromdigits decimal 217s ok 12 - fromdigits with Large base 36 number 217s ok 13 - todigits 0 217s ok 14 - todigits 1 217s ok 15 - todigits 77 217s ok 16 - todigits 77 base 2 217s ok 17 - todigits 77 base 3 217s ok 18 - todigits 77 base 21 217s ok 19 - todigits 900 base 2 217s ok 20 - todigits 900 base 2 len 0 217s ok 21 - todigits 900 base 2 len 3 217s ok 22 - todigits 900 base 2 len 32 217s ok 23 - vecsum of todigits of bigint 217s ok 24 - sumdigits(-45.36) 217s ok 25 - sumdigits 0 to 1000 217s ok 26 - sumdigits hex 217s ok 27 - sumdigits bigint 217s ok 28 - todigits 1234135634 base 16 217s ok 29 - todigits 56 base 2 len 8 217s ok 30 - fromdigits of previous 217s ok 31 - 56 as binary string 217s ok 32 - fromdigits of previous 217s ok 33 - todigitstring 37 217s ok 34 - fromdigits 5128 base 10 217s ok 35 - fromdigits 91 base 2 217s ok 36 - fromdigits 1923 base 10 217s ok 37 - fromdigits 91 base 2 217s ok 38 - fromdigits with carry 217s ok 39 - only last 4 digits 217s ok 217s t/26-iscarmichael.t ...... 217s 1..7 217s ok 1 - Carmichael numbers to 20000 217s ok 2 - Large Carmichael 217s ok 3 # skip Skipping larger Carmichael 217s ok 4 - Quasi-Carmichael numbers to 400 217s ok 5 - 95 Quasi-Carmichael numbers under 5000 217s ok 6 - 5092583 is a Quasi-Carmichael number with 1 base 217s ok 7 - 777923 is a Quasi-Carmichael number with 7 bases 217s ok 217s t/26-isfundamental.t ..... 217s 1..4 217s ok 1 - is_fundamental(-50 .. 0) 217s ok 2 - is_fundamental(0 .. 50) 217s ok 3 - is_fundamental(2^67+9) 217s ok 4 - is_fundamental(-2^67+44) 217s ok 217s t/26-ispower.t ........... 217s 1..57 217s ok 1 - is_power 0 .. 32 217s ok 2 - is_prime_power 0 .. 32 217s ok 3 - is_power 200 small ints 217s ok 4 - is_prime_power 200 small ints 217s ok 5 - ispower => 12157665459056928801 = 3^40 (3 40) 217s ok 6 - ispower => 789730223053602816 = 6^23 (6 23) 217s ok 7 - ispower => 10000000000000000000 = 10^19 (10 19) 217s ok 8 - ispower => 9223372036854775808 = 2^63 (2 63) 217s ok 9 - ispower => 4738381338321616896 = 6^24 (6 24) 217s ok 10 - ispower => 4611686018427387904 = 2^62 (2 62) 217s ok 11 - ispower => 16926659444736 = 6^17 (6 17) 217s ok 12 - ispower => 609359740010496 = 6^19 (6 19) 217s ok 13 - ispower => 100000000000000000 = 10^17 (10 17) 217s ok 14 - isprimepower => 762939453125 = 5^17 (5 17) 217s ok 15 - isprimepower => 8650415919381337933 = 13^17 (13 17) 217s ok 16 - isprimepower => 11398895185373143 = 7^19 (7 19) 217s ok 17 - isprimepower => 68630377364883 = 3^29 (3 29) 217s ok 18 - isprimepower => 15181127029874798299 = 19^15 (19 15) 217s ok 19 - isprimepower => 5559917313492231481 = 11^18 (11 18) 217s ok 20 - isprimepower => 7450580596923828125 = 5^27 (5 27) 217s ok 21 - isprimepower => 450283905890997363 = 3^37 (3 37) 217s ok 22 - isprimepower => 2862423051509815793 = 17^15 (17 15) 217s ok 23 - isprimepower => 232630513987207 = 7^17 (7 17) 217s ok 24 - isprimepower => 3909821048582988049 = 7^22 (7 22) 217s ok 25 - isprimepower => 11920928955078125 = 5^23 (5 23) 217s ok 26 - isprimepower => 617673396283947 = 3^31 (3 31) 217s ok 27 - isprimepower => 12157665459056928801 = 3^40 (3 40) 217s ok 28 - -8 is a third power 217s ok 29 - -8 is a third power of -2 217s ok 30 - -8 is not a fourth power 217s ok 31 - -16 is not a fourth power 217s ok 32 - is_power returns 9 for 217s ok 33 - is_power returns 0 for 217s ok 34 - is_power returns 2 for 217s ok 35 - is_power returns 3 for 217s ok 36 - is_power returns 4 for 217s ok 37 - is_power(-7^0 ) = 0 217s ok 38 - is_power(-7^1 ) = 0 217s ok 39 - is_power(-7^2 ) = 0 217s ok 40 - is_power(-7^3 ) = 3 217s ok 41 - is_power(-7^4 ) = 0 217s ok 42 - is_power(-7^5 ) = 5 217s ok 43 - is_power(-7^6 ) = 3 217s ok 44 - is_power(-7^7 ) = 7 217s ok 45 - is_power(-7^8 ) = 0 217s ok 46 - is_power(-7^9 ) = 9 217s ok 47 - is_power(-7^10 ) = 5 217s ok 48 - -1 is a 5th power 217s ok 49 - 24 isn't a perfect square... 217s ok 50 - ...and the root wasn't set 217s ok 51 - 1000031^3 is a perfect cube... 217s ok 52 - ...and the root was set 217s ok 53 - 36^5 is a 10th power... 217s ok 54 - ...and the root is 6 217s ok 55 - is_square for -4 .. 16 217s ok 56 - 603729 is a square 217s ok 57 - is_square() = 1 217s ok 217s t/26-issemiprime.t ....... 217s 1..6 217s ok 1 - Semiprimes that were incorrectly calculated in v0.70 217s ok 2 - Identify semiprimes from 10000 to 10100 217s ok 3 - is_semiprime(669386384129397581) 217s ok 4 - is_semiprime(10631816576169524657) 217s ok 5 - is_semiprime(1814186289136250293214268090047441303) 217s ok 6 - is_semiprime(42535430147496493121551759) 217s ok 217s t/26-issquarefree.t ...... 217s 1..56 217s ok 1 - is_square_free(16) 217s ok 2 - is_square_free(-16) 217s ok 3 - is_square_free(4) 217s ok 4 - is_square_free(-4) 217s ok 5 - is_square_free(870589313) 217s ok 6 - is_square_free(-870589313) 217s ok 7 - is_square_free(617459403) 217s ok 8 - is_square_free(-617459403) 217s ok 9 - is_square_free(3) 217s ok 10 - is_square_free(-3) 217s ok 11 - is_square_free(2) 217s ok 12 - is_square_free(-2) 217s ok 13 - is_square_free(12) 217s ok 14 - is_square_free(-12) 217s ok 15 - is_square_free(1) 217s ok 16 - is_square_free(-1) 217s ok 17 - is_square_free(506916483) 217s ok 18 - is_square_free(-506916483) 217s ok 19 - is_square_free(15) 217s ok 20 - is_square_free(-15) 217s ok 21 - is_square_free(758096738) 217s ok 22 - is_square_free(-758096738) 217s ok 23 - is_square_free(0) 217s ok 24 - is_square_free(-0) 217s ok 25 - is_square_free(9) 217s ok 26 - is_square_free(-9) 217s ok 27 - is_square_free(7) 217s ok 28 - is_square_free(-7) 217s ok 29 - is_square_free(602721315) 217s ok 30 - is_square_free(-602721315) 217s ok 31 - is_square_free(6) 217s ok 32 - is_square_free(-6) 217s ok 33 - is_square_free(752518565) 217s ok 34 - is_square_free(-752518565) 217s ok 35 - is_square_free(695486396) 217s ok 36 - is_square_free(-695486396) 217s ok 37 - is_square_free(8) 217s ok 38 - is_square_free(-8) 217s ok 39 - is_square_free(10) 217s ok 40 - is_square_free(-10) 217s ok 41 - is_square_free(14) 217s ok 42 - is_square_free(-14) 217s ok 43 - is_square_free(418431087) 217s ok 44 - is_square_free(-418431087) 217s ok 45 - is_square_free(13) 217s ok 46 - is_square_free(-13) 217s ok 47 - is_square_free(723570005) 217s ok 48 - is_square_free(-723570005) 217s ok 49 - is_square_free(5) 217s ok 50 - is_square_free(-5) 217s ok 51 - is_square_free(434420340) 217s ok 52 - is_square_free(-434420340) 217s ok 53 - is_square_free(11) 217s ok 54 - is_square_free(-11) 217s ok 55 - 815373060690029363516051578884163974 is square free 217s ok 56 - 638277566021123181834824715385258732627350 is not square free 217s ok 217s t/26-istotient.t ......... 217s 1..8 217s ok 1 - is_totient 0 .. 40 217s ok 2 - is_fundamental(2^29_1 .. 2^29+80) 217s ok 3 - is_totient(2^63+28) 217s ok 4 - is_totient(2^63+20) 217s ok 5 - is_totient(2^63+24) 217s ok 6 - is_totient(2^83+88) 217s ok 7 # skip Skipping is_totient for 2^83 + ... 217s ok 8 # skip Skipping is_totient for 2^83 + ... 217s ok 218s t/26-mod.t ............... 218s 1..45 218s ok 1 - invmod(undef,11) 218s ok 2 - invmod(11,undef) 218s ok 3 - invmod('nan',11) 218s ok 4 - invmod(0,0) = 218s ok 5 - invmod(1,0) = 218s ok 6 - invmod(0,1) = 218s ok 7 - invmod(1,1) = 0 218s ok 8 - invmod(45,59) = 21 218s ok 9 - invmod(42,2017) = 1969 218s ok 10 - invmod(42,-2017) = 1969 218s ok 11 - invmod(-42,2017) = 48 218s ok 12 - invmod(-42,-2017) = 48 218s ok 13 - invmod(14,28474) = 218s ok 14 - invmod(13,9223372036854775808) = 5675921253449092805 218s ok 15 - invmod(14,18446744073709551615) = 17129119497016012214 218s ok 16 - sqrtmod(0,0) = 218s ok 17 - sqrtmod(1,0) = 218s ok 18 - sqrtmod(0,1) = 0 218s ok 19 - sqrtmod(1,1) = 0 218s ok 20 - sqrtmod(58,101) = 19 218s ok 21 - sqrtmod(111,113) = 26 218s ok 22 - sqrtmod(37,999221) = 9946 218s ok 23 - sqrtmod(30,1000969) = 89676 218s ok 24 - sqrtmod(9223372036854775808,5675921253449092823) = 22172359690642254 218s ok 25 - sqrtmod(18446744073709551625,340282366920938463463374607431768211507) = 57825146747270203522128844001742059051 218s ok 26 - sqrtmod(30,74) = 20 218s ok 27 - sqrtmod(56,1018) = 458 218s ok 28 - sqrtmod(42,979986) = 356034 218s ok 29 - addmod(..,0) 218s ok 30 - mulmod(..,0) 218s ok 31 - divmod(..,0) 218s ok 32 - powmod(..,0) 218s ok 33 - addmod(..,1) 218s ok 34 - mulmod(..,1) 218s ok 35 - divmod(..,1) 218s ok 36 - powmod(..,1) 218s ok 37 - addmod on 30 random inputs 218s ok 38 - addmod with negative second input on 30 random inputs 218s ok 39 - mulmod on 30 random inputs 218s ok 40 - mulmod with negative second input on 30 random inputs 218s ok 41 - divmod(0,14,53) = mulmod(0,invmod(14,53),53) = mulmod(0,19,53) = 0 218s ok 42 - divmod on 30 random inputs 218s ok 43 - divmod with negative second input on 30 random inputs 218s ok 44 - powmod on 30 random inputs 218s ok 45 - powmod with negative exponent on 30 random inputs 218s ok 218s t/26-pillai.t ............ 218s 1..2 218s ok 1 - 1059511 is a Pillai prime 218s ok 2 - is_pillai from -10 to 1000 218s ok 218s t/26-polygonal.t ......... 218s 1..48 218s ok 1 - is_polygonal finds first 10 3-gonal numbers 218s ok 2 - is_polygonal finds first 10 4-gonal numbers 218s ok 3 - is_polygonal finds first 10 5-gonal numbers 218s ok 4 - is_polygonal finds first 10 6-gonal numbers 218s ok 5 - is_polygonal finds first 10 7-gonal numbers 218s ok 6 - is_polygonal finds first 10 8-gonal numbers 218s ok 7 - is_polygonal finds first 10 9-gonal numbers 218s ok 8 - is_polygonal finds first 10 10-gonal numbers 218s ok 9 - is_polygonal finds first 10 11-gonal numbers 218s ok 10 - is_polygonal finds first 10 12-gonal numbers 218s ok 11 - is_polygonal finds first 10 13-gonal numbers 218s ok 12 - is_polygonal finds first 10 14-gonal numbers 218s ok 13 - is_polygonal finds first 10 15-gonal numbers 218s ok 14 - is_polygonal finds first 10 16-gonal numbers 218s ok 15 - is_polygonal finds first 10 17-gonal numbers 218s ok 16 - is_polygonal finds first 10 18-gonal numbers 218s ok 17 - is_polygonal finds first 10 19-gonal numbers 218s ok 18 - is_polygonal finds first 10 20-gonal numbers 218s ok 19 - is_polygonal finds first 10 21-gonal numbers 218s ok 20 - is_polygonal finds first 10 22-gonal numbers 218s ok 21 - is_polygonal finds first 10 23-gonal numbers 218s ok 22 - is_polygonal finds first 10 24-gonal numbers 218s ok 23 - is_polygonal finds first 10 25-gonal numbers 218s ok 24 - is_polygonal correct 3-gonal n 218s ok 25 - is_polygonal correct 4-gonal n 218s ok 26 - is_polygonal correct 5-gonal n 218s ok 27 - is_polygonal correct 6-gonal n 218s ok 28 - is_polygonal correct 7-gonal n 218s ok 29 - is_polygonal correct 8-gonal n 218s ok 30 - is_polygonal correct 9-gonal n 218s ok 31 - is_polygonal correct 10-gonal n 218s ok 32 - is_polygonal correct 11-gonal n 218s ok 33 - is_polygonal correct 12-gonal n 218s ok 34 - is_polygonal correct 13-gonal n 218s ok 35 - is_polygonal correct 14-gonal n 218s ok 36 - is_polygonal correct 15-gonal n 218s ok 37 - is_polygonal correct 16-gonal n 218s ok 38 - is_polygonal correct 17-gonal n 218s ok 39 - is_polygonal correct 18-gonal n 218s ok 40 - is_polygonal correct 19-gonal n 218s ok 41 - is_polygonal correct 20-gonal n 218s ok 42 - is_polygonal correct 21-gonal n 218s ok 43 - is_polygonal correct 22-gonal n 218s ok 44 - is_polygonal correct 23-gonal n 218s ok 45 - is_polygonal correct 24-gonal n 218s ok 46 - is_polygonal correct 25-gonal n 218s ok 47 - 724424175519274711242 is not a triangular number 218s ok 48 - 510622052816898545467859772308206986101878 is a triangular number 218s ok 218s t/26-vec.t ............... 218s 1..76 218s ok 1 - vecmin() = undef 218s ok 2 - vecmin(1) = 1 218s ok 3 - vecmin(0) = 0 218s ok 4 - vecmin(-1) = -1 218s ok 5 - vecmin(1 2) = 1 218s ok 6 - vecmin(2 1) = 1 218s ok 7 - vecmin(2 1) = 1 218s ok 8 - vecmin(0 4 -5 6 -6 0) = -6 218s ok 9 - vecmin(0 4 -5 7 -6 0) = -6 218s ok 10 - vecmin(81033966278481626507 27944220269257565027) = 27944220269257565027 218s ok 11 - vecmin(18446744073704516093 18446744073706008451 18446744073706436837 18446744073707776433 18446744073702959347 18446744073702958477) = 18446744073702958477 218s ok 12 - vecmin(-9223372036852260673 -9223372036852260731 -9223372036850511139 -9223372036850207017 -9223372036852254557 -9223372036849473359) = -9223372036852260731 218s ok 13 - vecmin(9223372036852278343 -9223372036853497487 -9223372036844936897 -9223372036850971897 -9223372036853497843 9223372036848046999) = -9223372036853497843 218s ok 14 - vecmax() = undef 218s ok 15 - vecmax(1) = 1 218s ok 16 - vecmax(0) = 0 218s ok 17 - vecmax(-1) = -1 218s ok 18 - vecmax(1 2) = 2 218s ok 19 - vecmax(2 1) = 2 218s ok 20 - vecmax(2 1) = 2 218s ok 21 - vecmax(0 4 -5 6 -6 0) = 6 218s ok 22 - vecmax(0 4 -5 7 -8 0) = 7 218s ok 23 - vecmax(27944220269257565027 81033966278481626507) = 81033966278481626507 218s ok 24 - vecmax(18446744070011576186 18446744070972009258 18446744071127815503 18446744072030630259 18446744072030628952 18446744071413452589) = 18446744072030630259 218s ok 25 - vecmax(18446744073702156661 18446744073707508539 18446744073700111529 18446744073707506771 18446744073707086091 18446744073704381821) = 18446744073707508539 218s ok 26 - vecmax(-9223372036853227739 -9223372036847631197 -9223372036851632173 -9223372036847631511 -9223372036852712261 -9223372036851707899) = -9223372036847631197 218s ok 27 - vecmax(-9223372036846673813 9223372036846154833 -9223372036851103423 9223372036846154461 -9223372036849190963 -9223372036847538803) = 9223372036846154833 218s ok 28 - vecsum() = 0 218s ok 29 - vecsum(-1) = -1 218s ok 30 - vecsum(1 -1) = 0 218s ok 31 - vecsum(-1 1) = 0 218s ok 32 - vecsum(-1 1) = 0 218s ok 33 - vecsum(-2147483648 2147483648) = 0 218s ok 34 - vecsum(-4294967296 4294967296) = 0 218s ok 35 - vecsum(-9223372036854775808 9223372036854775808) = 0 218s ok 36 - vecsum(18446744073709551615 -18446744073709551615 18446744073709551615) = 18446744073709551615 218s ok 37 - vecsum(18446744073709551616 18446744073709551616 18446744073709551616) = 55340232221128654848 218s ok 38 - vecsum(18446744073709540400 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000) = 18446744073709620400 218s ok 39 - vecprod() = 1 218s ok 40 - vecprod(1) = 1 218s ok 41 - vecprod(-1) = -1 218s ok 42 - vecprod(-1 -2) = 2 218s ok 43 - vecprod(-1 -2) = 2 218s ok 44 - vecprod(32767 -65535) = -2147385345 218s ok 45 - vecprod(32767 -65535) = -2147385345 218s ok 46 - vecprod(32768 -65535) = -2147450880 218s ok 47 - vecprod(32768 -65536) = -2147483648 218s ok 48 - vecprod matches factorial for 0 .. 50 218s ok 49 - vecreduce with empty list is undef 218s ok 50 - vecreduce with (a) is a and does not call the sub 218s ok 51 - vecreduce [xor] (4,2) => 6 218s ok 52 - vecreduce product of squares 218s ok 53 - vecextract bits 218s ok 54 - vecextract list 218s ok 55 - any true 218s ok 56 - any false 218s ok 57 - any empty list 218s ok 58 - all true 218s ok 59 - all false 218s ok 60 - all empty list 218s ok 61 - notall true 218s ok 62 - notall false 218s ok 63 - notall empty list 218s ok 64 - none true 218s ok 65 - none false 218s ok 66 - none empty list 218s ok 67 - first success 218s ok 68 - first failure 218s ok 69 - first empty list 218s ok 70 - first with reference args 218s ok 71 - first returns in loop 218s ok 72 - first idx success 218s ok 73 - first idx failure 218s ok 74 - first idx empty list 218s ok 75 - first idx with reference args 218s ok 76 - first idx returns in loop 218s ok 218s t/27-bernfrac.t .......... 218s 1..91 218s ok 1 - B_2n numerators 0 .. 20 218s ok 2 - B_2n denominators 0 .. 20 218s ok 3 - bernreal(0) 218s ok 4 - bernreal(1) 218s ok 5 - bernreal(2) 218s ok 6 - bernreal(3) 218s ok 7 - bernreal(4) 218s ok 8 - bernreal(5) 218s ok 9 - bernreal(6) 218s ok 10 - bernreal(7) 218s ok 11 - bernreal(8) 218s ok 12 - bernreal(9) 218s ok 13 - bernreal(10) 218s ok 14 - bernreal(11) 218s ok 15 - bernreal(12) 218s ok 16 - bernreal(13) 218s ok 17 - bernreal(14) 218s ok 18 - bernreal(15) 218s ok 19 - bernreal(16) 218s ok 20 - bernreal(17) 218s ok 21 - bernreal(18) 218s ok 22 - bernreal(19) 218s ok 23 - bernreal(20) 218s ok 24 - bernreal(21) 218s ok 25 - bernreal(22) 218s ok 26 - bernreal(23) 218s ok 27 - bernreal(24) 218s ok 28 - H_n numerators 0 .. 20 218s ok 29 - H_n denominators 0 .. 20 218s ok 30 - harmreal(0) 218s ok 31 - harmreal(1) 218s ok 32 - harmreal(2) 218s ok 33 - harmreal(3) 218s ok 34 - harmreal(4) 218s ok 35 - harmreal(5) 218s ok 36 - harmreal(6) 218s ok 37 - harmreal(7) 218s ok 38 - harmreal(8) 218s ok 39 - harmreal(9) 218s ok 40 - harmreal(10) 218s ok 41 - harmreal(11) 218s ok 42 - harmreal(12) 218s ok 43 - harmreal(13) 218s ok 44 - harmreal(14) 218s ok 45 - harmreal(15) 218s ok 46 - harmreal(16) 218s ok 47 - harmreal(17) 218s ok 48 - harmreal(18) 218s ok 49 - harmreal(19) 218s ok 50 - harmreal(20) 218s ok 51 - Expected fail: stirling with negative args 218s ok 52 - Expected fail: stirling type 4 218s ok 53 - Stirling 3: L(0,0..1) 218s ok 54 - Stirling 3: L(1,0..2) 218s ok 55 - Stirling 3: L(2,0..3) 218s ok 56 - Stirling 3: L(3,0..4) 218s ok 57 - Stirling 3: L(4,0..5) 218s ok 58 - Stirling 3: L(5,0..6) 218s ok 59 - Stirling 3: L(6,0..7) 218s ok 60 - Stirling 3: L(7,0..8) 218s ok 61 - Stirling 3: L(8,0..9) 218s ok 62 - Stirling 3: L(9,0..10) 218s ok 63 - Stirling 3: L(10,0..11) 218s ok 64 - Stirling 3: L(11,0..12) 218s ok 65 - Stirling 3: L(12,0..13) 218s ok 66 - Stirling 2: S(0,0..1) 218s ok 67 - Stirling 2: S(1,0..2) 218s ok 68 - Stirling 2: S(2,0..3) 218s ok 69 - Stirling 2: S(3,0..4) 218s ok 70 - Stirling 2: S(4,0..5) 218s ok 71 - Stirling 2: S(5,0..6) 218s ok 72 - Stirling 2: S(6,0..7) 218s ok 73 - Stirling 2: S(7,0..8) 218s ok 74 - Stirling 2: S(8,0..9) 218s ok 75 - Stirling 2: S(9,0..10) 218s ok 76 - Stirling 2: S(10,0..11) 218s ok 77 - Stirling 2: S(11,0..12) 218s ok 78 - Stirling 2: S(12,0..13) 218s ok 79 - Stirling 1: s(0,0..1) 218s ok 80 - Stirling 1: s(1,0..2) 218s ok 81 - Stirling 1: s(2,0..3) 218s ok 82 - Stirling 1: s(3,0..4) 218s ok 83 - Stirling 1: s(4,0..5) 218s ok 84 - Stirling 1: s(5,0..6) 218s ok 85 - Stirling 1: s(6,0..7) 218s ok 86 - Stirling 1: s(7,0..8) 218s ok 87 - Stirling 1: s(8,0..9) 218s ok 88 - Stirling 1: s(9,0..10) 218s ok 89 - Stirling 1: s(10,0..11) 218s ok 90 - Stirling 1: s(11,0..12) 218s ok 91 - Stirling 1: s(12,0..13) 218s ok 219s t/28-pi.t ................ 219s 1..15 219s ok 1 - Pi(0) gives floating point pi 219s ok 2 - Pi(1) = 3 219s ok 3 - Pi(2 .. 50) 219s ok 4 - Pi(760) 219s ok 5 - Pi(761) 219s ok 6 - Pi(762) 219s ok 7 - Pi(763) 219s ok 8 - Pi(764) 219s ok 9 - Pi(765) 219s ok 10 - Pi(766) 219s ok 11 - Pi(767) 219s ok 12 - Pi(768) 219s ok 13 - Pi(769) 219s ok 14 - Pi(770) 219s ok 15 - XS _pidigits 219s ok 219s t/29-mersenne.t .......... 219s 1..1 219s ok 1 - Find Mersenne primes from 0 to 127 219s ok 219s t/30-relations.t ......... 219s 1..85 219s ok 1 - Prime count and scalar primes agree for 1 219s ok 2 - scalar primes(0+1,1) = prime_count(1) - prime_count(0) 219s ok 3 - Pi(pn)) = n for 1 219s ok 4 - p(Pi(n)+1) = next_prime(n) for 1 219s ok 5 - p(Pi(n)) = prev_prime(n) for 1 219s ok 6 - Prime count and scalar primes agree for 2 219s ok 7 - scalar primes(1+1,2) = prime_count(2) - prime_count(1) 219s ok 8 - Pi(pn)) = n for 2 219s ok 9 - p(Pi(n)+1) = next_prime(n) for 2 219s ok 10 - p(Pi(n)) = prev_prime(n) for 2 219s ok 11 - Prime count and scalar primes agree for 3 219s ok 12 - scalar primes(2+1,3) = prime_count(3) - prime_count(2) 219s ok 13 - Pi(pn)) = n for 3 219s ok 14 - p(Pi(n)+1) = next_prime(n) for 3 219s ok 15 - p(Pi(n)) = prev_prime(n) for 3 219s ok 16 - Prime count and scalar primes agree for 4 219s ok 17 - scalar primes(3+1,4) = prime_count(4) - prime_count(3) 219s ok 18 - Pi(pn)) = n for 4 219s ok 19 - p(Pi(n)+1) = next_prime(n) for 4 219s ok 20 - p(Pi(n)) = prev_prime(n) for 4 219s ok 21 - Prime count and scalar primes agree for 5 219s ok 22 - scalar primes(4+1,5) = prime_count(5) - prime_count(4) 219s ok 23 - Pi(pn)) = n for 5 219s ok 24 - p(Pi(n)+1) = next_prime(n) for 5 219s ok 25 - p(Pi(n)) = prev_prime(n) for 5 219s ok 26 - Prime count and scalar primes agree for 6 219s ok 27 - scalar primes(5+1,6) = prime_count(6) - prime_count(5) 219s ok 28 - Pi(pn)) = n for 6 219s ok 29 - p(Pi(n)+1) = next_prime(n) for 6 219s ok 30 - p(Pi(n)) = prev_prime(n) for 6 219s ok 31 - Prime count and scalar primes agree for 7 219s ok 32 - scalar primes(6+1,7) = prime_count(7) - prime_count(6) 219s ok 33 - Pi(pn)) = n for 7 219s ok 34 - p(Pi(n)+1) = next_prime(n) for 7 219s ok 35 - p(Pi(n)) = prev_prime(n) for 7 219s ok 36 - Prime count and scalar primes agree for 17 219s ok 37 - scalar primes(7+1,17) = prime_count(17) - prime_count(7) 219s ok 38 - Pi(pn)) = n for 17 219s ok 39 - p(Pi(n)+1) = next_prime(n) for 17 219s ok 40 - p(Pi(n)) = prev_prime(n) for 17 219s ok 41 - Prime count and scalar primes agree for 57 219s ok 42 - scalar primes(17+1,57) = prime_count(57) - prime_count(17) 219s ok 43 - Pi(pn)) = n for 57 219s ok 44 - p(Pi(n)+1) = next_prime(n) for 57 219s ok 45 - p(Pi(n)) = prev_prime(n) for 57 219s ok 46 - Prime count and scalar primes agree for 89 219s ok 47 - scalar primes(57+1,89) = prime_count(89) - prime_count(57) 219s ok 48 - Pi(pn)) = n for 89 219s ok 49 - p(Pi(n)+1) = next_prime(n) for 89 219s ok 50 - p(Pi(n)) = prev_prime(n) for 89 219s ok 51 - Prime count and scalar primes agree for 102 219s ok 52 - scalar primes(89+1,102) = prime_count(102) - prime_count(89) 219s ok 53 - Pi(pn)) = n for 102 219s ok 54 - p(Pi(n)+1) = next_prime(n) for 102 219s ok 55 - p(Pi(n)) = prev_prime(n) for 102 219s ok 56 - Prime count and scalar primes agree for 1337 219s ok 57 - scalar primes(102+1,1337) = prime_count(1337) - prime_count(102) 219s ok 58 - Pi(pn)) = n for 1337 219s ok 59 - p(Pi(n)+1) = next_prime(n) for 1337 219s ok 60 - p(Pi(n)) = prev_prime(n) for 1337 219s ok 61 - Prime count and scalar primes agree for 8573 219s ok 62 - scalar primes(1337+1,8573) = prime_count(8573) - prime_count(1337) 219s ok 63 - Pi(pn)) = n for 8573 219s ok 64 - p(Pi(n)+1) = next_prime(n) for 8573 219s ok 65 - p(Pi(n)) = prev_prime(n) for 8573 219s ok 66 - Prime count and scalar primes agree for 84763 219s ok 67 - scalar primes(8573+1,84763) = prime_count(84763) - prime_count(8573) 219s ok 68 - Pi(pn)) = n for 84763 219s ok 69 - p(Pi(n)+1) = next_prime(n) for 84763 219s ok 70 - p(Pi(n)) = prev_prime(n) for 84763 219s ok 71 - Prime count and scalar primes agree for 784357 219s ok 72 - scalar primes(84763+1,784357) = prime_count(784357) - prime_count(84763) 219s ok 73 - Pi(pn)) = n for 784357 219s ok 74 - p(Pi(n)+1) = next_prime(n) for 784357 219s ok 75 - p(Pi(n)) = prev_prime(n) for 784357 219s ok 76 - Prime count and scalar primes agree for 1000001 219s ok 77 - scalar primes(784357+1,1000001) = prime_count(1000001) - prime_count(784357) 219s ok 78 - Pi(pn)) = n for 1000001 219s ok 79 - p(Pi(n)+1) = next_prime(n) for 1000001 219s ok 80 - p(Pi(n)) = prev_prime(n) for 1000001 219s ok 81 - Prime count and scalar primes agree for 2573622 219s ok 82 - scalar primes(1000001+1,2573622) = prime_count(2573622) - prime_count(1000001) 219s ok 83 - Pi(pn)) = n for 2573622 219s ok 84 - p(Pi(n)+1) = next_prime(n) for 2573622 219s ok 85 - p(Pi(n)) = prev_prime(n) for 2573622 219s ok 219s t/31-threading.t ......... skipped: only in release or extended testing 219s t/32-iterators.t ......... 219s 1..110 219s ok 1 - forprimes undef 219s ok 2 - forprimes 2,undef 219s ok 3 - forprimes 2,undef 219s ok 4 - forprimes -2,3 219s ok 5 - forprimes 2,-3 219s ok 6 - forprimes abc 219s ok 7 - forprimes 2, abc 219s ok 8 - forprimes abc 219s ok 9 - forprimes 1 219s ok 10 - forprimes 3 219s ok 11 - forprimes 3 219s ok 12 - forprimes 4 219s ok 13 - forprimes 5 219s ok 14 - forprimes 3,5 219s ok 15 - forprimes 3,6 219s ok 16 - forprimes 3,7 219s ok 17 - forprimes 5,7 219s ok 18 - forprimes 6,7 219s ok 19 - forprimes 5,11 219s ok 20 - forprimes 7,11 219s ok 21 - forprimes 50 219s ok 22 - forprimes 2,20 219s ok 23 - forprimes 20,30 219s ok 24 - forprimes 199,223 219s ok 25 - forprimes 31398,31468 (empty region) 219s ok 26 - forprimes 2147483647,2147483659 219s ok 27 - forprimes 3842610774,3842611326 219s ok 28 - forcomposites 2147483647,2147483659 219s ok 29 - forcomposites 50 219s ok 30 - forcomposites 200,410 219s ok 31 - fordivisors: d|54321: a+=d+d^2 219s ok 32 - A027750 using fordivisors 219s ok 33 - iterator -2 219s ok 34 - iterator abc 219s ok 35 - iterator 4.5 219s ok 36 - iterator first 10 primes 219s ok 37 - iterator 5 primes starting at 47 219s ok 38 - iterator 3 primes starting at 199 219s ok 39 - iterator 3 primes starting at 200 219s ok 40 - iterator 3 primes starting at 31397 219s ok 41 - iterator 3 primes starting at 31396 219s ok 42 - iterator 3 primes starting at 31398 219s ok 43 - forprimes handles $_ type changes 219s ok 44 - triple nested forprimes 219s ok 45 - triple nested iterator 219s ok 46 - forprimes with BigInt range 219s ok 47 - forprimes with BigFloat range 219s ok 48 - iterator 3 primes with BigInt start 219s ok 49 - iterator -2 219s ok 50 - iterator abc 219s ok 51 - iterator 4.5 219s ok 52 - iterator first 10 primes 219s ok 53 - iterator 5 primes starting at 47 219s ok 54 - iterator 3 primes starting at 199 219s ok 55 - iterator 3 primes starting at 200 219s ok 56 - iterator 3 primes starting at 31397 219s ok 57 - iterator 3 primes starting at 31396 219s ok 58 - iterator 3 primes starting at 31398 219s ok 59 - iterator object moved forward 10 now returns 31 219s ok 60 - iterator object moved back now returns 29 219s ok 61 - iterator object iterates to 29 219s ok 62 - iterator object iterates to 31 219s ok 63 - iterator object rewind and move returns 5 219s ok 64 - internal check, next_prime on big int works 219s ok 65 - iterator object can rewind to 18446744073709551557 219s ok 66 - iterator object next is 18446744073709551629 219s ok 67 - iterator object rewound to ~0 is 18446744073709551629 219s ok 68 - iterator object prev goes back to 18446744073709551557 219s ok 69 - iterator object tell_i 219s ok 70 - iterator object i_start = 1 219s ok 71 - iterator object description 219s ok 72 - iterator object values_min = 2 219s ok 73 - iterator object values_max = undef 219s ok 74 - iterator object oeis_anum = A000040 219s ok 75 - iterator object seek_to_i goes to nth prime 219s ok 76 - iterator object seek_to_value goes to value 219s ok 77 - iterator object ith returns nth prime 219s ok 78 - iterator object pred returns true if is_prime 219s ok 79 - iterator object value_to_i works 219s ok 80 - iterator object value_to_i for non-prime returns undef 219s ok 81 - iterator object value_to_i_floor 219s ok 82 - iterator object value_to_i_ceil 219s ok 83 - iterator object value_to_i_estimage is in range 219s ok 84 - lastfor works in forprimes 219s ok 85 - lastfor works in forcomposites 219s ok 86 - lastfor works in foroddcomposites 219s ok 87 - lastfor works in fordivisors 219s ok 88 - lastfor works in forpart 219s ok 89 - lastfor works in forcomp 219s ok 90 - lastfor works in forcomb 219s ok 91 - lastfor works in forperm 219s ok 92 - lastfor works in forderange 219s ok 93 - lastfor works in formultiperm 219s ok 94 - nested lastfor semantics 219s ok 95 - lastfor in forcomposites stops appropriately 219s ok 96 - forfactored {} 1 219s ok 97 - forfactored {} 100 219s ok 98 - forsquarefree {} 100 219s ok 99 - forfactored {} 10^8,10^8+10 219s ok 100 - A053462 using forsquarefree 219s ok 101 - forsemiprimes 1000 219s ok 102 - forsetproduct not array ref errors 219s ok 103 - forsetproduct empty input -> empty output 219s ok 104 - forsetproduct single list -> single list 219s ok 105 - forsetproduct five 1-element lists -> single list 219s ok 106 - forsetproduct any empty list -> empty output 219s ok 107 - forsetproduct any empty list -> empty output 219s ok 108 - forsetproduct simple test 219s ok 109 - forsetproduct modify size of @_ in block 219s ok 110 - forsetproduct replace @_ in sub 219s ok 219s t/33-examples.t .......... skipped: these tests are for release candidate testing 219s t/34-random.t ............ 219s 1..28 219s ok 1 - CSPRNG is being seeded properly 219s ok 2 - irand values are 32-bit 219s ok 3 - irand values are integers 219s ok 4 - irand64 all bits on in 6 iterations 219s ok 5 - irand64 all bits off in 6 iterations 219s ok 6 - drand values between 0 and 1-eps 219s ok 7 - drand supplies at least 21 bits (got 53) 219s ok 8 - drand(10): all in range [0,10) 219s ok 9 - drand(): all in range [0,1) 219s ok 10 - drand(-10): all in range (-10,0] 219s ok 11 - drand(0): all in range [0,1) 219s ok 12 - drand(undef): all in range [0,1) 219s # CORE::rand: drand48 (yech). Our PRNG: ChaCha20 219s ok 13 - random_bytes after srand 219s ok 14 - random_bytes after manual seed 219s ok 15 - irand after seed 219s ok 16 - drand after seed 0.0459118340827543 ~ 0.0459118340827543 219s ok 17 - random_bytes(0) returns empty string 219s ok 18 - urandomb(0) returns 0 219s ok 19 - urandomm(0) returns 0 219s ok 20 - urandomm(1) returns 0 219s ok 21 - urandomb returns native int within range for 1..64 219s ok 22 - urandomm returns native int within range for 1..50 219s ok 23 - urandomm(10) generated 10 distinct values 219s ok 24 - urandomm(10) values between 0 and 9 (0 1 2 3 4 5 6 7 8 9) 219s ok 25 - entropy_bytes gave us the right number of bytes 219s ok 26 - entropy_bytes didn't return all zeros once 219s ok 27 - entropy_bytes didn't return all zeros twice 219s ok 28 - entropy_bytes returned two different binary strings 219s ok 219s t/35-cipher.t ............ 219s 1..6 219s ok 1 - We at least vaguely changed the text 219s ok 2 - We at least vaguely changed the text 219s ok 3 - Different key produces different data 219s ok 4 - We can reproduce the cipher 219s ok 5 - We can decode using the same key. 219s ok 6 - Different nonce produces different data 219s ok 219s t/35-rand-tag.t .......... 219s 1..6 219s ok 1 - srand returns result 219s ok 2 - ChaCha20 irand 219s ok 3 - ChaCha20 irand 219s ok 4 - ChaCha20 drand 219s ok 5 - Replicates after srand 219s ok 6 - ChaCha20 irand64 219s ok 219s t/50-factoring.t ......... 219s 1..459 219s ok 1 - 0 = [ 0 ] 219s ok 2 - each factor is not prime 219s ok 3 - factor_exp looks right 219s ok 4 - 1 = [ ] 219s ok 5 - each factor is prime 219s ok 6 - factor_exp looks right 219s ok 7 - 2 = [ 2 ] 219s ok 8 - each factor is prime 219s ok 9 - factor_exp looks right 219s ok 10 - 3 = [ 3 ] 219s ok 11 - each factor is prime 219s ok 12 - factor_exp looks right 219s ok 13 - 4 = [ 2 * 2 ] 219s ok 14 - each factor is prime 219s ok 15 - factor_exp looks right 219s ok 16 - 5 = [ 5 ] 219s ok 17 - each factor is prime 219s ok 18 - factor_exp looks right 219s ok 19 - 6 = [ 2 * 3 ] 219s ok 20 - each factor is prime 219s ok 21 - factor_exp looks right 219s ok 22 - 7 = [ 7 ] 219s ok 23 - each factor is prime 219s ok 24 - factor_exp looks right 219s ok 25 - 8 = [ 2 * 2 * 2 ] 219s ok 26 - each factor is prime 219s ok 27 - factor_exp looks right 219s ok 28 - 16 = [ 2 * 2 * 2 * 2 ] 219s ok 29 - each factor is prime 219s ok 30 - factor_exp looks right 219s ok 31 - 57 = [ 3 * 19 ] 219s ok 32 - each factor is prime 219s ok 33 - factor_exp looks right 219s ok 34 - 64 = [ 2 * 2 * 2 * 2 * 2 * 2 ] 219s ok 35 - each factor is prime 219s ok 36 - factor_exp looks right 219s ok 37 - 377 = [ 13 * 29 ] 219s ok 38 - each factor is prime 219s ok 39 - factor_exp looks right 219s ok 40 - 9592 = [ 2 * 2 * 2 * 11 * 109 ] 219s ok 41 - each factor is prime 219s ok 42 - factor_exp looks right 219s ok 43 - 30107 = [ 7 * 11 * 17 * 23 ] 219s ok 44 - each factor is prime 219s ok 45 - factor_exp looks right 219s ok 46 - 78498 = [ 2 * 3 * 3 * 7 * 7 * 89 ] 219s ok 47 - each factor is prime 219s ok 48 - factor_exp looks right 219s ok 49 - 664579 = [ 664579 ] 219s ok 50 - each factor is prime 219s ok 51 - factor_exp looks right 219s ok 52 - 5761455 = [ 3 * 5 * 7 * 37 * 1483 ] 219s ok 53 - each factor is prime 219s ok 54 - factor_exp looks right 219s ok 55 - 114256942 = [ 2 * 57128471 ] 219s ok 56 - each factor is prime 219s ok 57 - factor_exp looks right 219s ok 58 - 2214143 = [ 1487 * 1489 ] 219s ok 59 - each factor is prime 219s ok 60 - factor_exp looks right 219s ok 61 - 999999929 = [ 999999929 ] 219s ok 62 - each factor is prime 219s ok 63 - factor_exp looks right 219s ok 64 - 50847534 = [ 2 * 3 * 3 * 3 * 19 * 49559 ] 219s ok 65 - each factor is prime 219s ok 66 - factor_exp looks right 219s ok 67 - 455052511 = [ 97 * 331 * 14173 ] 219s ok 68 - each factor is prime 219s ok 69 - factor_exp looks right 219s ok 70 - 2147483647 = [ 2147483647 ] 219s ok 71 - each factor is prime 219s ok 72 - factor_exp looks right 219s ok 73 - 4118054813 = [ 19 * 216739727 ] 219s ok 74 - each factor is prime 219s ok 75 - factor_exp looks right 219s ok 76 - 30 = [ 2 * 3 * 5 ] 219s ok 77 - each factor is prime 219s ok 78 - factor_exp looks right 219s ok 79 - 210 = [ 2 * 3 * 5 * 7 ] 219s ok 80 - each factor is prime 219s ok 81 - factor_exp looks right 219s ok 82 - 2310 = [ 2 * 3 * 5 * 7 * 11 ] 219s ok 83 - each factor is prime 219s ok 84 - factor_exp looks right 219s ok 85 - 30030 = [ 2 * 3 * 5 * 7 * 11 * 13 ] 219s ok 86 - each factor is prime 219s ok 87 - factor_exp looks right 219s ok 88 - 510510 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 ] 219s ok 89 - each factor is prime 219s ok 90 - factor_exp looks right 219s ok 91 - 9699690 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 ] 219s ok 92 - each factor is prime 219s ok 93 - factor_exp looks right 219s ok 94 - 223092870 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 ] 219s ok 95 - each factor is prime 219s ok 96 - factor_exp looks right 219s ok 97 - 1363 = [ 29 * 47 ] 219s ok 98 - each factor is prime 219s ok 99 - factor_exp looks right 219s ok 100 - 989 = [ 23 * 43 ] 219s ok 101 - each factor is prime 219s ok 102 - factor_exp looks right 219s ok 103 - 779 = [ 19 * 41 ] 219s ok 104 - each factor is prime 219s ok 105 - factor_exp looks right 219s ok 106 - 629 = [ 17 * 37 ] 219s ok 107 - each factor is prime 219s ok 108 - factor_exp looks right 219s ok 109 - 403 = [ 13 * 31 ] 219s ok 110 - each factor is prime 219s ok 111 - factor_exp looks right 219s ok 112 - 547308031 = [ 547308031 ] 219s ok 113 - each factor is prime 219s ok 114 - factor_exp looks right 219s ok 115 - 808 = [ 2 * 2 * 2 * 101 ] 219s ok 116 - each factor is prime 219s ok 117 - factor_exp looks right 219s ok 118 - 2727 = [ 3 * 3 * 3 * 101 ] 219s ok 119 - each factor is prime 219s ok 120 - factor_exp looks right 219s ok 121 - 12625 = [ 5 * 5 * 5 * 101 ] 219s ok 122 - each factor is prime 219s ok 123 - factor_exp looks right 219s ok 124 - 34643 = [ 7 * 7 * 7 * 101 ] 219s ok 125 - each factor is prime 219s ok 126 - factor_exp looks right 219s ok 127 - 134431 = [ 11 * 11 * 11 * 101 ] 219s ok 128 - each factor is prime 219s ok 129 - factor_exp looks right 219s ok 130 - 221897 = [ 13 * 13 * 13 * 101 ] 219s ok 131 - each factor is prime 219s ok 132 - factor_exp looks right 219s ok 133 - 496213 = [ 17 * 17 * 17 * 101 ] 219s ok 134 - each factor is prime 219s ok 135 - factor_exp looks right 219s ok 136 - 692759 = [ 19 * 19 * 19 * 101 ] 219s ok 137 - each factor is prime 219s ok 138 - factor_exp looks right 219s ok 139 - 1228867 = [ 23 * 23 * 23 * 101 ] 219s ok 140 - each factor is prime 219s ok 141 - factor_exp looks right 219s ok 142 - 2231139 = [ 3 * 251 * 2963 ] 219s ok 143 - each factor is prime 219s ok 144 - factor_exp looks right 219s ok 145 - 2463289 = [ 29 * 29 * 29 * 101 ] 219s ok 146 - each factor is prime 219s ok 147 - factor_exp looks right 219s ok 148 - 3008891 = [ 31 * 31 * 31 * 101 ] 219s ok 149 - each factor is prime 219s ok 150 - factor_exp looks right 219s ok 151 - 5115953 = [ 37 * 37 * 37 * 101 ] 219s ok 152 - each factor is prime 219s ok 153 - factor_exp looks right 219s ok 154 - 6961021 = [ 41 * 41 * 41 * 101 ] 219s ok 155 - each factor is prime 219s ok 156 - factor_exp looks right 219s ok 157 - 8030207 = [ 43 * 43 * 43 * 101 ] 219s ok 158 - each factor is prime 219s ok 159 - factor_exp looks right 219s ok 160 - 10486123 = [ 47 * 47 * 47 * 101 ] 219s ok 161 - each factor is prime 219s ok 162 - factor_exp looks right 219s ok 163 - 10893343 = [ 1327 * 8209 ] 219s ok 164 - each factor is prime 219s ok 165 - factor_exp looks right 219s ok 166 - 12327779 = [ 1627 * 7577 ] 219s ok 167 - each factor is prime 219s ok 168 - factor_exp looks right 219s ok 169 - 701737021 = [ 25997 * 26993 ] 219s ok 170 - each factor is prime 219s ok 171 - factor_exp looks right 219s ok 172 - 549900 = [ 2 * 2 * 3 * 3 * 5 * 5 * 13 * 47 ] 219s ok 173 - each factor is prime 219s ok 174 - factor_exp looks right 219s ok 175 - 10000142 = [ 2 * 1429 * 3499 ] 219s ok 176 - each factor is prime 219s ok 177 - factor_exp looks right 219s ok 178 - 392498 = [ 2 * 443 * 443 ] 219s ok 179 - each factor is prime 219s ok 180 - factor_exp looks right 219s ok 181 - 37607912018 = [ 2 * 18803956009 ] 219s ok 182 - each factor is prime 219s ok 183 - factor_exp looks right 219s ok 184 - 346065536839 = [ 11 * 11 * 163 * 373 * 47041 ] 219s ok 185 - each factor is prime 219s ok 186 - factor_exp looks right 219s ok 187 - 600851475143 = [ 71 * 839 * 1471 * 6857 ] 219s ok 188 - each factor is prime 219s ok 189 - factor_exp looks right 219s ok 190 - 3204941750802 = [ 2 * 3 * 3 * 3 * 11 * 277 * 719 * 27091 ] 219s ok 191 - each factor is prime 219s ok 192 - factor_exp looks right 219s ok 193 - 29844570422669 = [ 19 * 19 * 27259 * 3032831 ] 219s ok 194 - each factor is prime 219s ok 195 - factor_exp looks right 219s ok 196 - 279238341033925 = [ 5 * 5 * 7 * 13 * 194899 * 629773 ] 219s ok 197 - each factor is prime 219s ok 198 - factor_exp looks right 219s ok 199 - 2623557157654233 = [ 3 * 113 * 136841 * 56555467 ] 219s ok 200 - each factor is prime 219s ok 201 - factor_exp looks right 219s ok 202 - 24739954287740860 = [ 2 * 2 * 5 * 7 * 1123 * 157358823863 ] 219s ok 203 - each factor is prime 219s ok 204 - factor_exp looks right 219s ok 205 - 3369738766071892021 = [ 204518747 * 16476429743 ] 219s ok 206 - each factor is prime 219s ok 207 - factor_exp looks right 219s ok 208 - 10023859281455311421 = [ 1308520867 * 7660450463 ] 219s ok 209 - each factor is prime 219s ok 210 - factor_exp looks right 219s ok 211 - 9007199254740991 = [ 6361 * 69431 * 20394401 ] 219s ok 212 - each factor is prime 219s ok 213 - factor_exp looks right 219s ok 214 - 9007199254740992 = [ 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 ] 219s ok 215 - each factor is prime 219s ok 216 - factor_exp looks right 219s ok 217 - 9007199254740993 = [ 3 * 107 * 28059810762433 ] 219s ok 218 - each factor is prime 219s ok 219 - factor_exp looks right 219s ok 220 - 6469693230 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 ] 219s ok 221 - each factor is prime 219s ok 222 - factor_exp looks right 219s ok 223 - 200560490130 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 ] 219s ok 224 - each factor is prime 219s ok 225 - factor_exp looks right 219s ok 226 - 7420738134810 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 ] 219s ok 227 - each factor is prime 219s ok 228 - factor_exp looks right 219s ok 229 - 304250263527210 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 ] 219s ok 230 - each factor is prime 219s ok 231 - factor_exp looks right 219s ok 232 - 13082761331670030 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 ] 219s ok 233 - each factor is prime 219s ok 234 - factor_exp looks right 219s ok 235 - 614889782588491410 = [ 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 ] 219s ok 236 - each factor is prime 219s ok 237 - factor_exp looks right 219s ok 238 - 440091295252541 = [ 4623781 * 95179961 ] 219s ok 239 - each factor is prime 219s ok 240 - factor_exp looks right 219s ok 241 - 5333042142001571 = [ 59928917 * 88989463 ] 219s ok 242 - each factor is prime 219s ok 243 - factor_exp looks right 219s ok 244 - 79127989298 = [ 2 * 443 * 443 * 449 * 449 ] 219s ok 245 - each factor is prime 219s ok 246 - factor_exp looks right 219s ok 247 - factors(2) 219s ok 248 - scalar factors(2) 219s ok 249 - factors(456789) 219s ok 250 - scalar factors(456789) 219s ok 251 - factors(5) 219s ok 252 - scalar factors(5) 219s ok 253 - factors(4) 219s ok 254 - scalar factors(4) 219s ok 255 - factors(0) 219s ok 256 - scalar factors(0) 219s ok 257 - factors(3) 219s ok 258 - scalar factors(3) 219s ok 259 - factors(30107) 219s ok 260 - scalar factors(30107) 219s ok 261 - factors(123456) 219s ok 262 - scalar factors(123456) 219s ok 263 - factors(1) 219s ok 264 - scalar factors(1) 219s ok 265 - factors(115553) 219s ok 266 - scalar factors(115553) 219s ok 267 - divisors(2) 219s ok 268 - scalar divisors(2) 219s ok 269 - divisor_sum(2,0) 219s ok 270 - divisor_sum(2) 219s ok 271 - divisors(6) 219s ok 272 - scalar divisors(6) 219s ok 273 - divisor_sum(6,0) 219s ok 274 - divisor_sum(6) 219s ok 275 - divisors(8) 219s ok 276 - scalar divisors(8) 219s ok 277 - divisor_sum(8,0) 219s ok 278 - divisor_sum(8) 219s ok 279 - divisors(7) 219s ok 280 - scalar divisors(7) 219s ok 281 - divisor_sum(7,0) 219s ok 282 - divisor_sum(7) 219s ok 283 - divisors(123456) 219s ok 284 - scalar divisors(123456) 219s ok 285 - divisor_sum(123456,0) 219s ok 286 - divisor_sum(123456) 219s ok 287 - divisors(1032924637) 219s ok 288 - scalar divisors(1032924637) 219s ok 289 - divisor_sum(1032924637,0) 219s ok 290 - divisor_sum(1032924637) 219s ok 291 - divisors(456789) 219s ok 292 - scalar divisors(456789) 219s ok 293 - divisor_sum(456789,0) 219s ok 294 - divisor_sum(456789) 219s ok 295 - divisors(9) 219s ok 296 - scalar divisors(9) 219s ok 297 - divisor_sum(9,0) 219s ok 298 - divisor_sum(9) 219s ok 299 - divisors(5) 219s ok 300 - scalar divisors(5) 219s ok 301 - divisor_sum(5,0) 219s ok 302 - divisor_sum(5) 219s ok 303 - divisors(4) 219s ok 304 - scalar divisors(4) 219s ok 305 - divisor_sum(4,0) 219s ok 306 - divisor_sum(4) 219s ok 307 - divisors(10) 219s ok 308 - scalar divisors(10) 219s ok 309 - divisor_sum(10,0) 219s ok 310 - divisor_sum(10) 219s ok 311 - divisors(0) 219s ok 312 - scalar divisors(0) 219s ok 313 - divisor_sum(0,0) 219s ok 314 - divisor_sum(0) 219s ok 315 - divisors(42) 219s ok 316 - scalar divisors(42) 219s ok 317 - divisor_sum(42,0) 219s ok 318 - divisor_sum(42) 219s ok 319 - divisors(1234567890) 219s ok 320 - scalar divisors(1234567890) 219s ok 321 - divisor_sum(1234567890,0) 219s ok 322 - divisor_sum(1234567890) 219s ok 323 - divisors(12) 219s ok 324 - scalar divisors(12) 219s ok 325 - divisor_sum(12,0) 219s ok 326 - divisor_sum(12) 219s ok 327 - divisors(3) 219s ok 328 - scalar divisors(3) 219s ok 329 - divisor_sum(3,0) 219s ok 330 - divisor_sum(3) 219s ok 331 - divisors(30107) 219s ok 332 - scalar divisors(30107) 219s ok 333 - divisor_sum(30107,0) 219s ok 334 - divisor_sum(30107) 219s ok 335 - divisors(115553) 219s ok 336 - scalar divisors(115553) 219s ok 337 - divisor_sum(115553,0) 219s ok 338 - divisor_sum(115553) 219s ok 339 - divisors(1) 219s ok 340 - scalar divisors(1) 219s ok 341 - divisor_sum(1,0) 219s ok 342 - divisor_sum(1) 219s ok 343 - divisors(4567890) 219s ok 344 - scalar divisors(4567890) 219s ok 345 - divisor_sum(4567890,0) 219s ok 346 - divisor_sum(4567890) 219s ok 347 - divisors(16) 219s ok 348 - scalar divisors(16) 219s ok 349 - divisor_sum(16,0) 219s ok 350 - divisor_sum(16) 219s ok 351 - factor_exp(115553) 219s ok 352 - scalar factor_exp(115553) 219s ok 353 - factor_exp(1) 219s ok 354 - scalar factor_exp(1) 219s ok 355 - factor_exp(3) 219s ok 356 - scalar factor_exp(3) 219s ok 357 - factor_exp(123456) 219s ok 358 - scalar factor_exp(123456) 219s ok 359 - factor_exp(30107) 219s ok 360 - scalar factor_exp(30107) 219s ok 361 - factor_exp(2) 219s ok 362 - scalar factor_exp(2) 219s ok 363 - factor_exp(456789) 219s ok 364 - scalar factor_exp(456789) 219s ok 365 - factor_exp(4) 219s ok 366 - scalar factor_exp(4) 219s ok 367 - factor_exp(5) 219s ok 368 - scalar factor_exp(5) 219s ok 369 - factor_exp(0) 219s ok 370 - scalar factor_exp(0) 219s ok 371 - trial_factor(1) 219s ok 372 - trial_factor(4) 219s ok 373 - trial_factor(9) 219s ok 374 - trial_factor(11) 219s ok 375 - trial_factor(25) 219s ok 376 - trial_factor(30) 219s ok 377 - trial_factor(210) 219s ok 378 - trial_factor(175) 219s ok 379 - trial_factor(403) 219s ok 380 - trial_factor(549900) 219s ok 381 - fermat_factor(1) 219s ok 382 - fermat_factor(4) 219s ok 383 - fermat_factor(9) 219s ok 384 - fermat_factor(11) 219s ok 385 - fermat_factor(25) 219s ok 386 - fermat_factor(30) 219s ok 387 - fermat_factor(210) 219s ok 388 - fermat_factor(175) 219s ok 389 - fermat_factor(403) 219s ok 390 - fermat_factor(549900) 219s ok 391 - holf_factor(1) 219s ok 392 - holf_factor(4) 219s ok 393 - holf_factor(9) 219s ok 394 - holf_factor(11) 219s ok 395 - holf_factor(25) 219s ok 396 - holf_factor(30) 219s ok 397 - holf_factor(210) 219s ok 398 - holf_factor(175) 219s ok 399 - holf_factor(403) 219s ok 400 - holf_factor(549900) 219s ok 401 - squfof_factor(1) 219s ok 402 - squfof_factor(4) 219s ok 403 - squfof_factor(9) 219s ok 404 - squfof_factor(11) 219s ok 405 - squfof_factor(25) 219s ok 406 - squfof_factor(30) 219s ok 407 - squfof_factor(210) 219s ok 408 - squfof_factor(175) 219s ok 409 - squfof_factor(403) 219s ok 410 - squfof_factor(549900) 219s ok 411 - pbrent_factor(1) 219s ok 412 - pbrent_factor(4) 219s ok 413 - pbrent_factor(9) 219s ok 414 - pbrent_factor(11) 219s ok 415 - pbrent_factor(25) 219s ok 416 - pbrent_factor(30) 219s ok 417 - pbrent_factor(210) 219s ok 418 - pbrent_factor(175) 219s ok 419 - pbrent_factor(403) 219s ok 420 - pbrent_factor(549900) 219s ok 421 - prho_factor(1) 219s ok 422 - prho_factor(4) 219s ok 423 - prho_factor(9) 219s ok 424 - prho_factor(11) 219s ok 425 - prho_factor(25) 219s ok 426 - prho_factor(30) 219s ok 427 - prho_factor(210) 219s ok 428 - prho_factor(175) 219s ok 429 - prho_factor(403) 219s ok 430 - prho_factor(549900) 219s ok 431 - pminus1_factor(1) 219s ok 432 - pminus1_factor(4) 219s ok 433 - pminus1_factor(9) 219s ok 434 - pminus1_factor(11) 219s ok 435 - pminus1_factor(25) 219s ok 436 - pminus1_factor(30) 219s ok 437 - pminus1_factor(210) 219s ok 438 - pminus1_factor(175) 219s ok 439 - pminus1_factor(403) 219s ok 440 - pminus1_factor(549900) 219s ok 441 - pplus1_factor(1) 219s ok 442 - pplus1_factor(4) 219s ok 443 - pplus1_factor(9) 219s ok 444 - pplus1_factor(11) 219s ok 445 - pplus1_factor(25) 219s ok 446 - pplus1_factor(30) 219s ok 447 - pplus1_factor(210) 219s ok 448 - pplus1_factor(175) 219s ok 449 - pplus1_factor(403) 219s ok 450 - pplus1_factor(549900) 219s ok 451 - trial factor 2203*2503 219s ok 452 - scalar factor(0) should be 1 219s ok 453 - scalar factor(1) should be 0 219s ok 454 - scalar factor(3) should be 1 219s ok 455 - scalar factor(4) should be 2 219s ok 456 - scalar factor(5) should be 1 219s ok 457 - scalar factor(6) should be 2 219s ok 458 - scalar factor(30107) should be 4 219s ok 459 - scalar factor(174636000) should be 15 219s ok 219s t/51-randfactor.t ........ 219s 1..4 219s ok 1 - random_factored_integer did not return 0 219s ok 2 - random_factored_integer in requested range 219s ok 3 - factors match factor routine 219s ok 4 - product of factors = n 219s ok 220s t/51-znlog.t ............. 220s 1..20 220s ok 1 - znlog(5,2,1019) = 10 220s ok 2 - znlog(2,4,17) = 220s ok 3 - znlog(7,3,8) = 220s ok 4 - znlog(7,17,36) = 220s ok 5 - znlog(1,8,9) = 0 220s ok 6 - znlog(3,3,8) = 1 220s ok 7 - znlog(10,2,101) = 25 220s ok 8 - znlog(2,55,101) = 73 220s ok 9 - znlog(5,2,401) = 48 220s ok 10 - znlog(228,2,383) = 110 220s ok 11 - znlog(3061666278,499998,3332205179) = 22 220s ok 12 - znlog(5678,5,10007) = 8620 220s ok 13 - znlog(7531,6,8101) = 6689 220s ok 14 - znlog(0,30,100) = 2 220s ok 15 - znlog(1,1,101) = 0 220s ok 16 - znlog(8,2,102) = 3 220s ok 17 - znlog(18,18,102) = 1 220s ok 18 - znlog(5675,5,10000019) = 2003974 220s ok 19 - znlog(18478760,5,314138927) = 34034873 220s ok 20 - znlog(32712908945642193,5,71245073933756341) = 5945146967010377 220s ok 220s t/52-primearray.t ........ 220s 1..21 220s ok 1 - primes 0 .. 499 can be randomly selected 220s ok 2 - primes 0 .. 499 in forward order 220s ok 3 - primes 0 .. 499 in reverse order 220s ok 4 - 51 primes using array slice 220s ok 5 - random array slice of small primes 220s ok 6 - primes[4500] == 43063 220s ok 7 - primes[4999] == 48611 220s ok 8 - primes[15678] == 172157 220s ok 9 - primes[78901] == 1005413 220s ok 10 - primes[123456] == 1632913 220s ok 11 - primes[1999] == 17389 220s ok 12 - primes[30107] == 351707 220s ok 13 - primes[377] == 2593 220s ok 14 - shift 2 220s ok 15 - shift 3 220s ok 16 - shift 5 220s ok 17 - shift 7 220s ok 18 - shift 11 220s ok 19 - 13 after shifts 220s ok 20 - 11 after unshift 220s ok 21 - 3 after unshift 3 220s ok 220s t/70-rt-bignum.t ......... 220s 1..2 220s ok 1 - PP prho factors correctly with 'use bignum' 220s ok 2 - next_prime(10^1200+5226) = 10^1200+5227 220s ok 221s t/80-pp.t ................ 221s 1..298 221s ok 1 - require Math::Prime::Util::PP; 221s ok 2 - require Math::Prime::Util::PrimalityProving; 221s ok 3 - is_prime 0 .. 1086 221s ok 4 - is_prime for selected numbers 221s ok 5 - Trial primes 2-80 221s ok 6 - Primes between 0 and 1069 221s ok 7 - Primes between 0 and 1070 221s ok 8 - Primes between 0 and 1086 221s ok 9 - primes(6) should return [2 3 5] 221s ok 10 - primes(11) should return [2 3 5 7 11] 221s ok 11 - primes(7) should return [2 3 5 7] 221s ok 12 - primes(19) should return [2 3 5 7 11 13 17 19] 221s ok 13 - primes(4) should return [2 3] 221s ok 14 - primes(5) should return [2 3 5] 221s ok 15 - primes(3) should return [2 3] 221s ok 16 - primes(20) should return [2 3 5 7 11 13 17 19] 221s ok 17 - primes(2) should return [2] 221s ok 18 - primes(0) should return [] 221s ok 19 - primes(1) should return [] 221s ok 20 - primes(18) should return [2 3 5 7 11 13 17] 221s ok 21 - primes(3842610773,3842611109) should return [3842610773 3842611109] 221s ok 22 - primes(4,8) should return [5 7] 221s ok 23 - primes(1,1) should return [] 221s ok 24 - primes(3842610774,3842611108) should return [] 221s ok 25 - primes(2010733,2010881) should return [2010733 2010881] 221s ok 26 - primes(2010734,2010880) should return [] 221s ok 27 - primes(3,7) should return [3 5 7] 221s ok 28 - primes(3088,3164) should return [3089 3109 3119 3121 3137 3163] 221s ok 29 - primes(20,2) should return [] 221s ok 30 - primes(2,20) should return [2 3 5 7 11 13 17 19] 221s ok 31 - primes(3,3) should return [3] 221s ok 32 - primes(30,70) should return [31 37 41 43 47 53 59 61 67] 221s ok 33 - primes(3089,3163) should return [3089 3109 3119 3121 3137 3163] 221s ok 34 - primes(2,2) should return [2] 221s ok 35 - primes(2,3) should return [2 3] 221s ok 36 - primes(3090,3162) should return [3109 3119 3121 3137] 221s ok 37 - primes(3,9) should return [3 5 7] 221s ok 38 - primes(2,5) should return [2 3 5] 221s ok 39 - primes(70,30) should return [] 221s ok 40 - primes(3,6) should return [3 5] 221s ok 41 - next prime of 360653 is 360653+96 221s ok 42 - prev prime of 360653+96 is 360653 221s ok 43 - next prime of 2010733 is 2010733+148 221s ok 44 - prev prime of 2010733+148 is 2010733 221s ok 45 - next prime of 19609 is 19609+52 221s ok 46 - prev prime of 19609+52 is 19609 221s ok 47 - next prime of 19608 is 19609 221s ok 48 - next prime of 19610 is 19661 221s ok 49 - next prime of 19660 is 19661 221s ok 50 - prev prime of 19662 is 19661 221s ok 51 - prev prime of 19660 is 19609 221s ok 52 - prev prime of 19610 is 19609 221s ok 53 - Previous prime of 2 returns undef 221s ok 54 - Next prime of ~0-4 returns bigint next prime 221s ok 55 - next_prime for 148 primes before primegap end 2010881 221s ok 56 - prev_prime for 148 primes before primegap start 2010733 221s ok 57 - next_prime(1234567890) == 1234567891) 221s ok 58 - Pi(65535) = 6542 221s ok 59 - Pi(1) = 0 221s ok 60 - Pi(10) = 4 221s ok 61 - Pi(100) = 25 221s ok 62 - Pi(10000) = 1229 221s ok 63 - Pi(60067) = 6062 221s ok 64 - Pi(1000) = 168 221s ok 65 - prime_count(3 to 17) = 6 221s ok 66 - prime_count(191912784 +246) = 0 221s ok 67 - prime_count(191912783 +248) = 2 221s ok 68 - prime_count(1e9 +2**14) = 785 221s ok 69 - prime_count(191912783 +247) = 1 221s ok 70 - prime_count(17 to 13) = 0 221s ok 71 - prime_count(191912784 +247) = 1 221s ok 72 - prime_count(4 to 17) = 5 221s ok 73 - prime_count(4 to 16) = 4 221s ok 74 - prime_count_lower(450) 221s ok 75 - prime_count_upper(450) 221s ok 76 - prime_count_lower(1234567) in range 221s ok 77 - prime_count_upper(1234567) in range 221s ok 78 - prime_count_lower(412345678) in range 221s ok 79 - prime_count_upper(412345678) in range 221s ok 80 - nth_prime(6542) <= 65535 221s ok 81 - nth_prime(6543) >= 65535 221s ok 82 - nth_prime(0) <= 1 221s ok 83 - nth_prime(1) >= 1 221s ok 84 - nth_prime(4) <= 10 221s ok 85 - nth_prime(5) >= 10 221s ok 86 - nth_prime(25) <= 100 221s ok 87 - nth_prime(26) >= 100 221s ok 88 - nth_prime(1229) <= 10000 221s ok 89 - nth_prime(1230) >= 10000 221s ok 90 - nth_prime(6062) <= 60067 221s ok 91 - nth_prime(6063) >= 60067 221s ok 92 - nth_prime(168) <= 1000 221s ok 93 - nth_prime(169) >= 1000 221s ok 94 - nth_prime(10) = 29 221s ok 95 - nth_prime(100) = 541 221s ok 96 - nth_prime(1) = 2 221s ok 97 - nth_prime(1000) = 7919 221s ok 98 - MR with 0 shortcut composite 221s ok 99 - MR with 0 shortcut composite 221s ok 100 - MR with 2 shortcut prime 221s ok 101 - MR with 3 shortcut prime 221s ok 102 - 4 pseudoprimes (base 61) 221s ok 103 - 4 pseudoprimes (base 13) 221s ok 104 - 5 pseudoprimes (base 17) 221s ok 105 - 5 pseudoprimes (base slucas) 221s ok 106 - 4 pseudoprimes (base 3) 221s ok 107 - 4 pseudoprimes (base 23) 221s ok 108 - 4 pseudoprimes (base 5) 221s ok 109 - 5 pseudoprimes (base aeslucas2) 221s ok 110 - 5 pseudoprimes (base 2) 221s ok 111 - 5 pseudoprimes (base psp3) 221s ok 112 - 5 pseudoprimes (base lucas) 221s ok 113 - 5 pseudoprimes (base 37) 221s ok 114 - 5 pseudoprimes (base aeslucas1) 221s ok 115 - 6 pseudoprimes (base eslucas) 221s ok 116 - 5 pseudoprimes (base 31) 221s ok 117 - 5 pseudoprimes (base 19) 221s ok 118 - 5 pseudoprimes (base psp2) 221s ok 119 - 5 pseudoprimes (base 29) 221s ok 120 - 4 pseudoprimes (base 73) 221s ok 121 - 5 pseudoprimes (base 7) 221s ok 122 - 4 pseudoprimes (base 11) 221s ok 123 - Ei(1.5) ~= 3.3012854491298 221s ok 124 - Ei(40) ~= 6039718263611242 221s ok 125 - Ei(12) ~= 14959.5326663975 221s ok 126 - Ei(2) ~= 4.95423435600189 221s ok 127 - Ei(-0.1) ~= -1.82292395841939 221s ok 128 - Ei(-1e-08) ~= -17.8434650890508 221s ok 129 - Ei(0.693147180559945) ~= 1.04516378011749 221s ok 130 - Ei(20) ~= 25615652.6640566 221s ok 131 - Ei(-0.001) ~= -6.33153936413615 221s ok 132 - Ei(-1e-05) ~= -10.9357198000437 221s ok 133 - Ei(-10) ~= -4.15696892968532e-06 221s ok 134 - Ei(41) ~= 1.6006649143245e+16 221s ok 135 - Ei(5) ~= 40.1852753558032 221s ok 136 - Ei(10) ~= 2492.22897624188 221s ok 137 - Ei(-0.5) ~= -0.55977359477616 221s ok 138 - Ei(1) ~= 1.89511781635594 221s ok 139 - li(1.01) ~= -4.02295867392994 221s ok 140 - li(100000000) ~= 5762209.37544803 221s ok 141 - li(4294967295) ~= 203284081.954542 221s ok 142 - li(0) ~= 0 221s ok 143 - li(2) ~= 1.04516378011749 221s ok 144 - li(100000) ~= 9629.8090010508 221s ok 145 - li(10) ~= 6.1655995047873 221s ok 146 - li(24) ~= 11.2003157952327 221s ok 147 - li(1000) ~= 177.609657990152 221s ok 148 - li(10000000000) ~= 455055614.586623 221s ok 149 - li(100000000000) ~= 4118066400.62161 221s ok 150 - R(10000000000) ~= 455050683.306847 221s ok 151 - R(1000000) ~= 78527.3994291277 221s ok 152 - R(1000) ~= 168.359446281167 221s ok 153 - R(18446744073709551615) ~= 4.25656284014012e+17 221s ok 154 - R(10) ~= 4.56458314100509 221s ok 155 - R(10000000) ~= 664667.447564748 221s ok 156 - R(2) ~= 1.54100901618713 221s ok 157 - R(4294967295) ~= 203280697.513261 221s ok 158 - R(1.01) ~= 1.00606971806229 221s ok 159 - Zeta(8.5) ~= 0.00285925088241563 221s ok 160 - Zeta(2.5) ~= 0.341487257250917 221s ok 161 - Zeta(20.6) ~= 6.29339157357821e-07 221s ok 162 - Zeta(180) ~= 6.52530446799852e-55 221s ok 163 - Zeta(80) ~= 8.27180612553034e-25 221s ok 164 - Zeta(4.5) ~= 0.0547075107614543 221s ok 165 - Zeta(2) ~= 0.644934066848226 221s ok 166 - Zeta(7) ~= 0.00834927738192283 221s ok 167 - LambertW(6588) 221s ok 168 - test factoring for 34 primes 221s ok 169 - test factoring for 141 composites 221s ok 170 - holf(403) 221s ok 171 - fermat(403) 221s ok 172 - prho(403) 221s ok 173 - pbrent(403) 221s ok 174 - pminus1(403) 221s ok 175 - prho(851981) 221s ok 176 - pbrent(851981) 221s ok 177 - ecm(101303039) 221s ok 178 - prho(55834573561) 221s ok 179 - pbrent(55834573561) 221s ok 180 - prho finds a factor of 18686551294184381720251 221s ok 181 - prho found a correct factor 221s ok 182 - prho didn't return a degenerate factor 221s ok 183 - pbrent finds a factor of 18686551294184381720251 221s ok 184 - pbrent found a correct factor 221s ok 185 - pbrent didn't return a degenerate factor 221s ok 186 - pminus1 finds a factor of 18686551294184381720251 221s ok 187 - pminus1 found a correct factor 221s ok 188 - pminus1 didn't return a degenerate factor 221s ok 189 - ecm finds a factor of 18686551294184381720251 221s ok 190 - ecm found a correct factor 221s ok 191 - ecm didn't return a degenerate factor 221s ok 192 # skip Skipping p-1 stage 2 tests 221s ok 193 # skip Skipping p-1 stage 2 tests 221s ok 194 # skip Skipping p-1 stage 2 tests 221s ok 195 - fermat finds a factor of 73786976930493367637 221s ok 196 - fermat found a correct factor 221s ok 197 - fermat didn't return a degenerate factor 221s ok 198 - holf correctly factors 99999999999979999998975857 221s ok 199 # skip ecm stage 2 221s ok 200 # skip ecm stage 2 221s ok 201 # skip ecm stage 2 221s ok 202 - AKS: 1 is composite (less than 2) 221s ok 203 - AKS: 2 is prime 221s ok 204 - AKS: 3 is prime 221s ok 205 - AKS: 4 is composite 221s ok 206 - AKS: 64 is composite (perfect power) 221s ok 207 - AKS: 65 is composite (caught in trial) 221s ok 208 - AKS: 23 is prime (r >= n) 221s ok 209 - AKS: 70747 is composite (n mod r) 221s ok 210 # skip Skipping PP AKS test without EXTENDED_TESTING 221s ok 211 # skip Skipping PP AKS test without EXTENDED_TESTING 221s ok 212 - primality_proof_lucas(100003) 221s ok 213 - primality_proof_bls75(1490266103) 221s ok 214 - primality_proof_bls75(27141057803) 221s ok 215 - 168790877523676911809192454171451 looks prime with bases 2..52 221s ok 216 - 168790877523676911809192454171451 found composite with base 53 221s ok 217 - 168790877523676911809192454171451 is not a strong Lucas pseudoprime 221s ok 218 - 168790877523676911809192454171451 is not a Frobenius pseudoprime 221s ok 219 - 517697641 is a Perrin pseudoprime 221s ok 220 - 517697641 is not a Frobenius pseudoprime 221s ok 221 - nth_prime_approx(1287248) in range 221s ok 222 - prime_count_approx(128722248) in range 221s ok 223 - consecutive_integer_lcm(13) 221s ok 224 - consecutive_integer_lcm(52) 221s ok 225 - moebius(513,537) 221s ok 226 - moebius(42199) 221s ok 227 - liouville(444456) 221s ok 228 - liouville(562894) 221s ok 229 - mertens(4219) 221s ok 230 - euler_phi(1513,1537) 221s ok 231 - euler_phi(324234) 221s ok 232 - jordan_totient(4, 899) 221s ok 233 - carmichael_lambda(324234) 221s ok 234 - exp_mangoldt of power of 2 = 2 221s ok 235 - exp_mangoldt of even = 1 221s ok 236 - exp_mangoldt of 21 = 1 221s ok 237 - exp_mangoldt of 23 = 23 221s ok 238 - exp_mangoldt of 27 (3^3) = 3 221s ok 239 - znprimroot 221s ok 240 - znorder(2,35) = 12 221s ok 241 - znorder(7,35) = undef 221s ok 242 - znorder(67,999999749) = 30612237 221s ok 243 - znlog(5678, 5, 10007) 221s ok 244 - binomial(35,16) 221s ok 245 - binomial(228,12) 221s ok 246 - binomial(-23,-26) should be -2300 221s ok 247 - S(12,4) 221s ok 248 - s(12,4) 221s ok 249 - bernfrac(0) 221s ok 250 - bernfrac(1) 221s ok 251 - bernfrac(2) 221s ok 252 - bernfrac(3) 221s ok 253 - bernfrac(12) 221s ok 254 - bernfrac(12) 221s ok 255 - gcdext(23948236,3498248) 221s ok 256 - valuation(1879048192,2) 221s ok 257 - valuation(96552,6) 221s ok 258 - invmod(45,59) 221s ok 259 - invmod(14,28474) 221s ok 260 - invmod(42,-2017) 221s ok 261 - vecsum(15,30,45) 221s ok 262 - vecsum(2^32-1000,2^32-2000,2^32-3000) 221s ok 263 - vecprod(15,30,45) 221s ok 264 - vecprod(2^32-1000,2^32-2000,2^32-3000) 221s ok 265 - vecmin(2^32-1000,2^32-2000,2^32-3000) 221s ok 266 - vecmax(2^32-1000,2^32-2000,2^32-3000) 221s ok 267 - chebyshev_theta(7001) =~ 6929.2748 221s ok 268 - chebyshev_psi(6588) =~ 6597.07453 221s ok 269 - is_prob_prime(347) should be 2 221s ok 270 - is_prob_prime(49) should be 0 221s ok 271 - is_prob_prime(17471059) should be 2 221s ok 272 - is_prob_prime(10) should be 0 221s ok 273 - is_prob_prime(36010359) should be 0 221s ok 274 - is_prob_prime(17471061) should be 0 221s ok 275 - is_prob_prime(697) should be 0 221s ok 276 - is_prob_prime(36010357) should be 2 221s ok 277 - is_prob_prime(5) should be 2 221s ok 278 - is_prob_prime(7080233) should be 2 221s ok 279 - is_prob_prime(7080249) should be 0 221s ok 280 - primorial(24) 221s ok 281 - primorial(118) 221s ok 282 - pn_primorial(7) 221s ok 283 - partitions(74) 221s ok 284 - Miller-Rabin random 40 on composite 221s ok 285 - generic forprimes 2387234,2387303 221s ok 286 - generic forcomposites 15202630,15202641 221s ok 287 - generic foroddcomposites 15202630,15202641 221s ok 288 - generic fordivisors: d|92834: k+=d+int(sqrt(d)) 221s ok 289 - forcomb(3,2) 221s ok 290 - forperm(3) 221s ok 291 - forpart(4) 221s ok 292 - Pi(82) 221s ok 293 - gcd(-30,-90,90) = 30 221s ok 294 - lcm(11926,78001,2211) = 2790719778 221s ok 295 - twin_prime_count(4321) 221s ok 296 - twin_prime_count_approx(4123456784123) 221s ok 297 - nth_twin_prime(249) 221s ok 298 - Nobody clobbered $_ 221s ok 221s t/81-bignum.t ............ 221s 1..134 221s # BigInt 0.66/1.999837, lib: Calc. MPU::GMP 0.52 221s ok 1 - 100000982717289000001 is prime 221s ok 2 - 100000982717289000001 is probably prime 221s ok 3 - 100170437171734071001 is prime 221s ok 4 - 100170437171734071001 is probably prime 221s ok 5 - 777777777777777777777767 is prime 221s ok 6 - 777777777777777777777767 is probably prime 221s ok 7 - 777777777777777777777787 is prime 221s ok 8 - 777777777777777777777787 is probably prime 221s ok 9 - 877777777777777777777753 is prime 221s ok 10 - 877777777777777777777753 is probably prime 221s ok 11 - 877777777777777777777871 is prime 221s ok 12 - 877777777777777777777871 is probably prime 221s ok 13 - 87777777777777777777777795577 is prime 221s ok 14 - 87777777777777777777777795577 is probably prime 221s ok 15 - 890745785790123461234805903467891234681243 is prime 221s ok 16 - 890745785790123461234805903467891234681243 is probably prime 221s ok 17 - 618970019642690137449562111 is prime 221s ok 18 - 618970019642690137449562111 is probably prime 221s ok 19 - 777777777777777777777777 is not prime 221s ok 20 - 777777777777777777777777 is not probably prime 221s ok 21 - 877777777777777777777777 is not prime 221s ok 22 - 877777777777777777777777 is not probably prime 221s ok 23 - 87777777777777777777777795475 is not prime 221s ok 24 - 87777777777777777777777795475 is not probably prime 221s ok 25 - 890745785790123461234805903467891234681234 is not prime 221s ok 26 - 890745785790123461234805903467891234681234 is not probably prime 221s ok 27 - 59276361075595573263446330101 is not prime 221s ok 28 - 59276361075595573263446330101 is not probably prime 221s ok 29 - 21652684502221 is not prime 221s ok 30 - 21652684502221 is not probably prime 221s ok 31 - 3317044064679887385961981 is not prime 221s ok 32 - 3317044064679887385961981 is not probably prime 221s ok 33 - 6003094289670105800312596501 is not prime 221s ok 34 - 6003094289670105800312596501 is not probably prime 221s ok 35 - 564132928021909221014087501701 is not prime 221s ok 36 - 564132928021909221014087501701 is not probably prime 221s ok 37 - 3825123056546413051 is not prime 221s ok 38 - 3825123056546413051 is not probably prime 221s ok 39 - 318665857834031151167461 is not prime 221s ok 40 - 318665857834031151167461 is not probably prime 221s ok 41 - 75792980677 is not prime 221s ok 42 - 75792980677 is not probably prime 221s ok 43 - 65635624165761929287 is prime 221s ok 44 - 65635624165761929287 is provably prime 221s ok 45 - 1162566711635022452267983 is prime 221s ok 46 - 1162566711635022452267983 is provably prime 221s ok 47 - 77123077103005189615466924501 is prime 221s ok 48 - 77123077103005189615466924501 is provably prime 221s ok 49 - 3991617775553178702574451996736229 is prime 221s ok 50 - 3991617775553178702574451996736229 is provably prime 221s ok 51 - 273952953553395851092382714516720001799 is prime 221s ok 52 - 273952953553395851092382714516720001799 is provably prime 221s ok 53 - primes( 2^66, 2^66 + 100 ) 221s ok 54 - twin_primes( 18446744073709558000, +1000) 221s ok 55 - next_prime(777777777777777777777777) 221s ok 56 - prev_prime(777777777777777777777777) 221s ok 57 - iterator 3 primes starting at 10^24+910 221s ok 58 - prime_count(87..7752, 87..7872) 221s ok 59 - 59276361075595573263446330101 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 221s ok 60 - 21652684502221 is a strong pseudoprime to bases 2,7,37,61,9375 221s ok 61 - 3317044064679887385961981 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,73,325,9375 221s ok 62 - 6003094289670105800312596501 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,61,325,9375 221s ok 63 - 564132928021909221014087501701 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 221s ok 64 - 3825123056546413051 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,325,9375 221s ok 65 - 318665857834031151167461 is a strong pseudoprime to bases 2,3,5,7,11,13,17,19,23,29,31,37,325,9375 221s ok 66 - 75792980677 is a strong pseudoprime to bases 2 221s ok 67 - PC approx(31415926535897932384) 221s ok 68 - prime count bounds for 31415926535897932384 are in the right order 221s ok 69 - PC lower with RH 221s ok 70 - PC upper with RH 221s ok 71 - PC lower 221s ok 72 - PC upper 221s ok 73 - factor(190128090927491) 221s ok 74 - factor_exp(190128090927491) 221s ok 75 - factor(1234567890) 221s ok 76 - factor_exp(1234567890) 221s ok 77 - factor(23489223467134234890234680) 221s ok 78 - factor_exp(23489223467134234890234680) 221s ok 79 - divisors(23489223467134234890234680) 221s ok 80 - moebius(618970019642690137449562110) 221s ok 81 - euler_phi(618970019642690137449562110) 221s ok 82 - carmichael_lambda(618970019642690137449562110) 221s ok 83 - jordan_totient(5,2188536338969724335807) 221s ok 84 - jordan totient using divisor_sum and moebius 221s ok 85 - Divisor sum of 100! 221s ok 86 - Divisor count(103\#) 221s ok 87 - Divisor sum(103\#) 221s ok 88 - sigma_2(103\#) 221s ok 89 - znorder 1 221s ok 90 - znorder 2 221s ok 91 - kronecker(..., ...) 221s ok 92 - znprimroot(333822190384002421914469856494764513809) 221s ok 93 - znlog(b,g,p): find k where b^k = g mod p 221s ok 94 - liouville(a x b x c) = -1 221s ok 95 - liouville(a x b x c x d) = 1 221s ok 96 - gcd(a,b,c) 221s ok 97 - gcd(a,b) 221s ok 98 - gcd of two primes = 1 221s ok 99 - lcm(p1,p2) 221s ok 100 - lcm(p1,p1) 221s ok 101 - lcm(a,b,c,d,e) 221s ok 102 - gcdext(a,b) 221s ok 103 - chinese([26,17179869209],[17,34359738421] = 103079215280 221s ok 104 - ispower(18475335773296164196) == 0 221s ok 105 - ispower(150607571^14) == 14 221s ok 106 - -7 ^ i for 0 .. 31 221s ok 107 - correct root from is_power for -7^i for 0 .. 31 221s ok 108 - random range prime isn't too small 221s ok 109 - random range prime isn't too big 221s ok 110 - random range prime is prime 221s ok 111 - random 25-digit prime is not too small 221s ok 112 - random 25-digit prime is not too big 221s ok 113 - random 25-digit prime is just right 221s ok 114 - random 80-bit prime is not too small 221s ok 115 - random 80-bit prime is not too big 221s ok 116 - random 80-bit prime is just right 221s ok 117 - random 180-bit strong prime is not too small 221s ok 118 - random 180-bit strong prime is not too big 221s ok 119 - random 180-bit strong prime is just right 221s ok 120 - random 80-bit Maurer prime is not too small 221s ok 121 - random 80-bit Maurer prime is not too big 221s ok 122 - random 80-bit Maurer prime is just right 221s ok 123 - 80-bit prime passes Miller-Rabin with 20 random bases 221s ok 124 - 80-bit composite fails Miller-Rabin with 40 random bases 221s ok 125 - MRR(undef,4) 221s ok 126 - MRR(10007,-4) 221s ok 127 - MRR(n,0) = 1 221s ok 128 - MRR(61,17) = 1 221s ok 129 - MRR(62,17) = 0 221s ok 130 - MRR(1009) = 1 221s ok 131 # skip Perrin pseudoprime tests without EXTENDED_TESTING. 221s ok 132 # skip Perrin pseudoprime tests without EXTENDED_TESTING. 221s ok 133 - valuation(6^10000,5) = 5 221s ok 134 - Nobody clobbered $_ 221s ok 221s t/93-release-spelling.t .. skipped: these tests are for release candidate testing 221s t/94-weaken.t ............ skipped: these tests are for release candidate testing 221s t/97-synopsis.t .......... skipped: these tests are for release candidate testing 221s All tests successful. 221s Files=76, Tests=4065, 12 wallclock secs ( 0.37 usr 0.10 sys + 8.66 cusr 1.27 csys = 10.40 CPU) 221s Result: PASS 222s autopkgtest [16:28:00]: test autodep8-perl-build-deps: -----------------------] 223s autopkgtest [16:28:01]: test autodep8-perl-build-deps: - - - - - - - - - - results - - - - - - - - - - 223s autodep8-perl-build-deps PASS 224s autopkgtest [16:28:02]: test autodep8-perl: preparing testbed 363s autopkgtest [16:30:21]: testbed dpkg architecture: s390x 363s autopkgtest [16:30:21]: testbed apt version: 2.7.12 363s autopkgtest [16:30:21]: @@@@@@@@@@@@@@@@@@@@ test bed setup 363s Get:1 http://ftpmaster.internal/ubuntu noble-proposed InRelease [117 kB] 364s Get:2 http://ftpmaster.internal/ubuntu noble-proposed/universe Sources [3969 kB] 364s Get:3 http://ftpmaster.internal/ubuntu noble-proposed/multiverse Sources [56.9 kB] 364s Get:4 http://ftpmaster.internal/ubuntu noble-proposed/main Sources [493 kB] 364s Get:5 http://ftpmaster.internal/ubuntu noble-proposed/restricted Sources [6540 B] 364s Get:6 http://ftpmaster.internal/ubuntu noble-proposed/main s390x Packages [652 kB] 364s Get:7 http://ftpmaster.internal/ubuntu noble-proposed/main s390x c-n-f Metadata [3032 B] 364s Get:8 http://ftpmaster.internal/ubuntu noble-proposed/restricted s390x Packages [1372 B] 364s Get:9 http://ftpmaster.internal/ubuntu noble-proposed/restricted s390x c-n-f Metadata [116 B] 364s Get:10 http://ftpmaster.internal/ubuntu noble-proposed/universe s390x Packages [4143 kB] 364s Get:11 http://ftpmaster.internal/ubuntu noble-proposed/universe s390x c-n-f Metadata [7292 B] 364s Get:12 http://ftpmaster.internal/ubuntu noble-proposed/multiverse s390x Packages [46.8 kB] 364s Get:13 http://ftpmaster.internal/ubuntu noble-proposed/multiverse s390x c-n-f Metadata [116 B] 367s Fetched 9495 kB in 3s (3473 kB/s) 367s Reading package lists... 369s Reading package lists... 369s Building dependency tree... 369s Reading state information... 370s Calculating upgrade... 370s The following packages will be upgraded: 370s cloud-init debianutils fonts-ubuntu-console libbsd0 libc-bin libc6 locales 370s python3-markupsafe 370s 8 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 370s Need to get 8499 kB of archives. 370s After this operation, 9216 B disk space will be freed. 370s Get:1 http://ftpmaster.internal/ubuntu noble/main s390x debianutils s390x 5.17 [90.1 kB] 370s Get:2 http://ftpmaster.internal/ubuntu noble/main s390x libc6 s390x 2.39-0ubuntu6 [2847 kB] 371s Get:3 http://ftpmaster.internal/ubuntu noble/main s390x libc-bin s390x 2.39-0ubuntu6 [654 kB] 371s Get:4 http://ftpmaster.internal/ubuntu noble/main s390x libbsd0 s390x 0.12.1-1 [46.7 kB] 371s Get:5 http://ftpmaster.internal/ubuntu noble/main s390x locales all 2.39-0ubuntu6 [4232 kB] 372s Get:6 http://ftpmaster.internal/ubuntu noble/main s390x fonts-ubuntu-console all 0.869+git20240321-0ubuntu1 [18.7 kB] 372s Get:7 http://ftpmaster.internal/ubuntu noble/main s390x python3-markupsafe s390x 2.1.5-1build1 [12.8 kB] 372s Get:8 http://ftpmaster.internal/ubuntu noble/main s390x cloud-init all 24.1.2-0ubuntu1 [597 kB] 373s Preconfiguring packages ... 373s Fetched 8499 kB in 3s (3194 kB/s) 373s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 373s Preparing to unpack .../debianutils_5.17_s390x.deb ... 373s Unpacking debianutils (5.17) over (5.16) ... 373s Setting up debianutils (5.17) ... 373s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 373s Preparing to unpack .../libc6_2.39-0ubuntu6_s390x.deb ... 374s Unpacking libc6:s390x (2.39-0ubuntu6) over (2.39-0ubuntu2) ... 374s Setting up libc6:s390x (2.39-0ubuntu6) ... 374s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 374s Preparing to unpack .../libc-bin_2.39-0ubuntu6_s390x.deb ... 374s Unpacking libc-bin (2.39-0ubuntu6) over (2.39-0ubuntu2) ... 374s Setting up libc-bin (2.39-0ubuntu6) ... 375s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51778 files and directories currently installed.) 375s Preparing to unpack .../libbsd0_0.12.1-1_s390x.deb ... 375s Unpacking libbsd0:s390x (0.12.1-1) over (0.11.8-1) ... 375s Preparing to unpack .../locales_2.39-0ubuntu6_all.deb ... 375s Unpacking locales (2.39-0ubuntu6) over (2.39-0ubuntu2) ... 375s Preparing to unpack .../fonts-ubuntu-console_0.869+git20240321-0ubuntu1_all.deb ... 375s Unpacking fonts-ubuntu-console (0.869+git20240321-0ubuntu1) over (0.869-0ubuntu1) ... 375s Preparing to unpack .../python3-markupsafe_2.1.5-1build1_s390x.deb ... 375s Unpacking python3-markupsafe (2.1.5-1build1) over (2.1.5-1) ... 375s Preparing to unpack .../cloud-init_24.1.2-0ubuntu1_all.deb ... 375s Unpacking cloud-init (24.1.2-0ubuntu1) over (24.1.1-0ubuntu1) ... 375s Setting up fonts-ubuntu-console (0.869+git20240321-0ubuntu1) ... 375s Setting up cloud-init (24.1.2-0ubuntu1) ... 377s Setting up locales (2.39-0ubuntu6) ... 377s Generating locales (this might take a while)... 379s en_US.UTF-8... done 379s Generation complete. 380s Setting up python3-markupsafe (2.1.5-1build1) ... 380s Setting up libbsd0:s390x (0.12.1-1) ... 380s Processing triggers for rsyslog (8.2312.0-3ubuntu3) ... 380s Processing triggers for man-db (2.12.0-3) ... 381s Processing triggers for libc-bin (2.39-0ubuntu6) ... 382s Reading package lists... 382s Building dependency tree... 382s Reading state information... 382s 0 upgraded, 0 newly installed, 0 to remove and 234 not upgraded. 383s Unknown architecture, assuming PC-style ttyS0 383s sh: Attempting to set up Debian/Ubuntu apt sources automatically 383s sh: Distribution appears to be Ubuntu 384s Reading package lists... 384s Building dependency tree... 384s Reading state information... 384s eatmydata is already the newest version (131-1). 384s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 384s Reading package lists... 384s Building dependency tree... 384s Reading state information... 385s dbus is already the newest version (1.14.10-4ubuntu1). 385s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 385s Reading package lists... 385s Building dependency tree... 385s Reading state information... 385s rng-tools-debian is already the newest version (2.4). 385s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 385s Reading package lists... 386s Building dependency tree... 386s Reading state information... 386s The following packages will be REMOVED: 386s cloud-init* python3-configobj* python3-debconf* 386s 0 upgraded, 0 newly installed, 3 to remove and 0 not upgraded. 386s After this operation, 3256 kB disk space will be freed. 386s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51777 files and directories currently installed.) 386s Removing cloud-init (24.1.2-0ubuntu1) ... 387s Removing python3-configobj (5.0.8-3) ... 387s Removing python3-debconf (1.5.86) ... 387s Processing triggers for man-db (2.12.0-3) ... 387s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51388 files and directories currently installed.) 387s Purging configuration files for cloud-init (24.1.2-0ubuntu1) ... 388s dpkg: warning: while removing cloud-init, directory '/etc/cloud/cloud.cfg.d' not empty so not removed 388s Processing triggers for rsyslog (8.2312.0-3ubuntu3) ... 388s invoke-rc.d: policy-rc.d denied execution of try-restart. 388s Reading package lists... 389s Building dependency tree... 389s Reading state information... 389s linux-generic is already the newest version (6.8.0-11.11+1). 389s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 390s Hit:1 http://ftpmaster.internal/ubuntu noble InRelease 390s Hit:2 http://ftpmaster.internal/ubuntu noble-updates InRelease 390s Hit:3 http://ftpmaster.internal/ubuntu noble-security InRelease 393s Reading package lists... 393s Reading package lists... 393s Building dependency tree... 393s Reading state information... 393s Calculating upgrade... 394s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 394s Reading package lists... 394s Building dependency tree... 394s Reading state information... 394s 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. 394s autopkgtest [16:30:52]: rebooting testbed after setup commands that affected boot 421s Reading package lists... 421s Building dependency tree... 421s Reading state information... 421s Starting pkgProblemResolver with broken count: 0 422s Starting 2 pkgProblemResolver with broken count: 0 422s Done 422s The following additional packages will be installed: 422s autodep8 dctrl-tools libmath-prime-util-gmp-perl libmath-prime-util-perl 422s pkg-perl-autopkgtest 422s Suggested packages: 422s debtags 422s Recommended packages: 422s libmath-bigint-gmp-perl 422s The following NEW packages will be installed: 422s autodep8 autopkgtest-satdep dctrl-tools libmath-prime-util-gmp-perl 422s libmath-prime-util-perl pkg-perl-autopkgtest 422s 0 upgraded, 6 newly installed, 0 to remove and 0 not upgraded. 422s Need to get 842 kB/842 kB of archives. 422s After this operation, 2400 kB of additional disk space will be used. 422s Get:1 /tmp/autopkgtest.ykCxZM/2-autopkgtest-satdep.deb autopkgtest-satdep s390x 0 [724 B] 422s Get:2 http://ftpmaster.internal/ubuntu noble/main s390x dctrl-tools s390x 2.24-3build2 [65.4 kB] 422s Get:3 http://ftpmaster.internal/ubuntu noble/main s390x autodep8 all 0.28 [13.2 kB] 422s Get:4 http://ftpmaster.internal/ubuntu noble/universe s390x libmath-prime-util-gmp-perl s390x 0.52-2build1 [275 kB] 422s Get:5 http://ftpmaster.internal/ubuntu noble/universe s390x libmath-prime-util-perl s390x 0.73-2build3 [470 kB] 423s Get:6 http://ftpmaster.internal/ubuntu noble/universe s390x pkg-perl-autopkgtest all 0.77 [18.0 kB] 423s Fetched 842 kB in 1s (1349 kB/s) 423s Selecting previously unselected package dctrl-tools. 423s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51331 files and directories currently installed.) 423s Preparing to unpack .../0-dctrl-tools_2.24-3build2_s390x.deb ... 423s Unpacking dctrl-tools (2.24-3build2) ... 424s Selecting previously unselected package autodep8. 424s Preparing to unpack .../1-autodep8_0.28_all.deb ... 424s Unpacking autodep8 (0.28) ... 424s Selecting previously unselected package libmath-prime-util-gmp-perl. 424s Preparing to unpack .../2-libmath-prime-util-gmp-perl_0.52-2build1_s390x.deb ... 424s Unpacking libmath-prime-util-gmp-perl (0.52-2build1) ... 424s Selecting previously unselected package libmath-prime-util-perl. 424s Preparing to unpack .../3-libmath-prime-util-perl_0.73-2build3_s390x.deb ... 424s Unpacking libmath-prime-util-perl (0.73-2build3) ... 424s Selecting previously unselected package pkg-perl-autopkgtest. 424s Preparing to unpack .../4-pkg-perl-autopkgtest_0.77_all.deb ... 424s Unpacking pkg-perl-autopkgtest (0.77) ... 424s Selecting previously unselected package autopkgtest-satdep. 424s Preparing to unpack .../5-2-autopkgtest-satdep.deb ... 424s Unpacking autopkgtest-satdep (0) ... 424s Setting up libmath-prime-util-gmp-perl (0.52-2build1) ... 424s Setting up libmath-prime-util-perl (0.73-2build3) ... 424s Setting up dctrl-tools (2.24-3build2) ... 424s Setting up autodep8 (0.28) ... 424s Setting up pkg-perl-autopkgtest (0.77) ... 424s Setting up autopkgtest-satdep (0) ... 424s Processing triggers for man-db (2.12.0-3) ... 427s (Reading database ... 51507 files and directories currently installed.) 427s Removing autopkgtest-satdep (0) ... 429s autopkgtest [16:31:27]: test autodep8-perl: /usr/share/pkg-perl-autopkgtest/runner runtime-deps 429s autopkgtest [16:31:27]: test autodep8-perl: [----------------------- 430s /usr/share/pkg-perl-autopkgtest/runtime-deps.d/use.t .. 430s 1..4 430s ok 1 - /usr/bin/perl -w -M"Math::Prime::Util" -e 1 2>&1 exited successfully 430s ok 2 - /usr/bin/perl -w -M"Math::Prime::Util" -e 1 2>&1 produced no (non-whitelisted) output 430s ok 3 - env PERL_DL_NONLAZY=1 /usr/bin/perl -w -M"Math::Prime::Util" -e 1 2>&1 exited successfully 430s ok 4 - env PERL_DL_NONLAZY=1 /usr/bin/perl -w -M"Math::Prime::Util" -e 1 2>&1 produced no (non-whitelisted) output 430s ok 430s All tests successful. 430s Files=1, Tests=4, 0 wallclock secs ( 0.03 usr 0.00 sys + 0.15 cusr 0.03 csys = 0.21 CPU) 430s Result: PASS 430s autopkgtest [16:31:28]: test autodep8-perl: -----------------------] 431s autodep8-perl PASS (superficial) 431s autopkgtest [16:31:29]: test autodep8-perl: - - - - - - - - - - results - - - - - - - - - - 431s autopkgtest [16:31:29]: test autodep8-perl-recommends: preparing testbed 435s Reading package lists... 436s Building dependency tree... 436s Reading state information... 436s Starting pkgProblemResolver with broken count: 0 436s Starting 2 pkgProblemResolver with broken count: 0 436s Done 436s The following additional packages will be installed: 436s libmath-bigint-gmp-perl libmath-bigint-perl 436s The following NEW packages will be installed: 436s autopkgtest-satdep libmath-bigint-gmp-perl libmath-bigint-perl 436s 0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded. 436s Need to get 207 kB/207 kB of archives. 436s After this operation, 954 kB of additional disk space will be used. 436s Get:1 /tmp/autopkgtest.ykCxZM/3-autopkgtest-satdep.deb autopkgtest-satdep s390x 0 [748 B] 436s Get:2 http://ftpmaster.internal/ubuntu noble/universe s390x libmath-bigint-perl all 2.003002-1 [189 kB] 437s Get:3 http://ftpmaster.internal/ubuntu noble/universe s390x libmath-bigint-gmp-perl s390x 1.7001-1 [17.8 kB] 437s Fetched 207 kB in 0s (485 kB/s) 437s Selecting previously unselected package libmath-bigint-perl. 437s (Reading database ... (Reading database ... 5% (Reading database ... 10% (Reading database ... 15% (Reading database ... 20% (Reading database ... 25% (Reading database ... 30% (Reading database ... 35% (Reading database ... 40% (Reading database ... 45% (Reading database ... 50% (Reading database ... 55% (Reading database ... 60% (Reading database ... 65% (Reading database ... 70% (Reading database ... 75% (Reading database ... 80% (Reading database ... 85% (Reading database ... 90% (Reading database ... 95% (Reading database ... 100% (Reading database ... 51507 files and directories currently installed.) 437s Preparing to unpack .../libmath-bigint-perl_2.003002-1_all.deb ... 437s Unpacking libmath-bigint-perl (2.003002-1) ... 437s Selecting previously unselected package libmath-bigint-gmp-perl. 437s Preparing to unpack .../libmath-bigint-gmp-perl_1.7001-1_s390x.deb ... 437s Unpacking libmath-bigint-gmp-perl (1.7001-1) ... 437s Selecting previously unselected package autopkgtest-satdep. 437s Preparing to unpack .../3-autopkgtest-satdep.deb ... 437s Unpacking autopkgtest-satdep (0) ... 437s Setting up libmath-bigint-perl (2.003002-1) ... 437s Setting up libmath-bigint-gmp-perl (1.7001-1) ... 437s Setting up autopkgtest-satdep (0) ... 437s Processing triggers for man-db (2.12.0-3) ... 440s (Reading database ... 51543 files and directories currently installed.) 440s Removing autopkgtest-satdep (0) ... 441s autopkgtest [16:31:39]: test autodep8-perl-recommends: /usr/share/pkg-perl-autopkgtest/runner runtime-deps-and-recommends 441s autopkgtest [16:31:39]: test autodep8-perl-recommends: [----------------------- 441s /usr/share/pkg-perl-autopkgtest/runtime-deps-and-recommends.d/syntax.t .. 441s 1..4 441s ok 1 - Package libmath-prime-util-perl is known to dpkg 441s ok 2 - Got status information for package libmath-prime-util-perl 441s ok 3 - Got file list for package libmath-prime-util-perl 441s # Subtest: all modules in libmath-prime-util-perl pass the syntax check 441s 1..14 441s # Name "Math::Prime::Util::ChaCha::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ChaCha.pm line 7. 441s ok 1 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ChaCha.pm exited successfully 441s # Name "Math::Prime::Util::ECAffinePoint::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ECAffinePoint.pm line 7. 441s ok 2 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ECAffinePoint.pm exited successfully 441s # Name "Math::Prime::Util::ECProjectivePoint::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ECProjectivePoint.pm line 7. 441s ok 3 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ECProjectivePoint.pm exited successfully 441s # Name "Math::Prime::Util::Entropy::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/Entropy.pm line 7. 441s ok 4 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/Entropy.pm exited successfully 441s # Subroutine new redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/MemFree.pm line 19. 441s # Subroutine DESTROY redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/MemFree.pm line 24. 441s ok 5 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/MemFree.pm exited successfully 441s # Name "Math::Prime::Util::PP::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PP.pm line 7. 441s ok 6 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PP.pm exited successfully 441s # Name "Math::Prime::Util::random_maurer_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 126. 441s # Name "Math::Prime::Util::print_primes" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 111. 441s # Name "Math::Prime::Util::is_pillai" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 115. 441s # Name "Math::Prime::Util::miller_rabin_random" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 128. 441s # Name "Math::Prime::Util::sumdigits" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 101. 441s # Name "Math::Prime::Util::ramanujan_prime_count" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 109. 441s # Name "Math::Prime::Util::twin_prime_count" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 107. 441s # Name "Math::Prime::Util::is_fundamental" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 116. 441s # Name "Math::Prime::Util::random_factored_integer" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 131. 441s # Name "Math::Prime::Util::is_provable_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 298. 441s # Name "Math::Prime::Util::is_carmichael" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 113. 441s # Name "Math::Prime::Util::random_shawe_taylor_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 127. 441s # Name "Math::Prime::Util::prime_memfree" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 16. 441s # Name "Math::Prime::Util::random_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 121. 441s # Name "Math::Prime::Util::is_quasi_carmichael" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 114. 441s # Name "Math::Prime::Util::fromdigits" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 104. 441s # Name "Math::Prime::Util::permtonum" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 134. 441s # Name "Math::Prime::Util::pplus1_factor" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 573. 441s # Name "Math::Prime::Util::todigits" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 102. 441s # Name "Math::Prime::Util::todigitstring" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 103. 441s # Name "Math::Prime::Util::random_ndigit_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 122. 441s # Name "Math::Prime::Util::random_unrestricted_semiprime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 130. 441s # Name "Math::Prime::Util::sieve_prime_cluster" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 106. 441s # Name "Math::Prime::Util::shuffle" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 136. 441s # Name "Math::Prime::Util::is_totient" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 118. 441s # Name "Math::Prime::Util::is_bpsw_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 299. 441s # Name "Math::Prime::Util::is_square" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 119. 441s # Name "Math::Prime::Util::random_nbit_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 123. 441s # Name "Math::Prime::Util::rand" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 91. 441s # Name "Math::Prime::Util::sieve_range" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 112. 441s # Name "Math::Prime::Util::inverse_totient" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 140. 441s # Name "Math::Prime::Util::random_semiprime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 129. 441s # Name "Math::Prime::Util::random_strong_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 125. 441s # Name "Math::Prime::Util::random_proven_prime" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 124. 441s # Name "Math::Prime::Util::numtoperm" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 133. 441s # Name "Math::Prime::Util::randperm" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm line 135. 441s ok 7 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PPFE.pm exited successfully 441s # Name "Math::Prime::Util::PrimalityProving::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PrimalityProving.pm line 13. 441s ok 8 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PrimalityProving.pm exited successfully 441s # Name "Math::Prime::Util::PrimeArray::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PrimeArray.pm line 6. 441s ok 9 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PrimeArray.pm exited successfully 442s # Name "Math::Prime::Util::PrimeIterator::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PrimeIterator.pm line 6. 442s ok 10 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/PrimeIterator.pm exited successfully 442s # Name "Math::Prime::Util::RandomPrimes::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/RandomPrimes.pm line 15. 442s ok 11 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/RandomPrimes.pm exited successfully 442s # Name "Math::Prime::Util::ZetaBigFloat::AUTHORITY" used only once: possible typo at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ZetaBigFloat.pm line 6. 442s ok 12 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util/ZetaBigFloat.pm exited successfully 442s # Subroutine import redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 89. 442s # Constant subroutine Math::Prime::Util::OLD_PERL_VERSION redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::MPU_MAXBITS redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::MPU_32BIT redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::MPU_MAXPARAM redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::MPU_MAXDIGITS redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::MPU_MAXPRIME redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::MPU_MAXPRIMEIDX redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::UVPACKLET redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Constant subroutine Math::Prime::Util::INTMAX redefined at /usr/lib/s390x-linux-gnu/perl-base/constant.pm line 171. 442s # Subroutine Math::Prime::Util::CLONE redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::csrand redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::srand redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::irand redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::irand64 redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::drand redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::rand redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_bytes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::entropy_bytes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_get_callgmp redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_get_secure redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_get_verbose redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_set_secure redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_get_forexit redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_get_prime_cache_size redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_is_csprng_well_seeded redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_start_for_loop redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prime_memfree redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_set_callgmp redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_set_verbose redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_end_for_loop redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prime_precalc redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prime_count redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::print_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ramanujan_prime_count redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ramanujan_prime_count_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::semiprime_count redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sum_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::twin_prime_count redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_LMOS_pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_LMO_pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_legendre_pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_lehmer_pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_meissel_pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_segment_pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_n_ramanujan_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_ramanujan_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::erat_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::segment_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::segment_twin_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::semi_prime_sieve redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sieve_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::trial_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sieve_range redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sieve_prime_cluster redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ecm_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::fermat_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::holf_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::lehman_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::pbrent_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::pminus1_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::pplus1_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prho_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::squfof_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::trial_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_euler_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_strong_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::gcd redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::lcm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecmax redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecmin redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecprod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecsum redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecextract redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::chinese redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::lucas_sequence redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::lucasu redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::lucasv redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_aks_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_bpsw_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_carmichael redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_catalan_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_euler_plumb_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_extra_strong_lucas_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_frobenius_khashin_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_frobenius_underwood_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_lucas_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_mersenne_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_prob_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_provable_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_quasi_carmichael redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_ramanujan_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_semiprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_square redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_square_free redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_strong_lucas_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_totient redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_fundamental redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_power redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_prime_power redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_almost_extra_strong_lucas_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_perrin_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_frobenius_pseudoprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_polygonal redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::logint redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::rootint redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::miller_rabin_random redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::inverse_li redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::next_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_prime_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_prime_lower redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_prime_upper redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_ramanujan_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_ramanujan_prime_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_ramanujan_prime_lower redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_ramanujan_prime_upper redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_semiprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_semiprime_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_twin_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::nth_twin_prime_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prev_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prime_count_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prime_count_lower redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::prime_count_upper redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ramanujan_prime_count_lower redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ramanujan_prime_count_upper redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::semiprime_count_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::twin_prime_count_approx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::urandomm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_maurer_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_nbit_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_ndigit_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_proven_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_semiprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_shawe_taylor_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_strong_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_unrestricted_semiprime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::urandomb redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::random_factored_integer redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::Pi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_pidigits redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::divisors redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::factor_exp redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::inverse_totient redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::divisor_sum redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::binomial redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::factorialmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::jordan_totient redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::legendre_phi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ramanujan_sum redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::znorder redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::addmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::divmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::mulmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::powmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::znlog redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::invmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_primitive_root redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::kronecker redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sqrtmod redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::valuation redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::gcdext redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::stirling redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_ExponentialIntegral redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_LambertW redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_LogarithmicIntegral redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_RiemannR redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_XS_RiemannZeta redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::euler_phi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::moebius redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::carmichael_lambda redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::chebyshev_psi redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::chebyshev_theta redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::exp_mangoldt redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::factorial redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::hammingweight redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::hclassno redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::is_pillai redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::liouville redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::mertens redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::ramanujan_tau redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sqrtint redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::znprimroot redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::numtoperm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::permtonum redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::randperm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::shuffle redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::sumdigits redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::fromdigits redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::todigits redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::todigitstring redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::_validate_num redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::lastfor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forprimes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forcomposites redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::foroddcomposites redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forsemiprimes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::fordivisors redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forcomp redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forpart redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forcomb redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forderange redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forperm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forsetproduct redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forfactored redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::forsquarefree redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecreduce redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecall redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecany redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecfirst redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecfirstidx redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecnone redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Subroutine Math::Prime::Util::vecnotall redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 125. 442s # Constant subroutine _XS_prime_maxbits redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 4294967295. 442s # Subroutine prime_get_config redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 192. 442s # Subroutine prime_set_config redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 204. 442s # Subroutine _bigint_to_int redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 248. 442s # Subroutine _to_bigint redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 252. 442s # Subroutine _to_gmpz redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 257. 442s # Subroutine _to_gmp redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 261. 442s # Subroutine _reftyped redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 265. 442s # Subroutine _validate_positive_integer redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 287. 442s # Subroutine _srand_p redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 322. 442s # Subroutine _csrand_p redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 330. 442s # Subroutine primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 339. 442s # Subroutine twin_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 397. 442s # Subroutine semi_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 422. 442s # Subroutine ramanujan_primes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 442. 442s # Subroutine random_maurer_prime_with_cert redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 464. 442s # Subroutine random_shawe_taylor_prime_with_cert redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 477. 442s # Subroutine random_proven_prime_with_cert redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 490. 442s # Subroutine primorial redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 510. 442s # Subroutine pn_primorial redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 522. 442s # Subroutine consecutive_integer_lcm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 535. 442s # Subroutine partitions redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 554. 442s # Subroutine _generic_forprimes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 571. 442s # Subroutine _generic_forcomp_sub redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 590. 442s # Subroutine _generic_forcomposites redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 623. 442s # Subroutine _generic_foroddcomposites redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 627. 442s # Subroutine _generic_forsemiprimes redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 631. 442s # Subroutine _generic_forfac redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 635. 442s # Subroutine _generic_forfactored redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 660. 442s # Subroutine _generic_forsquarefree redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 663. 442s # Subroutine _generic_fordivisors redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 667. 442s # Subroutine formultiperm redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 684. 442s # Subroutine prime_iterator redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 702. 442s # Subroutine prime_iterator_object redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 733. 442s # Subroutine _generic_prime_count redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 746. 442s # Subroutine _generic_factor redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 767. 442s # Subroutine _generic_factor_exp redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 789. 442s # Subroutine _is_gaussian_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 801. 442s # Subroutine prime_certificate redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 811. 442s # Subroutine is_provable_prime_with_cert redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 818. 442s # Subroutine verify_prime redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 871. 442s # Subroutine RiemannZeta redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 878. 442s # Subroutine RiemannR redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 891. 442s # Subroutine ExponentialIntegral redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 902. 442s # Subroutine LogarithmicIntegral redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 915. 442s # Subroutine LambertW redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 932. 442s # Subroutine bernfrac redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 944. 442s # Subroutine bernreal redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 957. 442s # Subroutine harmfrac redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 971. 442s # Subroutine harmreal redefined at /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm line 983. 442s ok 13 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/Math/Prime/Util.pm exited successfully 442s ok 14 - /usr/bin/perl -wc /usr/lib/s390x-linux-gnu/perl5/5.38/ntheory.pm exited successfully 442s ok 4 - all modules in libmath-prime-util-perl pass the syntax check 442s ok 442s All tests successful. 442s Files=1, Tests=4, 0 wallclock secs ( 0.03 usr 0.01 sys + 0.51 cusr 0.10 csys = 0.65 CPU) 442s Result: PASS 442s autopkgtest [16:31:40]: test autodep8-perl-recommends: -----------------------] 442s autopkgtest [16:31:40]: test autodep8-perl-recommends: - - - - - - - - - - results - - - - - - - - - - 442s autodep8-perl-recommends PASS (superficial) 443s autopkgtest [16:31:41]: @@@@@@@@@@@@@@@@@@@@ summary 443s autodep8-perl-build-deps PASS 443s autodep8-perl PASS (superficial) 443s autodep8-perl-recommends PASS (superficial) 457s Creating nova instance adt-noble-s390x-libmath-prime-util-perl-20240323-162417-juju-7f2275-prod-proposed-migration-environment-2 from image adt/ubuntu-noble-s390x-server-20240321.img (UUID a4b1c77c-a35e-4d28-a8d9-902a1febb465)... 457s Creating nova instance adt-noble-s390x-libmath-prime-util-perl-20240323-162417-juju-7f2275-prod-proposed-migration-environment-2 from image adt/ubuntu-noble-s390x-server-20240321.img (UUID a4b1c77c-a35e-4d28-a8d9-902a1febb465)...